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Revisiting Web Compression Buckling for Wide Flange Sections 

Fatmir Menkulasi1, Nahid Farzana2, Cristopher D. Moen3, Matthew R. Eatherton4 

This paper presents an investigation of the current web compression buckling provisions in AISC 

specifications section J10.5. The current equations used to check the limit state of web 

compression buckling were based on beam-column joint tests performed in the 1970s. They were 

primarily developed to preclude the buckling of the column web in beam column joints of moment 

resisting connections and were derived based on the elastic buckling of a square panel simply 

supported on four sides. Accordingly, the width of the applied load is not a variable in the equation. 

This study proposes a modified equation which accounts for variable load width to section depth 

ratios. Several wide flange sections are investigated using non-linear finite element analyses to 

examine their behavior to failure when subject to concentrated loads. For each investigated case a 

coefficient is provided which can be used together with the proposed equation to more accurately 

check the limit state of web compression buckling in various loading configurations. 
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1. Introduction 

Section J10 of AISC specifications addresses conditions in which flanges and webs are subject 

to concentrated forces. The limit states addressed in this section are: flange local bending, web 

local yielding, web crippling, web sidesway buckling, web compression buckling, and web panel 

zone shear.  The provisions for web compression buckling apply to a pair of compressive single-

concentrated forces or the compressive components in a pair of double-concentrated forces, 

applied at both flanges of a member at the same location. Figure 1 provides some examples where 

the limit state of web compression buckling applies. One example is at a transfer girder in which 

the column above and the column below align but the girder needs to cantilever over the column 

below for various detailing reasons. Another example is a beam column moment connection under 

gravity loads, which features beams framing on both sides of the column. Section J10.5 of the 

AISC commentary states that under these conditions, the member web must have its slenderness 

ratio limited to avoid the possibility of buckling. Equation 1 is used to check the limit state of web 

compression buckling when the pair of concentrated compressive forces is applied at a distance 

from the member end that is greater than d/2, where d is the overall depth of the member When 

this distance is less than d/2, a 50% reduction in capacity is recommended, which results in 

Equation 2. Both, Equation 1 and 2 are valid when the ratio between the load bearing length and 

overall member depth (N/d) is approximately less than 1. When N/d is not small, it is recommended 

that the member web should be designed as a compression member in accordance with Chapter E 

of AISC Specifications. 

 

 

  
Figure 1. Examples where the limit state of web compression buckling applies 

Equation 1 is based on the recommendations of Chen and Newlin (1971) and Chen and 

Oppenheim (1970), who performed compression tests on several beam sections (Figure 2). These 

tests were performed to quantify the column web strength in directly welded beam column moment 

connections (Figure 3 (a)). The pair of concentrated forces illustrated in Figure 2 simulates the 

compression forces coming from the bottom flanges of the beams. The origin of Equation 1 is the 

elastic plate buckling equation. It is assumed that the column flange acts as a bearing plate and it 

distributes the load caused by the beam compression flange of thickness tb, to some larger length 

tb+5k at the edge of the column web. The distance from the column flange to the edge of the 

column web is defined by k, which is the distance from the outer face of the flange to the web toe 

of the fillet. It is further assumed that the concentrated beam-flange load acts on a square panel 

whose dimensions are dcdc, where dc is the clear distance between flanges less the fillet or corner 

radius (same as h in Eq. 1 and 2). The theoretical elastic buckling stress for a plate is provided by 
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Equation 3. In the case of a square plate simply supported on all four sides, k=4. Additionally, 

when E=29000 ksi and µ=0.3, Equation 3 reduces to Equation 4. To obtain the critical elastic 

buckling load for the plate, Equation 4 is multiplied by the thickness (t) and the loaded width (b) 

of the plate. This results in Equation 5. Chen and Newlin (1971) proposed Equation 6 to check the 

limit state of web compression buckling, in which they adjusted the coefficient in Equation 5 to fit 

the results of the most critical test and introduced the yield stress as a variable. When the yield 

stress is 50 ksi, Equation 6 reduces to Equation 7. When the modulus of elasticity and yield stress 

in Equation 1 are taken equal to 29000 ksi, and 50 ksi, respectively, the coefficient becomes 28900, 

which is the rounded down version of the coefficient provided in Equation 7. 
 

Web Compression Buckling 

Away from member ends 

 

                                                                           
h

ywEFwt

nR

324
                                                                          (1) 

  At member ends 

                                                                           
h

ywEFwt

nR

312
                                                                          (2) 

valid for N/d ≤ 1 (or d/N ≥ 1) 

where 

 h = clear distance between flanges less the fillet or corner radius for rolled shapes 

 tw = web thickness, in. 

 E = modulus of elasticity of steel (29000 ksi) 

 Fyw = specified minimum yield stress of the web, ksi 

 N = length of bearing (not less than k for end beam reactions), in. 

 d = overall depth of the member, in.  

 

 
Figure 2: Test setup used by Chen and Newlin (1971) to investigate web buckling strength (reprinted from Chen and 

Newlin (1971)) 

 

 
                          (a)                                                                               (b) 

Figure 3: (a) Schematic of typical interior beam to column connection, (b) Simulation of the compression region 

(reprinted from Chen and Newlin (1971)) 



4 
 

 
2

2

2

112 











t

b

E
kFcr



                                                                    (3) 

  
2

104842











t

b
Fcr                                                                    (4) 

b

t
Pcr

3104842
                                                                    (5) 

b

t
P

y

cr

34100
                                                                    (6) 

b

t
Pcr

328991
                                                                    (7) 

where 

k = constant depending on type of stress, edge support conditions, and length to width ratio (aspect 

ratio) of the plate.  

E = modulus of elasticity 

µ = Poisson’s ratio 

b = with of the plate 

t = thickness of the plate 

  

Because Equations 1 and 2 were developed to quantify the column web strength in directly 

welded beam column moment connections, they may not be applicable to other conditions such as 

those illustrated in Figure 1. The difference in the case of the transfer girder is clear because the 

load bearing length provided by the top bearing plate and the bottom cap plate is much larger than 

the thickness of a beam flange in a directly welded moment connection. Additionally, the 

applicability of Equation 1 and 2 for other types of moment connections, such as the extended end 

plate moment connection illustrated in Figure 1 is also questionable. Also, the 50% reduction 

included in Eq. 2 was introduced in absence of applicable research (AISC 2010). The main 

shortcoming of Equations 1 and 2 is the fact that the load bearing width is not a variable. Clearly, 

the greater the load bearing width the greater the portion of the web that can be engaged to resist 

the applied pair of concentrated compressive forces. Accordingly, the goal of the research 

presented in this paper is twofold:  1) determine the applicability of current AISC equations for 

checking the limit state of web compression buckling in a variety of loading conditions, and 2) 

develop modified equations, which take into account the load bearing width. 

 

2. Research Approach 

To investigate the validity of the current AISC provisions for checking the limit state of web 

compression buckling, a variety of loading cases were investigated. The wide flange sections and 

depth (h) over loading width (b) ratios that were considered are provided in Table 1 and feature 

both beam and column sections. The beam sections were selected to represent various bearing type 

loading conditions for which the limit state of web compression buckling applies. The column 

sections were selected to represent the loading condition present in beam column moment 

connections under gravity loading.  A total of six beam sections with approximate depths ranging 

from 8 in. to 30 in were investigated. This range of beam depths covers the majority of wide flange 

section depths used as beams in steel structures. For each beam section five overall depth over 

loading width ratios were considered, which ranged from 1.0 to 5.0. Additionally, for each beam 
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section two loading cases were examined: 1) interior bearing, and 2) end bearing (Figure 4). The 

loaded length ranges for the beam sections are shown in Table 1. The h/b ratios for the beam 

sections were selected such that they covered a variety of bearing conditions. 

Also, three column sections were investigated with approximate depths ranging from 10 in. to 

14 in. The column sections were selected such that they represented the majority of wide flange 

sections used in column applications. Three overall depth to loading bearing width ratios were 

considered for the columns and they ranged from 10 to 20. The loaded length ranges for the column 

sections are shown in Table 1. The h/b ratios for the column sections were selected such that 

simulate compressive loads coming from beam flanges in moment resisting connections. 

Each wide flange section was subject to compressive loads at the top and bottom. The 

compression load was applied in the form of a uniformly distributed load over the loading bearing 

length (b) defined in Table 1 through the use of top and bottom plates. The wide flange section 

was modeled as a deformable body with shell elements. The top and bottom plates were modeled 

as rigid bodies and were connected to the top and bottom flanges with a tie constraint such that the 

plates and the corresponding portions of the flanges moved together.  The top plate was restrained 

against translations in directions 1 and 3 and against rotations about all three axis to simulate out-

of-plane lateral bracing, the restraint provided by the rest of the beam, and the restraint provided 

by the slab or any other supported member. The top plate was free to translate in the vertical 

direction to accommodate the application of the load. The bottom plate was restrained against all 

translations and rotations.  

The length of the wide flange sections was selected such that it was equal to three times the 

overall depth of the section to allow for a sufficient distribution of the applied load in the web of 

the section. For example, if the applied load was distributed to the web at a 45o angle, and the ratio 

between the overall section depth (h) and the load bearing width (b) is one, then the minimum 

section length necessary to allow for this distribution is 2h. Accordingly, a section length equal to 

3h was chosen in case the distribution of load to the web occurs at smaller angle than 45o with the 

horizontal axis. The restraint provided by the continuation of the wide flange section to the vertical 

edges of the webs was conservatively ignored.   

 
Table 1. Scope of parametric study 

Beam 

Sections 

h/b h/b Loaded 

length range 

(in.) 

Column 

Sections 

h/b Loaded 

length range 

(in.) 
1 2 3 4 5 1 2 3 4 5 10 15 20 

W 810 

Interior bearing 

condition 

Exterior bearing 

condition 

1.6 - 7.9 W 1049 Moment 

Connection 

0.5 – 1.0 

W 1216 2.4 – 12.0 W 1265 0.6 – 1.2 

W 1631 3.2 – 15.9 W 1461 0.7 – 1.4 

W 2144 4.1 – 20.7      

W 2784 5.3 – 26.7      

W 3090 5.9 – 29.5      
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Figure 4: Loading cases and modeling approach considered in the parametric study 

A total of 69 nonlinear finite element analyses were performed to obtain failure loads for the 

investigated specimens and to propose revised equations for checking the limit state of web 

compression buckling that take into account the influence of the load bearing width. Additionally, 

failure loads are compared with predicted capacities based on AISC equations for the limit state 

of web compression buckling. 

 

3. Finite Element Analysis 

The numerical simulations described in this paper were performed by using the commercially 

available finite element analysis software Abaqus (Dassault Systemes 2014). Both flanges and the 

web were modeled using S8R5 shell elements. The S8R5 element is a doubly-curved thin shell 

element with eight nodes and it employs quadratic shape functions. The “5” in S8R5 denotes that 

each element has five degrees of freedom (three translational, two rotational) instead of six (three 

translational, three rotational). The rotation of a node about the axis normal to the element mid-

surface is removed from the element formulation to improve computational efficiency (Moen 

2008). The “R” in the S8R5 designation denotes that the calculation of the element stiffness is not 

exact; the number of Gaussian integration points is reduced to improve computational efficiency 

and avoid shear locking (Moen 2008). This element is designed to capture the large deformations 

and through-thickness yielding expected to occur during the out-plane buckling of the web post to 

failure.  The size of the mesh was selected such that each element side did not exceed 1.0 in. in 

length and was determined based on results from convergence studies to provide a reasonable 

balance between accuracy and computational expense. It was assumed that the self-weight of the 

specimens was negligible compared to the applied loads.  Although the cross-sections were 

symmetrical about the major axis, it was necessary to model the full cross-section because the 

buckled shape could be non-symmetrical. 
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The finite element model takes into account both material and geometric nonlinearities. The 

structural steel was modeled using a bilinear stress strain relationship based on coupon test data 

provided by Arasaratnam et. al (2011). The true stress versus true strain relationship is shown in 

Figure 5 and was input into Abaqus to define the limits of the Von Mises yield surface. Young’s 

modulus E, was set at 29,000 ksi and Poisson’s ratio ν, was set to 0.3. To initiate buckling, an 

initial small out-of-plane geometric imperfection, in the form of the first mode shape obtained 

from an eigenvalue buckling analysis, was imposed to the model. An Abaqus.fil file is created for 

each eigenbuckling analysis, which is then called from the nonlinear.inp file with the 

*IMPERFECTION command. During the design phase the imperfections are typically unknown 

and are accounted for in the design equations used to estimate the capacity of the members. They 

are usually used as general random quantities that can be rigorously treated by stochastic 

techniques (Soltani et al. 2012). The magnitude of the initial imperfection considered in this study 

is h/100, where h is the overall depth of the member. Initial imperfections larger than this 

magnitude were considered two large to be acceptable. Material nonlinearity is simulated in 

Abaqus with classical metal plasticity theory, including the assumption of a Von Mises yield 

surface. In this study residual stresses are not considered. 

 

 
Figure 5: True stress-strain curve based on data from Arasaratnam et al. (2011) 

The modified Riks method was used to determine the nonlinear response of the wide flange 

section. The modified Riks method (i.e.,*STATIC,RIKS in Abaqus), was developed in the early 

1980’s and enforces an arc length constraint on the Newton-Raphson incremental solution to assist 

in the identification of the equilibrium path at highly nonlinear points along the load-deflection 

curve (Crisfield 1981). The loads were applied uniformly along the length of the web. As stated 

above, the top and bottom plates were modeled as rigid bodies with reference nodes at the centroid 

of each plate (Figure 4). For each case the vertical displacement of the reference node at the top 

plate and the reaction at the reference node of the bottom plate were recorded. The maximum 

vertical displacement at the reference node of the top flange was typically limited to 0.25 in., 

because such a vertical displacement corresponded with loads that were lower than peak load and 

were typically well into the descending branch of the load displacement curve.  

Figure 6 and Figure 7 show the first buckled mode shapes for W2144 and W1265, 

respectively, for various overall depth (h) to load bearing length (b) ratios. The corresponding 

elastic buckling loads in terms of uniformly distributed loads obtained from an eigenvalue buckling 

analysis are also illustrated.  
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Figure 6. First buckled mode shape for W2144 

 

Figure 7: First buckled mode shape for W1265 

Comparison with experimental results 

To validate the modeling approach the failure loads for eight beam tests performed by Chen 

and Oppenheim (1970) and Chen and Newlin (1971) were compared to the failure loads obtained 

from finite element analyses. The tests were performed on various wide flange sections, which 

were compressed on both flanges until the web buckled using the test setup illustrated earlier in 

Figure 2. Table 2 summarizes the wide flange sections and materials properties used in the finite 

element analyses. Modulus of elasticity (E) and Poisson’s ratio were taken equal to 29,000 ksi and 

0.3, respectively. The yield stress matched that measured from coupon tests. The ultimate stress 

and strain were not reported by Chen and Oppenheim (1970) and Chen and Newlin (1971). The 

ultimate true stress was assumed to be 20% greater than the measured yield stress. The ultimate 

true strain was assumed to be 0.16.  

A summary of the experimentally obtained failure loads and those computed using finite 

element analyses is provided in Table 3. The average ratio between the peak load obtained from 

the tests and that obtained from finite element analyses is 1.08. The coefficient of variation is 

8.45%. This suggests that the modeling approach used in this study provides reliable results with 

respect to being able to predict the buckling capacity of the web. 
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Table 2: Beam sections and material properties used in FEA of tested beams 

Test Section E (ksi) ν  σy (measured) (ksi) σu (true) ϵu (true) 

  1* W 1030 29000 0.3 41.6 49.92 0.16 

2* W 1039 29000 0.3 121.9 146.28 0.16 

3** W 1227 29000 0.3 40.7 48.84 0.16 

4* W 1230 29000 0.3 39.8 47.76 0.16 

5** W 1235 29000 0.3 110.6 132.72 0.16 

6** W 1245 29000 0.3 54 .0 64.8 0.16 

7** W 1245 29000 0.3 56.8 68.16 0.16 

8* W 1245 29000 0.3 118.2 141.84 0.16 
* Chen and Oppenheim (1970), ** Chen and Newlin (1971) 

 

Table 3: Comparison of failure loads obtained from tests and FEA 

Test Section PultTest (kips) PultFEA (kips) Ratio = PultTest/ PultFEA 

1* W 1030 90 80.92 1.11 

2* W 1039 253 231.49 1.09 

3** W 1227 64 58.83 1.09 

4* W 1230 61 63.92 0.95 

5** W 1235 235 191.84 1.22 

6** W 1245 166 146.17 1.14 

7** W 1245 168 274.41 0.95 

8* W 1245 260 152.79 1.10 

   Avg. 1.08 

   COV (%) 8.45 
* Chen and Oppenheim (1970), ** Chen and Newlin (1971) 

 

4. Results 

Load displacement curves and peak loads 

Figure 8 shows the applied load versus vertical displacement curves for all beam sections, 

which were loaded to simulate an interior bearing condition. Table 4 provides a summary of all 

the peak loads obtained from finite element analyses. As expected, when the loaded length is larger 

(i.e. h/b ratio lower) the peak load is also larger. This is due to the fact that a larger loaded length 

engages a greater portion of the web in resisting the applied load, thus resulting in a higher peak 

load. The difference between the peak loads for h/b ratios equal to 1.0 and 5.0 varies from 50% to 

58% for a given section. As can be seen the magnitude of the load bearing length has a significant 

effect on the buckling capacity of the web. This change in capacity as it relates to the limit state of 

web compression buckling would have not been captured using the current AISC equation.  

Figure 9 illustrates the applied load versus vertical displacement curves for all beam sections, 

which were loaded to simulate an end bearing condition. Also, in this case the peak loads increase 

as the loaded bearing length increases. As expected, the peak loads for bearing conditions at the 

end of the beam are lower than those obtained for a bearing condition at the interior of the beam. 

This difference becomes more pronounced for higher h/b ratios. For example, the difference 

between the peak loads obtained for interior bearing and end bearing conditions for a W1631, 

when the h/b ratio is equal to 1.0, is 24%. However, when the h/b ratio for the same section is 5.0, 

the difference in the peak loads is 213%. This is due to the fact that the difference between the 

portions of the web that are effective in resisting the applied loads is smaller when the loaded 

bearing length is large. The effective width used in providing resistance to the applied loads 

consists of the loaded bearing length plus an additional portion of the web, which is engaged in 
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resisting the load due to the lateral distribution of the load in the web. When the load bearing length 

is small, then the majority of the effective web width comprises of the portion of the web that is 

engaged due to the lateral distribution of the load. For an end bearing condition the portion of the 

web engaged in resistance is half of that used for an interior bearing condition. This is why the 

peak loads for end bearing conditions are approximately half of those for interior bearing 

conditions when h/b = 5. 

 

 

 

 
Figure 8: Total load versus vertical displacement at the top of the web (end bearing) 
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Figure 9. Total load versus vertical displacement at the top of the web (exterior bearing) 

Figure 10 shows the load versus vertical displacement curves for the column sections. The 

column depths considered varied from approximately 10 in. to 14 in. As stated earlier, the column 

sections represent typically used wide flange sections in column applications. For the column 

sections the distinction between the peak loads for various h/b ratios is not as pronounced. This is 

due to the fact that the difference between the loaded lengths is not as pronounced as the one 

considered for the beam sections. For example, in the case of W1265 an h/b ratio equal to 20 

corresponds to a loaded length equal to 0.6 in. When the h/b ratio is 10 then the loaded length is 

1.2 in. Accordingly, a difference between a 0.6 in and 1.2 in loaded length did not result in a 

marked difference in the peak loads obtained from finite element analysis. The h/b ratio for the 

columns sections were selected such that they resulted in loaded lengths, which represent 

concentrated loads coming from beam flanges in moment resisting connections. 
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Figure 10: Total load versus vertical displacement at the top of the web (interior bearing) 

Table 4. Peak loads (kips) 

Beam 

Sections 

h/b (interior) h/b (exterior) Column 

Sections 

h/b (columns) 

1 2 3 4 5 1 2 3 4 5 10 15 20 

W 810 57 44 40 38 36 47 28 20 19 18 W 1049 139 136 135 

W 1216 92 71 64 61 59 76 46 36 31 28 W 1265 181 177 175 

W 1631 153 120 110 106 102 123 76 59 52 48 W 1461 177 172 170 

W 2144 236 182 164 156 151 195 118 92 79 72     

W 2784 420 327 299 284 275 336 209 163 141 130     

W 3090 429 331 302 287 278 342 214 165 144 131     

 

Comparison with AISC equations 

The peak loads obtained from finite element analyses were compared with predicted capacities 

based on AISC provisions for the limit state of web compression buckling. The results are 

presented in Tables 5 through 7. Because the AISC equations (Eq.1 and 2) do not distinguish 

between various loaded lengths only one prediction is provided for all h/b ratios. The variable h in 

Equations 1 and 2 is defined as the clear distance between flanges less the fillet or corner radius 

for rolled shapes. Because the wide flange sections in this study were modeled using shell elements 

for the top and bottom flanges as well as for the web, the variable h was taken equal to the distance 

between the centerlines of top and bottom flanges to make a consistent comparison with the peak 

loads obtained from finite element analyses.   

As can be seen, the AISC equations significantly underestimate the buckling capacity of the 

web for the beam sections. The ratios between the predicted capacities and computed capacities 

show that this underestimation becomes more pronounced as the h/b ratios become smaller. This 
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is expected because higher h/b ratios are closer to the assumption of a simply supported square 

panel used in the derivation of Equation 1. However, even for h/b ratios equal to 5 the AISC 

equation still significantly underestimates the buckling capacity of the web. Depending on which 

beam is considered the underestimation of the buckling capacity for an interior bearing condition 

and an h/b ratio equal to 5 varies from 45% to 59%. The underestimation of the buckling capacity 

becomes more pronounced as the section depth gets larger. For h/b ratios higher than or equal to 

3.0 the ratios between the predicted capacity and computed capacity for interior and exterior 

loading conditions are similar. This justifies the 50% reduction for end bearing condition included 

in Eq.2, however the coefficients 24 and 12 in Equations 1 and 2, respectively are approximately 

half of what they should be if the predicted load were to match the computed one. For h/b ratios 

equal to 1 and 2 the ratios between the predicted and computed capacities for end bearing 

conditions are lower than those calculated for interior bearing conditions. This suggests that the 

50% reduction for these h/b ratios is significantly conservative.  

Table 7 provides a summary of the predicted capacities and computed capacities for the column 

sections. Equation 1 was used to predict the web compression buckling capacity of the column 

webs. The ratios between predicted capacities and computed capacities suggest that Eq.1 does a 

reasonably good job at predicting the buckling capacity of the column web for sections W1049 

and W1265. For section W1461, the prediction of Equation 1 errs on the conservative side by 

26-30%. Because the h/b ratios considered for the column sections result in loaded lengths that do 

not vary as much as those considered in the beam sections, the predicted versus computed ratios 

for a given section are similar.  

 
Table 5: Comparison of nominal resistance for the limit state of web compression buckling (interior beam bearing) 

Beam 

Sections 

PnAISC 

(kips) 

PnFEA (kips)  Ratio= PnAISC/ PnFEA 

h/b  h/b 

1 2 3 4 5  1 2 3 4 5 

W 810 20.07 56.90 43.96 39.68 37.88 36.32  0.35 0.46 0.51 0.53 0.55 

W 1216 28.49 92.36 70.95 64.22 60.84 58.67  0.31 0.40 0.44 0.47 0.49 

W 1631 42.23 153.19 120.17 110.39 105.52 102.14  0.28 0.35 0.38 0.40 0.41 

W 2144 66.47 235.81 181.65 164.42 156.08 150.61  0.28 0.37 0.40 0.43 0.44 

W 2784 117.26 419.85 327.17 298.68 284.25 274.68  0.28 0.36 0.39 0.41 0.43 

W 3090 112.82 429.24 330.82 301.78 286.91 277.55  0.26 0.34 0.37 0.39 0.41 

 
Table 6: Comparison of nominal resistance for the limit state of web compression buckling (end beam bearing) 

Beam 

Sections 

PnAISC 

(kips) 

PnFEA (kips)  Ratio = PnAISC/ PnFEA 

h/b  h/b 

1 2 3 4 5  1 2 3 4 5 

W 810 10.03 47.28 28.39 20.21 19.27 17.64  0.21 0.35 0.50 0.52 0.57 

W 1216 14.24 76.43 46.14 35.88 30.83 28.33  0.19 0.31 0.40 0.46 0.50 

W 1631 21.12 123.18 76.06 59.33 52.15 47.57  0.17 0.28 0.36 0.41 0.44 

W 2144 33.23 194.60 118.06 91.83 78.76 72.25  0.17 0.28 0.36 0.42 0.46 

W 2784 58.63 336.36 209.26 162.80 141.33 129.65  0.17 0.28 0.36 0.42 0.45 

W 3090 56.41 341.99 213.78 165.05 143.54 130.62  0.17 0.26 0.34 0.39 0.43 
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Table 7: Comparison of nominal resistance for the limit state of web compression buckling (column webs in 

moment frames) 

Column 

Sections 

PnAISC 

(kips) 

PnFEA (kips)  Ratio = PnAISC/ PnFEA 

h/b  h/b 

10 15 20  10 15 20 

W 1049 130.70 138.82 136.14 134.95  0.94 0.96 0.96 

W 1265 162.00 180.71 177.07 174.82  0.90 0.92 0.92 

W 1461 124.90 176.59 172.31 169.98  0.70 0.72 0.74 

 

Proposed coefficient (k’) 

To address the shortcoming of the current AISC equations (Eq. 1 and 2) for predicting the limit 

state of web compression buckling, a new equation is proposed that takes into account the influence 

of the load bearing length. The format of the proposed equation is expressed by Eq.8. This equation 

is identical to the elastic buckling equation for a plate, and the coefficient k’ takes into account the 

section depth versus loading bearing length ratio. In this manner the influence of the load bearing 

width is accounted for while maintaining the origin of the current AISC equations. The coefficient 

k’ was back calculated using Eq. 8, where Rn was taken equal to the computed capacity obtained 

from finite element analyses. The calculated values for k’ are provided in Tables 8 through 10. For 

interior beam bearing conditions they vary from 2.23 to 4.65, for end bearing conditions they vary 

from 1.08 to 3.71, and for column sections they vary from 1.31 to 1.78.  For h/b ratios higher than 

and equal to 3.0 the coefficients for end bearing conditions are approximately half of those for 

interior bearing conditions. As a result, for these cases, a 50% reduction of the buckling capacity 

of the web for an interior bearing condition would be appropriate to obtain the buckling capacity 

of the web for an exterior bearing condition. However, for h/b ratios equal to 1.0 and 2.0 the 50% 

reduction is conservative. The relationship between the k’ coefficients for end bearing and interior 

bearing conditions for h/b ratios equal to 2.0 and 1.0 vary between 63% and 83%, respectively. 
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Table 8: Proposed coefficient (k′) for checking the limit state of web compression buckling (interior beam bearing) 

Beam 

Sections 

h/b 

1 2 3 4 5 

W 810 3.49 2.69 2.43 2.32 2.23 

W 1216 3.97 3.05 2.76 2.62 2.52 

W 1631 4.47 3.51 3.22 3.08 2.98 

W 2144 4.34 3.35 3.03 2.88 2.77 

W 2784 4.39 3.42 3.13 2.99 2.88 

W 3090 4.65 3.59 3.27 3.11 3.01 
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Table 9: Proposed coefficient (k′) for checking the limit state of web compression buckling (end beam bearing) 

Beam 

Sections 

h/b 

1 2 3 4 5 

W 8x10 2.90 1.74 1.24 1.18 1.08 

W 12x16 3.29 1.98 1.54 1.33 1.22 

W 16x31 3.59 2.22 1.73 1.52 1.39 

W 21x44 3.58 2.18 1.69 1.45 1.33 

W 27x84 3.52 2.19 1.70 1.48 1.36 

W 30x90 3.71 2.32 1.79 1.56 1.42 

 

Table 10: Proposed coefficient (k′) for checking the limit state of web compression buckling (column webs in 

moment frames) 

Column 

Sections 

h/b 

10 15 20 

W 1049 1.35 1.32 1.31 

W 12x65 1.41 1.38 1.36 

W 14x61 1.78 1.73 1.71 

 

5. Conclusions 

The current AISC equations for predicting the limit state of web compression buckling do not 

take into account the influence of the load bearing length. A total of 69 nonlinear finite element 

analysis were performed to evaluate the accuracy of AISC equations for various loading conditions 

and to develop a new equation (Eq.8) for predicting the buckling capacity of the web as it relates 

to the limit state of web compression buckling. The new equation takes into account the influence 

of the load bearing length through the use of the coefficient k’. The coefficient k’ was back 

calculated from Eq.8 where Rn was taken equal to the peak load obtained from finite element 

analysis.  

It was determined that the current AISC equations (Eq.1 and 2) significantly underestimate the 

buckling capacity of the web for interior and end bearing conditions for all beam sections 

considered. This underestimation was more pronounced for low h/b ratios in the beam sections. 

However, for column sections the buckling capacity of the web calculated based on Equation 1 

matched fairly closely with the computed capacities obtained from finite element analyses, 

especially for W10x49 and W12x65 sections. This observation is consistent with the origin of 

Equation 1, which was developed to predict the buckling strength of column webs in moment 

resisting connections. For column section W14x61, Equation 1 underestimated the buckling 

capacity of the web by 26-30%. 

The influence of the load bearing length for the beam sections was more pronounced than in 

the column sections, because the range of load bearing lengths in the column sections was not as 

large as the range for the beam sections. The proposed equation (Eq.8) for predicting the buckling 

capacity of the web is identical to the elastic plate buckling equation, and the coefficient k’ takes 

into account the section depth versus loading bearing length ratio. The values for the coefficient 

k’ for the beam sections varied from 2.23 to 4.65 for interior bearing conditions and from 1.08 to 

3.71 for end bearing conditions. For the column sections the coefficient k’ varied from 1.31 to 

1.78. 

Equation 8 together with the k’ values provided in this paper can be used to more accurately 

predict the buckling capacity of the web as it relates to the limit state of web compression buckling. 
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6. Recommendations for future work 

The wide flange section lengths (L) used in this study were taken equal to three times the 

overall depth of the section (3h) to allow for a sufficient distribution of the applied load to the web 

of the section. This selection was based on the assumption that if the applied load is distributed at 

a 45o angle to the web of the section, the necessary section length to allow this distribution is 2h. 

Accordingly, a section length equal to 3h was selected to ensure a proper distribution of the applied 

load to the web of the section even if the distribution took place at angle smaller than 45o with the 

horizontal axis. Additionally, the edges of the webs for all wide flange sections were 

conservatively modeled as free. The influence of greater section lengths and alternative boundary 

conditions for the edges of the web on the buckling capacity of the web should be investigated. 

Also, because the peak loads obtained from the nonlinear finite element analyses were achieved 

after the wide flange sections were compressed past their linear range, the effect that the yield 

stress has on the peak loads should be examined. Finally, the proposed mathematical model relies 

on tabulated k’ values for predicting the limit the limit state of web compression buckling. These 

k’ values are currently available only for the sections investigated in this study. A generalized 

mathematical model should be developed that provides a closed from solution for predicting the 

limit state of web compression buckling and that can be used for any wide flange section. 
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