GPU TECHNOLOGY '
CONFERENCE
4-7, 2016 y

vl\pri (

| Silicon Valle

REVOLUTIONIZING LATTICE QCD PHYSICS WITH
HETEROGENEOUS MULTIGRID

Kate Clark, April 6th 2016

EEEEEEEEEE

< NVIDIA.

CONTENTS

®
.
=
Sm
iz
O
mr—
Z O
O®
m <<

Introduction to LQCD
QUDA Library
Adaptive Multigrid
QUDA Multigrid
Results

Conclusion

<A NVIDIA.

Nd<

\O

343
ONHO3 1l

1N

Structure within
the Atom

QUANTUM CHROMODYNAMICSE =

Electrog
1

= 0
Size = 107 m d 3 Size < 107'°m
o \

Neutron

The strong force is one of the basic forces of nature porg -
(along with gravity, em and weak) o

It’s what binds together the quarks and gluons in the proton ELEMENTARY
. . PARTICLES

and the neutron (as well as hundreds of other particles seen in

accelerator experiments)

QCD is the theory of the strong force
It’s a beautiful theory...

() = - dU)e= ©=LUQ(U) A
A I II I

b u t Three Generations of Matter
00

. . £k Fermilab 85 758
Fermi National Accelerator Laboratory

LATTICE QUANTUM CHROMODYNAMICS

Theory is highly non-linear = cannot solve directly
Must resort to numerical methods to make predictions

Lattice QCD
Discretize spacetime = 4-d dimensional lattice of size Ly X L, X L:X L;

Finitize spacetime = periodic boundary conditions
PDEs = finite difference equations

High-precision tool that allows physicists to explore the contents of nucleus from
the comfort of their workstation (supercomputer)

Consumer of 10-20% of public supercomputer cycles

4 NVIDIA

STEPS IN AN LQCD CALCULATION

2}
v
=
Sm
i
00O
mr—
Z 0O
O®
m=<<

1. Generate an ensemble of gluon field (“gauge”) configurations

Produced in sequence, with hundreds needed per ensemble
Strong scaling required with O(100 TFLOPS) sustained for several months
50-90% of the runtime is in the linear solver ngﬁ(%y; U)wf(y) — 1% (z)

2. “Analyze” the configurations
Can be farmed out, assuming O(1 TFLOPS) per job.

80-99% of the runtime is in the linear solver
Task parallelism means that clusters reign supreme here

<A NVIDIA.

1.
U
c
Qm
S
mZ
2 O
mr
ZO
O®
m <

Large Hadron Collider

Brookhaven National Laboratory

L

arge Hadron Collider

E R .-‘-—ﬂ

lllllllllllllllllIlllllllllllllllll

ad

-

I
lllllllIlllllllllIlllllllllllllllll

0.9

1.0

1.1

quenched/experiment

.

T

3m_—m

N
2'"13_, -y,
W(1P-1S)

Y(1D-18)

Y(2P-18)

Y(3S-1S)

Y(1P-1S)

lllllllllllllllllllllllllIlllllll

lllllllllllllllilllllllllIlllllll

0.9 1.0 1.1

(nfz 2+1)/experiment
Davies et al

6

<A NVIDIA.

NI Op
Q_‘s\ £ ‘(-
(7, VA -
: 8 DC1 - PRACF
7 $. 4
-
2 > 4
TATISS

3 TR . f . .
& Scientific Discovery through Advanced Computing

QUDA

e “QCD on CUDA” - http://lattice.github.com/quda (open source)

o Effort started at Boston University in 2008, now in wide use as the GPU backend for

BQCD, Chroma, CPS, MILC, TIFR, etc.
— Latest release 0.8.0 (8th February 2016)

e Provides:
Various solvers for all major fermionic discretizations, with multi-GPU support
Additional performance-critical routines needed for gauge-field generation

* Maximize performance

— Exploit physical symmetries to minimize memory traffic

— Mixed-precision methods

— Autotuning for high performance on all CUDA-capable architectures
— Domain-decomposed (Schwarz) preconditioners for strong scaling

— FEigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR)

— Multigrid solvers for optimal convergence

e Aresearch tool for how to reach the exascale

/ NVIDIA.

http://lattice.github.com/quda

QUDA COLLABORATORS

Ron Babich (NVIDIA) Steve Gottlieb (Indiana University)
Michael Baldhauf (Regensburg) Dean Howarth (Rensselaer Polytechnic Institute)

Kip Barros (LANL)
Hyung-Jin Kim (BNL -> Samsung)

Nuno Cardoso (NCSA) Claudio Rebbi (Boston University)
Guochun Shi (NCSA -> Google)
Mario Schrock (INFN)

Carleton DeTar (Utah University) .
Justin Foley (Utah -> NIH) Alejandro Vaquero (INFN)

Joel Giedt (Rensselaer Polytechnic Institute) Mathias Wagner (NVIDIA)
Frank Winter (Jlab)

Q NVIDIA.

THE DIRAC OPERATOR

Quark interactions are described by the Dirac operator
First-order PDE acting with a background field
Large sparse matrix

Dirac spin projector
matrices

(4x4 spin space) \
| T

4
1
M, o :—52 (P* @ U Spyper + P QUM 60 o) + (A4 m+ Ay)dga

m quark mass parameter

1
= _iD:c,a:’ T (4 +m+ Aw)éw,m’

4-d nearest neighbor stencil operator acting on a vector field

Eigen spectrum is complex (typically real positive)
10 NVIDIA.

MAPPING THE DIRAC OPERATOR TO CUDA

Finite difference operator in LQCD is known as Dslash X +9

Assign a single space-time point to each thread
V = XYZT threads, e.g., V = 24* => 3.3x10° threads

Looping over direction each thread must D
Load the neighboring spinor (24 numbers x8)
Load the color matrix connecting the sites (18 numbers x8)
Do the computation
Save the result (24 numbers)

Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity

QUDA reduces memory traffic
Exact SU(3) matrix compression (18 => 12 or 8 real numbers)
Use 16-bit fixed-point representation with mixed-precision solver

11 NVIDIA.

WILSON-DSLASH PERFORMANCE
K20X, ECC on, V = 24T

(7,
U
e
Sm
55
mr—
Z O
O
m<<

800 | |
v—v¥ Half 8 GF
A—A Half 12
700 | @—@ Single 8 GF _
Bl Single 8
@—©@ Single 12 7
600 — —
o - _
a®
ad
’ i W)
500 | | | | |

8 16 32 64 128
Temporal Extent

1 2 <ZNVIDIA.

LINEAR SOLVERS

QUDA supports a wide range of linear solvers
CG, BiCGstab, GCR, Multi-shift solvers, etc.

Condition number inversely proportional to mass
Light (realistic) masses are highly singular

while ([rk]> €) {
Bk = (re,rx)/(rk-1,re-1)
Pk+1 = Ik - PxPk
qJk+1 = A Pk+1
o = (i, 1)/ (Pr+1, Qi+1)
Ik+1 = Yk - Oqk+1
Xk+1 = Xk T OPk+1
k =k+1

conjugate
gradient

Naive Krylov solvers suffer from critical slowing down at decreasing mass

Entire solver algorithm must run on GPUs
Time-critical kernel is the stencil application
Also require BLAS level-1 type operations

13

NVIDIA.

MULTI-GPU DECOMPOSITION
8

T

eeeeeeee

& L 4
- @ .

eeeeeeee

& o
- @ .

14 <nvibia

STRONG SCALING

Chroma running on Titan with QUDA

(7,
U
e
Qm
55
mr—
Z O
O®©
m <<

450 | I | I | I | I | I | I | I | I | |
400 _
350 |- —
I GO BiCGStab: 72°x256 | _
200 31 DD+GCR: 72°x256 | _
I 31 BiCGStab: 96°x256 | _
% 150 | A=A DDLGCR: 96'x256 | _
al
o L]
o
1 200 - _
150 - —
100 |- = 0 -
- E 6 -
7N
50 |- G’e ~7 —_
- | | | I I B. Jloo, F. Winier (JLab), 1\i1 Clark (N\IIIDIA) i

0
0 512 1024 1536 2048 2560 3072 3584 4096 4608

< @
Titan Nodes (GPUs)] 5 <2 NVIDIA

ADAPTIVE MULTIGRID

WHY MULTIGRID?

00 1o G Wallclock time for Light Quark solves in Single

B 24%4 CG Precision
O 16764 CG

3
3
3
® @ 2464 Eig-CG
B W 1664 Eig-CG
3
3
3

®
.
=
Sm
iz
e
mr—
ri(e,
O e
m <<

® @ 3296 MG-GCR
B 8 24’64 MG-GCR
9 @ 1664 MG-GCR

p—
")

©
c
@)
J
)
7))

—

40
30

Dirac operator applications

N
o

—
o

()
.S
-
-
o
7))
i
-
O
[Pt
()
E
-
-
=)
(a
()
(o])
(C
-
()
>
<

o

QUDA (32 XK nodes) MultiGrid (16 XE nodes)

Chroma propagator benchmark

: Figure by Balint Joo
Babich et al 2010 MG Chroma integration by Saul Cohen

MG Algorithm by James Osborn

1/ <nviba

INTRODUCTION TO MULTIGRID

®
v
=
Sm
i
00O
mr—
Z 0O
O®
m=<<

Stationary iterative solvers effective on high frequency errors

‘gauss_ 100 .dat’ +

inimal effect on low frequency error

j T " " e Sodrde
A R —— R
bty A T AR AU
My SHRE N A e AL ST o
Mg e A AARRRARAM N
-.._ - ..’ +

by T e Ty P f ¥ +++‘:+‘*~+++-45...+9—*—-0',++* Tt
*+ "+:' .74 F AL o*4++++. e e e Y .;J.’“,p"
-:) 4+ ’0 oh o ‘+ hah *‘42:_*%”.—‘*3«?:::;’7*‘-'» g
X . 74 TR TS U F b Tttt s A
(" ’4 — 3 s M“""‘M :

xample !
Free Laplace operator in 2d i
Ax = 0, Xo = random

Gauss Seidel relaxation
Plot error ej = -X;

60)

720 0

1 8 <A NVIDIA.

INTRODUCTION TO MULTIGRID

@
.
=
Sm
a2
0O
mr—
Z 0O
O®
rl'l1-<

Low frequency error modes are smooth

Can accurately represent on coarse grid

Low frequency on fine Falgout
=> high frequency on coarse

Relaxation effective agin on coarse grid

Interpolate back to fine grid

1 9 <A NVIDIA.

MULTIGRID V-CYCLE

’
U
e
Sm
i
O
mr
ZO
O®
m <

V-CYCLE
Solve

. Smooth SMOOTHE
. Compute residual & RESIDUAL

. Restrict residual SMOOTHER \\ \ SMOOTHER
. Recurse on coarse problem & RESIDUAL N
. Prolongate correction /\“/

. Smooth \ \ N

. If not converged, goto 1
DIRECT SOLVE

N\Ultlgl‘]d has optimal scaling
O(N) Linear scaling with problem size
Convergence rate independent of condition number

For LQCD, we do not know the null space components that need to be preserved on the
coarse grid

(A NNA AN NN VA .
(A NNANA NN NN A

A NANANA NN A .
A NNANANANA NN A

(A NANANAVNA NN A
A NNANMANA VAN N .

(A NNA AN NN VA A
(A NNANA AN N VA A
(A NNANA AN . A .
A NMANMANA YL AN A
(A NANAND W NN A
(A NNANA " VAVA AN A

AV NMANA NN A .

SMOOTHER

\IO\U'I-th—\

2 O <A NVIDIA.

@
v
=
Sm
i
O
mr—
Z 0O
OQ
m=<<

ADAPTIVE GEOMETRIC MULTIGRID

Adaptively find candidate null-space vectors

Dynamically learn the null space and use this to
define the prolongator

Algorithm is self learning
Setup
1. Set solver to be simple smoother
2. Apply current solver to random vector v; = P(D) n;
3. If convergence good enough, solver setup complete
4. Construct prolongator using fixed coarsening (1 -PR) v, =0

= Typically use 44 geometric blocks
;

= Preserve chirality when coarsening R = ys p' Y5 =P
5. Construct coarse operator (D. =R D P)
6. Recurse on coarse problem

/. Set solver to be augmented V-cycle, goto 2

Babich et al 2010

A » - .
Finest grid Smoother apphad \

First coarse gnd

Falgout

21

<A NVIDIA.

ADAPTIVE GEOMETRIC MULTIGRID

4-d Laplace operator

@
B
c
Sm
Z O
mz
O
mr—
Z O
O®
m <<

le+05 I | | | |
NV=O
=
1 =
Nv=1
1e-05%— =
B . Nv=2 =
le-10 F —
E = .
le-15 N3 = Typically 20-30 vectors
N.=4 needed to capture
. | | | |] Dirac null space
le-20 | ' ' ' '
0 20 40 60 80 100

Niter 22 <INVIDIA.

MULTIGRID ON GPUS

THE CHALLENGE OF MULTIGRID ON GPU

GPU requirements very different from CPU
Each thread is slow, but O(10,000) threads per GPU
/ Fine grids run very efficiently

High parallel throughput problem

i

Coarse grids are worst possible scenario

—o—o ——9 More cores than degrees of freedom
e —0—=0 Increasingly serial and latency bound
o & & o—6—6 Little’s law (bytes = bandwidth * latency)

Amdahl’s law limiter

Multigrid exposes many of the problems expected at
the Exascale

24 <nviba

THE CHALLENGE OF MULTIGRID ON GPU

DESIGN GOALS

Performance
LQCD typically reaches high % peak peak performance
Brute force can beat the best algorithm
Multigrid must be optimized to the same level
Flexibility
Deploy level i on either CPU or GPU

All algorithmic flow decisions made at runtime

Autotune for a given heterogeneous

(Short term) Provide optimal solvers to legacy apps
Initial target analysis computations, e.g., 100,000 linear solves per linear system

Focus on final solver performance

(Long term) Hierarchical algorithm toolbox
26 <Snvibia

MULTIGRID AND QUDA

@)
U
C
)=
O Im
-
mZ
O
mr—
Z O
O
m <<

QUDA designed to abstract algorithm from the heterogeneity

LatticeField
Algorithms /" \\

/N N\

cudaColorSpinorField cpuColorSpinorField cudaGaugeField cpuGaugeField

WRITING THE SAME CODE FOR TWO ARCHITECTURES

@)
U
c
35
22
mZ
O O
mrr—
=G
O e
m <

template<..> host device Real bar(Arg &arg, int x) {
// do platform independent stuff here
complex<Real> a[arg.length];
arg.A.load(a);

platform specific load/store hidden here/:v
field order, cache modifiers, textures\ .. // do computation

| platform indepenqlent stuff goes here
99% of computation goes here

arg.A.save(a);
return norm(a);

}
template<..> void fooCPU(Arg &arg) { template<.> global void fooGPU(Arg arg) {
arg.sum = 0.0; int tid = threadIdx.x + blockIdx.x*blockDim.x:
#pragma omp for real sum = bar<.>(arg, tid);
for (int x=0; x<size; x++) platform specific parallelization ~_shared typename BlockReduce: :TempStorage tmp;
arg.sum += bar<.>(arg, x); GPU: shared memory arg.sum = cub::BlockReduce<..>(tmp).Sum(sum);
} CPU: OpenMP, vectorization }

78 <nvibia

Prolongation construction (setup)
- Block orthogonalization of null space vectors
- Batched QR decomposition

Smoothing (relaxation on a given grid)
- Repurpose existing solvers

Prolongation
- interpolation from coarse grid to fine grid
- one-to-many mapping

Restriction
- restriction from fine grid to coarse grid

@

07: :h
I \ -

- many-to-one mapping ¢ ® ¢ ¢ o o h
Coarse Operator construction (setup)

- Evaluate R 4 P locally

- Batched (small) dense matrix multiplication 4 v

Coarse grid solver = = ® 2h

- Need optimal coarse-grid operator

79 SAnvibia

COARSE GRID OPERATOR ®

= Coarse operator looks like a Dirac operator (many more colors) L»
- Link matrices have dimension 2N _x 2N (e.g., 48 x 48)

A

— aw] '
D1§57J§/C - Z Y;§é,3§’c 51_|_M7j T KSC,JS '¢! 61—,Lb,j_ T (M o Xi§é,j§’é’) 5i§é,j§’é’°

= Fine vs. Coarse grid parallelization
- Fine grid operator has plenty of grid-level parallelism
- E.g., 16x16x16x16 = 65536 lattice sites
- Coarse grid operator has diminishing grid-level parallelism
- first coarse grid 4x4x4x4= 256 lattice sites
- second coarse grid 2x2x2x2 = 16 lattice sites

= Current GPUs have up to 3072 processing cores

= Need to consider finer-grained parallelization
- Increase parallelism to use all GPU resources
- Load balancing

30 <nvibia

x+q

@
o
=
Sm
oz
00O
mr—
Z 0O
O®
‘rn-<

GRID PARALLELISM

Thread x dimension maps to location on the grid

{

~device void grid idx(int x[], const int X[])

// X[] holds the local lattice dimension

int idx = blockIdx.x*blockDim.x + threadIdx.x;
int za = (idx / X[0]);

int zb = (za / X[1]);

Xx[1] = za - zb * X[1];

x[3] = (zb / X[2]);

x[2] = zb - x[3] * X[2];

Xx[0] = idx - za * X[0];

// X[] now holds the thread coordinates

X[1]

000000

000000
000000

31

MATRIX-VECTOR PARALLELISM

Each stencil application is a sum of Co ago ao1 ao2 Go3 [bo
matrix-vector products thready | | &1 L — [®@0 G a1z a1 b1
index C2 ag0 (21 (22 (23 bo

C3 azop az1 azz azz/) \b3

Parallelize over output vector indices
(parallelization over color and spin)

void color spin_idx(int &s, int &c)

Thread y dimension maps to {
vector indices int yIdx = blockDim.y*blockIdx.y + threadIdx.y;
int s = yIdx / Nv;
int ¢ = yIdx % Nv;
: // s 1s now spin 1ndex for this thread
Up to 2 x Ny more parallellsm // € 1s now color index for this thread
}

32

1d€

\NO

STENCIL DIRECTION PARALLELSIM
@

‘xw
U,

X u I
Ux

Partition computation

over stencil direction
‘ ‘ ‘ and dimension onto

different threads

X+

@ warp0 warp 1 warp2 warp 3

Write result to shared memory

void dim_dir_idx(int &dim, int &dir)

Synchronize {
int zIdx = blockDim.z*blockIdx.z + threadIdx.z;
, . . int dir = zIdx % 2;
dim=0/dir=0 threads combine int dim = zIdx / 2;
and write out result // dir is now the fwd/back direction for this thread
// dim 1s now the dim for this thread
}

Introduces up to 8x more parallelism
33 &nvibia

DOT PRODUCT PARALLELIZATION |

0

(aOO ap1 Qo2 aOS) Z; = (CLQQ CLOl) (Z(l)) + (CZO2 CZOS) (Zi)
b3

Partition dot product between threads in the same warp
Use warp shuffle for final result
Useful when not enough grid parallelism to fill a warp

const int warp size = 32; // warp size
const int n_split = 4; // four-way warp split
const int grid points = warp size/n_split; // grid points per warp
complex<real> sum = 0.0;
for (int 1=0; i<N; i+=n_split)
sum += a[i] * b[i];

// cascading reduction

for (int offset = warp size/2; offset >= grid points; offset /= 2)
sum += _ shfl down(sum, offset);

// first grid points threads now hold desired result

34

DOT PRODUCT PARALLELIZATION Il

0
b b
(aOO ap1 Qo2 aOS) Z; = (CLQ() CLOl) (b(l)) + (CZOZ CZOS) (bi)

Partition dot product computation within a thread
Hide dependent arithmetic latency within a thread
More important for Kepler then Maxwell / Pascal

const int n ilp = 2; // two-way ILP “ Degree of ILP exposed
complex<real> sum[n ilp] = { };
for (int i=0; i<N; i+=n_ilp)
for (int J=6; j<n_ilp; Jj++) Multiple computations
sum[j] += a[i+]] b[i+]]; < : :
with no dependencies

complex<real> total = static_cast<real>(0.0);
for (int j=0; j<n_ilp; Jj++) total += sum[j]; -« Compute final result

35

Q)
O
c
)=
ofm
F-
mZ
O O
mr—
Z O
O @
m <<

COARSE GRID OPERATOR PERFORMANCE

Tesla K20X (Titan), FP32, N = 24

160

140

GFLOPS
S

120 -

100 -

60 -

40 -

20 -

10

Lattice length

24,576-way parallel

16-way parallel
34 <nvibia

GFLOPS

300

250

200

[
N
-

100

50

COARSE GRID OPERATOR PERFORMANCE

@@ 2x2x2x2
*—& 4x2x2x2
*—& 4x2x2x4
A—A 1x2x4x4
V—V 4x4x4x4

100

Autotuner finds optimum
degree of parallelization

Larger grids favor less fine
grained

Coarse grids favor most
fine grained

GPU is nearly always faster
than CPU

Expect in future that coarse
grids will favor CPUs

For now, use GPU exclusively
3/ NVIDIA.

RESULTS

MULTIGRID VERSUS BICGSTAB

Compare MG against the best traditional clover Krylov solver
BiCGstab in double/half precision
12/8 reconstruct
Red-black preconditioning

Adaptive Multigrid algorithm
GCR outer solver wraps 3-level MG preconditioner
GCR restarts done in double, everything else in single
24 or 32 null-space vectors on fine grid
Minimum Residual smoother
Red-black preconditioning on each level
GCR coarse-grid solver

39 NVIDIA

MULTIGRID VERSUS BICGSTAB
V = 243x64, single workstation (3x M6000)

@)
U
c
35
22
mZ
e
mr—
=G
O e
m <

9 © BiCGstab (double-half) ® GCR-MG (double-single)
10 i | rewom | riors S
. : o it [ccknc rcceas ccrnc
@ I
5 0 : -0.400
% ' .0.405 372 16 980 372
g 6 T -0.410 510 17 980 353 —
; : -0.415 866 18 980 314
E 4 : -0.420 3103 19 980 293
— : \'
I
: y e
0 : - - - -
-0.42 -0.415 -0.410 -0.405 -0.40

40 <nvibia
Mass barameter

@)
B
c
Sm
=
mZ
A O
mr—
Z O
O
m <<

Time to Solution

50

40

30

20

10

MULTIGRID VERSUS BICGSTAB
Strong scaling on Titan (K20X)

V = 403x256

W BiCGstab B MG

7.9x 6.1x
. | I
20 32

Number of Nodes

Time to Solution

50

40

30

20

10

V = 483x96

W BiCGstab B MG

24

6.6X
.

43

Number of Nodes

. 6.3X
L

4] <nvibia

1.
U
C
o k=
om
S
mZ
20O
mr
ZO
O®
m <

Time to Solution

50

40

30

20

10

MULTIGRID VERSUS BICGSTAB
Strong scaling on Titan (K20X), V = 643x128

o BiCGstab B MG

8.9x

I I5.5x I10.2x
32 64 128 2

56

Number of Nodes

512

7.4Xx

47 SAnvibia

MULTIGRID TIMING BREAKDOWN
Strong scaling on Titan (K20X), V = 64°x128, 12 linear solves

50
I B level 1 U level 2 . level 3

Number of Nodes 43 <nvibia

1.
U
C
o k=
O m
S
mZ
20O
mr
ZO
O®
m <

40 -

30

Time

20

10 -

POWER EFFICIENCY

120 | | | I | | I I

= 100 |- 12x solves
E R0 __ iy Iml! e M e m L le .
‘% ;
5 00— —
o — -
© 40 e R - UL —
D) -
E 50 — BiCGStab _

O]]] I]]] I]]] I]]] I]]] I]]]]

120

~ T 12x solves -
Z 100 - Setup —
- B -
2 80 T -
g _ -
= 60 [— —
o — -
O 40 = ,,k'rrrnrmrnﬂ'rrn'rﬂ'kﬂ—l-h ——— .
= - level 1 null space coarse grid level 2 null space]
E - construction on CPU _ Multigrid

O i]]] I]]] I]]] I]]] I]]] I]]]]

0 100 200 300 400 500

Wallclock Time (sec)

BiCGstab average power
~ 83 watts per GPU

MG average power
~ /2 watts per GPU

MG consumes less
power and 10x faster

90 T | T | T |

ﬂﬂl
MNIHH
I |

| | |
24850 24900 24950 25000 25050

44 SAnvibia

MULTIGRID FUTURE WORK

Absolute Performance tuning, e.g., half precision on coarse grids

Strong scaling improvements:
Combine with Schwarz preconditioner

Accelerate coarse grid solver: CA-GMRES instead of GCR
More flexible coarse grid distribution, e.g., redundant nodes

Investigate off load of coarse grids to the CPU
Use CPU and GPU simultaneously using additive MG

Full off load of setup phase to GPU
45 NVIDIA.

CONCLUSIONS AND OUTLOOK

Multigrid algorithms LQCD are running well on GPUs
Up to 10x speedup

Fine-grained parallelization was key
Importance of fine-grained parallelization will only increase

Fine-grained parallelism applicable to all geometric stencil-type problems

Future consider heterogeneous multigrid

44 NVIDIA.

GP TECHNOLOGY
CONFERENCE

vl\pril 4-7, 2016 | Silicon Valley

THANK YOU

JOIN THE CONVERSATION

#GTC16 ¥ f A
JOIN THE NVIDIA DEVELOPER PROGRAM AT developer.nvidia.com/join

PRESENTED BY

< NVIDIA.

///ppt/slides/developer.nvidia.com/join

