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QUANTUM CHROMODYNAMICS     

The strong force is one of the basic forces of nature  
(along with gravity, em and weak) 

It’s what binds together the quarks and gluons in the proton  
and the neutron (as well as hundreds of other particles seen in  
accelerator experiments)  

QCD is the theory of the strong force 
It’s a beautiful theory…  
 
 
            …but
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LATTICE QUANTUM CHROMODYNAMICS

Theory is highly non-linear ⇒ cannot solve directly 

Must resort to numerical methods to make predictions 

Lattice QCD 
Discretize spacetime ⇒ 4-d dimensional lattice of size Lx x Ly x Lz x Lt 

Finitize spacetime ⇒ periodic boundary conditions 

PDEs ⇒ finite difference equations 

High-precision tool that allows physicists to explore the contents of nucleus from 
the comfort of their workstation (supercomputer) 

Consumer of 10-20% of public supercomputer cycles
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STEPS IN AN LQCD CALCULATION

1. Generate an ensemble of gluon field (“gauge”) configurations 
Produced in sequence, with hundreds needed per ensemble 
Strong scaling required with O(100 TFLOPS) sustained for several months 
50-90% of the runtime is in the linear solver 

2. “Analyze” the configurations 
Can be farmed out, assuming O(1 TFLOPS) per job. 
80-99% of the runtime is in the linear solver  
Task parallelism means that clusters reign supreme here
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QUDA
• “QCD on CUDA” – http://lattice.github.com/quda (open source) 
• Effort started at Boston University in 2008, now in wide use as the GPU backend for 

BQCD, Chroma, CPS, MILC, TIFR, etc. 
– Latest release 0.8.0 (8th February 2016) 

• Provides: 
— Various solvers for all major fermionic discretizations, with multi-GPU support 
— Additional performance-critical routines needed for gauge-field generation 
• Maximize performance 
– Exploit physical symmetries to minimize memory traffic 
– Mixed-precision methods 
– Autotuning for high performance on all CUDA-capable architectures 
– Domain-decomposed (Schwarz) preconditioners for strong scaling 
– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR) 
– Multigrid solvers for optimal convergence 
• A research tool for how to reach the exascale
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THE DIRAC OPERATOR

Quark interactions are described by the Dirac operator 
First-order PDE acting with a background field 
Large sparse matrix 

4-d nearest neighbor stencil operator acting on a vector field 

Eigen spectrum is complex (typically real positive)
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m quark mass parameter
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review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.
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MAPPING THE DIRAC OPERATOR TO CUDA

• Finite difference operator in LQCD is known as Dslash 
• Assign a single space-time point to each thread 

V = XYZT threads, e.g., V = 244 => 3.3x106 threads 

• Looping over direction each thread must 
– Load the neighboring spinor (24 numbers x8) 

– Load the color matrix connecting the sites (18 numbers x8) 
– Do the computation 

– Save the result (24 numbers)  

• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity 
• QUDA reduces memory traffic 

Exact SU(3) matrix compression (18 => 12 or 8 real numbers) 
Use 16-bit fixed-point representation with mixed-precision solver
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WILSON-DSLASH PERFORMANCE
K20X, ECC on, V = 243xT
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LINEAR SOLVERS

QUDA supports a wide range of linear solvers 
CG, BiCGstab, GCR, Multi-shift solvers, etc. 

Condition number inversely proportional to mass 
Light (realistic) masses are highly singular 
Naive Krylov solvers suffer from critical slowing down at decreasing mass 

Entire solver algorithm must run on GPUs 
Time-critical kernel is the stencil application 
Also require BLAS level-1 type operations

while (|rk|> ε) { 
•βk = (rk,rk)/(rk-1,rk-1) 
•pk+1 = rk - βkpk 

     qk+1 = A pk+1 
•α = (rk,rk)/(pk+1, qk+1) 
•rk+1 = rk - αqk+1 
•xk+1 = xk + αpk+1 

•k = k+1 
}

conjugate  
gradient
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MULTI-GPU DECOMPOSITION
Multi GPU Parallelization
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STRONG SCALING
Chroma running on Titan with QUDA
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WHY MULTIGRID?
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INTRODUCTION TO MULTIGRID

Stationary iterative solvers effective on high frequency errors 

Minimal effect on low frequency error 

Example 
Free Laplace operator in 2d 
Ax = 0, x0 = random 
Gauss Seidel relaxation 
Plot error ei = -xi
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INTRODUCTION TO MULTIGRID

Low frequency error modes are smooth 

Can accurately represent on coarse grid 

Low frequency on fine  
=> high frequency on coarse 

Relaxation effective agin on coarse grid 

Interpolate back to fine grid

Falgout
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MULTIGRID V-CYCLE

Solve 
1.  Smooth 
2.  Compute residual 
3.  Restrict residual 
4.  Recurse on coarse problem 
5.  Prolongate correction 
6.  Smooth 
7.  If not converged, goto 1 
Multigrid has optimal scaling 

O(N) Linear scaling with problem size 
Convergence rate independent of condition number 

For LQCD, we do not know the null space components that need to be preserved on the 
coarse grid

V-CYCLE 

DIRECT SOLVE 

SMOOTHER 
& RESIDUAL 

SMOOTHER 
& RESIDUAL 

SMOOTHER 

SMOOTHER 

RESTRICTION IN
TE

RP
OL

AT
IO

N 
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ADAPTIVE GEOMETRIC MULTIGRID 

Adaptively find candidate null-space vectors 

Dynamically learn the null space and use this to  
define the prolongator 

Algorithm is self learning 

Setup 

1. Set solver to be simple smoother 

2. Apply current solver to random vector  vi = P(D) ηi 

3. If convergence good enough, solver setup complete 

4. Construct prolongator using fixed coarsening  (1 - P R) vk = 0 

➡ Typically use 4
4
 geometric blocks 

➡ Preserve chirality when coarsening R = γ5 P
†
 γ5 = P

†
 

5. Construct coarse operator (Dc = R D P) 

6. Recurse on coarse problem 

7. Set solver to be augmented V-cycle, goto 2

Falgout

Babich et al 2010
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ADAPTIVE GEOMETRIC MULTIGRID
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MULTIGRID ON GPUS
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THE CHALLENGE OF MULTIGRID ON GPU

GPU requirements very different from CPU 
Each thread is slow, but O(10,000) threads per GPU 

Fine grids run very efficiently 
High parallel throughput problem 

Coarse grids are worst possible scenario 
More cores than degrees of freedom 

Increasingly serial and latency bound 

Little’s law (bytes = bandwidth * latency) 

Amdahl’s law limiter 

Multigrid exposes many of the problems expected at 
the Exascale
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THE CHALLENGE OF MULTIGRID ON GPU

PCIe

GPU

CPU
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DESIGN GOALS

Performance 
LQCD typically reaches high % peak peak performance 

Brute force can beat the best algorithm 

Multigrid must be optimized to the same level 

Flexibility 
Deploy level i on either CPU or GPU 

All algorithmic flow decisions made at runtime 

Autotune for a given heterogeneous  

(Short term) Provide optimal solvers to legacy apps 
Initial target analysis computations, e.g., 100,000 linear solves per linear system  

Focus on final solver performance 

(Long term) Hierarchical algorithm toolbox 
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MULTIGRID AND QUDA

QUDA designed to abstract algorithm from the heterogeneity

LatticeField

ColorSpinorField GaugeField

cudaColorSpinorField cpuColorSpinorField cpuGaugeFieldcudaGaugeField

Algorithms

Architecture
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WRITING THE SAME CODE FOR TWO ARCHITECTURES

template<…> void fooCPU(Arg &arg) {
  arg.sum = 0.0;
#pragma omp for
  for (int x=0; x<size; x++) 
    arg.sum += bar<…>(arg, x);
}

template<…> __global__ void fooGPU(Arg arg) {
  int tid = threadIdx.x + blockIdx.x*blockDim.x;
  real sum = bar<…>(arg, tid);
  __shared__ typename BlockReduce::TempStorage tmp;
  arg.sum = cub::BlockReduce<…>(tmp).Sum(sum);
}

CPU GPU

template<…> __host__ __device__ Real bar(Arg &arg, int x) {
  // do platform independent stuff here 
  complex<Real> a[arg.length];
  arg.A.load(a);

  … // do computation
  
  arg.A.save(a);
  return norm(a);
}

platform specific parallelization  
GPU: shared memory
CPU: OpenMP, vectorization

platform specific load/store hidden here:
field order, cache modifiers, textures platform independent stuff goes here  

99% of computation goes here

• Use C++ templates to abstract arch specifics 
– Load/store order, caching modifiers, precision, intrinsics



INGREDIENTS FOR PARALLEL ADAPTIVE MULTIGRID

▪ Prolongation construction (setup) 
– Block orthogonalization of null space vectors 
– Batched QR decomposition 

▪ Smoothing (relaxation on a given grid) 
– Repurpose existing solvers 

▪ Prolongation 
– interpolation from coarse grid to fine grid 
– one-to-many mapping 

▪ Restriction 
– restriction from fine grid to coarse grid 
– many-to-one mapping 

▪ Coarse Operator construction (setup) 
– Evaluate R A P locally  
– Batched (small) dense matrix multiplication 

▪ Coarse grid solver 
– Need optimal coarse-grid operator
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COARSE GRID OPERATOR

▪ Coarse operator looks like a Dirac operator (many more colors) 
– Link matrices have dimension 2Nv x 2Nv (e.g., 48 x 48) 

▪ Fine vs. Coarse grid parallelization 
– Fine grid operator has plenty of grid-level parallelism 
– E.g., 16x16x16x16

 

= 65536 lattice sites 
– Coarse grid operator has diminishing grid-level parallelism 
– first coarse grid 4x4x4x4= 256 lattice sites 
– second coarse grid 2x2x2x2 = 16 lattice sites 

▪ Current GPUs have up to 3072 processing cores 

▪ Need to consider finer-grained parallelization 
– Increase parallelism to use all GPU resources 
– Load balancing

dofs (geometry). We start by defining the fields

W±µ
ksĉ,ls�ĉ� = V †

ksc,ksĉP
±µ
s,s�U(k+µ)c,lc��k+µ,lVls�c�,lŝ�ĉ�

note that here we are defining di�erent links for forward and backwards,
they are not simply the conjugate of each other (because of the di�erent spin
projection between the two). Also note that these e�ective link matrices have
also a spin index, this is because the vectors used to define the V rotation
matrices have spin dependence now. In this form we can now write down the
coarse Dirac operator as

D̂iŝĉ,jŝ�ĉ� = �
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

ksĉ,ls�ĉ��k+µ,l + W+µ†
ksĉ,ls�ĉ��k�µ,l

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥

+M �iŝĉ,jŝ�ĉ� .

We now finish up by blocking the geometry and spin onto the coarse lattice,
defining the e�ective link matrices Y ±µ that connect sites on the coarse
lattice:

Y ±µ
iŝĉ,jŝ�ĉ� =

�
�i,k/B�ŝ,s/Bs

⇥
W±µ

ksĉ,ls�ĉ�

�
�l/B,j�s�/Bs,ŝ�

⇥
�i⇤µ,j (2)

Xiŝĉ,jŝ�ĉ� =
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

iŝĉ,kŝ�ĉ� + W+µ†
iŝĉ,kŝ�ĉ�

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥
�i,j,

where we note now that the matrix X is not Hermitian. Thus the coarse
operator is written

D̂iŝĉ,jŝ�ĉ� = �
⇤

µ

⌅
Y �µ

iŝĉ,jŝ�ĉ��i+µ,j + Y +µ†
isĉ,js�ĉ��i�µ,j

⇧
+ (M �Xiŝĉ,jŝ�ĉ�) �iŝĉ,jŝ�ĉ� . (3)

For the explicit form of these matrices we refer the reader to Appendix A.
After the first blocking, subsequent blockings require that Bs = 1, i.e., we

cannot block the spin dimension again since we cannot remove the chirality.
Apart from this observation, the next coarse operator will have a similar form
to the current one: it will be a nearest neighbour non-Hermitian operator
connecting sites with ds = 2 spin dimension (in 2d and 4d anyway).

We note here in passing that because of the definition of the matrix field V
include explicit spin dependence, this destroys the tensor product structure
of the spin and colour on the coarse operator, i.e., we have to define an
e�ective link matrix that rotates in spin and colour space. If this were not
the case, i.e., if V were to be spin independent, then this structure would be
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GRID PARALLELISM

__device__	
  void	
  grid_idx(int	
  x[],	
  const	
  int	
  X[])	
  
{	
  
	
  	
  //	
  X[]	
  holds	
  the	
  local	
  lattice	
  dimension	
  	
  	
  
	
  	
  int	
  idx	
  =	
  blockIdx.x*blockDim.x	
  +	
  threadIdx.x;	
  
	
  	
  int	
  za	
  =	
  (idx	
  /	
  X[0]);	
  
	
  	
  int	
  zb	
  =	
  	
  (za	
  /	
  X[1]);	
  
	
  	
  x[1]	
  =	
  za	
  -­‐	
  zb	
  *	
  X[1];	
  
	
  	
  x[3]	
  =	
  (zb	
  /	
  X[2]);	
  
	
  	
  x[2]	
  =	
  zb	
  -­‐	
  x[3]	
  *	
  X[2];	
  
	
  	
  x[0]	
  =	
  idx	
  -­‐	
  za	
  *	
  X[0];	
  
	
  	
  //	
  x[]	
  now	
  holds	
  the	
  thread	
  coordinates	
  
}	
   	
  

X[0]

X[1]

Thread x dimension maps to location on the grid
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MATRIX-VECTOR PARALLELISM

template<int	
  Nv>	
  
__device__	
  void	
  color_spin_idx(int	
  &s,	
  int	
  &c)	
  
{	
  
	
  	
  int	
  yIdx	
  =	
  blockDim.y*blockIdx.y	
  +	
  threadIdx.y;	
  	
  
	
  	
  int	
  s	
  =	
  yIdx	
  /	
  Nv;	
  
	
  	
  int	
  c	
  =	
  yIdx	
  %	
  Nv;	
  
	
  	
  //	
  s	
  is	
  now	
  spin	
  index	
  for	
  this	
  thread	
  
	
  	
  //	
  c	
  is	
  now	
  color	
  index	
  for	
  this	
  thread	
  
}	
   	
  

Each stencil application is a sum of 
matrix-vector products 

Parallelize over output vector indices 
(parallelization over color and spin) 

Thread y dimension maps to  
vector indices 

Up to 2 x Nv more parallelism
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Write result to shared memory 

Synchronize 

dim=0/dir=0 threads combine  
and write out result 

Introduces up to 8x more parallelism
33

STENCIL DIRECTION PARALLELSIM

__device__	
  void	
  dim_dir_idx(int	
  &dim,	
  int	
  &dir)	
  
{	
  
	
  	
  int	
  zIdx	
  =	
  blockDim.z*blockIdx.z	
  +	
  threadIdx.z;	
  	
  
	
  	
  int	
  dir	
  =	
  zIdx	
  %	
  2;	
  
	
  	
  int	
  dim	
  =	
  zIdx	
  /	
  2;	
  
	
  	
  //	
  dir	
  is	
  now	
  the	
  fwd/back	
  direction	
  for	
  this	
  thread	
  
	
  	
  //	
  dim	
  is	
  now	
  the	
  dim	
  for	
  this	
  thread	
  
}	
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DOT PRODUCT PARALLELIZATION I

const	
  int	
  warp_size	
  =	
  32;	
  //	
  warp	
  size	
  
const	
  int	
  n_split	
  =	
  4;	
  //	
  four-­‐way	
  warp	
  split	
  
const	
  int	
  grid_points	
  =	
  warp_size/n_split;	
  //	
  grid	
  points	
  per	
  warp	
  
complex<real>	
  sum	
  =	
  0.0;	
  
for	
  (int	
  i=0;	
  i<N;	
  i+=n_split)	
  
	
  	
  sum	
  +=	
  a[i]	
  *	
  b[i];	
  

//	
  cascading	
  reduction	
  
for	
  (int	
  offset	
  =	
  warp_size/2;	
  offset	
  >=	
  grid_points;	
  offset	
  /=	
  2)	
  
	
  	
  sum	
  +=	
  __shfl_down(sum,	
  offset);	
  
//	
  first	
  grid_points	
  threads	
  now	
  hold	
  desired	
  result

Partition dot product between threads in the same warp 
Use warp shuffle for final result 
Useful when not enough grid parallelism to fill a warp
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DOT PRODUCT PARALLELIZATION II

const	
  int	
  n_ilp	
  =	
  2;	
  //	
  two-­‐way	
  ILP	
  
complex<real>	
  sum[n_ilp]	
  =	
  {	
  };	
  
for	
  (int	
  i=0;	
  i<N;	
  i+=n_ilp)	
  
	
  	
  for	
  (int	
  j=0;	
  j<n_ilp;	
  j++)	
  
	
  	
  	
  	
  sum[j]	
  +=	
  a[i+j]	
  *	
  b[i+j];	
  

complex<real>	
  total	
  =	
  static_cast<real>(0.0);	
  
for	
  (int	
  j=0;	
  j<n_ilp;	
  j++)	
  total	
  +=	
  sum[j];	
  

Degree of ILP exposed

Multiple computations 
with no dependencies

Compute final result

Partition dot product computation within a thread 
Hide dependent arithmetic latency within a thread 
More important for Kepler then Maxwell / Pascal
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COARSE GRID OPERATOR PERFORMANCE
Tesla K20X (Titan), FP32, N = 24
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COARSE GRID OPERATOR PERFORMANCE

▪ Autotuner finds optimum 
degree of parallelization 

▪ Larger grids favor less fine 
grained 

▪ Coarse grids favor most 
fine grained 

▪ GPU is nearly always faster 
than CPU 

▪ Expect in future that coarse 
grids will favor CPUs 

▪ For now, use GPU exclusively

8-core Haswell 2.4 GHz (solid line) vs M6000 (dashed lined), FP32
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RESULTS
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MULTIGRID VERSUS BICGSTAB

Compare MG against the best traditional clover Krylov solver 
BiCGstab in double/half precision 
12/8 reconstruct 
Red-black preconditioning 

Adaptive Multigrid algorithm 
GCR outer solver wraps 3-level MG preconditioner 
GCR restarts done in double, everything else in single 
24 or 32 null-space vectors on fine grid 
Minimum Residual smoother 
Red-black preconditioning on each level 
GCR coarse-grid solver
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-0.400 251 15 980 376

-0.405 372 16 980 372

-0.410 510 17 980 353

-0.415 866 18 980 314

-0.420 3103 19 980 293

V = 243x64, single workstation (3x M6000) 
MULTIGRID VERSUS BICGSTAB
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Strong scaling on Titan (K20X)
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Strong scaling on Titan (K20X), V = 643x128
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Strong scaling on Titan (K20X), V = 643x128, 12 linear solves
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MULTIGRID TIMING BREAKDOWN
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POWER EFFICIENCY
BiCGstab average power 
~ 83 watts per GPU 

MG average power 
~ 72 watts per GPU 

MG consumes less  
power and 10x faster

12x solvesSetup

12x solves

level 1 null space level 2 null spacecoarse grid 
construction on CPU
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MULTIGRID FUTURE WORK

Absolute Performance tuning, e.g., half precision on coarse grids 

Strong scaling improvements: 
Combine with Schwarz preconditioner 
Accelerate coarse grid solver: CA-GMRES instead of GCR 
More flexible coarse grid distribution, e.g., redundant nodes 

Investigate off load of coarse grids to the CPU 
Use CPU and GPU simultaneously using additive MG 

Full off load of setup phase to GPU
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CONCLUSIONS AND OUTLOOK

Multigrid algorithms LQCD are running well on GPUs 
Up to 10x speedup 

Fine-grained parallelization was key 
Importance of fine-grained parallelization will only increase 
Fine-grained parallelism applicable to all geometric stencil-type problems 

Future consider heterogeneous multigrid
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