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The strong force is one of the basic forces of nature porg -
(along with gravity, em and weak) o

It’s what binds together the quarks and gluons in the proton ELEMENTARY
. . PARTICLES

and the neutron (as well as hundreds of other particles seen in

accelerator experiments)

QCD is the theory of the strong force
It’s a beautiful theory...
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LATTICE QUANTUM CHROMODYNAMICS

Theory is highly non-linear = cannot solve directly
Must resort to numerical methods to make predictions

Lattice QCD
Discretize spacetime = 4-d dimensional lattice of size Ly X L, X L:X L;

Finitize spacetime = periodic boundary conditions
PDEs = finite difference equations

High-precision tool that allows physicists to explore the contents of nucleus from
the comfort of their workstation (supercomputer)

Consumer of 10-20% of public supercomputer cycles

4 NVIDIA



STEPS IN AN LQCD CALCULATION
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1. Generate an ensemble of gluon field (“gauge”) configurations

Produced in sequence, with hundreds needed per ensemble
Strong scaling required with O(100 TFLOPS) sustained for several months
50-90% of the runtime is in the linear solver ngﬁ(%y; U)wf(y) — 1% (z)

2. “Analyze” the configurations
Can be farmed out, assuming O(1 TFLOPS) per job.

80-99% of the runtime is in the linear solver
Task parallelism means that clusters reign supreme here

<A NVIDIA.
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Large Hadron Collider

Brookhaven National Laboratory
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& Scientific Discovery through Advanced Computing

QUDA

e “QCD on CUDA” - http://lattice.github.com/quda (open source)

o Effort started at Boston University in 2008, now in wide use as the GPU backend for

BQCD, Chroma, CPS, MILC, TIFR, etc.
— Latest release 0.8.0 (8th February 2016)

e Provides:
Various solvers for all major fermionic discretizations, with multi-GPU support
Additional performance-critical routines needed for gauge-field generation

* Maximize performance

— Exploit physical symmetries to minimize memory traffic

— Mixed-precision methods

— Autotuning for high performance on all CUDA-capable architectures
— Domain-decomposed (Schwarz) preconditioners for strong scaling

— FEigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR)

— Multigrid solvers for optimal convergence

e Aresearch tool for how to reach the exascale

/ NVIDIA.
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THE DIRAC OPERATOR

Quark interactions are described by the Dirac operator
First-order PDE acting with a background field
Large sparse matrix

Dirac spin projector
matrices

(4x4 spin space) \
| T

4
1
M, o :—52 (P* @ U Spyper + P QUM 60 o) + (A4 m+ Ay)dga

m quark mass parameter

1
= _iD:c,a:’ T (4 +m+ Aw)éw,m’

4-d nearest neighbor stencil operator acting on a vector field

Eigen spectrum is complex (typically real positive)
10 NVIDIA.



MAPPING THE DIRAC OPERATOR TO CUDA

Finite difference operator in LQCD is known as Dslash X +9

Assign a single space-time point to each thread
V = XYZT threads, e.g., V = 24* => 3.3x10° threads

Looping over direction each thread must D
Load the neighboring spinor (24 numbers x8)
Load the color matrix connecting the sites (18 numbers x8)
Do the computation
Save the result (24 numbers)

Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity

QUDA reduces memory traffic
Exact SU(3) matrix compression (18 => 12 or 8 real numbers)
Use 16-bit fixed-point representation with mixed-precision solver

11 NVIDIA.



WILSON-DSLASH PERFORMANCE
K20X, ECC on, V = 24T
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LINEAR SOLVERS

QUDA supports a wide range of linear solvers
CG, BiCGstab, GCR, Multi-shift solvers, etc.

Condition number inversely proportional to mass
Light (realistic) masses are highly singular

while ([rk]> €) {
Bk = (re,rx)/(rk-1,re-1)
Pk+1 = Ik - PxPk
qJk+1 = A Pk+1
o = (i, 1)/ (Pr+1, Qi+1)
Ik+1 = Yk - Oqk+1
Xk+1 = Xk T OPk+1
k =k+1

conjugate
gradient

Naive Krylov solvers suffer from critical slowing down at decreasing mass

Entire solver algorithm must run on GPUs
Time-critical kernel is the stencil application
Also require BLAS level-1 type operations

13
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MULTI-GPU DECOMPOSITION
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STRONG SCALING

Chroma running on Titan with QUDA
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ADAPTIVE MULTIGRID



WHY MULTIGRID?
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QUDA (32 XK nodes) MultiGrid (16 XE nodes)

Chroma propagator benchmark

: Figure by Balint Joo
Babich et al 2010 MG Chroma integration by Saul Cohen

MG Algorithm by James Osborn
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INTRODUCTION TO MULTIGRID
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Stationary iterative solvers effective on high frequency errors

‘gauss_ 100 .dat’ +

inimal effect on low frequency error
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xample !
Free Laplace operator in 2d i
Ax = 0, Xo = random

Gauss Seidel relaxation
Plot error ej = -X;
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INTRODUCTION TO MULTIGRID
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Low frequency error modes are smooth

Can accurately represent on coarse grid

Low frequency on fine Falgout
=> high frequency on coarse

Relaxation effective agin on coarse grid

Interpolate back to fine grid

1 9 <A NVIDIA.



MULTIGRID V-CYCLE
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V-CYCLE
Solve

. Smooth SMOOTHE
. Compute residual & RESIDUAL

. Restrict residual SMOOTHER \\ \ SMOOTHER
. Recurse on coarse problem & RESIDUAL N
. Prolongate correction /\“/

. Smooth \ \ N

. If not converged, goto 1
DIRECT SOLVE

N\Ultlgl‘]d has optimal scaling
O(N) Linear scaling with problem size
Convergence rate independent of condition number

For LQCD, we do not know the null space components that need to be preserved on the
coarse grid
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ADAPTIVE GEOMETRIC MULTIGRID

Adaptively find candidate null-space vectors

Dynamically learn the null space and use this to
define the prolongator

Algorithm is self learning
Setup
1. Set solver to be simple smoother
2. Apply current solver to random vector v; = P(D) n;
3. If convergence good enough, solver setup complete
4. Construct prolongator using fixed coarsening (1 -PR) v, =0

= Typically use 44 geometric blocks
;

= Preserve chirality when coarsening R = ys p' Y5 =P
5. Construct coarse operator (D. =R D P)
6. Recurse on coarse problem

/. Set solver to be augmented V-cycle, goto 2

Babich et al 2010

A » - .
Finest grid Smoother apphad \

First coarse gnd

Falgout

21
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ADAPTIVE GEOMETRIC MULTIGRID

4-d Laplace operator
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MULTIGRID ON GPUS



THE CHALLENGE OF MULTIGRID ON GPU

GPU requirements very different from CPU
Each thread is slow, but O(10,000) threads per GPU
/ Fine grids run very efficiently

High parallel throughput problem

i

Coarse grids are worst possible scenario

—o—o ——9 More cores than degrees of freedom
e —0—=0 Increasingly serial and latency bound
o & & o—6—6 Little’s law (bytes = bandwidth * latency)

Amdahl’s law limiter

Multigrid exposes many of the problems expected at
the Exascale

24 <nviba



THE CHALLENGE OF MULTIGRID ON GPU




DESIGN GOALS

Performance
LQCD typically reaches high % peak peak performance
Brute force can beat the best algorithm
Multigrid must be optimized to the same level
Flexibility
Deploy level i on either CPU or GPU

All algorithmic flow decisions made at runtime

Autotune for a given heterogeneous

(Short term) Provide optimal solvers to legacy apps
Initial target analysis computations, e.g., 100,000 linear solves per linear system

Focus on final solver performance

(Long term) Hierarchical algorithm toolbox
26 <Snvibia



MULTIGRID AND QUDA
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QUDA designed to abstract algorithm from the heterogeneity

LatticeField
Algorithms /" \\

/N N\

cudaColorSpinorField cpuColorSpinorField cudaGaugeField cpuGaugeField



WRITING THE SAME CODE FOR TWO ARCHITECTURES
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template<..>  host device  Real bar(Arg &arg, int x) {
// do platform independent stuff here
complex<Real> a[arg.length];
arg.A.load(a);

platform specific load/store hidden here/:v
field order, cache modifiers, textures\ .. // do computation

| platform indepenqlent stuff goes here
99% of computation goes here

arg.A.save(a);
return norm(a);

}
template<..> void fooCPU(Arg &arg) { template<.> global void fooGPU(Arg arg) {
arg.sum = 0.0; int tid = threadIdx.x + blockIdx.x*blockDim.x:
#pragma omp for real sum = bar<.>(arg, tid);
for (int x=0; x<size; x++) platform specific parallelization ~_shared  typename BlockReduce: :TempStorage tmp;
arg.sum += bar<.>(arg, x); GPU: shared memory arg.sum = cub::BlockReduce<..>(tmp).Sum(sum);
} CPU: OpenMP, vectorization }

78 <nvibia



Prolongation construction (setup)
- Block orthogonalization of null space vectors
- Batched QR decomposition

Smoothing (relaxation on a given grid)
- Repurpose existing solvers

Prolongation
- interpolation from coarse grid to fine grid
- one-to-many mapping

Restriction
- restriction from fine grid to coarse grid

@

07: :h
I \ -

- many-to-one mapping ¢ ® ¢ ¢ o o h
Coarse Operator construction (setup)

- Evaluate R 4 P locally

- Batched (small) dense matrix multiplication 4 v

Coarse grid solver = = ® 2h

- Need optimal coarse-grid operator

79 SAnvibia



COARSE GRID OPERATOR ®

= Coarse operator looks like a Dirac operator (many more colors) L»
- Link matrices have dimension 2N _x 2N (e.g., 48 x 48)

A

— aw ] '
D1§57J§/C - Z Y;§é,3§’c 51_|_M7j T KSC,JS '¢! 61—,Lb,j_ T (M o Xi§é,j§’é’) 5i§é,j§’é’°

= Fine vs. Coarse grid parallelization
- Fine grid operator has plenty of grid-level parallelism
- E.g., 16x16x16x16 = 65536 lattice sites
- Coarse grid operator has diminishing grid-level parallelism
- first coarse grid 4x4x4x4= 256 lattice sites
- second coarse grid 2x2x2x2 = 16 lattice sites

= Current GPUs have up to 3072 processing cores

= Need to consider finer-grained parallelization
- Increase parallelism to use all GPU resources
- Load balancing

30 <nvibia
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GRID PARALLELISM

Thread x dimension maps to location on the grid

{

~device void grid idx(int x[], const int X[])

// X[] holds the local lattice dimension

int idx = blockIdx.x*blockDim.x + threadIdx.x;
int za = (idx / X[0]);

int zb = (za / X[1]);

Xx[1] = za - zb * X[1];

x[3] = (zb / X[2]);

x[2] = zb - x[3] * X[2];

Xx[0] = idx - za * X[0];

// X[ ] now holds the thread coordinates

X[1]

000000

000000
000000

31



MATRIX-VECTOR PARALLELISM

Each stencil application is a sum of Co ago  ao1 ao2 Go3 [ bo
matrix-vector products thready | | &1 L — [®@0 G a1z a1 b1
index C2 ag0 (21 (22 (23 bo

C3 azop az1 azz azz/) \b3

Parallelize over output vector indices
(parallelization over color and spin)

void color spin_idx(int &s, int &c)

Thread y dimension maps to {
vector indices int yIdx = blockDim.y*blockIdx.y + threadIdx.y;
int s = yIdx / Nv;
int ¢ = yIdx % Nv;
: // s 1s now spin 1ndex for this thread
Up to 2 x Ny more parallellsm // € 1s now color index for this thread
}

32
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STENCIL DIRECTION PARALLELSIM
@

‘xw
U,

X u I
Ux

Partition computation

over stencil direction
‘ ‘ ‘ and dimension onto

different threads

X+

@ warp0  warp 1 warp2  warp 3

Write result to shared memory

void dim_dir_idx(int &dim, int &dir)

Synchronize {
int zIdx = blockDim.z*blockIdx.z + threadIdx.z;
, . . int dir = zIdx % 2;
dim=0/dir=0 threads combine int dim = zIdx / 2;
and write out result // dir is now the fwd/back direction for this thread
// dim 1s now the dim for this thread
}

Introduces up to 8x more parallelism
33 &nvibia



DOT PRODUCT PARALLELIZATION |

0

(aOO ap1 Qo2 aOS) Z; = (CLQQ CLOl) (Z(l)) + (CZO2 CZOS) (Zi)
b3

Partition dot product between threads in the same warp
Use warp shuffle for final result
Useful when not enough grid parallelism to fill a warp

const int warp size = 32; // warp size
const int n_split = 4; // four-way warp split
const int grid points = warp size/n_split; // grid points per warp
complex<real> sum = 0.0;
for (int 1=0; i<N; i+=n_split)
sum += a[i] * b[i];

// cascading reduction

for (int offset = warp size/2; offset >= grid points; offset /= 2)
sum += _ shfl down(sum, offset);

// first grid points threads now hold desired result

34



DOT PRODUCT PARALLELIZATION Il

0
b b
(aOO ap1 Qo2 aOS) Z; = (CLQ() CLOl) (b(l)) + (CZOZ CZOS) (bi)

Partition dot product computation within a thread
Hide dependent arithmetic latency within a thread
More important for Kepler then Maxwell / Pascal

const int n ilp = 2; // two-way ILP “ Degree of ILP exposed
complex<real> sum[n ilp] = { };
for (int i=0; i<N; i+=n_ilp)
for (int J=6; j<n_ilp; Jj++) Multiple computations
sum[j] += a[i+]] b[i+]]; < : :
with no dependencies

complex<real> total = static_cast<real>(0.0);
for (int j=0; j<n_ilp; Jj++) total += sum[j]; -« Compute final result

35
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COARSE GRID OPERATOR PERFORMANCE

Tesla K20X (Titan), FP32, N = 24
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Lattice length

24,576-way parallel

16-way parallel
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GFLOPS
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COARSE GRID OPERATOR PERFORMANCE

@@ 2x2x2x2
*—& 4x2x2x2
*—& 4x2x2x4
A—A 1x2x4x4
V—V 4x4x4x4

100

Autotuner finds optimum
degree of parallelization

Larger grids favor less fine
grained

Coarse grids favor most
fine grained

GPU is nearly always faster
than CPU

Expect in future that coarse
grids will favor CPUs

For now, use GPU exclusively
3/ NVIDIA.
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MULTIGRID VERSUS BICGSTAB

Compare MG against the best traditional clover Krylov solver
BiCGstab in double/half precision
12/8 reconstruct
Red-black preconditioning

Adaptive Multigrid algorithm
GCR outer solver wraps 3-level MG preconditioner
GCR restarts done in double, everything else in single
24 or 32 null-space vectors on fine grid
Minimum Residual smoother
Red-black preconditioning on each level
GCR coarse-grid solver

39 NVIDIA



MULTIGRID VERSUS BICGSTAB
V = 243x64, single workstation (3x M6000)
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9 © BiCGstab (double-half) ® GCR-MG (double-single)
10 i | rewom | riors S
. : o it [ccknc rcceas ccrnc
@ I
5 0 : -0.400
% ' .0.405 372 16 980 372
g 6 T -0.410 510 17 980 353 —
; : -0.415 866 18 980 314
E 4 : -0.420 3103 19 980 293
— : \'
I
: y e
0 : - - - -
-0.42 -0.415 -0.410 -0.405 -0.40
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Time to Solution
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MULTIGRID VERSUS BICGSTAB
Strong scaling on Titan (K20X)

V = 403x256

W BiCGstab B MG

7.9x 6.1x
. | I
20 32

Number of Nodes

Time to Solution
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V = 483x96

W BiCGstab B MG

24

6.6X
.

43

Number of Nodes
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L
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MULTIGRID VERSUS BICGSTAB
Strong scaling on Titan (K20X), V = 643x128

o BiCGstab B MG

8.9x

I I5.5x I10.2x
32 64 128 2

56

Number of Nodes

512

7.4Xx
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MULTIGRID TIMING BREAKDOWN
Strong scaling on Titan (K20X), V = 64°x128, 12 linear solves

50
I B level 1 U level 2 . level 3

Number of Nodes 43 <nvibia
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POWER EFFICIENCY
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BiCGstab average power
~ 83 watts per GPU

MG average power
~ /2 watts per GPU

MG consumes less
power and 10x faster
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MULTIGRID FUTURE WORK

Absolute Performance tuning, e.g., half precision on coarse grids

Strong scaling improvements:
Combine with Schwarz preconditioner

Accelerate coarse grid solver: CA-GMRES instead of GCR
More flexible coarse grid distribution, e.g., redundant nodes

Investigate off load of coarse grids to the CPU
Use CPU and GPU simultaneously using additive MG

Full off load of setup phase to GPU
45 NVIDIA.



CONCLUSIONS AND OUTLOOK

Multigrid algorithms LQCD are running well on GPUs
Up to 10x speedup

Fine-grained parallelization was key
Importance of fine-grained parallelization will only increase

Fine-grained parallelism applicable to all geometric stencil-type problems

Future consider heterogeneous multigrid

44 NVIDIA.
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