
April 4-7, 2016 | Silicon Valley

Kate Clark, April 6th 2016

REVOLUTIONIZING LATTICE QCD PHYSICS WITH
HETEROGENEOUS MULTIGRID

CONTENTS

Introduction to LQCD
QUDA Library
Adaptive Multigrid
QUDA Multigrid
Results
Conclusion

3

QUANTUM CHROMODYNAMICS

The strong force is one of the basic forces of nature  
(along with gravity, em and weak)

It’s what binds together the quarks and gluons in the proton  
and the neutron (as well as hundreds of other particles seen in  
accelerator experiments)

QCD is the theory of the strong force
It’s a beautiful theory…  
 
 
 …but

!"#$%&'()*$+%",-"#$.#(/01,(-23$$4$$5678$95:;;$$4$$8&1)*$;<$=>;; X

3",6@0*,/7*A#"./0

! V*0$0$6./A*<.6-2$(,$"#0$"A$-*0$'&,()$A"1)0,$"A$#&-O10$+&?"#R$
F(-*$R1&/(-2<$0?0)-1"K&R#0-(,K<$&#@$-*0$F0&H$A"1)03P

! 6-h,$F*&-$'(#@,$-"R0-*01$-*0$B",6@0$&#@$A#"./0$(#$-*0$E1"-"#$
+&#@$-*0$#0O-1"#<$&,$F0??$&,$*O#@10@,$"A$"-*01$E&1-()?0,$,00#$(#$
&))0?01&-"1$0cE01(K0#-,3P

V*"K&,$M0AA01,"#$C&-("#&?$7))0?01&-"1$i&)(?(-2
i01K($C&-("#&?$7))0?01&-"1$G&'"1&-"12

h⌦i = 1

Z

Z
[dU]e�

R
d

4
xL(U)⌦(U)

4

LATTICE QUANTUM CHROMODYNAMICS

Theory is highly non-linear ⇒ cannot solve directly

Must resort to numerical methods to make predictions

Lattice QCD
Discretize spacetime ⇒ 4-d dimensional lattice of size Lx x Ly x Lz x Lt

Finitize spacetime ⇒ periodic boundary conditions

PDEs ⇒ finite difference equations

High-precision tool that allows physicists to explore the contents of nucleus from
the comfort of their workstation (supercomputer)

Consumer of 10-20% of public supercomputer cycles

5

STEPS IN AN LQCD CALCULATION

1. Generate an ensemble of gluon field (“gauge”) configurations
Produced in sequence, with hundreds needed per ensemble
Strong scaling required with O(100 TFLOPS) sustained for several months
50-90% of the runtime is in the linear solver

2. “Analyze” the configurations
Can be farmed out, assuming O(1 TFLOPS) per job.
80-99% of the runtime is in the linear solver  
Task parallelism means that clusters reign supreme here

U(x)

D

↵�
ij (x, y;U) �

j (y) = ⌘

↵
i (x)

or Ax = b

6
Davies et alBrookhaven National Laboratory

Large Hadron Collider Large Hadron Collider

QUDA
• “QCD on CUDA” – http://lattice.github.com/quda (open source)
• Effort started at Boston University in 2008, now in wide use as the GPU backend for

BQCD, Chroma, CPS, MILC, TIFR, etc.
– Latest release 0.8.0 (8th February 2016)

• Provides:
— Various solvers for all major fermionic discretizations, with multi-GPU support
— Additional performance-critical routines needed for gauge-field generation
• Maximize performance
– Exploit physical symmetries to minimize memory traffic
– Mixed-precision methods
– Autotuning for high performance on all CUDA-capable architectures
– Domain-decomposed (Schwarz) preconditioners for strong scaling
– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR)
– Multigrid solvers for optimal convergence
• A research tool for how to reach the exascale

7

http://lattice.github.com/quda

QUDA COLLABORATORS

§ Steve Gottlieb (Indiana University)
§ Dean Howarth (Rensselaer Polytechnic Institute)
§ Bálint Joó (Jlab)
§ Hyung-Jin Kim (BNL -> Samsung)
§ Claudio Rebbi (Boston University)
§ Guochun Shi (NCSA -> Google)
§ Mario Schröck (INFN)
§ Alexei Strelchenko (FNAL)
§ Alejandro Vaquero (INFN)
§ Mathias Wagner (NVIDIA)
§ Frank Winter (Jlab)

(multigrid collaborators in green)

§ Ron Babich (NVIDIA)
§ Michael Baldhauf (Regensburg)
§ Kip Barros (LANL)
§ Rich Brower (Boston University)
§ Nuno Cardoso (NCSA)
§ Kate Clark (NVIDIA)
§ Michael Cheng (Boston University)
§ Carleton DeTar (Utah University)
§ Justin Foley (Utah -> NIH)
§ Joel Giedt (Rensselaer Polytechnic Institute)
§ Arjun Gambhir (William and Mary)

9

THE DIRAC OPERATOR

Quark interactions are described by the Dirac operator
First-order PDE acting with a background field
Large sparse matrix

4-d nearest neighbor stencil operator acting on a vector field

Eigen spectrum is complex (typically real positive)

M
x,x

0 = �1
2

4X

µ=1

�
P�µ ⌦ Uµ

x

�
x+µ̂,x

0 + P+µ ⌦ Uµ†
x�µ̂

�
x�µ̂,x

0
�

+ (4 + m + A
x

)�
x,x

0

⌘ �1
2
D

x,x

0 + (4 + m + A
x

)�
x,x

0

Dirac spin projector
matrices

(4x4 spin space)

SU(3) QCD gauge field
(link matrices) 

(3x3 color space)
A is the clover matrix
(12x12 spin⊗color space)

m quark mass parameter

10

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

D
x,x

0 =
x x

x

x−

x−

U x



U
x

μ

μ

ν

11

MAPPING THE DIRAC OPERATOR TO CUDA

• Finite difference operator in LQCD is known as Dslash
• Assign a single space-time point to each thread

V = XYZT threads, e.g., V = 244 => 3.3x106 threads

• Looping over direction each thread must
– Load the neighboring spinor (24 numbers x8)

– Load the color matrix connecting the sites (18 numbers x8)
– Do the computation

– Save the result (24 numbers)

• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity
• QUDA reduces memory traffic

Exact SU(3) matrix compression (18 => 12 or 8 real numbers)
Use 16-bit fixed-point representation with mixed-precision solver

12

WILSON-DSLASH PERFORMANCE
K20X, ECC on, V = 243xT

8 16 32 64 128
Temporal Extent

200

300

400

500

600

700

800

G
FL

O
PS

Half 8 GF
Half 8
Half 12
Single 8 GF
Single 8
Single 12

13

LINEAR SOLVERS

QUDA supports a wide range of linear solvers
CG, BiCGstab, GCR, Multi-shift solvers, etc.

Condition number inversely proportional to mass
Light (realistic) masses are highly singular
Naive Krylov solvers suffer from critical slowing down at decreasing mass

Entire solver algorithm must run on GPUs
Time-critical kernel is the stencil application
Also require BLAS level-1 type operations

while (|rk|> ε) {
•βk = (rk,rk)/(rk-1,rk-1)
•pk+1 = rk - βkpk

 qk+1 = A pk+1
•α = (rk,rk)/(pk+1, qk+1)
•rk+1 = rk - αqk+1
•xk+1 = xk + αpk+1

•k = k+1
}

conjugate
gradient

14

MULTI-GPU DECOMPOSITION
Multi GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011

15

STRONG SCALING
Chroma running on Titan with QUDA

0 512 1024 1536 2048 2560 3072 3584 4096 4608
Titan Nodes (GPUs)

0

50

100

150

200

250

300

350

400

450

TF
LO

PS

BiCGStab: 723x256
DD+GCR: 723x256
BiCGStab: 963x256
DD+GCR: 963x256

Clover Propagator Benchmark on Titan: Strong Scaling, QUDA+Chroma+QDP-JIT(PTX)

B. Joo, F. Winter (JLab), M. Clark (NVIDIA)

ADAPTIVE MULTIGRID

WHY MULTIGRID?

-0.43 -0.42 -0.41 -0.4
mass

100

1000

10000

1e+05

D
ir

ac
 o

p
er

at
o
r

ap
p
li

ca
ti

o
n
s

32
3
96 CG

24
3
64 CG

16
3
64 CG

24
3
64 Eig-CG

16
3
64 Eig-CG

32
3
96 MG-GCR

24
3
64 MG-GCR

16
3
64 MG-GCR

Babich et al 2010

0"

10"

20"

30"

40"

50"

60"

70"

QUDA"(32"XK"nodes)" Mul:Grid"(16"XE"nodes)""

Av
er
ag
e'
Ru

n'
Ti
m
e'
fo
r'1

'so
ur
ce
''

(s
ec
on

ds
)'

Wallclock'9me'for'Light'Quark'solves'in'Single'
Precision''

0"

5"

10"

15"

20"

25"

30"

35"

QUDA"(16"XK"Nodes)" Mul:"Grid(16"XE"Nodes)"

Av
er
ag
e'
Ti
m
e'
fo
r'1

'so
ur
ce
'

(s
ec
on

ds
)'

Wallclock'9me'for'Strange'Quark'solves'in'Single'
Precision'

Chroma propagator benchmark  
Figure by Balint Joo 

MG Chroma integration by Saul Cohen 
MG Algorithm by James Osborn

17

18

INTRODUCTION TO MULTIGRID

Stationary iterative solvers effective on high frequency errors

Minimal effect on low frequency error

Example
Free Laplace operator in 2d
Ax = 0, x0 = random
Gauss Seidel relaxation
Plot error ei = -xi

19

INTRODUCTION TO MULTIGRID

Low frequency error modes are smooth

Can accurately represent on coarse grid

Low frequency on fine
=> high frequency on coarse

Relaxation effective agin on coarse grid

Interpolate back to fine grid

Falgout

20

MULTIGRID V-CYCLE

Solve
1. Smooth
2. Compute residual
3. Restrict residual
4. Recurse on coarse problem
5. Prolongate correction
6. Smooth
7. If not converged, goto 1
Multigrid has optimal scaling

O(N) Linear scaling with problem size
Convergence rate independent of condition number

For LQCD, we do not know the null space components that need to be preserved on the
coarse grid

V-CYCLE

DIRECT SOLVE

SMOOTHER
& RESIDUAL

SMOOTHER
& RESIDUAL

SMOOTHER

SMOOTHER

RESTRICTION IN
TE

RP
OL

AT
IO

N

21

ADAPTIVE GEOMETRIC MULTIGRID

Adaptively find candidate null-space vectors

Dynamically learn the null space and use this to  
define the prolongator

Algorithm is self learning

Setup

1. Set solver to be simple smoother

2. Apply current solver to random vector vi = P(D) ηi

3. If convergence good enough, solver setup complete

4. Construct prolongator using fixed coarsening (1 - P R) vk = 0

➡ Typically use 4
4
 geometric blocks

➡ Preserve chirality when coarsening R = γ5 P
†
 γ5 = P

†

5. Construct coarse operator (Dc = R D P)

6. Recurse on coarse problem

7. Set solver to be augmented V-cycle, goto 2

Falgout

Babich et al 2010

22

ADAPTIVE GEOMETRIC MULTIGRID

0 20 40 60 80 100
Niter

1e-20

1e-15

1e-10

1e-05

1

1e+05

||r
||2

Nv=0

Nv=1

Nv=2

Nv=3
Nv=4

Typically 20-30 vectors 
 needed to capture  
Dirac null space

4-d Laplace operator

MULTIGRID ON GPUS

24

THE CHALLENGE OF MULTIGRID ON GPU

GPU requirements very different from CPU
Each thread is slow, but O(10,000) threads per GPU

Fine grids run very efficiently
High parallel throughput problem

Coarse grids are worst possible scenario
More cores than degrees of freedom

Increasingly serial and latency bound

Little’s law (bytes = bandwidth * latency)

Amdahl’s law limiter

Multigrid exposes many of the problems expected at
the Exascale

25

THE CHALLENGE OF MULTIGRID ON GPU

PCIe

GPU

CPU

26

DESIGN GOALS

Performance
LQCD typically reaches high % peak peak performance

Brute force can beat the best algorithm

Multigrid must be optimized to the same level

Flexibility
Deploy level i on either CPU or GPU

All algorithmic flow decisions made at runtime

Autotune for a given heterogeneous

(Short term) Provide optimal solvers to legacy apps
Initial target analysis computations, e.g., 100,000 linear solves per linear system

Focus on final solver performance

(Long term) Hierarchical algorithm toolbox

27

MULTIGRID AND QUDA

QUDA designed to abstract algorithm from the heterogeneity

LatticeField

ColorSpinorField GaugeField

cudaColorSpinorField cpuColorSpinorField cpuGaugeFieldcudaGaugeField

Algorithms

Architecture

28

WRITING THE SAME CODE FOR TWO ARCHITECTURES

template<…> void fooCPU(Arg &arg) {
 arg.sum = 0.0;
#pragma omp for
 for (int x=0; x<size; x++)
 arg.sum += bar<…>(arg, x);
}

template<…> __global__ void fooGPU(Arg arg) {
 int tid = threadIdx.x + blockIdx.x*blockDim.x;
 real sum = bar<…>(arg, tid);
 __shared__ typename BlockReduce::TempStorage tmp;
 arg.sum = cub::BlockReduce<…>(tmp).Sum(sum);
}

CPU GPU

template<…> __host__ __device__ Real bar(Arg &arg, int x) {
 // do platform independent stuff here
 complex<Real> a[arg.length];
 arg.A.load(a);

 … // do computation

 arg.A.save(a);
 return norm(a);
}

platform specific parallelization  
GPU: shared memory
CPU: OpenMP, vectorization

platform specific load/store hidden here:
field order, cache modifiers, textures platform independent stuff goes here  

99% of computation goes here

• Use C++ templates to abstract arch specifics
– Load/store order, caching modifiers, precision, intrinsics

INGREDIENTS FOR PARALLEL ADAPTIVE MULTIGRID

▪ Prolongation construction (setup)
– Block orthogonalization of null space vectors
– Batched QR decomposition

▪ Smoothing (relaxation on a given grid)
– Repurpose existing solvers

▪ Prolongation
– interpolation from coarse grid to fine grid
– one-to-many mapping

▪ Restriction
– restriction from fine grid to coarse grid
– many-to-one mapping

▪ Coarse Operator construction (setup)
– Evaluate R A P locally
– Batched (small) dense matrix multiplication

▪ Coarse grid solver
– Need optimal coarse-grid operator

x
x

x

x−

x−

U x



U
x

μ

μ

ν

x x

x

x−

x−

U x



U
x

μ

μ

ν

29

COARSE GRID OPERATOR

▪ Coarse operator looks like a Dirac operator (many more colors)
– Link matrices have dimension 2Nv x 2Nv (e.g., 48 x 48)

▪ Fine vs. Coarse grid parallelization
– Fine grid operator has plenty of grid-level parallelism
– E.g., 16x16x16x16

= 65536 lattice sites
– Coarse grid operator has diminishing grid-level parallelism
– first coarse grid 4x4x4x4= 256 lattice sites
– second coarse grid 2x2x2x2 = 16 lattice sites

▪ Current GPUs have up to 3072 processing cores

▪ Need to consider finer-grained parallelization
– Increase parallelism to use all GPU resources
– Load balancing

dofs (geometry). We start by defining the fields

W±µ
ksĉ,ls�ĉ� = V †

ksc,ksĉP
±µ
s,s�U(k+µ)c,lc��k+µ,lVls�c�,lŝ�ĉ�

note that here we are defining di�erent links for forward and backwards,
they are not simply the conjugate of each other (because of the di�erent spin
projection between the two). Also note that these e�ective link matrices have
also a spin index, this is because the vectors used to define the V rotation
matrices have spin dependence now. In this form we can now write down the
coarse Dirac operator as

D̂iŝĉ,jŝ�ĉ� = �
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

ksĉ,ls�ĉ��k+µ,l + W+µ†
ksĉ,ls�ĉ��k�µ,l

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥

+M �iŝĉ,jŝ�ĉ� .

We now finish up by blocking the geometry and spin onto the coarse lattice,
defining the e�ective link matrices Y ±µ that connect sites on the coarse
lattice:

Y ±µ
iŝĉ,jŝ�ĉ� =

�
�i,k/B�ŝ,s/Bs

⇥
W±µ

ksĉ,ls�ĉ�

�
�l/B,j�s�/Bs,ŝ�

⇥
�i⇤µ,j (2)

Xiŝĉ,jŝ�ĉ� =
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

iŝĉ,kŝ�ĉ� + W+µ†
iŝĉ,kŝ�ĉ�

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥
�i,j,

where we note now that the matrix X is not Hermitian. Thus the coarse
operator is written

D̂iŝĉ,jŝ�ĉ� = �
⇤

µ

⌅
Y �µ

iŝĉ,jŝ�ĉ��i+µ,j + Y +µ†
isĉ,js�ĉ��i�µ,j

⇧
+ (M �Xiŝĉ,jŝ�ĉ�) �iŝĉ,jŝ�ĉ� . (3)

For the explicit form of these matrices we refer the reader to Appendix A.
After the first blocking, subsequent blockings require that Bs = 1, i.e., we

cannot block the spin dimension again since we cannot remove the chirality.
Apart from this observation, the next coarse operator will have a similar form
to the current one: it will be a nearest neighbour non-Hermitian operator
connecting sites with ds = 2 spin dimension (in 2d and 4d anyway).

We note here in passing that because of the definition of the matrix field V
include explicit spin dependence, this destroys the tensor product structure
of the spin and colour on the coarse operator, i.e., we have to define an
e�ective link matrix that rotates in spin and colour space. If this were not
the case, i.e., if V were to be spin independent, then this structure would be

8

x
x

x

x−

x−

U x



U
x

μ

μ

ν

30

31

GRID PARALLELISM

__device__	
 void	
 grid_idx(int	
 x[],	
 const	
 int	
 X[])	

{	

	
 	
 //	
 X[]	
 holds	
 the	
 local	
 lattice	
 dimension	
 	
 	

	
 	
 int	
 idx	
 =	
 blockIdx.x*blockDim.x	
 +	
 threadIdx.x;	

	
 	
 int	
 za	
 =	
 (idx	
 /	
 X[0]);	

	
 	
 int	
 zb	
 =	
 	
 (za	
 /	
 X[1]);	

	
 	
 x[1]	
 =	
 za	
 -­‐	
 zb	
 *	
 X[1];	

	
 	
 x[3]	
 =	
 (zb	
 /	
 X[2]);	

	
 	
 x[2]	
 =	
 zb	
 -­‐	
 x[3]	
 *	
 X[2];	

	
 	
 x[0]	
 =	
 idx	
 -­‐	
 za	
 *	
 X[0];	

	
 	
 //	
 x[]	
 now	
 holds	
 the	
 thread	
 coordinates	

}	
 	

X[0]

X[1]

Thread x dimension maps to location on the grid

32

MATRIX-VECTOR PARALLELISM

template<int	
 Nv>	

__device__	
 void	
 color_spin_idx(int	
 &s,	
 int	
 &c)	

{	

	
 	
 int	
 yIdx	
 =	
 blockDim.y*blockIdx.y	
 +	
 threadIdx.y;	
 	

	
 	
 int	
 s	
 =	
 yIdx	
 /	
 Nv;	

	
 	
 int	
 c	
 =	
 yIdx	
 %	
 Nv;	

	
 	
 //	
 s	
 is	
 now	
 spin	
 index	
 for	
 this	
 thread	

	
 	
 //	
 c	
 is	
 now	
 color	
 index	
 for	
 this	
 thread	

}	
 	

Each stencil application is a sum of
matrix-vector products

Parallelize over output vector indices
(parallelization over color and spin)

Thread y dimension maps to  
vector indices

Up to 2 x Nv more parallelism

0

BB@

c0
c1
c2
c3

1

CCA+ =

0

BB@

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

1

CCA

0

BB@

b0
b1
b2
b3

1

CCA
thread y  

index

Write result to shared memory

Synchronize

dim=0/dir=0 threads combine  
and write out result

Introduces up to 8x more parallelism
33

STENCIL DIRECTION PARALLELSIM

__device__	
 void	
 dim_dir_idx(int	
 &dim,	
 int	
 &dir)	

{	

	
 	
 int	
 zIdx	
 =	
 blockDim.z*blockIdx.z	
 +	
 threadIdx.z;	
 	

	
 	
 int	
 dir	
 =	
 zIdx	
 %	
 2;	

	
 	
 int	
 dim	
 =	
 zIdx	
 /	
 2;	

	
 	
 //	
 dir	
 is	
 now	
 the	
 fwd/back	
 direction	
 for	
 this	
 thread	

	
 	
 //	
 dim	
 is	
 now	
 the	
 dim	
 for	
 this	
 thread	

}	
 	

x
x

x

x−

x−

U x



U
x

μ

μ

ν

warp 0
x

x

x

x−

x−

U x



U
x

μ

μ

ν warp 1

x
x

x

x−

x−

U x



U
x

μ

μ

ν warp 2

x
x

x

x−

x−

U x



U
x

μ

μ

ν

warp 3

Partition computation
over stencil direction
and dimension onto
different threads

x
x

x

x−

x−

U x



U
x

μ

μ

ν

34

DOT PRODUCT PARALLELIZATION I

const	
 int	
 warp_size	
 =	
 32;	
 //	
 warp	
 size	

const	
 int	
 n_split	
 =	
 4;	
 //	
 four-­‐way	
 warp	
 split	

const	
 int	
 grid_points	
 =	
 warp_size/n_split;	
 //	
 grid	
 points	
 per	
 warp	

complex<real>	
 sum	
 =	
 0.0;	

for	
 (int	
 i=0;	
 i<N;	
 i+=n_split)	

	
 	
 sum	
 +=	
 a[i]	
 *	
 b[i];	

//	
 cascading	
 reduction	

for	
 (int	
 offset	
 =	
 warp_size/2;	
 offset	
 >=	
 grid_points;	
 offset	
 /=	
 2)	

	
 	
 sum	
 +=	
 __shfl_down(sum,	
 offset);	

//	
 first	
 grid_points	
 threads	
 now	
 hold	
 desired	
 result

Partition dot product between threads in the same warp
Use warp shuffle for final result
Useful when not enough grid parallelism to fill a warp

�
a00 a01 a02 a03

�

0

BB@

b0
b1
b2
b3

1

CCA)
�
a00 a01

�✓b0
b1

◆
+

�
a02 a03

�✓b2
b3

◆

35

DOT PRODUCT PARALLELIZATION II

const	
 int	
 n_ilp	
 =	
 2;	
 //	
 two-­‐way	
 ILP	

complex<real>	
 sum[n_ilp]	
 =	
 {	
 };	

for	
 (int	
 i=0;	
 i<N;	
 i+=n_ilp)	

	
 	
 for	
 (int	
 j=0;	
 j<n_ilp;	
 j++)	

	
 	
 	
 	
 sum[j]	
 +=	
 a[i+j]	
 *	
 b[i+j];	

complex<real>	
 total	
 =	
 static_cast<real>(0.0);	

for	
 (int	
 j=0;	
 j<n_ilp;	
 j++)	
 total	
 +=	
 sum[j];	

Degree of ILP exposed

Multiple computations 
with no dependencies

Compute final result

Partition dot product computation within a thread
Hide dependent arithmetic latency within a thread
More important for Kepler then Maxwell / Pascal

�
a00 a01 a02 a03

�

0

BB@

b0
b1
b2
b3

1

CCA)
�
a00 a01

�✓b0
b1

◆
+

�
a02 a03

�✓b2
b3

◆

36

COARSE GRID OPERATOR PERFORMANCE
Tesla K20X (Titan), FP32, N = 24

0"

20"

40"

60"

80"

100"

120"

140"

160"

10" 8" 6" 4" 2"

GF
LO

PS
'

La)ce'length'

baseline"

color2spin"

dimension"+"direc7on"

dot"product"

24,576-way parallel

16-way parallel

COARSE GRID OPERATOR PERFORMANCE

▪ Autotuner finds optimum
degree of parallelization

▪ Larger grids favor less fine
grained

▪ Coarse grids favor most
fine grained

▪ GPU is nearly always faster
than CPU

▪ Expect in future that coarse
grids will favor CPUs

▪ For now, use GPU exclusively

8-core Haswell 2.4 GHz (solid line) vs M6000 (dashed lined), FP32

0 20 40 60 80 100
2N

0

50

100

150

200

250

300

G
FL

O
PS

2x2x2x2
4x2x2x2
4x2x2x4
4x2x4x4
4x4x4x4

Coarse Dslash performance (8-core Haswell 2.4 GHz vs M6000)
Solid symbol CPU, open symbol / dashed line GPU

37

RESULTS

39

MULTIGRID VERSUS BICGSTAB

Compare MG against the best traditional clover Krylov solver
BiCGstab in double/half precision
12/8 reconstruct
Red-black preconditioning

Adaptive Multigrid algorithm
GCR outer solver wraps 3-level MG preconditioner
GCR restarts done in double, everything else in single
24 or 32 null-space vectors on fine grid
Minimum Residual smoother
Red-black preconditioning on each level
GCR coarse-grid solver

Ti
m

e
to

 s
ol

ut
io

n

0

2

4

6

8

10

12

Mass parameter

-0.42 -0.415 -0.410 -0.405 -0.40

BiCGstab (double-half) GCR-MG (double-single)

Iterations GFLOPs

mass BiCGstab GCR-MG BiCGstab GCR-MG

-0.400 251 15 980 376

-0.405 372 16 980 372

-0.410 510 17 980 353

-0.415 866 18 980 314

-0.420 3103 19 980 293

V = 243x64, single workstation (3x M6000)
MULTIGRID VERSUS BICGSTAB

40

41

Strong scaling on Titan (K20X)

Ti
m

e
to

 S
ol

ut
io

n

0

10

20

30

40

50

Number of Nodes

24 48

BiCGstab MG

6.6x 6.3x

MULTIGRID VERSUS BICGSTAB
Ti

m
e

to
 S

ol
ut

io
n

0

10

20

30

40

50

Number of Nodes

20 32

BiCGstab MG

7.9x 6.1x

V = 403x256 V = 483x96

42

Strong scaling on Titan (K20X), V = 643x128
Ti

m
e

to
 S

ol
ut

io
n

0

10

20

30

40

50

Number of Nodes

32 64 128 256 512

BiCGstab MG

5.5x 10.2x 8.9x 7.4x

MULTIGRID VERSUS BICGSTAB

43

Strong scaling on Titan (K20X), V = 643x128, 12 linear solves
Ti

m
e

0

10

20

30

40

50

Number of Nodes

64 128 256 512

level 1 level 2 level 3

MULTIGRID TIMING BREAKDOWN

0

20

40

60

80

100

120

Po
w

er
 C

os
um

pt
io

n
(W

)

BiCGStab

0 100 200 300 400 500 600
Wallclock Time (sec)

0

20

40

60

80

100

120

Po
w

er
 C

os
um

pt
io

n
(W

)

Multigrid
24850 24900 24950 25000 25050
50

60

70

80

90

Po
w

er
 (w

at
ts)

44

POWER EFFICIENCY
BiCGstab average power
~ 83 watts per GPU

MG average power
~ 72 watts per GPU

MG consumes less
power and 10x faster

12x solvesSetup

12x solves

level 1 null space level 2 null spacecoarse grid
construction on CPU

45

MULTIGRID FUTURE WORK

Absolute Performance tuning, e.g., half precision on coarse grids

Strong scaling improvements:
Combine with Schwarz preconditioner
Accelerate coarse grid solver: CA-GMRES instead of GCR
More flexible coarse grid distribution, e.g., redundant nodes

Investigate off load of coarse grids to the CPU
Use CPU and GPU simultaneously using additive MG

Full off load of setup phase to GPU

46

CONCLUSIONS AND OUTLOOK

Multigrid algorithms LQCD are running well on GPUs
Up to 10x speedup

Fine-grained parallelization was key
Importance of fine-grained parallelization will only increase
Fine-grained parallelism applicable to all geometric stencil-type problems

Future consider heterogeneous multigrid

April 4-7, 2016 | Silicon Valley

THANK YOU

JOIN THE NVIDIA DEVELOPER PROGRAM AT developer.nvidia.com/join

///ppt/slides/developer.nvidia.com/join

