
Version: 2.3

Release: 1.0

Author: SAP Development

RF Cookbook - Part I
Description

History

Version Status Date
1.0 2003-10-02
1.1 2003–11–17
1.2 2004–01–27

2.0 After workshop 2004–05–07

2.1 Revised 2006–10–26

2.2 Revised 2008–03–14

2.3 Revised 2016-05-02

Contents

1 Objective ... 5
1.1 Architecture Description of the RF Framework... 5
1.2 RF Runtime – Framework Interaction Model .. 6
1.3 RF Framework Customizing Overview ... 8
1.4 Sending Messages to Working Resources .. 9

2 RF Framework .. 14
2.1 Structure .. 14
2.2 Important Tables and Structures .. 14
2.3 Important Classes .. 14
2.4 Debugging ... 14
2.4.1 Breakpoints ..14
2.4.1.1 Method /SCWM/CL_RF_BLL_SRVC=>CALL_FLOW_PROCESS................................14
2.4.1.2 Method /SCWM/CL_RF_BLL_SRVC=>GET_STEP_FLOW ..15
2.4.1.3 Method /SCWM/CL_RF_BLL_SRVC=>RUN ..15
2.4.1.4 Method /SCWM/CL_RF_BLL_SRVC=>DISPLAY_STEP ...15
2.4.1.5 Method /SCWM/CL_RF_BLL_SRVC=>CHECK_VERIF_PRF.......................................15
2.4.2 Breakpoint IDs..15

3 RF Cookbook .. 16
3.1 Application Definition ... 16
3.2 Presentation Profile Definition .. 16
3.3 Display Profile Definition .. 16
3.3.1 Template Screens ..17
3.3.1.1 Template Screen Title ...17
3.3.2 Message Handling ...17
3.4 Personalization Profile Definition ... 18
3.5 Define Logical Transaction .. 18
3.6 Assign Text to Logical Transaction and Other Objects 19
3.7 Create Menu Item .. 20
3.8 Assign Text to Menu Item .. 20
3.9 Create Menu Hierarchy Including Submenus and Transactions 20
3.10 Define Logical Transaction Steps .. 20
3.11 Define Initial Step for Logical Transaction .. 21
3.12 Define Application Data Containers ... 21
3.12.1 Using Tables in the RF Framework ..22
3.13 Create Template Screen .. 22
3.13.1 Use Custom Template Dynpro ...22
3.14 Create Subscreens .. 23
3.14.1 Predefined Screen Groups..24
3.14.1.1 Group 1 ...24

3.14.1.2 Group 3 ...24
3.14.2 Automatic Page Up / Page Down Implementation ..24
3.14.3 Field to Field Navigation ..25
3.14.3.1 Navigation Between Verification Fields ..25
3.14.3.2 Navigation Between Input Fields (No Verification Fields) ...25
3.14.3.3 Navigation on a Screen with Input Fields and Verification Fields26
3.14.4 Exiting a Screen Without Saving Data in Internal Structures ...26
3.14.5 Exiting a Screen and Saving Data in Internal Structures ..26
3.14.6 Exiting a Screen and Calling the Content Provider ...26
3.15 Define Function Code Catalog ... 27
3.15.1 Predefined Function Codes in the RF Framework ..27
3.16 Assign Text to Function Code .. 28
3.17 Create Services to Support Business Logic ... 28
3.18 Define State Catalogue .. 29
3.19 Map Logical Transaction Step to Subscreen .. 29
3.20 Define Function Code Profile ... 30
3.20.1 GUI Status Is Defined for the Template ...31
3.20.2 Connect Screen Function Codes and RF Framework Function Codes31
3.20.3 Handle More Function Codes Than Available Pushbuttons on a Screen or Step32
3.21 Define Step Flow ... 33
3.21.1 PBO of Initial Screen After Menu Selection ...34
3.21.2 PAI of Screen and Direct Display of Next Screen ...34
3.21.3 PAI of Screen and PBO of Next Screen ..34
3.21.4 Call of Common Screen from Several Screens During Transaction35
3.21.5 Customizable ENTER / Set Next Step Dynamically Using the CP35
3.21.6 Additional Information ..36
3.22 Set Default Navigation at Transaction End .. 37
3.23 Set Verification Profile ... 37
3.23.1 Verification ..38
3.24 Presentation Device Catalog ... 40

4 Layout ... 41
4.1 Screen ... 41
4.2 Fields ... 41
4.2.1 Field Length..42

5 Programming Information ... 43
5.1 Posting .. 43
5.2 Exception Handling and Using Shortcuts ... 43
5.2.1 Navigation ..43
5.2.2 Exceptions ..44
5.3 Differences .. 44
5.4 Support LIST Functions ... 44
5.5 Display of Text (from Delivery or Hazardous Material) 45

5.6 Methods Available to the Content Provider .. 45
5.6.1 Methods into the Framework ..45
5.6.2 Methods out of the Framework ...46
5.7 Global Variables .. 46
5.8 Display Technical Data on GUI Title of RF UI .. 47
5.9 Hard-Coded Logical Transaction ... 49

6 Using the Tools Provided .. 51
6.1 Menu Manager .. 51
6.2 Screen Manager .. 52
6.2.1 Create, Copy, and Delete Display Profiles ..52
6.2.1.1 Creating a Display Profile ..53
6.2.1.2 Copying a Display Profile ..53
6.2.1.3 Guideline for screen conversion ...54
6.2.1.4 Deleting a Display Profile ..54
6.2.2 Editing Screens of a Display Profile ...55
6.2.2.1 Screen Maintenance ..55
6.3 Wizards ... 56
6.3.1 Split Screen ..56
6.3.2 Modify Screen ..57
6.3.3 Error Message Handling in RF Wizard...57

1 Objective

SAP has developed a new radio frequency (RF) concept.

This RF cookbook helps developers to begin working in the RF framework. It
answers frequently asked questions and helps to avoid common errors. This RF
cookbook also provides some useful tips about the standard layout and screen
structure that should be applied in the standard transactions.

Initially, the RF framework will be used for development in the Extended
Warehouse Management (EWM) project. However, the RF framework is
application-independent and could also be used in other projects or applications.

1.1 Architecture Description of the RF Framework

Transaction /SCWM/RFUI is the starting point for all logical RF transactions in
EWM. Logical transactions cannot be started directly from the SAP Easy Access
screen and no equivalent transaction has been created in SE93.

The Easy Enhancement Workbench (EEWB), which can be used for customer
enhancements, is integrated into the RF framework. Within the EEWB, users
execute an RF process and when the modification screen is reached, the
enhancement tool is triggered. Users then select the type of enhancement that
they want to carry out. The appropriate enhancement wizard launches and
guides the user through the enhancement process. If the user wants to enhance
fields on the user interface, the screen painter is called once the enhancement is

complete so that further adjustments to the screen can be made manually. This
is part of post processing.

1.2 RF Runtime – Framework Interaction Model
The RF framework architecture consists of three distinct layers:

1. Dynpro layer
2. Business logic layer
3. Content provider

The dynpro layer is concerned with all screen-related data, display profiles,
presentation devices, subscreens and templates, and so on.

At runtime, the business logic layer receives transactional parameters such as
next step, screen, function code profile, and so on, from the underlying
Customizing settings.

Content provider stores and supplies the relevant data for processing.

The following sequence diagram shows how these layers interact.

Dynpro LayerObject1

User

Business Logic Layer Content Provider

Invoke Transaction()

Execute Step()

Determine the following step()

Execute FM()

Set presentation parameters & current logical transaction()

Build Function Code Profile()

Build Verification Profile()

Verify fields status and profiles prior to display()

{Next step in background}
Execute next step()

Set initial step & function code()

Execute Step()

Execute FM()

Pass presentation data to template and sub-screen()

Execute based on input and function code()

Text A

A

Execute transaction()

Determine next step()

Check verification values()

Check verification values()

Update Stack()

Update Stack()

1.3 RF Framework Customizing Overview
Customizing for the Radio Frequency (RF) Framework comprises the following
areas:

1. User and resource settings
2. Interface parameters and communication structures
3. Basic building blocks
4. Configuration and scenario assignments

In Customizing (transaction SPRO), the main Customizing activities for the radio
frequency framework are available under Extended Warehouse Management à
Mobile Data Entry.

The Customizing activity Define Steps in Logical Transaction contains the
following submenus:

User and resource settings support the definition of new presentation and personalization
profiles, which are required to define behavior that varies from standard configuration. These
profiles are linked to resource logons, making it possible to define alternative responses (such as
displaying a user-defined screen instead of the standard screen) for a particular user or user
group.

Interface parameters and communication structures can be defined for data communication
between different screens (dynpros). For more information, see the Define Application
Parameters option.

Basic building blocks include the definitions of logical transactions, steps, and function codes.

Configuration includes assigning steps to logical transactions and their flow, determining
screens, assigning function codes, and assigning validations. For more information, see the
following sections.

You can call some Customizing activities directly using transaction codes, for example,
/SCWM/RFMENU for the RF Menu Manager or /SCWM/RFSCR for the RF Screen Manager.

You can call Presentation Device Maintenance using transaction /SCWM/PRDVC.

1.4 Sending Messages to Working Resources

You can send messages to different resources from the EWM Monitor. To do so,
proceed as follows:

1. Call transaction /SCWM/MON.

2. Enter the warehouse number and the variant of the monitor.
3. Expand the Resource Management node and double-click Resource.

4. Enter one or more resource names on the selection screen.
The resources are displayed on the right side.

5. Select the relevant resource names and choose More Methods to send
messages to the selected resources.

6. Enter the message text in the dialog box and choose Send Message.
If the resource is logged on to the RF application, the message is
displayed.

You can deactivate the function for sending and processing RF resource
messages by calling transaction /SCWM/ RSCMSG_DEACT. Alternatively,
choose the following on the SAP Easy Access screen:

Activate or deactivate the function for sending messages to resources at
warehouse level by selecting or clearing the checkbox in the Deactivate column.
By default, messages can be sent, meaning that the checkbox is not selected.

Note:

1. If you deactivate the function for sending messages for the warehouse,
you cannot send messages to the resource in the monitor. The message
receipt process is also deactivated in the RF framework. If you attempt to
send a message to the resource in the monitor, the system displays an
error message.

2. When you change the Deactivate field in the Customizing settings, you
must restart the monitor and log in again for the change to be applied to
the resource.

2 RF Framework

2.1 Structure
The RF framework is developed in package /SCWM/RF_FRAMEWORK.

2.2 Important Tables and Structures
Table Description
/SCWM/TAPPL_CAT Application, for example, WME
/SCWM/TDPRF_CAT Display profile
/SCWM/TFCOD_CAT Function code catalog
/SCWM/TFCOD_PRF Function code profile
/SCWM/TMENU_CAT Menu catalog
/SCWM/TMENU_HIER Menu hierarchy
/SCWM/TOBJ_TXT Object text
/SCWM/TPARAM_CAT Data container
/SCWM/TPRDV_CAT Presentation device
/SCWM/TPRES_CAT Presentation profile
/SCWM/TPRSN_PRF Personalization profile
/SCWM/TSTAT_CAT State catalog
/SCWM/TSTEP_CAT Steps
/SCWM/TSTEP_FLOW Step flow

/SCWM/TSTEP_SCR
Mapping of foreground steps to
subscreen

/SCWM/TTRNS_CAT Logical transactions

/SCWM/TTRNS_NAV
Navigation at end of logical
transaction

/SCWM/TVALID_PRF Verification and validation profile
/SCWM/TVLID_CAT Verification and validation objects

2.3 Important Classes
Class Description
/SCWM/CL_RF_BLL_DB Presentation data access
/SCWM/CL_RF_BLL_SRVC RF Business Logic Layer

2.4 Debugging

2.4.1 Breakpoints

2.4.1.1 Method /SCWM/CL_RF_BLL_SRVC=>CALL_FLOW_PROCESS
This method calls the function modules defined in /SCWM/TSTEP_FLOW.

2.4.1.2 Method /SCWM/CL_RF_BLL_SRVC=>GET_STEP_FLOW
This method reads table /SCWM/TSTEP_FLOW with the actual step data to
determine the next step.

2.4.1.3 Method /SCWM/CL_RF_BLL_SRVC=>RUN
This method is called using transaction /SCWM/RFUI. It contains the loop in
which the steps and screens are called or processed.

2.4.1.4 Method /SCWM/CL_RF_BLL_SRVC=>DISPLAY_STEP
This method calls the screens once the verification field check has been called.

2.4.1.5 Method /SCWM/CL_RF_BLL_SRVC=>CHECK_VERIF_PRF
This method checks the verification fields that have been completed against the
corresponding data fields. If a barcode function module is set in the verification
profile (/SCWM/TVALID_PRF field FMODUL_TRNSL), this function module is
called. If a verification function module is set in the verification profile
(/SCWM/TVALID_PRF field FMODUL_VERIF), this function module is called. For
more information about the verification process, see Verification.

2.4.2 Breakpoint IDs
In the RF framework, we have implemented the following breakpoint IDs:

· /SCWM/RF_FRAMEWORK
· /SCWM/RF_FRAME_STEP
· /SCWM/RF_FRAME_VERIF

You can activate the breakpoint IDs in transaction SAAB.

3 RF Cookbook

3.1 Application Definition
An application is the highest organizational level in the RF framework. At
application level, you define the start transaction. In the standard SAP system,
the start transaction is /SCWM/RFUI.

The application for the Warehouse Management Engine (WME) is 01.

In addition, you can define a function module to control the verification fields from
an application-relevant point of view. This means that all verification fields in an
RF transaction are ready for input. This function module enables you to
deactivate verification fields in a process-specific manner. The function module
used for EWM is /SCWM/RF_WME_SET_VERIFICATION.

To maintain application data, call transaction SM30 and enter view
/SCWM/V_TAPPL_CAT (for more information, see SAP Note 938314). The data
is stored in table /SCWM/TAPPL_CAT.

3.2 Presentation Profile Definition
The presentation profile (together with the personalization profile) is used to
support different menu structures for different users. The presentation profile is
assigned to the application.

The presentation profile for the standard transaction is ****.

You can maintain the presentation profile by choosing Define Presentation
Profiles. The records are stored in table /SCWM/TPRES_CAT.

3.3 Display Profile Definition
The display profile is used to support different devices and their different screen
characteristics. We provide one display profile.

The display profile for standard transaction is **.

For the display profile, you specify the height and width of your total screen
(8x40), as well as the template program (/SCWM/SAPLRF_TMPL) and screens
(0001 and 0002 for messages). You also define the following at profile level:

· Length of the pushbuttons (8)
· Number of pushbuttons (4)
· Length of menu items (20)
· How error messages are displayed (0 = display on a separate screen)
· Where error messages are displayed

You can use the three parameters BEEP_INFO, BEEP_WARN, and BEEP_ERR to
maintain the number of beeps processed by the device when a message is
displayed. This works only if the device supports the beep function.

A display profile record can be created in transaction /SCWM/RFSCR (or in
Customizing). The data is stored in table /SCWM/TDPRF_CAT.

3.3.1 Template Screens
The standard SAP system is shipped with two templates, both of which have the
size 8x40 and contain seven lines for the subscreen.

Dynpro 0001 with one line (last line) for four pushbuttons and an input field for
keyless navigation and exceptions.

Dynpro 0002 with only the message field on the last line (used only for message
processing). The corresponding function group is /SCWM/RF_TMPL.

3.3.1.1 Template Screen Title
No GUI title is shipped for SCM 5.0 or SCM 5.1. The title SAP appears on the RF
screens. As of SCM 5.1, you can customize the GUI title for your template
screens. The RF screen manager enables you to specify a function group and
GUI title when you create a new display profile or copy an existing one. For
existing display profiles, you can maintain view /SCWM/V_DPRF_C directly with
transaction SM30.

3.3.2 Message Handling
Field MSG_VIEW in table /SCWM/TDPRF_CAT is used to control how the
messages are processed.

An entry of 0 means that the message is displayed on a separate screen. This is
screen 0002 in function group /SCWM/RF_SSCR.

An entry of 1 means that the message is displayed on the last line of the same
screen or on the last line of the next screen. The template screen and the
template program in which the message is processed must be specified in table
/SCWM/TDRPF_CAT. In the standard SAP system, the template screen is 0002 in
template program /SCWM/SAPLRF_TMPL (function group /SCWM/RF_TMPL).

If you want to use your own template dynpro, the message line field must refer to
field /SCWM/S_RF_SCRELM-MSGTX.

The messages are defined at package level and assigned at function group level.
As a result, there are two message classes. The standard message class in

package /SCWM/CORE_RF_EN is /SCWM/RF_EN and in package
/SCWM/CORE_RF_DE it is /SCWM/RF_DE.

If you display the messages on the bottom line, you can easily display the
message on the separate screen using function code FULLMS. To do so, define a
function key (with or without a corresponding pushbutton) and assign the function
code FULLMS to it. If this function code is triggered, the actual message is
displayed on message screen 0002. Function code FULLMS is always to be
implemented, although it does not have to be shown in the toolbar. For more
information about the function code and function code definitions, see Define
Function Code Catalog.

The framework automatically retrieves all error messages of type E from the
content provider's function modules. However, it may still be necessary to display
messages while continuing with the coding in the function module and the step
flow. In this case, you send a message with message type S or I. Note that this
type of message cannot be retrieved due to the technical restrictions of the
framework. In this case, you must use method
/SCWM/CL_RF_BLL_SRVC=>MESSAGE. This method registers the message in
the framework and the message is displayed when the screen next changes.
Note that only one message can be displayed. If you send more messages, only
the last message is displayed

3.4 Personalization Profile Definition
You use the personalization profile to empower customers to change the
standard SAP system. Thanks to the personalization profile, you can support
different user groups working in different menus and, therefore, different
processes.

The personalization profile for standard transactions is **.

You define the main menu entry for the personalization profile.

You can maintain the personalization profile in Customizing by choosing Define
Personalization Profile. The data is stored in table /SCWM/TPRSN_PRF.

3.5 Define Logical Transaction
A logical transaction encapsulates the processed action from beginning to end. It
could involve screen changes and multiple postings including COMMIT WORK.

Logical transactions have no corresponding entries in transaction SE93 and can
be called only from the RF menu or the RF logon step. A logical transaction can
also be called using method /SCWM/CL_RF_BLL_SRVC=>START_LTRANS (for
example, from another logical transaction).

The authority check on object /SCWM/RFLT is also carried out in method
/SCWM/CL_RF_BLL_SRVC=>START_LTRANS.

For the logical transaction, you define an initial step (see below) or an SAP
transaction. You can also define a step that is processed during recovery.
The following naming convention for the first 2 characters should be considered:

Initials Process
AH Adhoc movements
IN Inquiries
IV Physical inventory
PA Packing
PI Picking
PT Putaway
QM Quality management
RF RF framework
RS Resource management
SH Shipping and loading
SP Spreading
UL Unloading
WK Independent of work process, for example, system-guided

The reserved logical transaction is RFMAIN. This is the default logical transaction
that is called when you start the RF framework with transaction /SCWM/RFUI.
The initial step of RFMAIN is MENU.

Logical transactions are stored in table /SCWM/TTRNS_CAT.

3.6 Assign Text to Logical Transaction and Other Objects
For several objects, you can add texts for translation. These texts are stored
implicitly using different Customizing settings for the RF framework.

Note that in the case of function codes, the function key (such as F2) is added
automatically if you assign the function key to the function code in field FNKEY of
table /SCWM/TFCOD_PRF. As a result, the remaining available space for the text
is less than specified in /SCWM/TDPRF_CAT.

The length of the fields is defined in the display profile.

3.7 Create Menu Item
You can define your own menus in transaction /SCWM/RFMENU.

You create your menu items for the main menu and then for the submenus.

The menu items are stored in table /SCWM/TMENU_CAT.

3.8 Assign Text to Menu Item
You assign text to menu items in transaction /SCWM/RFMENU. In the case of
menu items, the appropriate number is added and so it is not necessary to add
the sequence number. The data is stored in table /SCWM/TOBJ_TXT. The length
of the menu items is defined in the display profile.

3.9 Create Menu Hierarchy Including Submenus and
Transactions
You create the menu hierarchy in transaction /SCWM/RFMENU.

Within the hierarchy, you define whether a logical transaction is triggered (field
LTRANS) or whether the user jumps to a submenu (field LMENU).

We deliver a default menu that contains application 01, presentation profile ****,
and personalization profile **. These entries can be maintained only in an SAP
system. In a customer system, these entries are locked for changes.

Note that the standard menu is maintained by a central team.

The menu hierarchy is stored in table /SCWM/TMENU_HIER.

3.10 Define Logical Transaction Steps
Any logical transaction consists of at least one step. If possible, steps defined for
other logical transactions can be reused. Steps can be executed in the
background or in the foreground. Each foreground step has a corresponding
physical screen. Steps in the background can be combined.

The following naming convention for the first two characters must be considered:

Initials Process
AH Adhoc movements
IN Inquiries
IV Physical inventory
PA Packing

PI Picking
PT Putaway
QM Quality management
RF RF framework
RS Resource management
SH Shipping and loading
SP Spreading
UL Unloading
WK Independent of work process, for example, system-guided

Reserved steps are RFLOGN, RFMENU, RFLIST, and RFMSG.
Steps are stored in table /SCWM/TSTEP_CAT.

3.11 Define Initial Step for Logical Transaction
The initial step is stored in the logical transaction data in the ISTEP field of table
/SCWM/TTRNS_CAT.

3.12 Define Application Data Containers
Application data containers transmit data between the steps and from the
program (content provider) to the screens. Data containers can be structures or
tables. These structures or table types must be defined beforehand in the data
dictionary.

The same data dictionary structure or table type can be defined only once within
an application, for example, function modules, dynpro with structure, or dynpro
with table.

Data containers are assigned to the corresponding structure or table in
/SCWM/TPARAM_CAT. The maintenance menu in Customizing is Define
Application Parameters.

Before you can use the data containers, you must inform the RF framework. The
framework provides two methods: The first is to initialize the parameter
previously used (/SCWM/CL_RF_BLL_SRVC=>INIT_SCREEN_PARAM) and the
second is to register the parameter in the framework
(/SCWM/CL_RF_BLL_SRVC=>SET_SCREEN_PARAM).

Registering the data container is mandatory. The best way to do so is to initialize
the registration process on the PBO (process before output) screen and register
all of the data containers that are used on the screen.

From a visual perspective, the RF framework acts as a library. Structures and
tables defined in Customizing represent the books, and the data is stored within
each of these books. In other words, the framework contains several types of
data in “books”. When the system displays a screen, the framework (library)
provides only those structures and tables (books) that are required by the screen
(reader). Even if the framework contains multiple data containers, only those that
are actually needed are transferred to the screen or function module.

Example:
The framework contains several data containers: CS_ADMIN, CS_PTWY,
CS_UNLO, CS_PACK, and so on.

The screen displays putaway data from CS_PTWY only. In this case, the
framework transfers CS_PTWY to the screen and so the values of CS_PTWY are
displayed on the screen.

If CS_PTWY is not defined as a data container or CS_PTWY is not registered as a
screen parameter, there is no data to transfer and so the screen will contain
empty data.

3.12.1 Using Tables in the RF Framework
Function modules can use any number of tables. Each screen can present
multiple structures but only one table. The content provider must specify which
table will be presented by using method
/SCWM/CL_RF_BLL_SRVC=>SET_SCR_TABNAME. The content provider must
also specify which line of the table will be presented by using method
/SCWM/CL_RF_BLL_SRVC=>SET_LINE.

3.13 Create Template Screen
The template screen contains pushbuttons and encompasses the subscreen.
It is an object that belongs to the RF framework, whereas the subscreens belong
to the content provider.

We provide a standard 8x40 template in program /SCWM/SAPLRF_TMPL with
screen 0001 for pushbutton handling and screen 0002 for message handling.

3.13.1 Use Custom Template Dynpro
If you want to make changes at template level, for example, placing a
pushbutton, changing the number of pushbuttons, or changing the size of the
subscreen, you must define your own template screen.

If you want to display an error message on the bottom line, the field must refer to
/SCWM/S_RF_SCRELM-MSGTX.

3.14 Create Subscreens
Subscreens belong to the content provider and should be developed in package
/SCWM/CORE_RF_EN or /SCWM/CORE_RF_DE. The subscreens must be stored
in a function group. The naming convention for the function group is
/SCWM/RF_<Process> (for example, /SCWM/RF_PUTAWAY or
/SCWM/RF_PICKING).

The flow logic (PBO and PAI) of the subscreen must be simple. Furthermore, the
two modules STATUS_SSCR in PBO and USER_COMMAND_SSCR in PAI (process
after input) are standard modules that must be included in the subscreen. We
recommend that you do not add your own modules to the subscreen flow logic.
All processing should be done in the function modules defined in step flow table
/SCWM/TSTEP_FLOW. These two modules are also automatically added when
you use the Screen Management Tool to change your standard screens.

The modules are part of include /SCWM/IRF_SSCR. You must include this in the
function pool of your function group.

The flow logic of a subscreen should appear as follows:

PROCESS BEFORE OUTPUT.
* Common routine to control screen objects

* before the dynpro is displayed.
* The module exists in include /SCWM/LRF_SSCRO01
 MODULE STATUS_SSCR.

*
PROCESS AFTER INPUT.
* Common routine to handle standard function codes
* The module exists in include /SCWM/LRF_SSCRI01

 MODULE USER_COMMAND_SSCR.

The flow logic of a subscreen with a step-loop should appear as follows:
PROCESS BEFORE OUTPUT.
* pass structures to the screen

* set screen attributes
 MODULE status_sscr_loop.
* pass table rows to the step-loop

 LOOP.
 MODULE loop_output.
 ENDLOOP.
* set (disable/enable) PGUP/PGDN pushbuttons on the screen

 MODULE loop_scrolling_set.
*
PROCESS AFTER INPUT.

 LOOP.

* save data of the step-loop elements
 MODULE loop_input.

 ENDLOOP.

* pass input to the application, return function code
* to the program

 MODULE user_command_sscr.

All screen objects must be taken from the assigned structure of the appropriate
data container. The screen objects must not have the same name as the
container. You must use the structure of the table line for tables.

In the function pool definition you should add the include /SCWM/IRF_SSCR,
which contains the required subroutines and data definition.

Defining a pushbutton on the subscreen is strictly forbidden because this could
impact the ITS environment. Instead, use the pushbutton from the template
screen (see Section 3.3.1).

3.14.1 Predefined Screen Groups
Screen groups 1 and 3 must only be used as described below. Your own coding
should only use screen group 4.

3.14.1.1 Group 1

001 Blocked for internal use to support required input fields. DO NOT USE this
screen group. Group1 is filled / overwritten at runtime.

3.14.1.2 Group 3

001 Hide empty fields. If a verification field is assigned to a suppressed data
field, the verification field will also be suppressed automatically without
using screen groups.

002 For verification fields only. Disable field after successful verification. This
also marks the field as a verification field.

3.14.2 Automatic Page Up / Page Down Implementation
Define a table type in the data dictionary.

Assign the table type to a parameter in table /SCWM/TPARAM_CAT.

Use this table type in your function module in which you read the data and fill
your parameter. Note that you must always define this in the CHANGING
parameter.

Once you have filled the parameter data in your function module, call method
SET_SCR_TABNAME from class /SCWM/CL_RF_BLL_SRVC to register the table
name in the RF framework and call method SET_LINE from class
/SCWM/CL_RF_BLL_SRVC to register the first displayed line.

Note that the table name to be registered is the table type and not the parameter
name.

Note also that the screen fields must named in the same way as the line type of
your table type in the dynpro.

The pushbuttons on the dynpro must refer to /SCWM/S_RF_SCRELM-PGUP and
/SCWM/S_RF_SCRELM-PGDN. We recommend that you implement the
pushbuttons with a length of 3 characters. The pushbuttons must be defined with
the function codes PGUP and PGDN.

The pushbuttons are controlled by the RF framework.

* Transfer table name into RF framework
 CALL METHOD /scwm/cl_rf_bll_srvc=>set_scr_tabname
 EXPORTING
 iv_scr_tabname = '/SCWM/TT_RF_PROTO_TAB'
 .

* Set displaying line number of table
 CALL METHOD /scwm/cl_rf_bll_srvc=>set_line
 EXPORTING
 iv_line = 1
 .

You can use Page Up / Page Down to control either a screen or a step-loop on
a screen. In the first case, your table contains multiple entries and only one entry
is displayed on the screen at a time. With Page Down, the next entry in the table
is displayed. In the second case, your screen contains a step-loop and you only
control the behavior of the step-loop.

3.14.3 Field to Field Navigation

3.14.3.1 Navigation Between Verification Fields
The cursor is always positioned in the first field that is ready for input. When a
field is verified successfully, it is deactivated and the cursor is moved to the next
field that is ready for input.
The content provider is not called during navigation.
For more information, see Verification.

3.14.3.2 Navigation Between Input Fields (No Verification Fields)
In contrast to the verification fields, normal input fields are not deactivated once
data has been entered. As a result, navigation behavior differs.

The cursor is positioned in the first field that is ready for input. The current field is
an attribute of the service class of the business logic layer
(/SCWM/CL_RF_BLL_SRVC). This class also provides two methods to get
(GET_FIELD) and set (SET_FIELD) the current field. Navigation within the
screen can be influenced using these.

In the standard SAP system, the cursor is positioned in the next initial input field.
Pay attention to any input fields that could contain a valid initial value. For
example, an indicator with appropriate values of blank and X. In this case, you
must mark all fields that have to be entered in the field attribute in the dynpro as
Input obligatory.

You can also move the cursor manually using the TAB key or the arrow keys.
The content provider is not called during navigation. The content provider is only
called once all of the fields have been filled. If you want to process an error and
position the cursor in a certain field, use method
/SCWM/CL_RF_BLL_SRVC=>SET_FIELD for positioning.

3.14.3.3 Navigation on a Screen with Input Fields and Verification Fields
In this case, the navigation behavior processes the verification fields first and
then the input fields.

3.14.4 Exiting a Screen Without Saving Data in Internal Structures
If your screen contains input fields and you want to exit without saving the data in
the internally used structures as defined in table /SCWM/TPARAM_CAT, you must
do so by choosing Back. Otherwise, your data will be rendered inconsistent if you
use the same data structures.

To enable this, assign the function code BACK in table /SCWM/TFCOD_PRF to a
function key, pushbutton, or shortcut. In the step flow (table
/SCWM/TSTEP_FLOW), an entry is not necessary because the content provider is
not called.

3.14.5 Exiting a Screen and Saving Data in Internal Structures
In contrast to the BACK function code, UPDBCK updates the data on the stack and
the screen called can use the updated data. With UPDBCK, the content provider
not called.

3.14.6 Exiting a Screen and Calling the Content Provider
In some cases, you have to call the content provider before you exit a screen. In
this case, you cannot use BACK or UPDBCK directly. Assign another function code
(such as BACKF) to your function key, pushbutton, or shortcut but use the key
that is normally used for BACK (F7). With the new function code, the content
provider is called and you can then set the BACK function code, which is
processed by the framework. In this case, your step flow would be:

APPLIC PRES_PRF LTRANS STEP FCODE FMODUL SSTEP PRMOD FCODE_BCKG

01 **** LTX1 STEP2 BACKF FM1 STEP2 1 BACK
Note that PRMOD must be 1, SSTEP = STEP, and FCODE_BCKG must be BACK.

3.15 Define Function Code Catalog
Define the required function codes of the pushbuttons and function keys used in
background step processing. To do so, choose the Customizing activity Define
Steps in Logical Transactions and choose Define Function Codes. Do not define
the function codes directly in the database table.
The function codes are defined in table /SCWM/TFCOD_CAT.

3.15.1 Predefined Function Codes in the RF Framework
Currently, there are several predefined function codes for decreasing application
development effort. Function codes mean logical codes used in the step flow,
and not simply the function codes triggered by pushbuttons or function keys.
Function
Code

Description of the Function Triggered

INIT Starts the logical transaction; if an entry for the initial step and
function code INIT is defined in table /SCWM/TSTEP_FLOW,
this entry is the PBO for the first dynpro. If no entry is defined,
the initial step is displayed in the foreground.

CLEAR Clears the input field that currently contains the cursor. If you
choose CLEAR twice without changing the position of the cursor,
the system clears all of the input fields. This behavior can be
customized in field FLG_CLEAR_ALL of table
/SCWM/TPRDV_CAT. In the standard SAP system, this feature is
activated. With CLEAR, the flow logic does not return from the
screen. This means that CLEAR does not trigger a step flow.

BACK Navigates flow logic to the previous foreground step. If you have
defined PBO steps in table /SCWM/TSTEP_FLOW, however
(such as the INIT step), the PBO steps are NOT reprocessed.

ENTER
LIST Displays a screen containing a list of possible entries for the

current input field. Corresponds to a list-box display.
UPDBCK Updates the data in the stack and returns to the previous

foreground step. If you need to perform steps in addition to the
main operation step, for example, exception handling to
determine a new storage bin, the main operation data changes.
If you leave the exception with UPDBCK, the system updates the
stack data.

NEXTSC Used when a screen is split. The next screen of the split screen
can be accessed using this function code.

BUILD_MENU Used in standard service step MENU
PGUP Used for automatic page up implementation
PGDN Used for automatic page down implementation
YES Used in standard service step MESSAGE / QUERY
NO Used in standard service step MESSAGE / QUERY
MORE Used for navigation with grouped pushbuttons. The next

pushbutton group is displayed using MORE. If you apply this to
the last group, the system switches to the first group.

FULLMS Displays error messages on a separate screen. Used to view
the full text of an error message if the bottom line is not
sufficient.

UNKNOW Used internally to handle unmapped function codes from the
screen that are not defined in table /SCWM/TSTEP_FLOW.

UPDPST Light synchronous posting
CLSEMS Clears message lines and displays the screen as standard
CMPTRS Ends a logical transaction. This function code must be set at the

end of each logical transaction using the SET_FCODE method of
class /SCWM/CL_RF_BLL_SRVC to continue in the defined way.

3.16 Assign Text to Function Code
You assign text to function codes in table /SCWM/TOBJ_TXT. The length of the
function code text is defined in the display profile.

3.17 Create Services to Support Business Logic
A service is a function module that is assigned to a step flow definition. The
function modules include the coding that is normally specified in the PBO and
PAI modules.

The function module interface is restricted. Only CHANGING parameters are
allowed. The parameters can contain structures and tables. Field parameters are
not allowed.

Note: The function module of the last step of the logical transaction must call
method SET_FCODE of class /SCWM/CL_RF_BLL_SRVC. Function code CMPTRS
must be set with this function. Alternatively, you can set or process this function
code in step flow /SCWM/TSTEP_FLOW in background mode.

* Call method of RF framework to mark end of transaction

/scwm/cl_rf_bll_srvc=>set_prmod('1').

/scwm/cl_rf_bll_srvc=>set_fcode(/scwm/cl_rf_bll_srvc=>c_fcode_compl_ltrans).

3.18 Define State Catalogue
States identify relatively small differences in the same step behavior and
presentation view. You must take into account that the state is a parameter of the
step and you can load it with its own features. You can omit or add some
functions (such as pushbuttons and functions keys) in accordance with the state
and verification profile, and define a specific screen for a particular state of the
step.

We recommend that you change the behavior of the step in accordance with
parameters with a state definition instead of doing so with a new step.

The state used is controlled by the content provider. Depending on your own
rules, you set the state with method /SCWM/CL_RF_BLL_SRVC=>SET_STATE.
The state is used in tables /SCWM/TFCOD_PRF, /SCWM/TSTEP_SCR, and
/SCWM/TVALID_PRF. You can define new states in the Customizing activity
Define Steps in Logical Transactions by choosing Define Steps Define States.
A state can only be defined for a step.

The framework uses the following predefined states internally:
· FIRST to show the first page of menu items.
· MIDDLE to show inner pages of menu items.
· LAST to show the last page of menu items.
· QUERY
· INFERR

Example: The system can display the logon screen for the user in three different
states: after disconnection with attached worklist; after disconnection without
attached worklist; and after normal logoff. The same step is used for all three
states, defining specific function codes for each state: DISCONNECT,
RECONNECT, or CONNECT.

3.19 Map Logical Transaction Step to Subscreen
Each step processed in the foreground must have a corresponding subscreen
and program.

You configure this in the Customizing activity Define Steps in Logical
Transactions by choosing Define Logical Transactions Map Logical
Transaction Step to Sub-Screen.

Mapping data is stored in table /SCWM/TSTEP_SCR.

3.20 Define Function Code Profile
In the function code profile, you define the pushbutton and function key for the
screen or step. You can also define an external reason code and disable the
function code, pushbutton, or function key.

The pushbuttons are assigned to the template at runtime.

If you want to only activate the function key and not display the pushbutton, leave
the PUSHB field empty.

If you want to activate only the pushbutton and not a corresponding function key,
leave the FNKEY field empty.

The text on the pushbutton can be maintained in the Customizing settings for RF
in which the function codes are defined (if used).

If you want to use standard function codes such as BACK or CLEAR, you must
define them in the function code profile. They are not automatically available.
Be careful if you use additional states in your logical transaction. State ****** is
used as the default. This means that function codes that are not defined in your
additional state are automatically added by the framework. If you want to avoid
this, you can copy the entries with state ******* and select field FLG_DISABLE. If
you always work with custom states and not with state ******, you can delete the
entries with state ******.

Be aware that F10 cannot be used directly. This function key cannot be
addressed directly in the GUI status. If you require F10 on the device, a
workaround is available. Pressing F10 on the device triggers an esc-sequence
of, for example, SHIFT+F10. SHIFT+F10 is used in the function code profile and
defined in the GUI status. Note, however, that this solution does not work in the
SAPGUI.

The following function codes should be used in the standard SAP system and
assigned to the following function keys:
Function
Code

Function
Key

Shortcut Action

NEXT F4 04 Jump to next screen (for example, from
source to destination or from destination to
end of transaction)

MORE F5 05 Display next pushbutton sequence
CLEAR F6 06 Clear input field / Clear all input fields
BACK F7 Returns to previous screen without saving

entered data in data container

UPDBCK F7 Returns to previous screen and saves
entered data in data container

LIST F8 08 Display possible data for the current field
FULLMS F9 09 Display message on separate screen
ENT ENTER Default navigation

If you display pushbuttons, only the non-standard functions are displayed (such
as the detail screen). No pushbuttons should be assigned to the function codes
mentioned above except for NEXT (which is controlled by the content provider).
The function code profiles are stored in table /SCWM/TFCOD_PRF.

3.20.1 GUI Status Is Defined for the Template
The GUI status is defined at template level and is, therefore, valid for all
subscreens.

The pushbuttons and function keys are dynamically excluded in accordance with
the definition in /SCWM/TFCOD_PRF. This means that in the GUI status, all
necessary function keys must be defined in advance.

All function keys must be defined as Application function for functional type. Do
not define them as Exit Command. Exit Command function keys are not currently
supported.

3.20.2 Connect Screen Function Codes and RF Framework Function
Codes

In the GUI status, the function keys are defined with the function codes. You
have F1 to F10 for the corresponding function keys, ENT for ENTER, PGUP for
PAGE UP and PGDN for PAGE DOWN. No pushbuttons are defined in the GUI
status.

On the template dynpro, the pushbuttons are defined with the function codes PB1
to PB4.

The function codes used in the step flow are defined in table
/SCWM/TFCOD_CAT. Here you define more meaningful function codes such as
BACK, ENTER, DETAIL, SAVE, and so on.

In table /SCWM/TFCOD_PRF, you establish the link between the GUI function
codes and the RF framework function codes and step flow.

APPLIC LTRANS STEP STATE SQNCE FCODE PUSHB FNKEY Shortcut

01 LTX1 STEP1 ****** 01 DETAIL PB1 F1 01

01 LTX1 STEP1 ****** 01 CLEAR F6 06
01 LTX1 STEP1 ****** 01 BACK F7 07
01 LTX1 STEP1 ****** 01 FULLMS F9 09
01 LTX1 STEP1 ****** 01 ENTER ENT
01 LTX1 STEP2 ****** 01 SPLIT PB1 F1 01
01 LTX1 STEP2 ****** 01 ZERO PB2 F2 02
01 LTX1 STEP2 ****** 01 NEST PB3 F3 03
01 LTX1 STEP2 ****** 01 CLEAR F6 06
01 LTX1 STEP2 ****** 01 BACK F7 07
01 LTX1 STEP2 ****** 01 FULLMS F9 09
01 LTX1 STEP2 ****** 01 ENTER ENT

Note that some columns are not displayed to provide a better overview
By defining the above table, you specify that in STEP1, only the first pushbutton
(PB1 in the left-hand corner) is valid and visible with the function code DETAIL.
In addition, the function codes CLEAR, BACK, and FULLMS are assigned to
function keys and a shortcut value. The function code ENTER is assigned to the
ENTER key without a shortcut value. In STEP2, you have the three pushbuttons
on the top, valid and visible, and assigned to the function keys F1 to F3. The rest
is the same as in STEP1.

3.20.3 Handle More Function Codes Than Available Pushbuttons on a
Screen or Step

If you have more function codes than available pushbuttons on your screen or, in
other words, on your step, you have the following option. In table
/SCWM/TFCOD_PRF, group your function codes with field SQNCE. This field also
indicates the sequence of the groups. In addition, each group must contain the
function code MORE, which must be assigned to a function key. Do not assign
MORE to a pushbutton. The RF framework will display a greater than symbol (>)
automatically if more function codes than available pushbuttons are defined. The
symbol indicates to the user that more function codes are available. The user
must know which function key triggers the MORE function code. The RF
framework is responsible for presenting the correct group. After the last group,
the first group is displayed again. Each function code to be processed must be
defined in each group.
APPLIC LTRANS STEP STATE SQNCE FCODE PUSHB FNKEY Shortcut

01 LTX1 STEP3 ****** 01 DETAIL PB1 F1 01
01 LTX1 STEP3 ****** 01 SPLIT PB2 F2 02

01 LTX1 STEP3 ****** 01 ZERO PB3 F3 03
01 LTX1 STEP3 ****** 01 MORE F5 05
01 LTX1 STEP3 ****** 01 CLEAR F6 06
01 LTX1 STEP3 ****** 01 BACK F7 07
01 LTX1 STEP3 ****** 01 FULLMS F8 08
01 LTX1 STEP3 ****** 01 NEXT PB4 F4 04
01 LTX1 STEP3 ****** 01 PRINT F11 11

01 LTX1 STEP3 ****** 02 PRINT PB1 F11 11
01 LTX1 STEP3 ****** 02 NEXT F4 04
01 LTX1 STEP3 ****** 02 MORE F5 05
01 LTX1 STEP3 ****** 02 CLEAR F6 06
01 LTX1 STEP3 ****** 02 BACK F7 07
01 LTX1 STEP3 ****** 02 FULLMS F9 09
01 LTX1 STEP3 ****** 02 DETAIL F1 01
01 LTX1 STEP3 ****** 02 SPLIT F2 02
01 LTX1 STEP3 ****** 02 ZERO F3 03

In this example, we have assumed a display profile with only four pushbuttons.
We have defined two groups, and all groups have the same function codes.
There are function codes with a pushbutton assignment and function codes
without a pushbutton assignment in each group. Note that function codes not
defined in the actual sequence are not available and cannot be processed. You
must define them without assigning a pushbutton.

3.21 Define Step Flow
The step flow determines the business process flow and the corresponding
content provider function modules. Only function modules can be used. Although
function modules can be combined in the standard SAP system, there should
only be one function module for the PBO (Process Before Output) and one for
the PAI (Process After Input). The naming convention is
/SCWM/RF_<Process_<Step>_PBO or /SCWM/RF_Process_Step_PAI (for
example, /SCWM/RF_PTWY_SOURCE_PBO or /SCWM/RF_PICK_CHECK_PAI). It
is clear that within these function modules, you can call other function modules
that can be reused. Having only one function module makes Customizing easier
and also helps to follow the step flow.

In the step flow definition, you define the transaction step sequence taking into
account the function code applied by the user. Steps may be displayed in the
foreground or processed in the background as determined in Customizing. Steps
can be combined. If you combine steps, the step flow is interrupted only by error
messages. Be careful with error messages issued from a function module that is
processed before the screen is displayed (PBO). The message is displayed on
the next screen and not on the previous one. This means that the user can
proceed without correcting the old error. The error should be checked again in
the PAI module.

The step flow is defined in table /SCWM/TSTEP_FLOW.
PRMOD 1 -> Background processing
PRMOD 2 -> Foreground display

3.21.1 PBO of Initial Screen After Menu Selection
The table entry in PBO of the initial screen should appear as follows:

APPLIC PRES_PRF LTRANS STEP FCODE FMODUL SSTEP PRMOD FCODE_BCKG

01 **** LTX1 STEP1 INIT FM1_PBO STEP1 2

For logical transaction LTX1 in step STEP1, once the transaction has been
triggered from the menu function module, FM1_PBO is processed and the screen
is displayed.

It is hardcoded that the function code for the first function module call must be
INIT.

3.21.2 PAI of Screen and Direct Display of Next Screen
The table entry in PAI should appear as follows:

APPLIC PRES_PRF LTRANS STEP FCODE FMODUL SSTEP PRMOD FCODE_BCKG

01 **** LTX1 STEP1 ENTER FM1_PAI STEP2 2

For logical transaction LTX1 in step STEP1, after the ENTER function code has
been triggered, function module FM1_PAI is processed and the new screen
assigned to STEP2 is displayed.

3.21.3 PAI of Screen and PBO of Next Screen
In PAI of screen 1 and PBO of screen 2, the table entry should appear as follows:

APPLIC PRES_PRF LTRANS STEP FCODE FMODUL SSTEP PRMOD FCODE_BCKG

01 **** LTX1 STEP1 ENTER FM1_PAI STEP2 1 BCK01

01 **** LTX1 STEP2 BCK01 FM2_PBO STEP2 2

For logical transaction LTX1, function module FM1_PAI is processed in step
STEP1 after the ENTER function code has been triggered. FM2_PBO is then
processed in the background and the new screen from STEP2 is displayed.

3.21.4 Call of Common Screen from Several Screens During Transaction
If you want to call one screen from several steps of your logical transaction, you
must only ever leave the screen using the function code BACK or UPDBCK. The
internal call stack is only updated correctly with BACK and UPDBCK. If you want to
leave the screen with another function code for any reason, create an entry in
table /SCWM/TSTEP_FLOW as described below.

Additionally, you define which step the verification is to carry out beforehand. If
you have more steps, only set the Verification indicator once.

Example: WT detail screen called from source screen and destination screen.

APPLIC PRES_PRF LTRANS STEP FCODE FMODUL SSTEP PRMOD FCODE_BCKG

01 **** LTX1 STEP1 ENTER STEP1 1 BACK

With this definition, the detail screen is left with ENTER and function code BACK is
processed in the background.

3.21.5 Customizable ENTER / Set Next Step Dynamically Using the CP
It should be possible that the CR (Carriage Return) received from a scanner or
the user by pressing ENTER is redefined to act like a combination of several
function keys, for example, F1 (SAVE) and F4 (NEXT).
ENTER should respond as follows:

· If you are not in the last input field, the cursor is positioned in the next
input field (either verification or input field).

· If you are in the last input field but not on the last open WT, the actual WT
is saved and the next open WT is displayed (source or destination).

· If you are in the last input field and on the last open WT, the actual WT is
saved and comes from the source screen. The destination screen of the
first TO is displayed. The transaction is finished when the last open WT is
closed and confirmed by the destination screen.

Example: The ENTER key is defined as function code ENTER. The ENTER key
triggers navigation between the input fields and posting to the database. If all
fields are entered, the step flow is divided into three steps: navigation, check of
the data entered, and posting to the database.

APPLIC PRES_PRF LTRANS STEP FCODE FMODUL SSTEP PRMOD FCODE_BCKG

01 **** LTX1 STEP1 ENTER FM_NAV STEP1

01 **** LTX1 STEP1 SOURCE STEP2 2

01 **** LTX1 STEP1 DEST STEP3 2

It is important that the processing mode (PRMOD) and the background function
code (FCODE_BCKG) are initial.
These fields are filled in function module FM_NAV with the following two methods:

· /SCWM/CL_RF_BLL_SRVC=>SET_PRMOD
· /SCWM/CL_RF_BLL_SRVC=>SET_FCODE

Example coding for the navigation function module:

* If only assigned ones were found, we must jump to destination

 IF lv_enqueue IS INITIAL.

 /scwm/cl_rf_bll_srvc=>set_prmod('1').

 /scwm/cl_rf_bll_srvc=>set_fcode('DEST').

 EXIT.

 ELSE.

* We found un-assigned ones and are continuing with source

 /scwm/cl_rf_bll_srvc=>set_prmod('1').

 /scwm/cl_rf_bll_srvc=>set_fcode('SOURCE').

 ENDIF.

3.21.6 Additional Information
All actions that can be counted as PBO of STEP2 in connection STEP1 STEP2
must be attached to initial code of STEP2. Otherwise they will be attached to
STEP1. BACK to STEP1 will recover STEP1 with all changes not relevant to
STEP1.

Example:

APPLIC LTRANS STEP FCODE FMODUL SSTEP PRMOD FCODE_BCKG

01 LTX1 STEP1 FCODE_X MODULE_X STEP2 1 INIT_2

01 LTX1 STEP2 INIT_2 MODULE_INIT_2 STEP2 2

MODULE_X: actions associated with STEP1 because the module is called before
the next foreground step is processed. If STEP2 works with another table and
you set the new table name too early (for example, in MODULE_X), this change

is stored in the data for STEP1. When you return from STEP2, the data is
restored and STEP1 works on the wrong table.

Therefore, the step flow should be as follows:

APPLIC LTRANS STEP FCODE FMODUL SSTEP PRMOD FCODE_BCKG

01 LTX1 STEP1 FCODE_X STEP2 1 INIT_2

01 LTX1 STEP2 INIT_2 MODULE_X STEP2 1 INIT_3

01 LTX1 STEP2 INIT_3 MODULE_INIT_2 STEP2 2

In general, first change the step and then configure the data access or setting for
this step.

3.22 Set Default Navigation at Transaction End
The default navigation is determined at the end of a logical transaction. The
navigation allows the following handling:

Value Meaning
0 User decision
1 Main menu
2 Last menu
3 Same transaction; Restart logical transaction
The default definition is defined in table /SCWM/TTRNS_NAV.

Note: To trigger the default navigation, the function module of the last step of the
logical transaction should include the call of method SET_FCODE of class
/SCWM/CL_RF_BLL_SRVC. Function code CMPTRS must be set with this
function. Alternatively, you can set or process this function code in the step flow
/SCWM/TSTEP_FLOW in background mode.

* Call method of RF framework to mark end of transaction
/scwm/cl_rf_bll_srvc=>set_prmod('1').

/scwm/cl_rf_bll_srvc=>set_fcode(/scwm/cl_rf_bll_srvc=>c_fcode_compl_ltrans).

3.23 Set Verification Profile
Verification fields must be included when the subscreens are created. The
verification fields in the dynpro must be taken from the same structure as the
data fields. The verification field should follow directly after the origin field without
a space in between.

In the verification profile, you assign the verification field to the comparing data
field including the data structure. The translation method for the barcode (for
example, to support EAN128 in EM function module
/SCWM/RF_EAN128_SPLIT_VALID) is implemented and explicit disabling has
been defined here. If you do not need a one-to-one verification (for example, if
the material can be identified by the material number and EAN/UPC number),
you can define a function module that carries out the verification instead of the
framework.

Be careful if you use additional states in your logical transaction. State ****** is
used by default. This means that verification fields that are not defined in your
additional state are automatically added by the framework. If you want to avoid
this, you can copy the entries with state ******* and select field FLG_DISABLE. If
you always work with your own states and not with state ******, you can delete
the entries with state ******.

3.23.1 Verification
Define the verification fields in your dynpro. The verification fields are always
character-based with a length of 50 characters. Screen group 3 for these fields
must be filled with 002. This activates the verification fields and enables the RF
framework to deactivate the verification field after successful verification. If the
screen group does not contain 002, the fields will never be verified.

In table /SCWM/TVALID_PRF, assign the verification field to the field that
contains the comparing data value.

APPLIC LTRANS STEP STATE VRFVAL_
TABNAME

VRFINP_
FLDNAME

VRFVAL_
FLDNAME

01 LTX1 STEP1 ****** /SCWM/S_RF_
PROTO

NLPLA_VERIF NLPLA

01 LTX1 STEP1 ****** /SCWM/S_RF_
PROTO

CHARG_VERIF CHARG

Be aware that some columns are not displayed in order to improve the overview.

In the table definition above, you have defined that in STEP1, you have two
verification fields named /SCWM/S_RF_PROTO-NLPLA_VERIF and
/SCWM/S_RF_PROTO-CHARG_VERIF. The data of the first verification field is
checked against the data in field /SCWM/S_RF_PROTO-NLPLA and the second is
checked against /SCWM/S_RF_PROTO-CHARG.

In field FLG_VERIF of table /SCWM/TSTEP_FLOW, you define the step before
which verification is to be carried out. Note that verification must only be carried

out once. If you have more than one step, only one step (normally the first)
should be indicated as Verification relevant.

Verification is carried out automatically in the RF framework in method
/SCWM/CL_RF_BLL_SRVC=>CHECK_VERIF_PRF. The field with the comparing
data value must be in a structure defined in table /SCWM/TPARAM_CAT.

If you add a function module, verification control is based on the content provider
and the check must be carried out in the function module. As an IMPORT
parameter, the function module must have a structure named IS_VERIF_PRF of
type /SCWM/S_VERIF_PRF_EXT and a field named IV_FLG_VERIFIED of type
XFELD. As an EXPORT parameter, a field must be created with the name
EV_FLG_VERIFIED and type XFELD. Optionally, you can have CHANGING
parameters in the same way as the other function modules that belong to the
content provider. /SCWM/S_VERIF_PRF_EXT contains all information of the
current verification field from table /SCWM/TVALID_PRF and the conversion exit
for this field. IV_FLG_VERIFIED is selected if the framework already carried out
a positive verification before the function module was called. EV_FLG_VERIFIED
contains the return value. X indicates a positive verification and an initial value
indicates a negative verification. Note that the function module itself does not
trigger an error message. The standard error message is triggered by the
framework.

If verification is not successful, error message /SCWM/UI_RF:020 (Invalid
verification of &1) is processed. If the verification fields are empty, error message
/SCWM/UI_RF:021 (Enter verification of &1) is processed.

In field FLG_VERIF of table /SCWM/TSTEP_FLOW, you can specify that
verification is carried out before the next step or function module is processed. If
none of your steps or substeps contain the verification indicator, no verification is
carried out.

Note that the verification fields must be longer if you verify using barcode
scanning and you use concatenated barcodes such as EAN128. Otherwise, the
scanned barcode information may be truncated because of the limitation to the
input field length.

In the RF framework application table (/SCWM/TAPPL_CAT), you can define a
function module to influence or control the verification fields based on the actual
application data. For example, if you pick from storage type 0001, you want to
verify fields other than by picking from storage type 0002. The RF transaction
opens all verification fields by default. You can use the function module to
deactivate verification fields. The example function module is
/SCWM/RF_WME_SET_VERIFICATION.

3.24 Presentation Device Catalog
In the catalog, you define the single RF device and its characteristics such as the
display profile, presentation device type, data entry type, and function key
quantity. You also define indicators for the CLEAR ALL function, enabling
shortcuts to the templates, and the default device, as well as the sounds that are
issued when a warning message or success message appears. The device
catalog is stored in table /SCWM/TPRDV_CAT.

4 Layout
The following information is a general proposal for the screen layout and is
intended to help developers to design the screens. This information does not
address all of the open issues. If you have additional information that may be of
interest to other developers, contact the author and request that the document be
updated.

4.1 Screen
The screen size for the subscreen is 7x40. Make sure that you use this space. It
is easier for customers to delete a field than to add one, and so it is advisable to
create a random field if additional space is available.

The fields should start at line 1, column 1.

The fields on the screen should be arranged line by line. This means that empty
lines should be omitted (not implemented).

4.2 Fields
The RF screens use different (shorter) field labels than the normal UIs. We have
therefore created data elements for RF based on the domains from standard
data elements.

Use the 10-character field label if possible.

If no suitable field is available, use the following procedure to obtain one:
1. Create your own data element using the naming convention

/SCWM/DE_RF_xxxxxxx and domain according to the data element.
2. Define the field labels with a length of 4, 6, 8, and 10 characters. For the

field lable with 10 characters, search for a standard term in SAPterm (in
the Corporate Portal, use the quick link /sapterm). If you find abbreviations
in SAPterm that can be entered in the field sizes, use the standard
abbreviation. If there is no abbreviation, you must create your own.

3. Add the new data element to structure /SCWM/S_RF_SCRTXT.
4. Add the new data element to your own structure.
5. Use the field of your structure on your screen.

Not all of the fields have a field label. For example, Storage bin contains the
fields Storage type and Storage bin.

Field attributes are set directly in the dynpro. You can use screen group 003 with
values 001 and 002. The framework still offers methods of changing field
attributes at runtime. These methods can be called in your function module that
is processed before the screen is displayed. You can activate or deactivate the

input option, the required option, and the visible option. However, if you want to
use this feature, note the impact on potential customer changes later on.

Input fields must be defined without Search Help and Foreign Key Check. If you
want the user to enter data in an input field, you must set the Input option to
Obligatory. The framework then checks this option and displays error
/SCWM/UI_RF 035: “Enter required field”. Note that the verification check and
required input check are carried out only if the Verification indicator is selected in
the step flow.

Verification fields must be defined with value TRUE for the property
BarcodeInput. You will find the property in the layout editor on the field attributes
when you choose the icon with the blue arrow (->). This permits special
characters (Hex values) in a barcode, which are normally filtered by SAPGUI.

Verification fields follow directly after the original field without a space inbetween.

4.2.1 Field Length
Quantity fields should use domain /SCWM/DO_QTY_VERIF. This domain uses
conversion exit QNTY1, which shortens the character-based field from 50
characters to 21 characters. The number can contain 17 digits plus 3 decimals.
On the screen, limit the output length to 11 characters and set the field to
scrollable.

The product number must be defined with 18 characters. Use data element
/SCWM/DE_RF_MATNR, which is based on domain /SCWM/DO_RF_MATNR. This
domain limits the output length to 18 characters.
The material short text should be defined with 20 characters. We recommend
that you display the material short text whenever possible, depending on the
space on the screen.

Special stock is displayed with the category, the document number, and the item
number.

The warehouse request must be defined with 20 characters, the item number
with 6 characters, and the batch number with 10 characters.
Verification fields have a length of 50 characters but only one visible character.
Input fields have a length of 50 characters to support barcode scanning into
these fields.

The content provider is responsible for the conversion. This means that all fields
with a GUID or a timestamp will be shown in readable fields (for example,
MATNR instead of MATID) and must be converted before they are displayed (in
PBO) and after the return from the screen (in PAI) by the content provider.

5 Programming Information

5.1 Posting
Data for the RF transaction must be posted occur online. This allows the user to
react to any errors that may occur during posting. We recommend that data is
posted in UPDATE TASK but the commit should be carried out by COMMIT WORK
AND WAIT. Although errors may occur, this process ensures that the order within
the posting is not changed.

5.2 Exception Handling and Using Shortcuts
The SHORTCUT field from structure /SCWM/S_RF_SCRELM is part of the
template. The field is four characters long, although only two of these characters
are displayed. You can use the field for navigation purposes by entering a
shortcut value, and you can also use it to trigger exceptions by entering an
exception code. You can define the field as optional or mandatory using the
FLG_SHORTCUT indicator in table /SCWM/TPRDV_CAT. If you define the field as
optional, it is not considered in the default navigation. This means that choosing
ENTER on the last input field of the subscreen triggers the step flow. You must
navigate to the field (for example, to enter an exception) manually using the TAB
key. If you define the indicator as mandatory, the cursor is always set to the field
once the last input field on the subscreen has been completed. The user must
then press ENTER again to trigger the step flow.

5.2.1 Navigation
In the FLG_SHORTCUT field of table /SCWM/TPRDV_CAT, you can control
whether the shortcut function is activated. If the indicator is selected (mandatory),
navigation is triggered when the user presses ENTER in the shortcut field. If the
indicator is not selected, navigation is triggered when the user presses ENTER on
the last field of the screen. Reaching the shortcut field, which is the very last field,
is not necessary. You must then navigate using the function keys.

Furthermore, to mark the flag you must assign the corresponding shortcut values
in table /SCWM/TFCOD_PRF to the function codes that are to be triggered.
Figures 1 to 10 are reserved for navigation. The figures reflect the function keys
F1 to F10. Use the following assignment in the standard SAP system:

FCODE Function key Shortcut
MORE F5 05
CLEAR F6 06
BACK or UPDBCK F7
LIST F8 08

FULLMS F9 09
You can use the FLG_QUICK_ENTER indicator to suppress the jump to the
shortcut field even if it is visible. The indicator is part of table /SCWM/TSTEP_SCR
and can be set in the screen management tool (transaction /SCWM/RFSCR).
However, you must note that the PAI function module is called for each field.
Therefore, the programmer must ensure that the posting (such as WT
confirmation) is not called too early.

5.2.2 Exceptions
If you want to trigger exceptions, you can use methods from the Exception
handler. The GET_EXCEPTION_CODE method returns a list of possible
exceptions in your business context. The VERIFY_EXCEPTION_CODE method
verifies the exception code and obtains the internal exception code, which you
can use for your internal responses to the exception. Method
PROCESS_EXCEPTION_CODE is triggered for asynchronous exception
processing.

In your step flow (/SCWM/TSTEP_FLOW), you must make provisions for a
function code assignment with a shortcut value ****. This function code and the
function module assigned to it is processed by the framework. The exception
should be checked in this function module. Depending on the internal exception
code, you can then set the follow-up step (if necessary). The exception can either
be posted in this function module or at a later point. This must be specified by the
developer.

5.3 Differences
Differences are handled on a separate screen that has the same appearance. If
you want to implement a new type of difference, we recommend that you use the
standard screen.

5.4 Support LIST Functions
The framework offers a function whereby possible entries for an input field are
displayed for the user.

The content provider must communicate the possible fields and the values that
can be selected to the framework. Obsolete values can be reset using method
/SCWM/CL_RF_BLL_SRVC=>INIT_LISTBOX (field name). Method
/SCWM/CL_RF_BLL_SRVC=>INSERT_LISTBOX (field name, value, and text)
enables you to add a value to the list box. You must call this method for each
possible value. In the function code profile, you must assign function code LIST
to a function key and / or pushbutton. The standard function key is F8. Users can
then press the function key when the focus is on the field. The framework
displays a new screen on which users can select a possible value. The value is
then transferred to the input field.

5.5 Display of Text (from Delivery or Hazardous Material)
A standardized method of retrieving and displaying text from the hazardous
material master and delivery is available. Function module
/SCWM/RF_TEXT_GET_AND_SET reads the texts and transfers them to the RF
framework (using method /SCWM/CL_RF_BLL_SRVC=>SET_RF_TEXT).
You can then display the text by pressing F9 (function code FULLMS). The RF
framework displays the text in a step-loop. If an error message is to be displayed,
first the error message is displayed and then the text is displayed (from the error
text screen) when you press F9 again. An indicator is also displayed on the
application screen to inform the user that text is available.

5.6 Methods Available to the Content Provider

5.6.1 Methods into the Framework
· /scwm/cl_rf_bll_srvc=>set_prmod('1') to set the processing

mode of the next step in the step flow. ‘1’ = Background; ‘2’ = Foreground

· /scwm/cl_rf_bll_srvc=>set_fcode('DEST') to set the function
code to determine the next step flow

· /scwm/cl_rf_bll_srvc=>set_state('******') to set the state

· /scwm/cl_rf_bll_srvc=>set_field('WHO') to set the cursor to
a specific field

· /scwm/cl_rf_bll_srvc=>init_screen_param() to reset the data
container used. Resets only the name, not the data itself

· /scwm/cl_rf_bll_srvc=>set_screen_param(‘PICKPT’) to
introduce the data container used

· /scwm/cl_rf_bll_srvc=>set_scr_tabname('TT_PICKPT') to
introduce the table data container used

· /scwm/cl_rf_bll_srvc=>set_line(1) to set the actual /
beginning line in the table data container used

· /scwm/cl_rf_bll_srvc=>init_listbox(
‘/SCWM/S_RF_PICKPT-HUENT’) to reset the data assigned to the
given listbox

· /scwm/cl_rf_bll_srvc=>insert_listbox(
‘/SCWM/S_RF_PICKPT-HUENT’, ‘X’, ‘HU-Entnahme’) to set a
value for the given listbox. For additional data, call the method again.

· /scwm/cl_rf_bll_srvc=>set_screlm_required_on(‘/SCWM/S_
RF_PICKPT-VLPLA’) to activate the required field attribute for the given
field

· /scwm/cl_rf_bll_srvc=>set_screlm_required_off(‘/SCWM/S
_RF_PICKPT-VLPLA’) to deactivate the required field attribute for the
given field

· /scwm/cl_rf_bll_srvc=>set_screlm_invisible_on(‘/SCWM/S
_RF_PICKPT-VLPLA’) to activate the hidden field attribute for the given
field

· /scwm/cl_rf_bll_srvc=>set_screlm_invisible_off(‘/SCWM/
S_RF_PICKPT-VLPLA’) to deactivate the hidden field attribute for the
given field

· /scwm/cl_rf_bll_srvc=>set_screlm_input_on(‘/SCWM/S_RF_
PICKPT-VLPLA’) to activate the input field attribute for the given field

· /scwm/cl_rf_bll_srvc=>set_screlm_input_off(‘/SCWM/S_RF
_PICKPT-VLPLA’) to deactivate the input field attribute for the given field

· /scwm/cl_rf_bll_srvc=>set_flg_stack(‘X’) to set a new stack
level. This can be used if you want the framework to add a new stack level
to its internal stack.

· /scwm/cl_rf_bll_srvc=>message(‘ ‘, ‘/SCWM/UI_RF, ‘S’,
‘xxx’) to display a message of type S or I.

· /scwm/cl_rf_bll_srvc=>set_flg_dequeue_all() to instruct the
framework to carry out a DEQUEUE_ALL

· /scwm/cl_rf_bll_srvc=>set_rf_text(lt_text_table) to
transfer the read text to the framework

5.6.2 Methods out of the Framework
/scwm/cl_rf_bll_srvc=>get_step() to obtain the actual step
/scwm/cl_rf_bll_srvc=>get_fcode() to obtain the actual function code
/scwm/cl_rf_bll_srvc=>get_line() to obtain the actual line number
/scwm/cl_rf_bll_srvc=>get_state() to obtain the actual state

5.7 Global Variables
Most RF-specific function groups contain global variables. This could cause a
problem if a customer program calls an RF function module directly, but within
the FM, processing uses a global variable. Essentially, the FM has initial value if
it is called from a customer program.

For each RF-specific function group, a new interface is created to set and get the
global variables from the customer program. The name for the interface is
created as follows:

· /SCWM/RF_<process>_SET_GLOBVAR

This FM is responsible for setting the value of the global variable from the
customer code, for example, /SCWM/RF_PACK_SET_GLOBVAR,
/SCWM/RF_PICK_SET_GLOBVAR, and so on.

· /SCWM/RF_<process>_GET_GLOBVAR
This FM is responsible for retrieving the value of the global variable from
the standard code, for example, /SCWM/RF_PACK_GET_GLOBVAR,
/SCWM/RF_PICK_GET_GLOBVAR, and so on.

Use:
You have a customer-developed FM, within which an FM is called that belongs to
the standard RF code. The standard FM contains a global variable that is
updated, and the customer wants to use the updated value.

Z_RF_PICK_PIMTTO_PAI
….
 lv_buscon = 5.
 CALL FUNCTION /SCWM/RF_PICK_SET_GLOBVAR

IMPORTING
iv_buscon = lv_buscon

 CALL FUNCTION /SCWM/RF_PICK_PIMTTO_PAI
CHANGING
….

 CALL FUNCTION /SCWM/RF_PICK_GET_GLOBVAR
EXPORTING

iv_buscon = lv_buscon

The customer has set the global variable in the customer-developed FM, the
value is transferred to the standard FM, the FM /SCWM/RF_PICK_PIMTTO_PAI
changes the value of buscon, and the customer can then retrieve the changed
value with FM /SCWM/RF_PICK_SET_GLOBVAR.

5.8 Display Technical Data on GUI Title of RF UI
On the RF UI, you can display technical data by pressing CTRL+SHIFT+F1.
This function works only on SAPGUI. A request was submitted to provide
technical information on the ITS as well, although the information that can be
supplied is limited. The following data can be displayed in the ITS environment:

- Actual logical transaction
- Actual step
- Screen info

To obtain the technical information, you must set a user parameter by choosing
System User Profile Own Data.
On the Parameters tab page, enter the parameter ID /SCWM/RF_TECH_TITLE
and set the value to X.
If the user parameter is available on the standard user interface, the RF UI
appears as follows:

5.9 Hard-Coded Logical Transaction
Some RF function modules read the actual logical transaction to determine the
next processing step. This behaviour is hard-coded and means that the standard
FM cannot be reused.

If you want to reuse standard RF function modules, see SAP Note 1521250.

Procedure:
You create a custom picking transaction, for example, ZPINEW.
During the custom process, you want to use standard navigation with FM
/SCWM/RF_PICK_NAVIGATION.
At the beginning of the process, you specify the logical transaction that is to be
simulated during the process with method
/scwm/cl_rf_bll_srvc=>set_ltrans_simu(‘PISYSG’). When any
standard code is executed and the actual transaction checked, the simulated
logical transaction is returned.
The simulated logical transaction can be changed at any time during the process.

The simulated logical transaction can be checked on the technical data screen,
which can be accessed by pressing CTRL+SHIFT+F1.

6 Using the Tools Provided

6.1 Menu Manager
You launch the menu manager using transaction /SCWM/RFMENU or from
Customizing. For more information, see RF Framework Customizing Overview.

You use the menu manager to manage (create, delete, and change) customer
menus.

The selection screen includes application, presentation, and personalization
profiles and shows the screen size.

The first three parameters determine the menu hierarchy. The user can create,
copy, and delete the menu hierarchy on the selection screen. In order to change
the hierarchy, the user must choose Change and enter the screen of menu
maintenance.

This screen is split into 2 parts: the left-hand part includes menu building blocks
(menu and logical transactions) and the right-hand part includes the menu
hierarchy.

Initially, the system displays the hierarchy of the main menu. The user can
change the hierarchy as follows:

· Selecting an element in the left-hand ALV and choosing Add as sub node
· If a tree menu is selected, a new item will be added to it.
· If no tree menu item is selected, a new item will be added to the upper

menu.
· Selecting an element in the left-hand ALV and choosing Add the same

level
· A tree element must be selected and a new item is inserted to the end

of the list.
· Dragging an element from the left-hand ALV to the tree: the result will

depend on the tree element onto which the new element is dropped.
· If the element is dropped onto the logical transaction, it will be inserted

to the end of the list.
· If the element is dropped onto the menu, the dialog box for choosing

one of the two options will appear: Add as sub node or Add the same
level.

· Selecting an item in the tree and choosing the pushbuttons to change the
sequence (up and down)

The user can change the main menu by selecting the Main checkbox for a menu
element (in the left-hand ALV).

The user can display a submenu in the right-hand tree:
· By selecting a menu in the left-hand ALV and choosing Display menu
· By selecting a menu item in the tree and choosing Next level in the tree

toolbar. The reverse action is Previous level.

The tool enables the user to manage the menus catalog:
· To add user-specific menus to the menu catalog (choose New in the left-

hand ALV)
· To delete user-specific menus from the menu catalog (choose Delete in

the left-hand ALV)
· To change user-specific menu descriptions in the menu catalog (choose

Change in the left-hand ALV)
· To manage the RF texts for the menus (choose Object Texts in the left-

hand ALV)

6.2 Screen Manager
You can use the RF screen manager, a tool that enables you to customize the
appearance of RF presentation screens, to ensure that the screens are
consistent with the attributes of the presentation devices being used.
The RF screen manager enables you to do the following:

· Create, copy, and delete display profiles
· Edit the screens of a display profile

Display profile ** is provided with the standard SAP system.

6.2.1 Create, Copy, and Delete Display Profiles
By defining your own display profiles, you can determine the following screen
display characteristics:

· Screen size
· Screen element attributes, including:

o Number of pushbuttons available for the screen

o Text length for pushbuttons, logical transactions, and menu items

o How messages are displayed

· Screen template function groups and screen numbers

You can also create a new display profile based on an existing one and delete an
existing display profile.

Even if the RFUI is developed for a character-based device, customers can raise
a claim to use it in a graphical environment via ITSMobile. In this case, a new
display profile must be created. For graphical devices, the following screen
dimensions could be feasible:

· Width: max. 19/20 columns for 240 pixels or 25 columns for 320 pixels
· Heigth: max. 12 rows for 320 pixels

Note that these values are experimental. You must check the actual environment
on the mobile device to determine whether they are appropriate.

6.2.1.1 Creating a Display Profile
1. Open the Display Profile tab page.
2. Enter a two-digit identifier for your display profile and choose Create.

The Screen Manager dialog box appears.
3. Enter the following details for the display profile:

· Text description
· Screen height and width
· Screen element attributes
· Function group and screen number of the screen template.
If you choose to display messages in the status line (that is, you enter 1
in the Message Display field), you must also enter a function group and
screen number for the secondary screen template containing the status
line instead of pushbuttons. If you want to use your own GUI title you
must enter the function group name and title number.

If you want to immediately create the sub-screens, proceed as follows:
1. Set the Create Sub-Screens indicator.
2. Enter the function group of the subscreen.
3. If you want the system to use the standard screens and convert them to

new screens based on the size parameters of your display profile, select
Convert Screens.
This option is desirable for the mass creation of screens, especially if you
do not intend to make large changes to the screens. If you want the
system to copy the standard screens as they are, select Copy Screens.
If you do not want to create subscreens immediately, do not set the Create
Sub-Screens indicator. The display profile created will reference the
standard or source subscreens.

4. Choose Enter.

6.2.1.2 Copying a Display Profile
1. Choose the Display Profile tab page.
2. Enter the identifier of the display profile that you want to form the basis of

a new display profile.
3. Choose Copy.

The Screen Manager dialog box appears, containing the attributes of the
source display profile.

4. Enter the destination display profile identifier and description. You can also
change any of the other attributes.

5. Choose Enter to copy the display profile.

6.2.1.3 Guideline for screen conversion
The screen conversion strategy is based on the height and width of the new
screen.

1. First of all the elements are replaced to fit the new number of rows on the
screen.

· If the original screen is taller then the logic tries to merge rows.
· If the new screen is taller then the logic tries to merge rows.

2. Once the new screen height is reached by either merging or splitting then
the method reconstructs the elements row by row.

· If the new screen width is shorter than the original then the elements are
resized.
· Texts are replaced with the shortest label available in the dictionary.
· The minimal length of a field is 1 character.
· All elements are separated by a space.

3. The step-loops are handled exceptionally:
· Step-loop rows are not split to multiple lines.
· The number of rows in the step-loop are reduced if the new screen is
smaller.

Consequence: If you have too many fields in a row then it's possible that the last
elements will not fit to the new screen because of the minimum-size
requirements.

Example:
One row on the original screen contains the following elements:

· Start Date (text element), length: 10
· Start Date (input/output field), length: 10
· End Date (text element), length: 8
· End Date (input/output field), length: 10

The total length of the row is 41 (all fields are separated by space). The minimal
length of the row is calculated in the following way:

· The first start date is a text element and the short label can be used
instead of the current one (‘StDt’) which has length: 4.

· The second start date is an I/O field so the minimum length is 1.
· The first end date is a text element and the short label can be used

instead of the current one (‘EnDt’) which has length: 4.
· The second end date is an I/O field so the minimum length is 1.
· Each field is separated by a space

The minimal length for this row is 13. If a lower destination screen width is set
and the row can’t be split – because the new screen is not taller than the original
– then not every element of this row will fit to the new screen.

6.2.1.4 Deleting a Display Profile
1. Choose the Display Profile tab page.

2. Enter the display profile identifier and choose Delete.
A query message appears.

3. Confirm that you want to delete the display profile and its corresponding
screens.

6.2.2 Editing Screens of a Display Profile
After creating a display profile, you can adjust the size and position of screen
elements (such as menus and pushbuttons) to fit the physical dimensions of your
presentation devices. The RF screen manager enables you to do the following:

· Analyze screen compression and overlapping of lines and columns before
creating new screens

· Edit and display screen templates
· Manually create, copy, edit, or display subscreens
· Automatically create subscreens based on conversion analysis results
· Maintain Customizing settings for subscreens (mapping of subscreens to

logical transaction steps)

6.2.2.1 Screen Maintenance
· Choose the Screens tab page.
· Enter one or more selection criteria for the screens that you want to
maintain.
· Choose Screens.
The Screen Manager appears.
· The top ALV contains screen template information for the relevant
display profile:

a) If you want to display a screen template in the Screen Painter,
choose the line corresponding to the screen template and choose
Display Screen.
b) If you want to manually edit a screen template in the Screen
Painter, choose the line corresponding to the screen template and
choose Edit Screen.

5. The bottom ALV contains information about all of the relevant
subscreens, including the following:
· Screen conversion status, which is represented by one of the

following three traffic lights:
o Green: The subscreen exists and matches the display

profile settings.
o Yellow: The subscreen exists but does not match the

display profile settings (that is, the subscreen is not fully
adjusted to the subscreen template area).

o Red: The subscreen does not yet exist. This is the case if
you did not select the Create Sub-Screens indicator when
you created the display profile (pursuant to the step
above).

· Presentation context, including the following:
o Presentation profile
o Personalization profile
o Logical transaction
o Step
o State

· Screen program and number
· Screen conversion analysis results, namely the lines deficit and

columns deficit
6. You can do any of the following from the toolbar of the bottom ALV

by choosing the corresponding pushbuttons:
· Create, copy, change, or delete the subscreen Customizing

settings (mapping of the selected subscreen to a logical
transaction step)

· Enable/disable the Skip Shortcut function for a subscreen
· If a subscreen has not already been created, you can either

create it manually in the Screen Painter (Create Screen) or
trigger its automatic creation based on the conversion analysis
results (Convert Screen).

· Copy an existing subscreen (Copy Screen). In this case, you
must enter the function group and number of the subscreen
template.

· Edit (Edit Screen) or display (Display Screen) an existing
subscreen in the Screen Painter

6.3 Wizards
You launch wizards directly from an active RF transaction by pressing
CTRL+SHIFT+F1.

6.3.1 Split Screen
This wizard guides you through the steps necessary to split the RF transaction
screen into several screens. These screens are then displayed in your preferred
sequence. You can also configure the function codes that are displayed on each
resulting screen.
The wizard contains the following steps:

· Assign Fields to Split Screens
· Assign Function Codes to Split Screens / Assignment
· Assign Function Codes to Split Screens / Pushbuttons
· Define Target Function Group and Screen Numbers
· Define Personalization Profile
· Complete (Creating the new screens and Customizing in the database)

6.3.2 Modify Screen
This wizard guides you through the steps necessary to modify an RF transaction
screen. Each time you add or remove fields from the screen, the wizard
generates an updated screen. To display the new screen to a specific group of
users, enter the personalization profile of the users. The wizard then
automatically adjusts the Customizing.
Once you run the wizard, the new screen is displayed in Screen Painter so that
you can verify the contents or make manual adjustments.
The wizard contains the following steps:

· Select Target Screen Fields
· Assign Verification Fields
· Define Target Function Group and Screen Number
· Define Personalization Profile
· Complete (Creating the new screens and Customizing in the database)

6.3.3 Error Message Handling in RF Wizard
Since an error message can be thrown in the conversion exit, the RF framework
must be able to catch that error message. This will also catch the messages from
the RF wizard. As a result, if an error occurs in the RF wizard, the wizard closes
and the RF framework displays the error message.

If you work with the RF wizard on your desktop, we recommend setting
parameter ID /SCWM/RF_WIZ_ACT in your own profile.
To set the parameter ID:

· Choose System User Profile Own Data.
· On the Parameters tab page, enter the following data:

Parameter ID: /SCWM/RF_WIZ_ACT
Parameter Value: X

When this parameter ID is configured, the RF wizard does not close if an error
message is issued. Instead, the message is displayed within the wizard.

This parameter ID can be used only in a development or test system, and not in
live system since it is not beneficial to launch the RF wizard in a live system.

General Disclaimer

SAP does not represent or endorse the accuracy or reliability of any of the information, content, or advertisements
(collectively, the "Materials") contained on, distributed through, or linked, downloaded, or accessed from any of the
services contained on this Web site (the "Service"), nor the quality of any products, information, or other materials
displayed, purchased, or obtained by you as a result of an advertisement or any other information or offer in or in
connection with the Service (the "Products"). You hereby acknowledge that any reliance upon any Materials shall
be at your sole risk. SAP reserves the right, in its sole discretion and without any obligation, to make improvements
to, or correct any error or omissions in any portion of the Service or the Materials.

THE SERVICE AND THE MATERIALS ARE PROVIDED BY SAP ON AN "AS IS" BASIS, AND SAP EXPRESSLY
DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO
THE SERVICE OR ANY MATERIALS AND PRODUCTS. IN NO EVENT SHALL SAP BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND
WHATSOEVER WITH RESPECT TO THE SERVICE, THE MATERIALS, AND THE PRODUCTS.

SAP encourages you to exercise discretion while browsing the Internet using this site.

SAP makes no representations concerning any endeavor to review the content of sites linked to this site or any of
the Materials, and so SAP isn't responsible for the accuracy, copyright compliance, legality, or decency of material
contained in sites listed in the directory or in the Materials.

SAP respects the rights (including the intellectual property rights) of others, and we ask our users to do the same.
SAP may, in appropriate circumstances and in its sole discretion, terminate the accounts of users that infringe or
otherwise violate such rights of others.

If you believe that your work has been copied in a way that constitutes copyright infringement, please follow the
instructions at the top of this page.

© Copyright 2008 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express
permission of SAP AG. The information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components of
other software vendors.

Microsoft, Windows, Excel, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, System i, System i5, System p, System p5, System x, System z, System z10,
System z9, z10, z9, iSeries, pSeries, xSeries, zSeries, eServer, z/VM, z/OS, i5/OS, S/390, OS/390, OS/400,
AS/400, S/390 Parallel Enterprise Server, PowerVM, Power Architecture, POWER6+, POWER6, POWER5+,
POWER5, POWER, OpenPower, PowerPC, BatchPipes, BladeCenter, System Storage, GPFS, HACMP, RETAIN,
DB2 Connect, RACF, Redbooks, OS/2, Parallel Sysplex, MVS/ESA, AIX, Intelligent Miner, WebSphere, Netfinity,
Tivoli and Informix are trademarks or registered trademarks of IBM Corporation.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered trademarks of Adobe
Systems Incorporated in the United States and/or other countries.
Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or
registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C® , World Wide Web Consortium,
Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented and
implemented by Netscape.

SAP, R/3, xApps, xApp, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP Business ByDesign, and other SAP
products and services mentioned herein as well as their respective logos are trademarks or registered trademarks
of SAP AG in Germany and in several other countries all over the world. All other product and service names
mentioned are the trademarks of their respective companies. Data contained in this document serves informational
purposes only. National product specifications may vary.
These materials are subject to change without notice. These materials are provided by SAP AG and its affiliated
companies ("SAP Group") for informational purposes only, without representation or warranty of any kind, and SAP
Group shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP Group
products and services are those that are set forth in the express warranty statements accompanying such products
and services, if any. Nothing herein should be construed as constituting an additional warranty.

