

MWJ: RF Energy Webinar

October 27, 2015 11:00 AM EST

Mike Ziehl, Tom Kole, Klaus Werner (Executive Director of the RF Energy Alliance)

Outline

Introduction

MACOM Company Overview

RF Energy

- What is RF Energy?
- RF Energy Market Opportunities
- RF Energy Alliance
- Market Growth Estimates

Why GaN is a fit for RF Energy

- Technical Specs (Efficiency, Gain)
- GaN Technology: SiC vs Si Comparison
- LDMOS vs GaN Si

Plastic Packaging

LDMOS/GaN SiC/GaN Si

RF Energy Application Highlights

- Industrial Heating & Cooking
- Automotive Ignition
- Plasma Lighting
- Medical

Future of RF Energy

MACOM Company Overview

Provider of High-Performance Analog RF, µW, mmW and Photonic Solutions

- Headquartered in Lowell Massachusetts
- 27 offices worldwide, 1101 employees
- \$418 million of FY 2014 revenue
- Strong Patent and IP Position
- 6,000+ customers worldwide

- Global, multi-channel sales strategy
- 3,000+ products across 40 product lines
- 60 years of RF & Microwave History
- MACOM continues to invest in technologies enabling RF Energy and other volume applications

What is RF Energy?

Classical RF Use:

Long-Distance Data Transmission

Classical RF Use:

Magnetron Drive for Local Heating

Solid State RF Energy:

RE Power Amplifier

Application Highlights

Market Opportunities

Standardizing solid-state RF energy components, modules and application interfaces to:

- Reduce system cost
- Minimize design complexity
- Ease application integration
- Increase market adoption & growth

RF Energy Market Growth Estimates

RF Energy Market forecasted to exceed \$1B in 5 years (SunTrust market report)

Key RF Energy Markets:

- RF Energy Transfer
- · Solid State Heating
- Plasma Lighting
- Spark Plug Ignition
- RF Heating/Drying
- Medical (Tumors)

Why Gallium Nitride on Silicon?

Semiconductor Property Comparison

Property	Si LDMOS	GaN/SiC	GaN/Si
Power Density			
Ruggedness			
Cost			
Efficiency			
High volume Manufacturability			
Cost/Power density/Ruggedness/ Efficiency FOM			

Why GaN? Substrate Materials Technology Drives Cost

Device Technology	Substrate Technology	Growth Temp/Rate	Size	Crystal Defect Density	Industry Volume	\$/in²
GaN on SiC	SI-SiC	2000°C 150 <mark>um</mark> / hr	3" - 6"	Present - Increases with Wafer Size	1 X	1 X
GaN on Si	Silicon	1400°C 7.62 <mark>cm</mark> / hr	4" – 12"	None	10 ⁶ X	10 ⁻³ – 10 ⁻⁴ X

Silicon World

Silicon Carbide World

MACOM's Plastic Packaging and Module Capabilities

Plastic Packaging

- MACOM has extensive experience in high power plastic packaging
- Demonstrated performance at 2.45GHz with GaN-Si in plastic
- Thermally enhanced high power plastic packaging
- TO272 has lower thermal resistance than legacy ceramic flanged packages

High Power Pallets and Module Capabilities

 MACOM has a well established capability for the design and manufacturing of high power pallets and modules

Industrial Heating/Cooking- Solid State Motivation

- Multiple kW systems at 896/915/2450 MHz currently rely on high power magnetrons as microwave source
- High kW magnetrons have various disadvantages:
 - Short life time of ~ 1yr running
 - High replacement costs
 - Lack of dynamic power control
 - Spectral purity and power variation
 - Very high voltages (20 kV)
- Current GaN power amplifiers provide:
 - > 20 yr life time
 - >70% efficiency
 - 50 V supply
 - Stability, robustness, dynamic power control and high spectral purity
- Given advances of solid-state amplifiers, high power oven manufacturers are looking to replace existing magnetron systems

Automotive Ignition – Solid State Motivation

Concept: Add RF Energy to existing HEI ignitions to improve fuel efficiency

- Gain 10% or more in efficiency
- Allows car OEMs to meet 2017 CAFÉ standards
- As add on system could fail and car would still run

Potential Market Size:

- World wide estimate of 80M cars sold
- If even 25% penetration and 2 transistors/cylinder and 4 cylinders per car on average (500W) = 160 M transistors/year!
- Roughly 4X the ENTIRE Base Station power transistor market
- Or 16X the BTS market at 100% penetration
- That does not include trucks or other non-personal automobiles!

With RF Energy

Without RF Energy

Plasma Lighting- Solid State Motivation

<u>Concept:</u> - Use RF energy to excite plasma in a light bulb to generate efficient and near ideal color temperature light

- US based (CA) start ups pioneered this technology
- Color temperature near true sunlight
- Other advantages such as dimming ability, fast re- strike, high efficiency
- Lower capital costs, lower energy costs, lower maintenance
- Only possible with Solid State transistors

Potential Market Size:

- LED lighting estimated at \$500M in 2015, >\$2B in 2020
- Global shipments of fixtures >\$100B

Applications:

- Traditional high bay, street light
- Stadium lighting
- Grow lighting
- Accent lighting (car dealers etc)

Motivation for Medical

Concept: - Use RF energy to destroy cancer cells and other abnormal cells

- Proven treatment where other surgery is not possible
- Significantly less invasive treatment
- RF ablative heating can improve chemotherapy effectiveness
- 2.45GHz is optimal for probe (antenna) size

Potential Market Size:

- Current market size of \$250M 2015
- With increasing FDA approvals and project CAGRs, >\$1B in 2020

Applications:

- Cancer Treatment
- Soft Tissue Lesions
- Pain Management

MACOM Advantage:

- GaN-Si can provide up to 10% higher efficiency at 2.45GHz versus existing LDMOS solutions
- Resulting in smaller overall systems and less heat management for 300W and larger systems

Future of RF Energy- Conclusions

- RF energy applications at the very early stages of their evolution:
 - Magnetron replacement
 - Auto ignition
 - High bay lighting
 - Medical
 - Industrial heating/drying
- Initial products have/will launch with LDMOS technology
- GaN/Si is the ultimate technology step due to:
 - Efficiency
 - Power density
 - Cost advantages
 - High frequency/broadband capability

Uniquely Enabling RF Energy Markets

For More Information Please Visit:

www.rfenergy.org

www.macom.com/rfenergy