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MEMS for RF Communications

• MEMS is key enabling technology addressing 
pervasive trends in communications and radar 
systems:

– tunability / agility / modularity / reconfigurability

– increased functionality (component, system)

• Substantial performance improvements:

– Insertion loss, isolation, linearity, power 
consumption, bandwidth, size, integration

Range of device concepts under development
• RF Switches / Relays
• Tunable Capacitors
• Micromachined inductors
• Micromechanical resonators

⇒ Building Blocks for High-Performance 
Miniaturized RF Subsystems

Range of device concepts under development
• RF Switches / Relays
• Tunable Capacitors
• Micromachined inductors
• Micromechanical resonators

⇒ Building Blocks for High-Performance 
Miniaturized RF Subsystems
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Motivation For RF MEMS Switches
switching an important function in RF systems

• Significant performance advantages drive 
interest in RF MEMS switches:

• Low insertion loss loss (0.1 dB up to 100 GHz)

• High Isolation (< -30 dB up to 100 GHz) 

• Very high signal linearity (IP3> 80 dBm)

• Very low power consumption (10-100nJ/cycle for 
electrostatic switch)

• Broad application frequency (DC-120GHz)

• Potential for low cost fabrication, integration

PIN MESFET MEMS
ON-State Loss 2-4 Ohm 4-6 Ohm 0.5-2 Ohm

OFF-State Isolation High Medium Very High
3rd Order Intercept 27 - 45 dBm 27 - 45 dBm 66 - 80 dBm

Size 0.2 x 0.2mm
Device Power Use 5-100mW near zero near zero

Control TTL TTL 80V

Adapted from Rebeiz, “RF MEMS”, Wiley 2003

• However, other issues must be 
considered:

• Switching time (10’s µµsec typical)

• Low power handling (50-500 mW
typical)

• Packaging may be difficult and 
costly

• Cycle reliability (rapidly improving)

• Actuation voltages may be high

• Cost and availability (still not 
widely available)
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Application Areas for RF Switches

RF Switch Technologies are the critical (and enabling) technology providing 
for high performance, advanced capability systems of various applications: 
• Consumer Markets – Wireless Communications, Automotive
• Industrial Markets – Instrumentation Systems, Satellite Communications 
• Military – Wireless Communications, Satellite Communications, Radar

http://www.intellisensesoftware.com/papers/Microelectromechanical.pdf
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Torsional

Broad Range of MEMS Switch Architectures 

• Contact Type:
– ohmic (metal-metal) vs capacitive 

(membrane)

• Actuation Mechanism:
– electrostatic, thermal, magnetic, 

piezoelectric

• Mechanical Construction
– torsional, lateral, vertical flexure

– surface, bulk micromachining

– Structural, contact materials

– Isolated, non-isolated

• RF Configuration
– Series vs. shunt

• Different sensitivities to environment, test 
conditions, reliability-limiting mechanisms

 
 

Lateral

Capacitive

Ref. Rebeiz, “RF MEMS- Theory, Design, and 
Technology,”Wiley, 2003

RSC

MIT/LL
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Considerations for MEMS Switch Design

• Range of switch options provide huge design space for 
implementation

• However… applications requirements will typically impose 
significant constraints on device design options

– Operational requirements (frequency, bandwidth, insertion 
loss, isolation, switching time, duty cycle, hot vs. cold 
switching, operating temperature range)

– Reliability considerations (contact force, release force, 
sensitivity to process residuals)

– Implementation / Integration considerations (drive voltage, 
power consumption, electronics control/integration)

– Environmental /packaging considerations (environmental 
sensitivities, package hermeticity, package constraints)

– Manufacturing / cost considerations (cost, die size, 
manufacturability, scalability, process robustness, yield)
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The Two Basic Types of MEMS RF Switch

Metal-Contact Switch
• OFF state: air gap
• ON state: metal-metal contact
• Operation: DC to high frequency
• Actuation: various
• RF Configuration: series, shunt
• Pros: broadband, biasing, versatility
• Cons: power handling, high freq. isolation

Capacitive-Contact Switch
• OFF state: air gap
• ON state: metal-insulator-metal contact
• Operation: higher frequencies (>5GHz) 
• Actuation: electrostatic
• RF Configuration: shunt
• Pros: power handling, no contact wear
• Cons: low freq. operation, biasing

Capacitive-Contact MEMS Switch

(Rebeiz, RF MEMS Theory, 
Design, and Technology)

Raytheon 
Capacitive Switch

Radant Ohmic
Switch
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RSC MEMS RF Switch
Electrostatic metal contact switch

Key Elements of RSC MEMS RF Switch
• Low-temperature processing (circuit compatible)
• Substrate independent (GaAs, Si, Quartz)
• Broadband (DC- mmWave)
• Electrostatic drive for low power consumption
• Inherent isolation between drive and signal
• Turn-on time <10µµs
• Activation voltage 50-80V
• Third order intercept +80dBm

Key Elements of RSC MEMS RF Switch
• Low-temperature processing (circuit compatible)
• Substrate independent (GaAs, Si, Quartz)
• Broadband (DC- mmWave)
• Electrostatic drive for low power consumption
• Inherent isolation between drive and signal
• Turn-on time <10µµs
• Activation voltage 50-80V
• Third order intercept +80dBm

Unbiased

Biased

Switch Operation

Airgap at capacitors

O2 etch release

Switch built atop
sacrificial platform

Etch sacrificial layer
to release structure

Switch Fabrication
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RF Performance of RSC MEMS Switch
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• Low Insertion loss (0.1 dB insertion 
loss to 40 GHz) 

• Low open switch capacitance 1.75 fF

• Off-switch parasitic coupling < -30 dB 
up to 30 GHz

• Well-characterized RF device models

• Low Insertion loss (0.1 dB insertion 
loss to 40 GHz) 

• Low open switch capacitance 1.75 fF

• Off-switch parasitic coupling < -30 dB 
up to 30 GHz

• Well-characterized RF device models

ON Insertion loss OFF isolation

Model vs Measured S-Parameters
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Capacitive Membrane Switches

Cross Section

High resistivity silicon

Buffer Layer

Post

Dielectric Electrode

Top View

Signal
Path

Membrane

Dielectric

Lower
Electrode

Undercut
Access
Holes

Design elements:
• Smooth surfaces, high εε dielectric for 

maximum on-state capacitance
• Materials, mechanical designs to avoid 

dielectric charge trapping
• High conductivity metals for low loss at 

microwave, mmW frequencies

Raytheon Switch

(Rebeiz, RF MEMS Theory, 
Design, and Technology)
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Summary of Key MetricsSummary of Key Metrics

Insertion Loss @ 40 GHz <0.07 dB

Isolation @ 40 GHz >35 dB

Coff / Con .03 / 3.4 pF

Capacitance Ratio 70-110

Switching Speed < 10 µs

Intercept Point > +66 dBm

Switching Voltage 30-50 volts

Size 280 × 170 µm
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Actuation a key Design Element for MEMS Switches

Electrostatic MEMS Switches
(where power, speed critical) 
• defense applications
• satellite communications
• wireless communications

NEU/ADI/Radant - Electrostatic MicroLab – Electromagnetic

Switch properties, applications are determined largely by actuation method

Thermal / Magnetic MEMS Switches
(where contact resistance, power 
handling at low frequency critical) 
• automotive
• instrumentation systems

Actuator Properties 
vs Actuation Method

Need to consider contact closure / adhesion forces in actuator voltage designNeed to consider contact closure / adhesion forces in actuator voltage design
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Metal-Metal Contact Behavior

• Metal-metal contact requires adequate actuator force 
for stable resistance

– Described by asperity contact models

• RvsF response provides valuable information on 
nature of contact properties

– provides enhanced signatures of failure mechanism

• Can directly measure RvsF of MEMS switch using 
AFM-based force-displacement tools

– diamond tip on high stiffness (~200N/m) cantilever

– well-calibrated, large range force  (10-6 - 10-4 N) 

– decouple actuator, contact effects

– wafer-level probing avoids packaging artifacts

– Non-destructive permits controlled stress testing

Force

R
es

is
ta

n
ce

Ref: DeNatale et al., 2002 IRPS, Dallas, TX

R

Calibrated
force

• Ft  ~ 20uNt (Force to initial contact touch)
• Fs ~ 100uNt (Net force for stable resistance)
• Rs- Resistance for stable-response regime
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Hybrid MEMS Switch
strategy for bypassing single-actuator constraints

• Inherent trades exist in actuator selection

– Electrostatics attractive for low power, 
but require high voltage for large gap

• Hybrid actuation mechanisms attractive 
approach to low-power / low-voltage switch

• RSC: Demonstrate hybrid Lorentz Force / 
electrostatic switch

– Short-duration Lorentz force  to close 
gap, electrostatics to hold

• Characteristics:

– Low voltage (1-20V)

– Active open (bi-directional, 50-300µµN)
• Robust against stiction

– Double-throw operation

– Low Power Consumption (10-500nJ/cycle)

• Hybrid Thermal/Electrostatic actuation also 
demonstrated (Saias, Transducers ’03)

Signal Line Capacitor
Banks

SuspensionContact

Borwick et al., Transducers ‘03



06/24/2004 Chart 16

Switch Modeling Requires Multi-Physics Approach

ON Insertion loss OFF isolation

Simulated (red) and measured (blue) 
S-parameter data for MEM switches

218K

Thermomechanical Modeling RF  Modeling

Dynamic Impact Modeling

Simulated stress 
distribution in switch 
contact (elastic model)

Dynamic Modal 
Analysis

Multi-Physics Modeling RequiredMulti-Physics Modeling Required
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MEMS Tunable Capacitors

• Mechanically control gap or overlap area of capacitor plates

– Parallel plate (gap tuned)

– Interdigitated (area tuned)

• Key metrics: Tuning range, Q, base capacitance, tuning speed, 
vibration/acoustic sensitivity, linearity

Interdigitated
• Bulk, surface micromachining
• Wide tuning range

Parallel Plate
• surface micromachining
• Small area, high Q
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RSC MEMS Tunable Capacitor (Varactor)

5 µm

30 µm

100 µm
SEM micrographs showing the high 
aspect ratio feature of the MEMS tunable 
cap.

Tuning range: >8:1
Base capacitance: 1.5 - 2pF
Electrical Q: 30-150
Max tuning voltage: 6-40V
Mechanical Resonance : 0.4 - 12kHz typ.
Electrical self-resonance: 6GHz

Tuning range: >8:1
Base capacitance: 1.5 - 2pF
Electrical Q: 30-150
Max tuning voltage: 6-40V
Mechanical Resonance : 0.4 - 12kHz typ.
Electrical self-resonance: 6GHz
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Capacitor Tuning Range
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Parameter Ranges:
• Tuning Range: 1.5 - 12 pf. (8.4x)
• Resonant Frequency: 0.5 – 12kHz
• Actuation voltage: 6 - 40 Volts
• Series Resistance:1 - 2 Ohms
• Q at 1.5 pf: Above 100 (<800 MHz)

RSC MEMS Tunable Capacitor Specifications

Tuning range of >8.4X over 
Application-Relevant
capacitance values

Tuning range of >8.4X over 
Application-Relevant
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MEMS Tunable Capacitors
parallel plate (gap tuned) devices

• Conventional parallel plate capacitors widely implemented using 
surface micromachining processes

– Typical ~0.5-2.0pF base, Q ~ 23-60 (1GHz)

• Theoretical maximum capacitance tuning range of parallel plate 
=50% due to electrostatic instability (typically 15-40%)

• Surface micromachined device offers advantages for integration, 
high frequency operation

D.J. Young and B.E. Boser, 1996 Solid 
State Sensor and Actuator Workshop. 

Taken from Yao, 2000
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Extended Range Tunable Capacitors
approaches to mitigate 50% tuning limit

• Extended tuning devices extend parallel plate range (differential 
gap, dual drive) 

• Predict theoretical tuning range of >100%

– 100% tuning demonstrated

From Yao, J. Micromech. Microeng., 2000

Dussopt and Rebeiz, IEEE 
MTT-S, June 2002

Dual Drive (Balanced) 
Tunable Capacitor

Differential Gap 
Tunable Capacitor
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Key Issues in RF MEMS Insertion

• Reliability –

– Switch contact reliability under many-cycle operation a key 
hurdle in widespread application, but rapidly improving

• Up to 100 Billion cycles demonstrated

– Very dependent on operating environment / condition

• Packaging-

– Cost, RF performance, reliability all strongly impacted by 
packaging approach

– Wafer-scale hermetic encapsulation attractive avenue

• Power Handling –

– Small contact areas for ohmic switch (= high power density) 
ultimately limit operation under elevated signal powers
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Class I

No Moving parts

Pressure Sensors

Ink Jet Print Heads

Strain Gauge

Class III

Moving parts;

Impacting surfaces

TI DMD

Valves

Pumps

Switches/Relays

Class IV

Moving parts;

Impacting and rubbing 
surfaces

Optical Switches

Shutters / Scanners

Locks

Switches/Relays

Class II

Moving parts;

No rubbing or impacting 
surfaces

Gyros, accelerometers

Comb Drives

Resonators

Tunable Capacitors

MEMS Reliability Taxonomy

Sources :MANCEF International Roadmap  2002

Sandia National Laboratory Reliability Short Course

Recommend separate category for switches (Class III/IVb), since 
not only contacting, but functionality depends on nature of contact

Recommend separate category for switches (Class III/IVb), since 
not only contacting, but functionality depends on nature of contact
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Issues in MEMS Switch Reliability

• Low force operation (typically 10’s - 100’s µµN)

– sensitive to adhesion effects, interposed films, 
electro-mechanical influences

• Highly surface dominated geometry

• Inherently multi- physics system:

– mechanical (movable structure)

• statics, dynamics, gas interactions, tribology, fatigue, stress

– electrical (actuator)

• charge trapping, field-induced transport

– chemical (contact surfaces)

• contact materials, surface films (envt, process)

– thermal (resistive heating of contacts)

– physical (contact topology, materials)

Despite inherent challenges, 
demonstrations of high 
cycle lifetimes (1x1011) 

achieved

Despite inherent challenges, 
demonstrations of high 
cycle lifetimes (1x1011) 

achieved

Contact damage morphologies
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RF MEMS Reliability – Tunable Capacitor

• Tunable Capacitor device favorable 
construction for high-reliability

– Non-contacting (stiction, surface 
degradation resistance)

– Single xstal Si structural material 
(fatigue resistance)

• Devices subjected to large numbers 
of cycles without apparent 
degradation

– Mechanical cycling to 65B cycles with 
no change in resonant frequency

– Electrical testing to 10B cycles with no 
change in CvsV characteristics
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Dielectric Charge Trapping Effects

• Use of dielectric materials in 
electrostatic actuators can lead to 
dielectric charge trapping

– Self-generation through actuator fields

– Introduced by ionizing radiation

• Very significant in capacitive switch 
devices due to high e-fields 

– Lesser impact on ohmic switches

– larger separations reduce field

• Effect may be significant for space 
applications

– S. McClure et al.,  Proc. NSREC 2002

• Mitigation through drive waveform, 
actuator design, material selection

J.R. Reid, MTT-S RF 
MEMS Workshop, 2001

C. Goldsmith et al., 
Proc. MTT-S, 2001
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Packaged MEM Switches
with metal and glass lids

RF MEMS Packaging

• Packaging can have significant impact on reliability, cost, 
performance

– Humidity related stiction, environmental surface 
reactants

– RF transitions require careful design

• Wafer-scale package concepts offer low-cost, high-
performance solution
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Summary and Conclusions

• RF MEMS an enabling technology for high-performance 
communications / radar systems.

• RF switch highly attractive for electrical characteristic
– low loss, high isolation, high linearity, wide band, low power, integration 

compatible

– Wide range of electrical / mechanical design elements must be 
considered in optimal component development

– Development efforts making steady progress in reliability, packaging, 
integration

• MEMS tunable capacitor enables wide tuning range operation
– Wide tuning range, improved signal linearity provide reduced parts 

count

– Present efforts targeting improved tuning speed, damping, Q
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