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ABSTRACT 

Right Hospital – Right Time (RH-RT) is the conceptualization of the use of descriptive, predictive and 
prescriptive analytics with real-time data from Accident & Emergency (A&E)/Emergency Departments 
(ED) and centers for urgent care; its objective is to derive maximum value from wait time data by using 
data analytics techniques, and making them available to both patients and healthcare organizations. The 
paper presents an architecture for the implementation of RH-RT that is specific to the authors’ current work 

on a digital platform (NHSquicker) that makes available live waiting time from multiple centers of urgent 
care (e.g., A&E/ED, Minor Injury Units) in Devon and Cornwall. The focus of the paper is on the 
development of a Hybrid Systems Model (HSM) comprising of healthcare business intelligence, forecasting 
techniques and computer simulation. The contribution of the work is the conceptual RH-RT framework and 
its implementation architecture that relies on near real-time data from NHSquicker. 

1 INTRODUCTION 

The UK National Health Service (the NHS) is going through a period of transition. Demand for NHS 
services is increasing while the component Trusts are being asked to make drastic cost savings and to 
manage their budgets even more robustly. Accident and Emergency (A&E) attendances in 2016 in England 
were 5.2% higher than in 2015 (roughly translating to an average of 2200 attendances/day in major 
emergency departments or EDs) and this contributed to an increasing number of patients breaching the 4-
hour target (16.2% in 2016, compared to only 4.8% in 2011) (HCL 2017).  To ease pressure and to meet 

the 95% standard in A&E (i.e., a minimum of 95% patients attending an A&E department should be either 
admitted, transferred or discharged within 4-hours of their arrival), the UK Government announced an extra 
£100 million A&E capital funding in its 2017 budget, with part of this funding being used for  primary care 
streaming and co-locating GP (General Practitioner – primary care) practices within A&E departments 
(Gov.uk 2017). The support for clinical streaming in the A&E department, including streaming to co-
located primary care services, was initiated by NHS England and NHS Improvement and was published in 

July 2017 (NHS Improvement 2017). Although GP co-location (including out-of-hours primary care) is not 
a new concept (Wilson 2005; Iacobucci 2014), its current emphasis is upon reducing the burden of primary 
care patients attending ED departments. However, there is little evidence to support such co-location 
strategies. A recent review by Ramlakhan et al. (2016) analyzed existing literature on GP-delivered, 
hospital-based unscheduled care services; it noted an increase in attendance (which the authors attribute to 
provider-induced demand), limited evidence of improved throughput and marginal cost savings per patient.  
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Our current work, although similar in objectives to the GP co-location strategy, is based on the vision 
articulated by The Keogh Review of urgent and emergency care (Urgent and Emergency Care Review 
Team 2013). This states that people with urgent but non-life threatening needs should be treated outside of 
hospitals by services that deliver care in or as close to people’s homes as possible (e.g., Minor Injury Units 
(MIUs), Urgent Care Centers (UCCs)) while those with more serious or life threatening emergency needs 
are treated in centers having the very best expertise and facilities specific to those needs. Increased 

localization of the treatment of those with less serious needs will relieve pressure on the hospital-based 
emergency services, thus freeing up resources to cater for patients with more serious and life-threatening 
conditions such as severe chest pain, serious blood loss, choking and unconsciousness. The success of this 
partitioning policy is dependent on two related factors, namely the presentation of patients at the appropriate 
treatment facility and the capacity of the EDs, in particular, to cope with demand. Inevitably the capacity 
of EDs is finite, and it is highly desirable that patient demand be spread among the available facilities in a 

given region, so as to reduce waiting time and to shape demand, thus spreading the pressures on staff and 
facilities.   

In response to these policies and requirements, we have worked with several NHS Trusts in the South 
West of England to investigate how existing data, already being captured at the urgent care centers, could 
be used to:  

 

• Encourage patients to choose the appropriate type of treatment facility for their condition, so that 
only those with more serious needs present at the A&E. The aim of this is to reduce the overall 
demand on the A&E facilities by redirecting less serious cases to the more appropriate facilities of 
MIUs and UCCs, thus reducing waiting times at the A&E facilities.  

• Shape demand at A&E facilities by encouraging patients needing such facilities to choose a 
destination with a lower waiting time. 

 
  We aim, thus, to influence destination choices made by prospective patients so as to aid NHS frontline 
staff in their day-to-day operations, firstly by improving the appropriateness of center choice and secondly 
by smoothing demand over inevitably stretched facilities, particularly those offering emergency treatment. 
We explain the effect (a) has on (b). Patients do not have a direct role in managing the operations of an 

urgent care facility. However, the decisions they take have a bearing on its performance. For example, when 
confronted with the need for urgent treatment, the intended users have to make location decisions as to the 
place of treatment. If they are unaware of the availability of urgent care services appropriate to meet their 
needs close to where they are located, they will usually choose to go to A&E as they are confident they will 
be seen and have their needs met (Mustafee et al. 2017a). This may lead to the overcrowding of A&E, while 
at the same time, MIU/UCCs that are located nearby may be operating under capacity; both cases will have 

operational implications.  
 Right Hospital-Right Time (RH-RT) is our high-level conceptual view of how wait-time data could be 
churned using descriptive, predictive and prescriptive analytics. Our aim is to derive maximum value from 
the resultant information and knowledge, and putting it to use for the benefit of both patients and the NHS. 
In our study, the NHSquicker platform (https://nhsquicker.co.uk/; H and CIN 2017a; H and CIN 2017b) 
provides data for the implementation of RH-RT. As the paper is being offered to a simulation conference, 

the focus of this work is on the prescriptive component of the RH-RT architecture, which could be realized 
using a Hybrid Systems Model, or HSM for short. The remainder of the paper is structured as follows. 
Section 2 provides an introduction on real-time data and Data Analytics (DA). In  Section 3, we present our 
conceptual RH-RT framework which essentially shows how the different elements of DA can be used 
together for the analysis of wait time data. Section 4 provides an overview of NHSquicker. This leads on 
the implementation architecture for RH-RT which is based on data from NHSquicker (Section 5). We 

restrict the focus of our discussion to the prescriptive element of RH-RT through the use of Hybrid Systems 
Modelling (HSM). In the concluding section we outline some of the challenges of implementing 
NHSquicker/RH-RT and outline future work. 
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2 DATA ANALYTICS (DA) 

DA solutions are data-driven. An understanding of data, its structure, the frequency of data update, etc. are 
important considerations which help to determine the suitability of specific DA approaches. Our discussion 
thus begins with an outline of what we mean by real-time operational data and its potential use in informing 
patients’ A&E/MIU/UCC attendance choices (section 2.1). This is followed by a brief outline of the 

different forms of DA (sections 2.2, 2.3 and 2.4).   

2.1 Real-Time Data in Urgent Care/A&E Context 

Emergency Department Management Systems (EDMS) are widely deployed in healthcare facilities to 
collect, store and retrieve patient-specific information. The data captured by such systems also include non-
clinical data, for example, date and time of arrival, mode of transport, the source of referral and postcode. 

The raw data can be effectively transformed into meaningful information with the objective of providing 
effective strategic, tactical and operational insights to decision-making (Evelson 2010). For example, 
EDMS like Symphony include features such as real-time monitoring of the 4-hour wait time data and real-
time patient management (EMIS Health 2016). Data captured by such systems are subject to policies 
concerning regulation and governance of patient-specific data. This usually translates to data access being 
provided to mainly healthcare professionals, clinical audit teams and researchers with necessary approvals. 

However, considering that some of the data captured by EDMS are not of a clinical nature but are operations 
specific, making this data available to the wider group of stakeholders, including patients, can have a 
positive impact on the delivery of A&E services. Further, this may lead to a feeling of self-activation (taking 
control) and early reduction of anxiety among patients. 

2.2 Descriptive Analytics 

Descriptive analytics (DA), usually defined as Business Intelligence (BI) (Saxena and Srinivasan 2013; 
Chen et al. 2012), analyses and presents data using techniques such as descriptive statistics, data summaries 
and real-time reporting. It describes the ability of a business to collect, maintain, and organize knowledge, 
allowing decision-makers to quickly assess performance by visualizing aggregated data, often using Key 
Performance Indicators (KPIs) to compare current performance against targets for business objectives. 

While BI shares the same broad aim as DA more generally: to convert raw data into meaningful information, 
and information into insights for making better strategic, tactical and operational decisions (Evelson 2010; 
Haas et al. 2011) asserted that historical data alone, no matter how it is packaged and presented, remains 
simply a record of history which provides limited insights or solutions. It is arguable that the combined use 
of historical and real-time data can alleviate some of these criticisms. For example, NHSquicker (H&CIN 
2017a; H&CIN 2017b)  has been developed to make available real-time data, while also providing APIs 

that enable the download of historical snapshots with time stamps.  

2.3 Predictive Analytics 

The term predictive analytics is loosely defined in the literature. In its most general sense refers to any 
method which can support predictions about what might happen including data mining, forecasting, and 
mathematical approaches (Delen and Demirkan 2013; Shao et al. 2014; Waller and Fawcett 2013). More 

commonly, at the other end of the spectrum, predictive analytics is characterized far more specifically as 
data-driven machine learning methods for making predictions (Mortenson et al. 2015; Abbott 2014) and is 
often considered to be a subset of, or synonymous with, ‘Big Data’ applications (e.g., Koh and Tan 2005; 
Janke et al. 2016; Vidgen et al. 2017). Taking the broader perspective, forecasting describes a set of methods 
which have been used extensively in healthcare to predict events based on prior foreknowledge from 
historical data and other sources of information.  
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2.4 Prescriptive Analytics 

Prescriptive tools inform decision making by suggesting a solution path, for example, simulation can 
anticipate the consequences of unforeseen interactions and prescribe interventions on the basis of tested 
scenarios (Marshall et al. 2015), while optimization is a prescriptive method as it suggests the ‘best 
available’ values for a given function (Hoad et al. 2015). Simulation models can be seen to be both 

predictive and prescriptive (Adra 2016), while optimization techniques are considered to be prescriptive 
methods (e.g., Shao et al. 2014).   

3 RIGHT HOSPITAL-RIGHT TIME (RH-RT): CONCEPTUAL FRAMEWORK  

This section presents our conceptual Right Hospital-Right Time (RH-RT) framework for the analysis of 
urgent care wait time data using methods from data analytics. The use of the framework is not reliant on a 

specific product/platform (e.g., NHSquicker or WaitLess) for its data needs, but rather based on four 
assumptions: (a) access to data which includes the current date and time, the waiting time, the number of 
patients waiting to be seen and the total number of patients in the department, (b) access to data feeds from 
multiple centers of urgent care (A&E, MIUs, UCCs, Walk-in Centers) located in a defined geographical 
area (e.g., NHS Trusts and Sustainability and Transformation Plan footprints(STPs)), (c) availability of 
near real-time data, and (d) availability of historical data.  RH-RT comprises of the following six 

components – data format, input, analysis, output, feedback and computation & storage. As can be seen 
from Figure 1 below: 

 
 
 
 

 

 

 

 

Figure 1: The Right Hospital – Right Time Framework illustrating the various high-level components, its 
constituent elements and feedback loops. 

• The Data Format component comprises of two elements - structured data and unstructured data. 
Structured data could take the form of information exchange standards, database schema, etc. 
Unstructured data can take the form of emails, word documents, twitter and other social media 
feeds (e.g., patients may tweet waiting times they experienced in an A&E department, a hospital 
Trusts may report that an urgent care facility is unusually busy). Unstructured data may be used to 
supplement regular data updates and as historic data. However, we do not contemplate that 

unstructured data will replace the structural element of RH-RT. 
• The Input component is made up of near real-time data and historical data. The data that is available 

for analysis is governed by the Data Format component (Data Format → Input). 
• The Analysis component has descriptive, predictive and prescriptive elements. RH-RT does not 

impose specific algorithms, methods or techniques for the three aforementioned elements of the 
framework. For example, the healthcare analyst implementing the predictive element of RH-RT 

may use classical OR forecasting methods, statistical modelling, Machine Learning/Deep Learning 
or any other technique that can produce the output being expected by RH-RT. Similarly, the 
prescriptive element of RH-RT is not restricted to particular simulation or optimization techniques. 
The Data Format governs the algorithms and techniques that are used specifically in the Analysis 
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component (Data Format → Analysis). Both real-time data and historical data (the latter retrieved 
from storage systems) can be used by the algorithms performing the analysis (Input → Analysis; 
Computation and Storage → Analysis).  

• The Output component represents the results of analysis performed by the RH-RT Analysis 
elements (Analysis → Output). The output may be stored as input for future analysis (Output → 
Computational & Storage) 

• Feedback underlines the need for a joined-up approach when using the descriptive, predictive and 
prescriptive elements for data analysis and the potential of using the output from one form of 
analysis as the input to subsequent analysis (feedback is represented as dashed circles in Figure 1). 
Another important feedback loop is the one that intersects the input (near real-time data) and the 
analysis components of RH-RT. This loop highlights the need to constantly monitor the predictions 
with real-time data, to calibrate the analytical models.  

• The Computational & Storage element signifies the importance of having the right infrastructure 
for data storage (required for the RH-RT input component - historical data) and computation (e.g., 
stand-alone storage and execution, Hadoop and MapReduce, Cloud Computing). RH-RT does not 
impose any particular model and it would depend on the volume and velocity of data (reference 
here to two fundamental characteristics of BigData) to identify the right storage and computation 
approach to enable real-time data processing (Data Format and Input → Computation & Storage). 

4 NHSQUICKER 

NHSquicker is a digital platform that makes available live waiting time data from A&E departments, Minor 
Injury Units (MIUs), Walk-in Centre (WICs) and Urgent Care Centers (UCCs) from multiple NHS Trusts 
in Devon and Cornwall. The platform comprises of an information exchange standard, a content 
management system, a mobile app (also called NHSquicker) and aspects of an evidence capture framework, 
in particular, app analytics. It has been developed by the Health & Care IMPACT Network 

(http://www.health-impact-network.info/), which is a collaboration between health and care organizations 
and universities, primarily in the South West of England. The purpose of the network is to improve delivery 
of health and care through applied research, knowledge dissemination and decision support. The network 
was founded through a collaboration between Torbay and South Devon NHS Foundation Trust (Directorate 
of Strategy & Improvement) and the University of Exeter Business School. 
 In the remainder of this section, we unpick the important elements of the platform, an understanding of 

which is essential to the ensuing discussion on the implementation architecture for RH-RT. We present a 
short overview of the data, the standard for information exchange (co-developed with our NHS partners), 
the backend content management system and the NHSquicker app. Note that the app is only one component 
of the overarching NHSquicker platform.  
 

1. Data Feed and Frequency of Update: At the time of writing, data feeds are being received from 23 

centers for urgent care (including five hospitals with A&E departments). We are working with the 
providers of a further six MIUs/UCCs/Walk-in centers to make their data live. The total of 29 
centers belong to the following six NHS Trusts and one Medical Practice (Table 1) – Torbay & 
South Devon NHS Foundation Trust (TSDFT), Royal Devon & Exeter NHS Foundation Trust 
(RD&E), Northern Devon Healthcare NHS Trust (NDHT), Royal Cornwall  Hospitals NHS Trust 
(RCHT), Plymouth Hospitals NHS  Trust (PHT), South Western Ambulance Service NHS 

Foundation Trust (SWASFT) and Claremont Medical Practice. Currently, these data feeds are 
being received from ED information management systems like PatientFirst (RD&E), Symphony 
(TSDFT), TracCare (NDHT) and Oceano (RCHT). The frequency of data update is managed by 
individual trusts (usually 5-15 minutes).  
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2. Information Exchange Standard: We organized the 3rd Health & Care IMPACT event in the 
University of Exeter Business School (June 2017) with the purpose of engaging with our partner 
NHS trusts to co-develop the design of the platform (H&CIN 2017c). One important objective of 
the event was to agree to one information exchange standard for sending data from the various ED 
management systems to our system. The data structure includes the Trust to which a center belongs 
(trust_id), information whether a center is an A&E department or a MIU (department), the longest 

waiting time (waiting_time), the number of patients waiting to be assigned to a clinician 
(patients_waiting), total number of patients in the department (patients_total), the opening and 
closing time of a center (opening, closing), its geographical coordinates (long, lat), etc. This data 
is sent to the NHSquicker backend using the JavaScript Object Notation (JSON) data-interchange 
format.  

Table 1: Data Feeds for the NHSquicker Platform (as in Dec 2017). 

Trust/ 

Practice 

Trust Name Total Type of Urgent Care 

Facility 

Not 

Live 

RD&E Royal Devon & Exeter NHS Foundation 
Trust 

2 1 A&E + 1 MIU  

NDHT Northern Devon Healthcare NHS Trusts 5 1 A&E + 3 MIU + 1 

Walk-in Centre 

1 

SWASFT South Western Ambulance Service NHS 
Foundation Trust 

1 1 UCC 1 

CMP Claremont Medical Practice 1 1 UCC 1 

RCHT Royal Cornwall Hospitals NHS Trust 12 1 A&E + 10 MIU + 1 
UCC 

 

T&SDFT Torbay & South Devon NHS Foundation 
Trust 

4 1 A&E + 3 MIU  

PHT Plymouth Hospitals NHS Trust 4 1 A&E + 3 MIU 3 

 TOTAL 29  (including 6 sites that are not live)  

5 A&E, 20 MIU, 3 UCC and 1 Walk-in 
Centre 

 
3. Content Management System (CMS): The platform is designed to work at the STP-level (rather 

than individual Trusts). Its underlying architecture is extensible; new centers can be added and their 
wait time data displayed, as long as they conform to the data standard. This is made possible using 
the backend CMS providing the functionality to create new API addresses (web services). The 
system creates one unique address for every center. Data from these centers are transmitted to their 
respective API addresses (web services).  

4. NHSquicker App: The app provides ‘digital nudges’, or indirect suggestions, to inform patients of 

the urgent care services that are located in close proximity. The mechanism for delivering the 
‘nudge’ is the ordered listing of services, in ascending order, based on waiting time plus travel time. 
Discussion on the specifics of the nudge algorithm is outside the scope of the paper and will be 
reported in a subsequent publication. The app also provides access to the Directory of Services 
(DOS) for Devon and Cornwall; this enables easy identification of alternative local health services 
like pharmacies, dentists and opticians. The app is available for Android and Apple devices. The 

app can also be accessed as a web-based application and supports Chrome, Firefox and Safari 
browsers (https://nhsquicker.co.uk). 
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5 RH-RT IMPLEMENTATION ARCHITECTURE FOR NHSQUICKER  

In this section we present the implementation architecture for RH-RT and which is based on data from the 
NHSquicker platform – we collectively refer to this as RH-RT/NHSquicker. As the paper is for a 
simulation conference, we restrict the focus of our discussion to the prescriptive element of RH-RT through 
the use of HSM.   The following two sub-sections provide an overview of HSM and map the RH-

RT/NHSquicker HSM implementation to the different components of the overarching RH-RT framework. 

5.1 Hybrid Systems Modelling (The Prescriptive Element of RH-RT/NHSquicker)  

Hybrid Systems Modelling (HSM) can be defined as the combined application of simulation with methods 
and techniques from disciplines such as Applied Computing, Business Analytics, Computer Science, Data 
Science, Systems Engineering and OR. The objective of HSM is to build a better representation of the 

system by combining the wider array of discipline-specific approaches with computer simulation 
techniques (including hybrid simulation). In the context of HSM, these methods and techniques do not 
necessarily have to be combined with simulation in the implementation / model development stage of a 
M&S study; they could be applied to stages such as, conceptual modelling, model verification and 
validation (V&V) and experimentation. Application of HSM to one or more stages of a M&S study is 
referred to as a Hybrid M&S Study (Powell and Mustafee 2016; Mustafee et al.  2017b; Mustafee and 

Powell 2018).  
 The prescriptive element of our RH-RT is computer simulation. More specifically, the continuous 
stream of data made available through our platform could be used in the development of a real-time A&E 

simulation. Further, combining the descriptive and predictive DA approaches with simulation will enable 
the development of an A&E Hybrid Systems Model. Table 2 categorizes the individual methods and 
techniques based on DA terminology and the particular stages of a simulation study that these could be 

applied to. As our HSM proposes the use of forecasting methods and real-time data/BI (Healthcare 
Analytics) with DES (M&S), and we apply them to multiple stages of a M&S study, we contend that the 
model thus developed (A&E HSM) is an example of a Hybrid M&S Study (Powell and Mustafee 2016; 
Mustafee and Powell 2018). 

Table 2: A&E HSM – The predictive element of RH-RT/NHSquicker. 

DA 

Terminology 

Methods/Techniques Stage(s) of M&S Study  

Descriptive 
Analytics 

Healthcare Business Intelligence, i.e., real-time data 
from existing healthcare systems, its integration and 
summary statistics/KPIs 

Input Data and 
Experimentation 

Predictive 
Analytics 

Forecasting methods based on historic data - refer to 
Harper, Mustafee and Feeney (2017) to see an 
example. 

Input Data, Experimentation 
and Output Analysis 

Prescriptive 

Analytics 

Discrete-event Simulation Model Implementation 

5.2 Mapping of RH-RT/NHSquicker HSM Implementation to the RH-RT Framework 

Table 3 refers to the RH-RT framework (Figure 1) and maps the use of the individual RH-RT components 

and elements (columns 1 and 2) in the implementation of RH-RT/NHSquicker (column 3). Although the 
focus of the paper is on prescriptive analytics (highlighted in bold in Table 3), descriptive and predictive 
elements have been included since we have argued for an HSM. Further, our approach is in line with the 
Feedback-centric viewpoint of RH-RT (Section 3), which is, “the need for a joined-up approach when using 
the descriptive, predictive and prescriptive elements for data analysis and the potential of using the output 
from one form of analysis as the input to subsequent analysis.” 
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Table 3: Mapping RH-RT to the RH-RT/NHSquicker implementation. 

RH-RT 

Components 

RH-RT  

Elements 

RH-RT/NHSquicker  

Implementation 

Further  

Information 

Data Format Structured Data Information Exchange Standard Section 4.B 

Input Near Real-Time 
Data 

Data feed from 23 centers of urgent care Section 4.A 

Historic Data Probability distributions from simulation study at 
Torbay Hospital 

Section 6 

Analysis  
(Hybrid 

Systems 

Model) 

Descriptive 
Analytics 

Healthcare Business Intelligence Section 5.1 

Predictive 
Analytics 

Forecasting Methods Work-in 
progress 

Prescriptive 

Analytics 

DES model of Torbay Hospital See 
following 
text 

Feedback  Mainly prescriptive analytics but also relying on 

Analysis-Output feedback 

See 

following 
text 

Output  Results of simulation (scenarios) Work-in 
progress 

Computation 
& Storage 

 Local file system storage; single computer 
execution 

 

  
At the time of writing, we have: 

 

• Implemented a DES (Simul8™) model of the A&E department in Torbay Hospital (Torbay and 
South Devon NHS Foundation Trust).  

• Completed the development of the  NHSquicker app (now available to the public through Apple 
and Google app stores). 

• Developed programs to download NHSquicker data at a certain frequency (30 minutes) and to 
extract the specific data items from the downloaded data. These will be used to populate variables 

and simulation elements in the Simul8™ model (queue length for entities/patients that have 
completed triage and are waiting to be allocated to a clinician in Major/Minor, waiting time, number 
of entities in the department). 
 

 We are currently experimenting with statistical and forecasting methods, such as regression modelling 
and autoregressive integrated moving average (ARIMA) models, to compute the predicted waiting time in 

three time-brackets (current time + 1 hour, +2 and +3 hours). The predicted time will aid real-time scenario 
analysis as it would serve as a benchmark, with pre-developed simulation scenarios being executed with 
the objective of decreasing the predicted time.  We are working on the mechanisms to automate the A&E 
model execution process (i.e. as soon as new data is downloaded, it is parsed, the model variables are 
assigned relevant data items, and model execution starts). As our download and parser programs are written 
in Java, we are also considering the use of AnyLogic™ (which supports Java™ and is built on the Eclipse 

platform). Using AnyLogic™ would also offer us the possibility of geographical modelling using GIS. 
What we mean by this is, running scenarios where we have A&E models of multiple hospitals and are 
looking at transfer/reallocation of patients from one hospital to another (e.g., due to a major accident or 
terrorist incidence), and which would need to take into consideration the road network (available through 
AnyLogic’s GIS implementation). As can be seen in Table 3, we are presently downloading data to a local 
computer. With time, and as more storage space is needed, this solution may no longer be feasible, and we 
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will need to explore other options like cloud storage. However, the computation and storage element of 
RH-RT is receptive to change in the underlying technology.   

6 CONCLUSION 

Making real-time data available to patients can support sensemaking, that is, making sense of the 
complexities of the decision by constructing a mental model. A mental model is a form of knowledge that 

clarifies the interrelationships between key factors involved in a problem (Wieke 1985). This has been 
shown to improve comprehension of events and support predictions about outcomes (Bagdasarov et al. 
2016). Ultimately the decision to attend a particular emergency care service lies with the patient, and factors 
such as perceptions of their clinical condition, wait-time tolerance, travel distance involved, past 
experiences and perceptions of available care available will all contribute to the final decision. The user 
plays an important role in the creation of the supply chain for urgent care treatment. The deployment of 

data analytics aims to support this system by making real-time analysis available to patients (this includes 
predicted future states and analysis of what-if scenarios), enabling patients to make an informed choice on 
treatment options and potentially changing ED attendance behavior. 
 The present focus of our work is on the development of a forecasting model to make wait time 
predictions that use historical data with real-time data on wait time and travel time. We are also working 
on the development of a real-time simulation model which uses data feed from NHSquicker and patient 

flow management systems. 

ACKNOWLEDGMENTS 

We acknowledge the funding received from the University of Exeter (Open Innovation Platform) and the 
Torbay Medical Research Funds towards the development of the NHSquicker platform. We would like to 
thank Andrew Fordyce, Susan Martin, Alaric Moore, Nic Harrison, Jessica Newton and our other NHS 

partners for their inputs and contribution to the study. 

REFERENCES 

Abbott, D. 2014. Applied Predictive Analytics. Hoboken, NJ: Wiley. 

Adra, H. 2016. “Realtime Predictive and Prescriptive Analytics with Real-time Data and Simulation”. In 

Proceedings of the Winter Simulation Conference, edited by T. M. K. Roeder et al., 3646-3651, 

Piscataway, New Jersey: IEEE. 

Bagdasarov, Z., J. F. Johnson, A. E. MacDougall, M. S. Logan, S. Connelly, and M. D. Mumford. 2016. 

“Mental Models and Ethical Decision Making: The Mediating Role of Sensemaking”. Journal of 

Business Ethics 138(1):133-144. 

Chen, H., R. H. L. Chiang, and V. C. Storey. 2012. “Business Intelligence and Analytics: From Big Data 

to Big Impact”. MIS Quarterly 36(4):1165-1188. 
Delen, D. and H. Demirkan. 2013. Data, Information And Analytics As Services.  Decision Support 

Services 55(1):359-363.  
EMIS Health. 2016. Real-time Patient Information in Unscheduled Care Settings. 

https://www.emishealth.com/products/symphony, accessed 23.07.2018. 

Evelson, B. 2010. The Forrester Wave™: Enterprise Business Intelligence Platforms. Forrester Research 

Inc. www.forrester.com/go?objectid=RES56280, accessed 23.07.2018. 
Gov.uk. 2017. Accident and Emergency (A&E) Departments To Get More Funding (published 

21.04.2017). https://www.gov.uk/government/news/ae-departments-to-get-more-funding, accessed 
23.07.2018). 

Haas, P. J., P. P. Maglio, P. G. Selinger, and W. Tan W. 2011. “Data is Dead..Without What-if Models”. 
In Proceedings of the Very Large Database (PVLDB) Endowment 4(12):1486-1489. 

108



Mustafee, Powell, and Harper 
 

Harper, A., N. Mustafee, M. Feeney. 2017. “A Hybrid Approach using Forecasting and Discrete-event 
Simulation for Endoscopy Services”. In Proceedings of the 2017 Winter Simulation Conference, edited 
by W. K. V. Chan et al., 1583-1594, Piscataway, New Jersey: IEEE. 

H&CIN. 2017a.  NHSquicker: Informing ED/MIU Attendance Choices through ‘Digital Nudges’. Health 
& Care IMPACT Network. http://www.health-impact-network.info/projects/edmiu-application/, 
accessed 23.07.2018. 

H&CIN. 2017b.  NHSquicker iOS app. https://itunes.apple.com/gb/app/nhsquicker/id1312817040?mt=8, 
accessed 23.07.2018. 

H&CIN. 2016c. The 3rd Health & Care IMPACT Network Event (University of Exeter, 21st June 2017). 
http://www.health-impact-network.info/event-archive/3rd-impact-event/, accessed 23.07.2018. 

Hoad, K., T. Monks, and F. O’Brien . 2015. “The Use of Search Experimentation in Discrete-event 
Simulation Practice”. Journal of Operational Research Society 66(7):1155-1168. 

House of Commons Library. 2017. “Accident and Emergency Statistics: Demand, Performance and 
Pressure”. Commons Briefing papers SN06964. 

Iacobucci, G. 2014. “All Emergency Departments should include GP Staff, say Experts”. BMJ: British 
Medical Journal online pp.349. https://doi.org/10.1136/bmj.g4654,  accessed 23.07.2018. 

Janke, A, D. Overbeek, K. Kocher, and P. Levy. 2016. “Exploring the Potential of Predictive Analytics and 
Big Data in Emergency Care”. Annals of Emergency Medicine 67(2):227-236. 

Koh, H. and Tan, G. 2005. “Data Mining Applications in Healthcare”. Journal of Healthcare Information 
Management 19(2):64-72. 

Marshall, D., L. Burgos-Liz, M. Ijzerman, W. Crown, W. Padula, P. Wong, K. Pasupathy, M. Higashi, and 
N. Osgood. 2015. “Selecting a Dynamic Simulation Modeling Method for Healthcare Delivery Research 
– Part 2: Report of the ISPOR Dynamic Simulation Modeling Emerging Good Practices Task Force”. 
Value in Health 18(2):147-160. 

Mortenson M. J., N. F. Doherty, and S. Robinson. 2015. “Operational Research from Taylorism to 
Terabytes: A Research Agenda for the Analytics Age”. European Journal of Operational Research 
241(3):583-595. 

Mustafee, N., J. H. Powell, S. Martin, A. Fordyce, and A. Harper. 2017a. “Investigating the Use of Real-
time Data in Nudging Patients’ Emergency Department Attendance Behaviour”. In Proceedings of the 
2017 Spring Simulation Multi-Conference, April 23-26, Virginia Beach, VA. Article 6. 

Mustafee, N., S. Brailsford, A. Djanatliev, T. Eldabi, M. Kunc, and A. Tolk. 2017b. “Purpose and Benefits 
of Hybrid Simulation: Contributing to the Convergence of its Definition”. In Proceedings of the 2017 
Winter Simulation Conference, edited by W. K. V. Chan et al., 1631-1645, Piscataway, New Jersey: 
IEEE. 

Mustafee N. and J. H. Powell. 2018. “From Hybrid Simulation to Hybrid Modelling”. In Proceedings of 
the 2018 Winter Simulation Conference, edited by M. Rabe et al. (accepted), Piscataway, New Jersey: 

IEEE. 
NHS Improvement. 2017. “Clinical Streaming in the A&E Department” (published 7.7.2017). 

https://www.england.nhs.uk/publication/clinical-streaming-in-the-accident-and-emergency-
department, accessed 23.07.2018. 

Powell, J. H and N. Mustafee N. 2016. “Widening Requirements Capture with Soft Methods: An 
Investigation of Hybrid M&S Studies in Healthcare”. Journal of the Operational Research Society  

68(10):1211-1222. 
Saxena, R. and A. Srinivasan. 2013. Business Analytics: A Practitioners Guide. NY: Springer-Verlag. 
Shao, G., S. Shin, and S. Jain. 2014. “Data Analytics using Simulation for Smart Manufacturing”. In 

Proceedings of the 2014 Winter Simulation Conference, edited by A. Tolk et al., 2192-2203, Piscataway, 
New Jersey: IEEE. 

Urgent and Emergency Care Review Team. 2013. “Transforming urgent and emergency care services in 

England Urgent and Emergency Care Review” – End of Phase one review. 

109



Mustafee, Powell, and Harper 
 

http://www.nhs.uk/NHSEngland/keogh-review/Documents/UECR.Ph1Report.FV.pdf,accessed 
23.07.2018. 

Vidgen, R., S. Shaw, and D. B. Grant. 2017. “Management Challenges in Creating Value from Business 
Analytics”. European Journal of Operational Research 261(2):626-639. 

Waller, M. A. and S. E. Fawcett. 2013. “Data Science, Predictive Analytics, and Big Data: A Revolution 

that will Transform Supply Chain Design and Management”. Journal of Business Logistics 34(2):77-

84. 

Wieke, K. E. 1995. Sensemaking in Organizations.  Thousand Oaks, CA. 
Wilson, H. 2005. “Co-locating Primary Care Facilities within Emergency Departments: Brilliant Innovation 

or Unwelcome Intervention into Clinical Care?”. The New Zealand Medical Journal online 118:1221. 

AUTHOR BIOGRAPHIES 

NAVONIL MUSTAFEE is Associate Professor of Operations Management and Analytics and the Deputy 
Director for the Centre for Simulation, Analytics and Modelling (CSAM) at University of Exeter Business 

School. He is an interdisciplinary researcher and is interested in the use of quantitative methods and applied 
computing for decision making. His research interests are in simulation methodologies and hybrid 
simulation, data analytics, hybrid systems modelling and ‘digital’ behaviour change interventions. He is the 
founder and co-chair of the Health and Care IMPACT Network, a collaboration between University of 
Exeter Business School and health and care partners in South West of England and has led the development 
of NHSquicker. His e-mail address is n.mustafee@exeter.ac.uk and his webpage is 

http://sites.google.com/site/navonilmustafee/. 
 

JOHN POWELL is Professor in Strategy at University of Exeter Business School. His research interests 
are in systems modelling of strategic situations, scenario planning and modelling, knowledge in strategy, 
knowledge management. He has a PhD in strategic conflict from Cranfield University, UK. His email 
address is j.h..powell@exeter.ac.uk. 

 
ALISON HARPER is a Post Graduate Research (PGR) research student at University of Exeter Business 
School. Her research interests are in healthcare analytics and M&S. Her e-mail address is 
ah596@exeter.ac.uk.  

 
 

 
 
 
 
 

110


