
TAINSTRUMENTS.COMTAINSTRUMENTS.COM

RHEOLOGY AND DYNAMIC MECHANICAL ANALYSIS –
What They Are and Why They’re Important

Presented for
University of Wisconsin - Madison

by
Gregory W Kamykowski PhD

TA Instruments
May 21, 2019



TAINSTRUMENTS.COMTAINSTRUMENTS.COM

Rheology: An Introduction

Rheology: The study of the flow and deformation of matter.
Rheological behavior affects every aspect of our lives. 
Dynamic Mechanical Analysis is a subset of Rheology
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Rheology: The study of the flow and deformation of matter

Flow: Fluid Behavior; Viscous Nature

F = F(v); F ≠ F(x)

Deformation: Solid Behavior
Elastic Nature

F = F(x); F ≠ F(v)

F

Viscoelastic Materials: Force 
depends on both Deformation 
and Rate of Deformation and 
vice versa.
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1. ROTATIONAL RHEOLOGY
2. DYNAMIC MECHANICAL ANALYSIS (LINEAR TESTING)
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Rheological Testing – Rotational - Unidirectional

 2 Basic Rheological Methods
1. Apply Force (Torque)and 

measure Deformation and/or 
Deformation Rate (Angular 
Displacement, Angular Velocity) -
Controlled Force, Controlled 
Stress

2. Control Deformation and/or 
Deformation Rate and measure 
Force needed (Controlled 
Displacement or Rotation, 
Controlled Strain or Shear Rate)
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Steady Simple Shear Flow

Top Plate Velocity = V0; Area = A; Force = F

Bottom Plate 
Velocity = 0x

y

H

vx = (y/H)*V0

γ = dvx/dy = V0/H
.

σ = F/A
η = σ/γ.

Shear Rate, sec-1

Shear Stress, Pascals
Viscosity, Pa-sec

These are the fundamental flow parameters. Shear rate is 
always a change in velocity with respect to distance.
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Representative Flow Curve
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Newtonian
Region

Power Law
Region

Transition
Regionη = η0

η = m*γ (n-1)

η0 ∝ MW
3.4

0 < n < 1 (Newtonian)

Pseudoplastic
Behavior

.
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Simple Shear Deformation

Top Plate Displacement = X0; Area = A; Force = F

Bottom Plate 
Displacement = 0x

y

H

x = (y/H)*X0

γ = dxx/dy = X0/H
σ = F/A
G = σ/γ

Shear Strain, unitless
Shear Stress, Pascals

Modulus, Pa
These are the fundamental deformation parameters. Shear strain 
is always a change in displacement with respect to distance.
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Stress Relaxation 

100 101 102 103
107

108

109

time [s]

  G
(t)

 (
)

   
   

  [
P

a]
Stress Relaxation of Soy Flour, Overlay

G(t)
 T=20°C
 T=30°C
 T=40°C
 T=50°C

• Instantaneous Strain
• Note the decrease in 
the modulus as a 
function of time.

F
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Creep Testing

Stress is held constant.
Strain is the measured variable. 
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HDPE

Fluid

Solid

Viscoelastic
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Geometry Options

Parallel
Plate

Cone and
Plate

Concentric
Cylinders

Torsion
Rectangular

Very Low
to Medium 
Viscosity

Very Low
to High 
Viscosity

Very Low
Viscosity

to Soft Solids

Solids

Water                     to                     Steel
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Examples for Common Configurations

Geometry Examples

Concentric Cylinder
Coatings                 Beverages
Slurries (vane rotor option)
Starch pasting

Cone and Plate

Low viscosity fluids
Viscosity standards
Sparse materials
Polymer melts in steady shear

Parallel Plate

Widest range of materials
Adhesives              Polymer melts
Hydrogels               Asphalt
Curing of thermosetting materials
Foods                    Cosmetics

Torsion Rectangular Thermoplastic solids
Thermoset solids
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Rheology – Speak 

Machine Parameter Rheological Parameter
Angular Velocity (rad/sec) Shear Rate (1/sec)
Angular Displacement (rad) Shear Strain ( - )
Torque (µN-m) Shear Stress (N/m2, Pa)
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Converting Machine to Rheological Parameters in Rotational Rheometry

η
γ
σ

γ

σ ==
Ω Kx

KxM

G
Kx
KxM ==

γ
σ

θ γ

σ

Machine Parameters
M: Torque
Ω : Angular Velocity
θ : Angular Displacement

Conversion Factors
Kσ : Stress Conversion Factor
K  : Strain (Rate) Conversion Factor

Rheological Parameters
: Shear Stress (Pa)
: Shear Rate (sec-1)
: Viscosity (Pa-sec)
: Shear Strain
: Shear Modulus (Pa)

γ

σ
γ

γ
η

G

The conversion factors, Kσ and Kγ, will depend on the following:
Geometry of the system – concentric cylinder, cone and plate, 

parallel plate, and torsion rectangular 
Dimensions – gap, cone angle, diameter, thickness, etc.

•

•
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Shear Rate and Shear Stress Calculations

Geometry

Couette Cone & Plate Parallel Plates

Conversion 
Factor

Kγ Ravg/(Ro-Ri) 1/β R/h

Kσ 1/(2*πRi
2L) 3/(2πR3) 2/(πR3)
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Cone & Plate and Parallel Plate Geometric Considerations

20mm 40mm 50mm

Shear Stress

Shear Stress
At given torque, 
Increase in diameter →  Decrease in shear stress

Shear Rate
At given angular velocity
Increase in cone angle → Decrease in shear rate
Increase in gap (parallel plate) →  Decrease in shear rate

So, for low viscosity fluids, use the largest diameter cone or plate.
For high viscosity fluids, use the smallest diameter cone or plate

Standard DHR Peltier 
plate geometry diameters
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Rheological Methods – Unidirectional Testing

 Flow
 Stress/Rate Ramp
 Stress/Rate Sweep 
 Time sweep/Peak Hold
 Temperature Ramp

 Creep (constant stress)
 Stress Relaxation (constant 

strain)
 Axial Testing

Time
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Thixotropy: Up & Down Flow Curves
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Toothpaste loop

thixotropy: 600.997 Pa/s

The area between the curves is an 
indication of the thixotropic nature of 
the material.
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Flow Stress Ramp on a Yielding Material
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Emulsion A (3)

Emulsion B (3)197 Pa

319 Pa-sec

464 Pa-sec

The yield stress was obtained just by visual means. 
A has a higher yield stress than B

Sample A    
Sample B    
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Steady State Flow at 25 C - Coatings
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These are rate sweeps.
Equilibration occurs at each point. 
Concentric Cylinder geometry
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Mw = 400,000 Mw = 250,000 Mw = 160,000

η0 = KMw
3.4

Williamson Model
η = η0/(1+(σγ)c)

Polymer Melt Flow Curve

Cone and
Plate

Steady testing 
with cone and 
plate and 
parallel plate 
geometries is 
often limited to 
low shear rates. 

The shear rate and shear stress are constant throughout the gap with the 
cone-and-plate geometry. 
Parallel plate data can be corrected with the Rabinowitsch correction. 

.
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Normal Stress Difference:
• In steady flow, polymeric materials can exert 

a force that tries to separate the cone and the 
plate. 

• A parameter to measure this is the Normal 
Stress Difference, N1, which equals 
σxx- σyy from the Stress Tensor.

• N1 = 2F/(πR2), where F is the measured 
force.

• Ψ1 = N1/2 This is the primary normal 
stress coefficient.

Normal Force Measurements with Cone & Plate
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Creep Testing on US and UK Paints

Creep is a unidirectional way of getting viscoelasticity. 
It is often followed by creep recovery. 
Creep answers the question of how much deformation to expect 
when a material is subjected to a constant stress, such as gravity
It is usually easier on a DHR, but the ARES sometimes works 
better when there are instances of creep ringing. 

Creep and recovery can be 
done on both DHR and 
ARES rheometers
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Stress Relaxation
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PDMS

Stress relaxation is another unidirectional way of 
getting viscoelastic properties. 
This works better on the ARES than on the DHR. 
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Flow Temperature Ramp – Printing Inks
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Agglomerated Clay
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Dynamic Testing
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RESPONSE

VISCOELASTIC
RESPONSE

Polymers are viscoelastic materials. 
Both components – viscosity and 
elasticity – are important.
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Dynamic Rheological Parameters

Parameter Shear Elongation Units

Strain γ = γ0 sin(ωt) ε = ε0 sin(ωt) ---

Stress σ = σ0sin(ωt + δ) τ = τ0sin(ωt + δ) Pa

Storage Modulus
(Elasticity)

G’ = (σ0/γ0)cosδ E’ = (τ0/ε0)cosδ Pa

Loss Modulus
(Viscous Nature)

G” = (σ0/γ0)sinδ E” = (τ0/ε0)sinδ Pa

Tan δ G”/G’ E”/E’ ---

Complex Modulus G* = (G’2+G”2)0.5 E* = (E’2+E”2)0.5 Pa

Complex Viscosity η* = G*/ω ηE* = E*/ω Pa-sec

Cox-Merz Rule for Linear Polymers: η*(ω) = η(γ) @ γ = ω
. .
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Dynamic Testing

•Dynamic Stress or Strain Sweep 
•Dynamic Time Sweep
•Dynamic Frequency Sweep
•Dynamic Temperature Ramp
•Dynamic Temperature Sweep
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Linear Viscoelasticity
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Linear Region:
• Osc Stress is linear with Strain. 
• G’, G” are constant.

Non-Linear Region
G’ = f(γ)

End of LVR or
Critical Strain γc

It is preferable to perform testing in the 
linear region because you are measuring 
intrinsic properties of the material, not 
material that has been altered.

This is typically the first test 
done on unknown materials.

Stress v. Strain
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Cure of a "5 minute" Epoxy
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TA Instruments

Gel Point - G' = G"
T = 330 s

5 mins.
G'

G"

This is an isothermal 
time sweep.  
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Frequency Sweep on PDMS

High frequency – elasticity 
predominates.
Low frequency – viscosity 
predominates.

Most frequent test for 
polymer melts:
ASTM D4440 –
Standard Test Method 
for Plastics: Dynamic 
Mechanical Properties: 
Melt Rheology

100 to 0.1 rad/sec
5 pts. per decade
3 minutes of equilibration
Frequency sweep takes about 
6.5 min. 
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Cox-Merz Rule for Linear Polymers: η*(ω) = η() @  = ω
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Experimental 
Frequency range

Extended Frequency range with TTS
Reference Temperature = 210°C

0.01000 0.1000 1.000 10.00 100.0 1000 10000 1.000E5
ang. frequency (rad/s)
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100.0
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Polystyrene Frequency Sweeps from 160°C to 220°C

ETC Application: TTS on Polymer Melt
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G
” (Pa)

G
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Shift Factors for TTS
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PG 64-22 (3) - Copy

Activation Energy: 136.026 kJ/mol
Tref: 63.9970 °C
R²: 0.997433 

c1: 8.22555 
c2: 132.585 K
Tref: 63.9970 °C
R²: 0.999997 
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Dynamic testing: Dependence on Mw and MWD
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SBR polymer broad,
narrow distribution

  *red 430 000
  *red 320 000
  *red 230 000
  *red 130 000
  *red 310 000
  *red 250 000

Zero shear viscosity increases 
with increasing MW

When shifting along an 
axis of -1, all the curves 
can be superposed, unless 
the width of the MWD is 
not the same.
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MWD and Dynamic Moduli

10-3 10-2 10-1 100 101 102 103 104
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Effect of MWD on the dynamic moduli
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SBR polymer melt
 G' 310 000 broad
 G" 310 000 broad
 G' 320 000 narrow
 G" 320 000 narrow

• The storage and loss modulus of 
a typical polymer melt cross over 
between 1 and 100 rad/s.
• ωc ∝ 1/Mw .
• Gc ∝ 1/MWD. 

Higher crossover frequency = lower Mw

Higher crossover Modulus = narrower MWD
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Example of Cox-Merz Rule
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Linear Polyethylene Flow Data
Linear Polyethylene Oscillation Data [Cox Merz]

Flow instability
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Coatings Frequency Sweep
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Note how 2o is leveling out. 
6o is descending sharply.
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Dynamic Temperature Ramp - Torsion
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Tan(delta)
  

The storage 
modulus curve 
indicates the 
temperature range 
over which the 
material can 
contribute 
mechanically. 
Glass transition 
temperatures are 
observed by the 
onset in the 
storage modulus 
curve and peaks 
in the loss 
modulus and tan 
delta curves. 
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THE RHEOMETERS
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DHR Rotational Rheometer

DHR

Controlled Stress
Single Head

CMT

Single head or CMT
Combined motor & transducer

Displacement 
Sensor

Measured Strain 
or Rotation 

Applied 
Torque
(Stress)

Static Plate

Non-Contact 
Drag Cup 

Motor

Static Plate

Sample
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DHR Accessories – Visual Display

You can see the 
updated list of 
accessories on our 
website, 
www.tainstrument.com. 

http://www.tainstrument.com/
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DHR Accessories – Visual Display

For the current listing of accessories, go 
to https://www.tainstruments.com. 

https://www.tainstruments.com/
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Open Boundary Rotational Rheometer - SMT

Controlled 
Strain

SMT or DH

ARES G2

Applied 
Strain or 
Rotation

Measured 
Torque
(Stress)

Direct Drive 
Motor 

Transducer

Sample

SMT: Separate Motor & Transducer
DH: Dual Head
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ARES-G2 Accessories

For the current listing of 
accessories, go to 
https://www.tainstruments.com. 

https://www.tainstruments.com/
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1. ROTATIONAL RHEOLOGY
2. DYNAMIC MECHANICAL ANALYSIS (LINEAR TESTING)
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Deformation Parameters
L0 = Initial Length (m)
L = Stretched Length (m)
ε = Elongational Strain, (L/L0) – 1  (unitless) (Engineering Strain)

 Strain is the amount of deformation normalized for the type of 
deformation and the dimensions of the specimen.

Force Parameters
T = Tensile force (Newtons)
w0 = Initial Width (m)
t0 = Initial Thickness (m)
τ =  Tensile Stress, T/(w0*t0) (Pa)

 Stress is the amount of force normalized for the type of 
deformation and the dimensions of the specimen.

Elongational Properties
E = τ/ε (Pa) Modulus
D = ε/τ (1/Pa) Compliance

Tensile Deformation

Young’s 
Modulus

τ
εE = 

Conversions:
Machine → Rheological
Displacement → Strain
Force → Stress
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UNIDIRECTIONAL TYPES OF TESTS ON THE DMA

 TRANSIENT
 Stress Relaxation
 Deformation applied instantaneously ⇒ Force measured as a 

function of time
 Deformation (mm) converted to Strain (ε), Force (N) to Stress (τ)
 Stress (τ)/Strain(ε) = Modulus (E)

 Creep
 Force applied instantaneously ⇒ Deformation measured as a 

function of time
 Force to Stress (τ), Deformation converted to Strain (ε)
 Strain (ε)/Stress (τ) = Compliance (D)

 PRACTICAL
 Strain Ramp 

 Strain increased linearly with time or, optionally, exponential with 
the  RSA-G2

 Iso-Strain
 Strain held constant as temperature is varied

 Stress Ramp
 Stress increased linearly or exponentially with time

 Controlled Stress
 Stress held constant as temperature is varied

F

F
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Terminal 
Region

Rubbery 
Plateau
Region

Transition
Region

Glassy 
Region

Stress Relaxation:  Material Response

This would be the type of curve 
expected for an uncrosslinked 
polymer if given sufficient time. 
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Creep τ > 0

timet 1 t2

Recoverable
Strain

Recovery  τ = 0 (after steady state)

Creep Testing

Stress = τ

Stress = 0
The greater the 
elasticity, the greater 
the recovery. 

With uncross-linked systems, strain increases indefinitely.
If you have reached steady state flow, you can calculate the 
viscosity and the recoverable compliance.  
With cross-linked systems, there is a limiting strain. 
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Polyethylene Stress Ramp (or Strain Ramp)
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Dynamic Testing
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Polymers are viscoelastic materials. 
Both components – viscosity and elasticity 
– are important.
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Dynamic Rheological Parameters

Parameter Shear Elongation Units

Strain γ = γ0 sin(ωt) ε = ε0 sin(ωt) ---

Stress σ = σ0sin(ωt + δ) τ = τ0sin(ωt + δ) Pa

Storage Modulus
(Elasticity)

G’ = (σ0/γ0)cosδ E’ = (τ0/ε0)cosδ Pa

Loss Modulus
(Viscous Nature)

G” = (σ0/γ0)sinδ E” = (τ0/ε0)sinδ Pa

Tan δ G”/G’ E”/E’ ---

Complex Modulus G* = (G’2+G”2)0.5 E* = (E’2+E”2)0.5 Pa

Complex Viscosity η* = G*/ω ηE* = E*/ω Pa-sec

We will be mainly concerned with the 
Elongation column in this table. 
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Dynamic Oscillatory Testing Methods

• Frequency Sweep
• Strain Sweep
• Stress Sweep
• Temperature Sweep
• Temperature Ramp
• Time Sweep
• Temperature Sweep (Multifrequency)
• Fatigue Test

Most common sequence
• Strain sweep at 1 Hz to find the “sweet spot” for testing and the Linear 

Viscoelastic Region (LVR)
• Temperature ramp at 1 Hz and 3 C/min using amplitude from strain 

sweep testing. 
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Dynamic Strain Sweep
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PC Ambient Strain Sweep SC 

2.352e9 Pa

The material shows a nice Linear Viscoelastic Region (LVR).
The oscillation force at 30 microns is about 0.4 N, which is definitely in the sweet spot for our DMA’s.
We aim for a storage modulus of 2350 MPa at room temperature with polycarbonate. 
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Single Cantilever 
Rectangular Geometry
3°C/min
30 µ amplitude
1 Hz frequency

E’ onset point

E” peak

Tan Delta peak

Testing polycarbonate is a good way 
to check out the instrument and to 
instruct new people on the DMA850.

Mechanical 
Strength

Dampening 
Properties

Polycarbonate Testing on the DMA 850

This is the main test performed on DMA instruments. 
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Polymer Structure-Property Characterization

• Glass transition
• Secondary transitions
• Crystallinity
• Molecular weight/cross-linking
• Phase separation (polymer blends, copolymers,...)
• Composites
• Aging (physical and chemical)
• Curing of networks
• Orientation
• Effect of additives

Turi,  Edith, A, Thermal Characterization of Polymeric Materials, Second 
Edition, Volume I., Academic Press, Brooklyn, New York, P. 489.
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The Glass Transition

 “The glass transition is associated with the onset of long-
range cooperative segmental mobility in the amorphous 
phase, in either an amorphous or semi-crystalline polymer.”

 Any factor that affects segmental mobility will affect Tg, 
including…  
 the nature of the moving segment, 
 chain stiffness or steric hindrance
 the free volume available for segmental motion

Turi,  Edith, A, Thermal Characterization of Polymeric Materials, Second Edition, Volume I., 
Academic Press, Brooklyn, New York, P. 508.
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Glass Transition E' Onset, E" Peak, and Tan δ Peak

 Storage Modulus E' Onset: 
 Occurs at lowest temperature, relates to mechanical failure

Turi,  Edith, A, Thermal Characterization of Polymeric Materials, Second Edition, Volume I., 
Academic Press, Brooklyn, New York, P. 980.

 Tan δ Peak:
 Occurs at highest temperature; Used historically in literature 
Measure of the "leatherlike" midpoint between the glassy and rubbery 
states
 Height and shape change systematically with amorphous content.

 Loss Modulus E" Peak: 
Occurs at middle temperature
 Related to the physical property changes 
 Reflects molecular processes - the temperature at the onset of segmental 
motion 
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The Glass & Secondary Transitions

Turi,  Edith, A, Thermal Characterization of Polymeric Materials, Second Edition, Volume I., Academic 
Press, Brooklyn, New York, P. 487.

–Glass Transition - Cooperative motion among a large number of 
chain segments, including those from neighboring polymer chains

–Secondary Transitions
–Local  Main-Chain Motion - intramolecular rotational motion of main 
chain segments four to six atoms in length
Side group motion with some cooperative motion from the main 
chain
 Internal motion within a side group without interference from side 
group.
 Motion of or within a small molecule or diluent dissolved in the 
polymer (e.g. plasticizer.)
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THE DMA’S
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DMA 850

Controlled Stress
CMT – Combined Motor & 

Transducer

Motor 
Applies 

Force (Stress)

Displacement 
Sensor

(Measures Strain)

Sample

DMA 850
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RSA-G2

Controlled Strain 
SMT – Separate Motor & 

Transducer

Force Rebalance 
Transducer (FRT)

(Measures Stress)

Actuator 
Applies 

deformation
(Strain)

Sample

RSA G2
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DMA Specifications

DMA 850 RSA G2 ARES G2 
DMA

DHR
DMA 

(optional)
Max Force 18N 35N 20N 50N

Min Force 0.0001N 0.0005N 0.001N 0.1N

Frequency 
Range

0.01 to 1250 
rad/s

(1.6e-3 to 200 
Hz)

1e-5 to 628 
rad/s

(1.6e-6 to 100 
Hz)

6.3e-5 to 100 
rad/s

(1.0e-5 to 16 
Hz)

6.3e-5 to 100 
rad/s

(1.0e-5 to 16 
Hz)

Dynamic 
Deformation 
Range

+/- 0.5 to 
10,0000mm

+/- 0.05 to 
1,500mm

+/- 1 to 50
mm

+/- 1 to 100
mm

Control 
Stress/Strain

Control Stress 
(CMT)

Control Strain 
(SMT)

Control 
Strain (CMT)

Control Stress 
(CMT)

Heating Rate 0.1oC to 
20oC/min

0.1oC to 
60oC/min

0.1oC to 
60oC/min

0.1oC to 
60oC/min

Cooling Rate 0.1oC to 
10oC/min

0.1oC to 
60oC/min

0.1oC to 
60oC/min

0.1oC to 
60oC/min
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Clamps for DMA 850

S/D Cantilever Film/Fiber Tension 3-Point Bending Compression

Shear Sandwich Submersible Tension Submersible Bending Submersible Compression

The standard size S/D cantilever clamp is 
included with the purchase of the DMA 850. 
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Clamps for RSA G2

Film/Fiber

Compression

3-Pt Bending

Cantilever

Shear Sandwich

Contact Lens
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DMA Clamping Guide

Sample Clamp Sample Dimensions

High modulus 
metals or 
composites

3-point Bend
Dual Cantilever
Single Cantilever

L/T> 10 if possible

Unreinforced 
thermoplastics or 
thermosets

Single Cantilever L/T >10 if possible

Brittle solid (ceramics) 3-point Bend
Dual Cantilever

L/T>10 if possible

Elastomers Dual Cantilever
Single Cantilever
Shear Sandwich
Tension

L/T>20  for T<Tg
L/T>10  for T<Tg
(only for T> Tg)
T<2 mm W<5 mm

Films/Fibers Tension L 10-20 mm
T<2 mm

Supported Systems 8 mm Dual Cantilever minimize sample, put foil on 
clamps
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Primary and Secondary Transition in PET Film
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Sample: PET Film in Machine Direction
Size:   8.1880 x 5.5000 x 0.0200 mm
Method: 3°C/min  ramp
Comment: 1Hz;  3°C/min from  -140° to 150°C, 15 microns,

DMA
File: A:\Petmd.001
Operator: RRU
Run Date: 27-Jan-99 13:56

Universal V2.5D TA Instruments

The Β peak is often 
associated with good 
impact properties
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Molecular Structure - Effect of Molecular Weight

Rubbery 
Plateau
Region

Transition
Region

Glassy Region

Temperature

MW has practically no 
effect on the modulus 
below Tg

Low
MW

Med.
MW

High
MW
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Effect of Crosslinking

120
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1500

9000
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M  = MW between
crosslinksc

Temperature
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Effect of Crystallinity

0% Crystallinity  (100% 
Amorphous)

25% 

40% 

65%

M.P
.

Temperature
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Effect of Filler on Modulus

20 40 60 80 100 120 140 160
TEMP. (°C)

60% mica

40% mica

60% asbestos

40% asbestos

20% mica

20% asbestos

20% calcium carbonate

polystyrene control

Nielson, L. E., Wall, R. A., and Richmond, P. G., Soc. Plastics Eng. J., 11, 22 (1966)




 





Effects
• Concentration
• Type of filler
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Polymer Blend - Aerospace Coating
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Universal V2.5D TA Instruments

100 % Polymer A

100%
Polymer B

Polymer Blend
A + B
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Isothermal Cure of Tire Compound:  Effect of Curing Temperature
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Iso-Force Temp Ramp- Shrinkage of Oriented Film

Static Force is Held Constant

Sample Length Decreases
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Humidity Option

This is the temperature/humidity chamber that was 
used to control the environment for this testing. 
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Q800: DMA-RH Operating Range
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Analysis of Nylon 6:  Isohume-Temperature Scans
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Dynamic Humidity Ramp
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NEW AND MORE SPECIALIZED TESTING
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SER2 for DHR Rheometers

This is an interesting application of using the rotational 
rheometer to determine elongational viscosity 
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Fix drum connected to transducer

Rotating drum connected to the motor:
 rotates around its axis
 rotates around axis of fixed drum

Extensional Viscosity Measurements
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Extensional Viscosity

• Extensional rheology is very sensitive to polymer chain entanglement. 
Therefore it is sensitive to LCB 

• The measured extensional viscosity is 3 times of steady shear viscosity

ηΕ = 3 x η0
• LCB polymer shows strain hardening effect

Linear Branched
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ARES-G2 DMA Mode
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Orthogonal Superposition – 2 Modes

Only on ARES-G2
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UV Light Guide Curing Accessory

• Collimated light and mirror assembly insure uniform irradiance across plate diameter
• Maximum intensity at plate 300 mW/cm2

• Broad range spectrum with main peak at 365 nm with wavelength filtering options
• Cover with nitrogen purge ports
• Optional disposable acrylic plates
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UV Cure Profile Changes with Intensity
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DETA on DHR and ARES-G2
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Test Geometries

•Wide variety of test 
geometries: 
Standard parallel plate
Disposable parallel plate
Annular Ring
Surface Diffusion
Rectangular Torsion

•Innovative geometries for RH: 
true humidity-dependent 
rheology, not dominated by 
diffusion

•True Axial DMA: 
Film Tension
Three-point Bending
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Paint Drying at Different Humidity Levels
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Interfacial Accessories

Double Wall Ring

DuNouy Ring

Bicone
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Surface Concentration Effects on Interfacial Viscosity
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SPAN65® Layer Spread on Water
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Both dynamic and 
steady flow tests 
can be performed 
with the interfacial 
geometry. This is 
an example of a 
dynamic strain 
sweep. 
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DHR  Peltier Tribo-rheometry Accessory

Ring on Plate Ball on 3 Plates Ball on 3 Balls 3 Balls on Plate
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Tribology of Lubricated Systems

Boundary 
Lubrication

Mixed 
Lubrication

Hydrodynamic 
Lubrication

1
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• In lubricated systems, the ‘Stribeck curve’ captures influence of lubricant viscosity(ηoil), 
rotational velocity (Ω) and contact load (FL) on µ

• At low loads, the two surfaces are separated by a thin fluid film (gap, d) with frictional 
effects arising from fluid drag (Hydrodynamic Lubrication)

• At higher loads, the gap becomes smaller and causes friction to go up (Mixed 
Lubrication)

• At extremely high loads, there is direct solid-solid contact between the surface asperities 
leading to very high friction (Boundary Lubrication)
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Rheo-Raman Accessory

Rheo-Raman on a 
hand lotion
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Mimic of Heat Deflection Test on the DMA
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Mimic of Heat Deflection Test
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Thank You

The World Leader in Thermal Analysis, 
Rheology, and Microcalorimetry

I hope you have enjoyed 
this presentation on 
rheology and DMA. 
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