Richard Stanley: The Legend Part I: Early Years

Curtis Greene

June 23, 2014

Curtis Greene ()

Richard Stanley: The Legend Part I: Early Ye

June 23, 2014 1 / 12

Happy Birthday!

SHIRLEY and ALAN STANLEY	F	S	POL
PRESENT "The First Edition"	48 E LAR	ork	IGHT 5 JNDS
RICHARD PETER STANLEY	BEDSI	E	ANE 12 OUNC
PREMIERE DATE: JUNE 23, 1944 - TIME: 6:55 A. M.	DE SE. DRTH DNT, 1	hea	ES BR
The producers reserve the right to cancel future performances if star is indisposed.	AT ROAD V. Y.	tre	1GHT 2 EYES

Curtis Greene ()

Richard Stanley: The Legend Part I: Early Ye

3 June 23, 2014 2 / 12

-

• • • • • • • • • • • •

Publications of Richard P. Stanley

(September 2011)

1.	Alecticheric Complexity, NASA Depart No 22 000 (Sectomber 1, 1066)
2.	Algorithmic Complexity, NASA Report No.32-999 (September 1, 1900).
	Zero-square rings, Pacific J. Math. 30 (1969), 811-824.
3. 4.	On the number of open sets of finite topologies, J. Combinatorial Theory 10 (1971), 74-79.
-	The conjugate trace and trace of a plane partition, J. Combinatorial Theory 14 (1973), 53-65.
5.	Structure of incidence algebras and their automorphism groups, Bull. Amer. Math. Soc. 76 (1970), 1236-1239.
6. 7	Modular elements of geometric lattices, Algebra Universalis 1 (1971), 214-217.
··	<u>A chromatic-like polynomial for ordered sets</u> , in <i>Proc. Second Chapel Hill Conference on</i> <i>Combinatorial Mathematics and Its Applications</i> (May, 1970), pp. 421-427.
o.	The following papers appeared in the Jet Propulsion Laboratory Space Programs Summary or Deep Space Network journals:
	 New results on algorithmic complexity, JPL SPS 37-34, Vol. IV. Further results on the algorithmic complexity of (p,q) automata, JPL SPS 37-35, Vol. IV.
	• The notion of a (p,q,r) automaton, JPL SPS 37-35, Vol. IV.
	• Enumeration of a special class of permutations, JPL SPS 37-40, Vol. IV (1966), 208-214.
	 Moments of weight distributions, JPL SPS 37-40, Vol. IV (1966), 214-216. Some results on the capacity of graphs (with R. J. McEliece and H. Taylor), JPL SPS 37-61, Vol. III (1970), 51-54.
	 <u>A study of Varshamov codes for asymmetric channels</u> (with M. F. Yoder), JPL Technical Report 32-1526, DSM, Vol. XIV (1973), 117-123.

く置≯

Left: 1973, Oberwolfach Photo Archive Right: 1976, Jay Goldman's Photo Archive

Image: A matrix

4.	Zero-square rings Pacific I Math 30 (1969) 811-824
3.	<u>Ecto square mas</u> , i achte s. man. 50 (1909), 611 624.
	On the number of open sets of finite topologies, J. Combinatorial Theory 10 (1971), 74-79.
4.	
E	The conjugate trace and trace of a plane partition, J. Combinatorial Theory 14 (1973), 53-65.
э.	Structure of incidence algebras and their automorphism groups Bull Amer Math Soc 76 (1970)
	1236-1239.
6.	
	Modular elements of geometric lattices, Algebra Universalis 1 (1971), 214-217.
7.	
	A chromatic-like polynomial for ordered sets, in Proc. Second Chapel Hill Conference on
	Combinatorial Mathematics and Its Applications (May, 1970), pp. 421-427.

8.

The following papers appeared in the Jet Propulsion Laboratory Space Programs Summary or Deep Space Network journals:

- New results on algorithmic complexity, JPL SPS 37-34, Vol. IV.
- Further results on the algorithmic complexity of (p,q) automata, JPL SPS 37-35, Vol. IV.
- The notion of a (p,q,r) automaton, JPL SPS 37-35, Vol. IV.
- Enumeration of a special class of permutations, JPL SPS 37-40, Vol. IV (1966), 208-214.
- Moments of weight distributions, JPL SPS 37-40, Vol. IV (1966), 214-216.
- Some results on the capacity of graphs (with R. J. McEliece and H. Taylor), JPL SPS 37-61, Vol. III (1970), 51-54.
- A study of Varshamov codes for asymmetric channels (with M. F. Yoder), JPL Technical Report 32-1526, DSM, Vol. XIV (1973), 117-123,

9.

Ordered structures and partitions (revision of 1971 Harvard University thesis), Memoirs of the Amer. Math. Soc., no. 119 (1972), iii + 104 pages.

10.

On the foundations of combinatorial theory (VI): The idea of generating function (with G.-C. Rota and P. Doubilet), in Sixth Berkelev Symposium on Mathematical Statistics and Probability, Vol. II: Probability Theory, University of California, 1972, pp. 267-318.

11.

Supersolvable lattices, Algebra Universalis 2 (1972), 197-217.

12.

Theory and application of plane partitions, Parts 1 and 2, Studies in Applied Math. 50 (1971), 167-188, 259-279.

Curtis Greene ()

Richard Stanley: The Legend Part I: Early Ye

< ∃ →

RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant mervenists, with a me indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full classwhere, paper spring complete proofs for results of exceptional interest are also solicited. Manuscripts more than eight typewritten double spaced pages long will not be considered as a ceptable. All papers to be communicated by a Council member should be sent directly to M. H. Protter, Department of Mathematics, University of California, Berkeley, California 9472.

STRUCTURE OF INCIDENCE ALGEBRAS AND THEIR AUTOMORPHISM GROUPS¹

BY RICHARD P. STANLEY

Communicated by Gian-Carlo Rota, June 9, 1970

Let P be a locally finite ordered set, i.e., a (partially) ordered set for which every segment $[X, Y] = \{Z | X \ge Z \le Y\}$ is finite. The incidence algebra I(P) of P over a field X is defined [2] as the algebra of all functions from segments of P into K under the multiplication (convolution)

$$fg(X, Y) = \sum_{Z \in [X,Y]} f(X, Z)g(Z, Y).$$

(We write f(X, Y) for f([X, Y]).) Note that the algebra I(P) has an identity element δ given by

$$\delta(X, Y) = 1$$
, if $X = Y$,
= 0, if $X \neq Y$.

THEOREM 1. Let P and Q be locally finite ordered sets. If I(P) and I(Q) are isomorphic as K-algebras, then P and Q are isomorphic.

SEEDER OF FROOF. The idea is to show that the ordered set P can be uniquely recovered from I(P). Let the elements of P be denoted X_a , where α ranges over some index set. Then a maximal set of primitive orthogonal idempotents for I(P) consists of the functions e_a defined by

AMS 1969 subject classifications. Primary 0620, 1650, 1660; Secondary 0510. Key words and phrases. Ordered set, partially ordered set, incidence algebra, primitive orthogonal idempotents, outer automorphism group, Hasse diagram.

¹ The research was supported by an NSF Graduate Fellowship and by the Air Force Office of Scientific Research AF 44620-70-C-0079.

ON THE FOUNDATIONS OF COMBINATORIAL THEORY (VI): THE IDEA OF GENERATING FUNCTION

PETER DOUBILET, GIAN-CARLO ROTA and RICHARD STANLEY MASSACHUSETS INSTITUTE OF TECHNOLOGY

1. Introduction

Since Laplace discovered the remarkable correspondence between art theoretic operations and operations on formal power ereits, and put it to use with great success to solve a variety of combinatorial problems, generating functions (and their continuous analogues, namely, characteritic functions) have bee one and another theory, however, it is not surprising, in view of the fact that all too often generating functions have been considered to be simply an application of the current methods of harmonic analysis. From several of the examples discussed in this paper it will appear that this is not the case: in order to extend the theory beyond its present reaches and develop new kinds of algebras of generating functions better suited to combinatorial and probabilistic problems, it seems necessary to abandon the notion of group algebra (or emigroup algebra), so current nowadays, and rely instead on an allogether different approach.

The insufficiency of the notion of semigroup algebra is clearly seen in the example of Dirichlet series. The functions

(1.1) $n \rightarrow 1/n^s$

defined on the semigroup S of positive integers under multiplication, are characters of S. They are not, however, all the characters of this semigroup, nor does there seem to be a canonical way of arguarating these characters from the rest (see, for example, Hewitt and Zuckerman [32]). In other words, there does not seem to be a natural way of characterizing the algebra of formal Dirichlet series as a subalgebra of the semigroup Algebra (reventually completed under a suitable topology) of the semigroup Algebra (reventually completed under a suitable formal Dirichlet series arises naturally from the incidence algebra (definition below) of the lattice of finite crypt groups, as we shall see.

Publications of Richard P. Stanley

(September 2011)

1.	Algorithmic Complexity NACA Depost No 22 000 (Contember 1, 1066)
2.	Algorithmic Complexity, NASA Report No.32-999 (September 1, 1966).
	Zero-square rings, Pacific J. Math. 30 (1969), 811-824.
3.	
4.	On the number of open sets of finite topologies, J. Combinatorial Theory 10 (19/1), 74-79.
	The conjugate trace and trace of a plane partition, J. Combinatorial Theory 14 (1973), 53-65.
5.	
	Structure of incidence algebras and their automorphism groups, Bull. Amer. Math. Soc. 76 (1970),
6.	1230-1237.
	Modular elements of geometric lattices, Algebra Universalis 1 (1971), 214-217.
7.	A sharmatic like a humanic) for ordered sets in Dress Count Chard Utill Conformation
	<u>A chromatic-like polynomial for ordered sets</u> , in <i>Proc. second Chapet Hit Conference on</i> Combinatorial Mathematics and Its Applications (May, 1970), pp. 421-427.
8.	
	The following papers appeared in the Jet Propulsion Laboratory Space Programs Summary or Deep Space Network journals:
	 New results on algorithmic complexity, JPL SPS 37-34, Vol. IV.
	 Further results on the algorithmic complexity of (<i>p</i>,<i>q</i>) automata, JPL SPS 37-35, Vol. IV. The notion of a (<i>p</i>,<i>q</i>,<i>r</i>) automaton, JPL SPS 37-35, Vol. IV.
	 <u>Enumeration of a special class of permutations</u>, JPL SPS 37-40, Vol. IV (1966), 208-214. Moments of weight distributions, JPL SPS 37-40, Vol. IV (1966), 214-216.
	• Some results on the capacity of graphs (with R. J. McEliece and H. Taylor), JPL SPS 37-61, Vol.
	III (1970), 51-54.
	<u>A study of Varshamov codes for asymmetric channels</u> (with M. F. Yoder), JPL Technical Report 22 1526 DSM Vol. XIV (1072) 117 122
9.	32-1320, Doin, VOL AIV (1773), 117-123.
	Ordered structures and partitions (revision of 1971 Harvard University thesis), Memoirs of the Amer.

Math. Soc., no. 119 (1972), iii + 104 pages.

10.

< ∃ →

ABSTRACT

The concept of algorithmic complexity that was introduced by Kohnogorov and expanded by Orima provides a quantitative means of measuring the complexity of computing a discrete function-et, a function with finite domain and range. To be precise in the work reported here, it is assumed that the computation is done by a special type of finite-state machine, a (p, q) automaton. After reviewing the definitions in the field of algorithmic complexity, estimates are made for the maximum possible algorithmic complexity of a discrete function that can be compated on the simplest possible (p, q) automaton, a (2, 2); this allows comparison of the algorithmic complexities relative to (p, q) automata and those relative to (2, 2) automata. Next, bounds are obtained on the complexity of matrix multiplication. Finally, algorithmic complexity is related to the theory of permutation groups on the domain and range of a function, and various criteria are discussed for ensuing a function's having relative blow complexity.

I. INTRODUCTION

In this report, two fundamental problems of computer design are considered theoretically-minimizing the number of components (and, therefore, the cost) of the computer, and minimizing the computation time required. We define a mathematical object called a (n, q)automaton, where p and q are integers > 2, which is to be regarded as an abstract model of a computer. The theory is easily modified to handle many other models. of computers. Each (p,q) automaton computes a specific function and has a well defined number of components (stages) and computation time. Our object is to obtain upper and lower bounds on the number of stages and on the computation time required to calculate various functions. The least number of stages and least time required to compute a function f on any (p,q) automaton for fixed p and q is defined to be the algorithmic complexity of f relative to (p,q) automata. A precise definition of algorithmic complexity is given below.

In Section II, we consider the largest possible algorithmic complexity that a function can have; and in Section III, we discuss the complexity of matrix multiplication [over the field GF(2)]. Finally, in Section IV, by using the concept of equivalence of functions under permutation groups, we obtain criteria that guarantee that two functions have approximately the same complexity, and that a function has a relatively low complexity.

We begin with the necessary definitions. Let V_p^* denote the space of *m*-tuples over an alphabet of *p* symbols. Then, to define the algorithmic complexity of a function $f: V_p^* \rightarrow V_p^*$ we must first define a (p,q) automaton that computes f.

A. Definition of (p, q) Automaton

A (p,q) automaton, with $p,q \ge 2$, is an automatons finite-state machine built of storage elements and gates. The storage elements, or *ragge*, can be in one of *p* states any time, corresponding to the *p* symbols of the alphabet. The gates determine the next state of the stages as a function of the immediately preceding states of, at most, *q* stages. In digital circuit terminology, there is, at most, one level of gating and the gates have a

イロト イポト イヨト イヨト ヨー つく(

ZERO SQUARE RINGS

RICHARD P. STANLEY

A ring R for which $x^{i} = 0$ for all $x \in R$ is called a zerosquare ring. Zero-square rings are easily seen to be locally nilpotent. This leads to two problems: (1) constructing finitely generated zero-square rings with large index of pilpotence and (2) investigating the structure of finitely generated zerosquare rings with given index of nilpotence. For the first problem we construct a class of zero-square rings, called free zero-square rings, whose index of nilpotence can be arbitrarily large. We show that every zero-square ring whose generators have (additive) orders dividing the orders of the generators of some free zero-square ring is a homomorphic image of the free ring. For the second problem, we assume $R^{n} \neq 0$ and obtain conditions on the additive group R_{*} of R (and thus also on the order of R). When n = 2, we completely characterize R_n . When n > 3 we obtain the smallest possible number of generators of R_{+} , and the smallest number of generators of order 2 in a minimal set of generators. We also determine the possible orders of R.

Trivially every null ring (that is, $R^i=0$) is a zero-square ring. From every nonnull commutative ring S we can make $S \times S \times S$ into a nonnull zero square ring R by defining addition componentwise and multiplication by

 $(x_1, y_1, z_2) \times (x_2, y_2, z_2) = (0, 0, x_1y_2 - x_2y_1)$.

In this example we always have $R^{i} = 0$. If S is a field, then R is an algebra over S. Zero-square algebras over a field have been investigated in [1].

2. Preliminaries. Every zero-square ring is anti-commutative, for $0 = (x + y)^2 = x^2 + xy + yx + y^2 = xy + yx$. From anti-commutativity we get $2R^2 = 0$, for yxx = y(-x) = -(yx)x = xyx and (yx)x = -x(yx), so 2xyx = 0 for all $x, y, z \in R$. It follows that a zero-square ring R is commutative if and only if $2R^2 = 0$.

If R is a zero-square ring with n generators, then any product of n + 1 generators must contain two factors the same. By applying anti-commutativity we get a square factor in the product; hence $R^{n+1} = 0$. In particular, every zero-sourar ring is locally nilpotent.

If G is a finitely generated abelian group, then by the fundamental theorem on abelian groups we have

(1)
$$G = C_{a_i} \bigoplus \cdots \bigoplus C_{a_i}, a_i | a_{i+1} \text{ for } 1 \le i \le k-1,$$

 $a_{k+1} = \cdots = a_k = \infty,$

RICHARD P. STANLEY

References

 A. Abian and W. A. McWorter, On the index of nilpotency of some nil algebras, Boll. Un. Mat. Ital. (3) 18 (1963), 252-255.

2. L. Carlitz, Solution to E 1665, Amer. Math. Monthly 72 (1965), 80.

3. G. A. Heuer, Two undergraduate projects, Amer. Math. Monthly 72 (1965), 945.

Received September 9, 1968. This paper was written for the 1965 Bell prize at the California Institute of Technology, under the guidance of Professor Richard A. Dean.

CALIFORNIA INSTITUTE OF TECHNOLOGY HARVARD UNIVERSITY

æ

Address Nathematic 233-27 (Catech | Pasadena, CA 9112 Math Home | People | Seminars | Courses | Undergraduate Info | Graduate Program | Positions Project MATHEMATICS | Caltech Home

The Eric Temple Bell Undergraduate Mathematics Research Prize Winners Established 1963

Year	Name	Where are they now?
1963	Ed Bender John Lindsey II	Faculty, UCSD La Jolla
	,	Faculty, No. Illinois University (De Kalb)
1964	William Zame	Faculty, SUNY Buffalo
1965	Michael Aschbacher Richard P. Stanley	CIT Faculty, Won Cole Prize in Algebra 1980 Shaler Arthur Hanish Professor of Mathematics Faculty, MIT Fairchild Scholar at Caltech 1986
1966	(no award)	
1967	James Maiorana Alan J. Schwenk	Inst. For Defense Analyses (Princeton)

file/IIC/Users/cgreene.CGREENE1-12Desktop/The%20Eric%20Temple%20Bel%20Undergraduate%20Mathematics%20Research%20Prize%20Minners.html 16

The Eric Temple Bell Undergraduate Mathematics Research Prize Winners

		Faculty, Western Michigan University
1968	Michael Fredman	Faculty, Appl. Physics & Info. Sci. (UCSD)
1969	Robert E. Tarjan	N.E.C. Research Institute & Dept of Computer Science, Princeton, NJ
1970	(no award)	
1971	(no award)	
1972	Daniel J. Rudolph	Faculty, University of Maryland
1973	Bruce Reznick	Faculty, University of Illinois, Urbana- Champaign
1974	David S. Dummit	Faculty, University of Vermont (Burlington)
1975	James B. Shearer	IBM
1976	John Gustafson Albert Wells, Jr.	Appl. Spec. Floating Pt. Syst. (Portland,
	Hugh Woodin	OR) Yale LawSchool Faculty, Berkeley Presidential Young Investigator Award 1985 Carp Prize in 1988

6/21/2014

The Eric Temple Bell Undergraduate Mathematics Research Prize Winners

1977	Thos. G. Kennedy	Faculty, University of Arizona
1978	(no award)	
1979	(no award)	
1980	Eugene Y. Loh John Stembridge Robert Weaver	Sun Microsystems Faculty, University of Michigan Ohio State University
1981	Daniel Gordon Peter Shor	C.C.R., La Jolla, CA AT&T Bell Labs
1982	Forrest Quinn Thiennu H. Vu	MIT, Cambridge, MA University of California, San Francisco, San Francisco General Hospital
1983	Mark Purtill Vipul Perival	Texas A&M, Kingsville Princeton, NJ
1984	Bradley Brock Alan Murray	C.C.R., Princeton, NJ Super Computing Research Center, MD
1985	Charles Nainan	University of Illinois, Champaign, IL

file/IC/Users/agreen_CGREENE1-12Deskop/The%28Erc/K20Temple%28E

6/21/2014

The Eric Temple Bell Undergraduate Mathematics Research Prize Winners

1986	Arthur Duval Everette Howe Johnthan Shapiro	Faculty, Dept. of Math Sci., University of Texas, El Paso Berkeley, CA University of
		California, Berkeley, CA
1988	Laura Anderson	Gahanna, OH
	Eric Babson	MIT, Cambridge, MA
1989	James Coykendall, IV	Gatlinburg, TN
1990	(no award)	
1991	Allen Knutson	UC Berkeley
1992	Robert Southworth	
	Michael Maxwell	
1993	(no award)	
1994	Julian Jamison	Kellogg School of Management, Northwestern Univ.
1995	(no award)	
1996	Winston Yang	Clarke College, Dubuque, Iowa
1997	Marc A. Coram	University of Chicago
	Mason Alexander Porter	Georgia Institute of Technology
1998	(no award)	
1999	Scott Carnahan	UC Berkeley
2000	Mervin Boon- Hong Leok	NGD 11
2000	Keshav Dani	UC Berkeley

6/21/2014

The Eric Temple Bell Undergraduate Mathematics Research Prize Winners

	Peter Gerdes	UC Berkeley
2001	(no award)	
2002	Suhas Nayak	Stanford University
2003	(no award)	
2004	Ameera Chowdhury	
	Po-Shen Loh	Cambridge University
2005	Patrick Hummel	
	Timothy Nguyen	MIT
	Trevor Wilson	Berkeley
2006	Timothy Nguyen	MIT
2007	David Renshaw Jed Yang	Carnegie Mellon University UCLA
2008	Phillip Perepelitsky	UC Santa Cruz
2009	Jeffrey Kuan Ila Varma	University of Leiden (Fullbright Scholar)
2010	Domenic Denicola	
2011	Jeffrey Lin	
2012	Alexandra Mustat	
2013	Andrew Zucker	

Last update: 8/06/13 | © California Institute of Technology | Questions? scroomes @ caltech.edu

On the Number of Open Sets of Finite Topologies

RICHARD P. STANLEY

Department of Mathematics, Harvard University,

Cambridge, Massachusetts 02138

Communicated by Gian-Carlo Rota

Received March 26, 1969

Abstract

Recent papers of Sharp [4] and Stephen [5] have shown that any finite topology with n_p points which is not discrete contains $< C/4/32^{-0}$ open sets, and that this inequality is best possible. We use the correspondence between finite $T_copologies and partial orders to find all non-homeomorphic topologies$ $with <math>n_p$ points and $>(7/16)^{20}$ open sets. We determines which of these topologies with n_p points and $>(7/16)^{20}$ open sets. We determines which of these topologies with a small number of open sets. The corresponding results for topologies on a finite set as also given.

If X is a finite topological space, then X is determined by the minimal open sets U_x containing each of its points x. Y is a T_{xy} -space if and only if $U_x = U_y$ implies x = y for all points x, y in X. If X is not T_0 , the space X obtained by identifying all points x, $y \in X$ such that $U_x = U_y$, is a T_0 space with the same lattice of open sets as X. Topological properties of the operation $X \to \hat{X}$ are discussed by McCord [3]. Thus for the present we restrict ourselves to T_0 -space.

If X is a finite T_{q} -space, define $x \leq y$ for $x, y \in X$ whenever $U_{q} \subseteq U_{q}$. This defines a partial ordering on X. Conversely, if P is any partially ordered set, we obtain a T_{q} -topology on P by defining $U_{q} = (y)y \leq x)$ for $x \in P$. The open sets of this topology are the *ideals* (also called semiideals) of P, i.e. subsets Q of P such that $x \in Q, y \leq x$ implies $y \in Q$.

Let P be a finite partially ordered set of order p, and define $\omega(P) - j(P) 2^{-v}$, where j(P) is the number of ideals of P. If Q is another finite partially ordered set, let P + Q denote the disjoint union (direct sum) of P and Q. Then j(P + Q) = j(P)j(Q) and $\omega(P + Q) = \omega(P) \omega(Q)$. Let H_{ν} denote the partially ordered set consisting of p disjoint points, so $\omega(H_{\nu}) = 1$.

	On the number of open sets of finite topologies, J. Combinatorial Theory 10 (1971), 74-79.
(The conjugate trace and trace of a plane partition, J. Combinatorial Theory 14 (1973), 53-65.
	Structure of incidence algebras and their automorphism groups, Bull. Amer. Math. Soc. 76 (1970), 1236-1239.
	Modular elements of geometric lattices, Algebra Universalis 1 (1971), 214-217.
	A chromatic-like polynomial for ordered sets, in Proc. Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications (May, 1970), pp. 421-427.
	The following papers appeared in the Jet Propulsion Laboratory Space Programs Summary or Deep Space Network journals:
	 New results on algorithmic complexity, JPL SPS 37-34, Vol. IV. Further results on the algorithmic complexity of (p,q) automata, JPL SPS 37-35, Vol. IV. The notion of a (n a n) automation IPL SPS 37-35, Vol. IV.
	 Enumeration of a special class of permutations, JPL SPS 37-40, Vol. IV (1966), 208-214. Moments of weight distributions, JPL SPS 37-40, Vol. IV (1966), 214-216.
	 Some results on the capacity of graphs (with K. J. McEnece and H. Taylor), JPL SPS 57-61, vol. III (1970), 51-54. A study of Varshamov codes for asymmetric channels (with M. F. Yoder), JPL Technical Report
	32-1526, DSM, Vol. XIV (1973), 117-123.
	Ordered structures and partitions (revision of 1971 Harvard University thesis), Memoirs of the Amer. Math. Soc., no. 119 (1972), iii + 104 pages.
	On the foundations of combinatorial theory (VI): The idea of generating function (with GC. Rota and P. Doubilet), in <i>Sixth Berkeley Symposium on Mathematical Statistics and Probability</i> , Vol. II: <i>Probability Theory</i> , University of California, 1972, pp. 267-318.
	Supersolvable lattices, Algebra Universalis 2 (1972), 197-217.
9	Theory and application of plane partitions, Parts 1 and 2, Studies in Applied Math. 50 (1971), 167-188,
	239-279.

Curtis Greene ()

An extremal problem for finite topologies and distributive lattices, J. Combinatorial Theory 14 (1973), Richard Stanley: The Legend Part I: Early Ye

3 7 / 12 June 23, 2014

~	•	

5.	On the number of open sets of finite topologies, J. Combinatorial Theory 10 (1971), 74-79.			
4.				
_	The conjugate trace and trace of a plane partition, J. Combinatorial Theory 14 (1973), 53-65.			
5.	Structure of incidence electrics and their automorphism groups, Pull Away Math. Soc. 76 (1970)			
	1236-1239.			
6.				
_	Modular elements of geometric lattices, Algebra Universalis 1 (1971), 214-217.			
7.	A chromatic like polynomial for ordered sets in Proc. Second Chanel Hill Conference on			
	Combinatorial Mathematics and Its Applications (May, 1970), pp. 421-427.			
8.	••••••••••••••••••••••••••••••••••••••			
	The following papers appeared in the Jet Propulsion Laboratory Space Programs Summary or Deep			
	Space Network journals:			
	 New results on algorithmic complexity of (n a) automata IPI SPS 37-35. Vol. IV. Further results on the algorithmic complexity of (n a) automata. IPI SPS 37-35. Vol. IV. 			
	 The notion of a (<i>p.a.r.</i>) automaton. JPL SPS 37-35. Vol. IV. 			
	• Enumeration of a special class of permutations, JPL SPS 37-40, Vol. IV (1966), 208-214.			
	 Moments of weight distributions, JPL SPS 37-40, Vol. IV (1966), 214-216. 			
	• Some results on the capacity of graphs (with R. J. McEliece and H. Taylor), JPL SPS 37-61, Vol.			
	III (1970), 51-54.			
	 <u>A study of Varshamov codes for asymmetric channels</u> (with M. F. Yoder), JPL Technical Report 			
•	32-1526, DSM, Vol. XIV (1973), 117-123.			
9.	Ordered structures and partitions (revision of 1971 Harvard University thesis) Memoirs of the Amer			
	Math. Soc., no. 119 (1972), iii + 104 pages.			
10.				
	On the foundations of combinatorial theory (VI): The idea of generating function (with GC. Rota and			
	P. Doubilet), in Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. II:			
	Probability Theory, University of California, 1972, pp. 267-318.			
11.	Superschedule lettings Al-thur Universalis 2 (1072), 107-217			
12	Supersolvable lattices, Algebra Universalis 2 (17/2), 197-217.			
	Theory and application of plane partitions, Parts 1 and 2, Studies in Applied Math. 50 (1971), 167-188,			
	259-279.			
13.				
	An extremal problem for finite topologies and distributive lattices, J. Combinatorial Theory 14 (1973),	≜ ► 👘	2	5

Curtis Greene ()

Richard Stanley: The Legend Part I: Early Ye

7 / 12 June 23, 2014

The Conjugate Trace and Trace of a Plane Partition

RICHARD P. STANLEY*

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Communicated by the Late Theodore S. Motzkin

Received November 13, 1970

The conjugate trace and race of a plane partition are defined, and the generating function of the number of plane partitions * of n with < r rows and largest part < m, with conjugate trace r (or trace t, when $m \to \infty$), is found. Various properties of this generating function are studied. One consequence of these properties is a formula which can be regarded as a q-analog of a well-known result arising in the representation theory of the symmetric group.

1. INTRODUCTION

A plane partition π of n is an array of non-negative integers,

$$n_{11} \quad n_{12} \quad n_{13} \quad \cdots \\ n_{21} \quad n_{22} \quad n_{23} \quad \cdots \\ \vdots \quad \vdots \quad \vdots \qquad (1)$$

for which $\sum_{i,i} n_{ij} = n$ and the rows and columns are in non-increasing order:

 $n_{ij} \ge n_{(i+1)j}$, $n_{ij} \ge n_{i(j+1)}$, for all $i, j \ge 1$.

The non-zero entries $n_{ij} > 0$ are called the *parts* of π . If there are λ_i parts in the *i*-th row of π , so that, for some *r*,

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_r > \lambda_{r+1} = 0$$

then we call the partition $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_r$ of the integer $p = \lambda_1 + \cdots + \lambda_r$ the shape of π , denoted by λ . We also say that π has

* The research was partially supported by an NSF Graduate Fellowship at Harvard University and by the Air Force Office of Scientific Research AF 44620-70-C-0079.

Copyright © 1973 by Academic Press, Inc. All rights of reproduction in any form reserved.

Theory and Application of Plane Partitions: Part 1

By Richard P. Stanley

I. Introduction

1. Definitions

II. Symmetric Functions

- 2. The four basic symmetric functions
- 3. Relations among the symmetric functions
- 4. An inner product

III. Schur Functions

- 5. The combinatorial definition
- 6. The correspondence of Knuth
- 7. Kosta's theorem and the orthonormality of the Schur functions
- 8. Further properties of Knuth's correspondence
- 9. The dual correspondence
- 10. The classical definition of the Schur functions
- 11. The Jacobi-Trudi identity
- 12. Skew plane partitions and the multiplication of Schur functions
- 13. Frobenius' formula for the characters of the symmetric group

IV. Enumeration of Column-Strict Plane Partitions

- 14. Part restrictions
- 15. Shape restrictions, hook lengths, and contents
- 16. Row and column restrictions
- 17. Young tableaux, ballot problems, and Schensted's theorem

V. Enumeration of Ordinary Plane Partitions

- 18. Row, column, and part bounds
- 19. The conjugate trace and trace of a plane partition
- 20. Asymptotics

VI. Conclusion

- 21. Open problems
- * The research was supported by the Air Force Office of Science of AF 44620-70-C-0979.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Theory and Application of Plane Partitions. Part 2

By Richard P. Stanley

IV. Enumeration of column-strict plane partitions

14. Part restrictions

We are now ready to apply our theory of Schur functions to the enumeration of plane partitions. The first such results were obtained by MacMahon_9, using an entirely different technique.

If p_n is the number of plane partitions of n with a certain property, we say that the generating function for these plane partitions is the (formal) power series

$\Sigma p_{*}x^{*}$

(46)

<ロト (四) (三) (三) (三) (三)

We will regard the plane partitions counted by (46) to be *enumerated* if an explicit expression can be found for (46). Only in rare cases can an explicit expression be found for *p*, itself.

We will employ the notation

$$(k) = 1 - x^{k}$$

 $(k)! = (1)(2)...(k)$
(47)

For instance, the generating function for plane partitions with ≤ 1 row (i.e., ordinary partitions) is $||_{\infty+1}^{-1}(\alpha)^{-1}$, a well-known result of Eucler (see Hardy and Wright (6, Ch. 19)). The generating function for plane partitions with ≤ 1 row and ≤ 2 columns is 1/(2), and here we have the explicit expression $p_{\alpha} = \frac{1}{2}(2\alpha + 3 + (-1)^{\alpha})$. In these examples, the generating functions can be determined by "inspection." For more general types of plane partitions, the generating functions that have a simple form, but there appears to be no "obvious" reason why this is so.

14.1. Thissekaed. (Bender and Knuth [18]). Let S be any subset of the positive integers. The generating function for column-strict plane partitions whose parts all lie in S is $\prod_{i \in \mathcal{O}} (\mathcal{O}^{-1} \prod_{\substack{i \in \mathcal{O} \\ i \in \mathcal{O}}} (i \neq j)^{-1}.$

ORDERED STRUCTURES AND PARTITIONS*

Ъy

Richard P. Stanley

Department of Mathematics University of California Berkeley, California 94720

"This paper is a revision of the author's Ph.D. thesis (Harvard University, 1971), written under the guidance of Professor Gian-Carlo Rota.

TABLE OF CONTENTS

CHAPTER

Page

I. (P,w;m)-PARTITIONS

	1.	Intro	ducti	on											-								1
	2.	Basic	defi	nit	ion	s																	2
	з.	Gener	ating	fu	nct	ior	15	for	0	P,u	;1	n)-	pa	irt	it	ic	ns						7
	4.	Distr	ibuti	ve	lat	tic	es																9
	5.	The f	orm c	ft	he	ger	ier	ati	ng	fu	inc	oti	or	lS									10
	б.	The t	heory	of	ω-	Set	bar	ato	rs														14
	7.	Gener	ating	fu	nct	ior	1S	in	te:	rms	s c	of	ω-	se	pā	irs	itc	m					20
	8.	The p	olyno	mia	ls	W,	(P	,w)															22
	9.	The n	umber	÷	α(P	- 01	s)	·	nd	A	1(1			0									25
	10.	The n	ecipr	oci.	+12	the	ion	~ ~ ~		. "		,	.,.	· ·							۰.		29
	11	An an	plica	+10	~ +	~ ~	- 4	ima		ion		۰.			÷.	÷-			•	•	•		33
	12	Opena	tione	00		2		100	+ e	101		• •				.01		•	•	•	•	•	35
	12	The o	nden	201				and	0	•••	.i.,	÷.,	å.	÷.,		٠.		÷.,			•	•	11.2
	10.	THE C	1.001	POT	y110	un t e		anu		.,		- 44 C			.a		, can	-			•	•	40
II.	NATU	RAL L	ABELI	NGS																			
	14.	A Möb	ius-t	heo	ret	ic	in	ter	pre	eta	iti	lor		f	£	(S)						49
	15.	Some	prope	rti	es	of	ß	(P;	ŝ٢														51
	16.	The e	xtrem	e-v	alu	e 1	he	ore	m														54
	17.	Numer	ology	of	W	. (1)	an	d	υ_	(F	2)											62
	10	Chain	aand	2+2		s				п	1												6.11
	10.	Chain	cond	111	ons	·	•	• •	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	04
	10.	rrope	T.CTEP	01		(10)		• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
III.	APPL	ICATI	ONS																				
	20.	Some	remar	ks -	on	inf	in	ite	13	Ρ													77
	21.	Plane	part	iti	ons														2				79
	22.	Trees	·																				83
	23.	Stack	s and	V-	par	tit	io	ns															85
	24.	Protr	uded	Dar	tit	ior	8								2	2		2	2		2		93
	25.	Permu	tatio	ns																1	1		96
REFER	ENCES																						102

1250 1257.

6.

Modular elements of geometric lattices, Algebra Universalis 1 (1971), 214-217.

7.

<u>A chromatic-like polynomial for ordered sets</u>, in *Proc. Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications* (May, 1970), pp. 421-427.

8.

The following papers appeared in the Jet Propulsion Laboratory Space Programs Summary or Deep Space Network journals:

- New results on algorithmic complexity, JPL SPS 37-34, Vol. IV.
- Further results on the algorithmic complexity of (p,q) automata, JPL SPS 37-35, Vol. IV.
- The notion of a (p,q,r) automaton, JPL SPS 37-35, Vol. IV.
- Enumeration of a special class of permutations, JPL SPS 37-40, Vol. IV (1966), 208-214.
- Moments of weight distributions, JPL SPS 37-40, Vol. IV (1966), 214-216.
- <u>Some results on the capacity of graphs</u> (with R. J. McEliece and H. Taylor), JPL SPS 37-61, Vol. III (1970), 51-54.
- <u>A study of Varshamov codes for asymmetric channels</u> (with M. F. Yoder), JPL Technical Report 32-1526, DSM, Vol. XIV (1973), 117-123.
- 9.

Ordered structures and partitions (revision of 1971 Harvard University thesis), Memoirs of the Amer. Math. Soc., no. 119 (1972), iii + 104 pages.

10.

On the foundations of combinatorial theory (VI): The idea of generating function (with G.-C. Rota and P. Doubilet), in Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. II: Probability Theory, University of California, 1972, pp. 267-318.

11.

Supersolvable lattices, Algebra Universalis 2 (1972), 197-217.

12.

Theory and application of plane partitions, Parts 1 and 2, Studies in Applied Math. 50 (1971), 167-188, 259-279.

13.

An extremal problem for finite topologies and distributive lattices, J. Combinatorial Theory 14 (1973), 209-214.

14.

The Fibonacci lattice, Fibonacci Quarterly 13 (1975), 215-232.

SUPERSOLVABLE LATTICES¹)

R. P. STANLEY

1. Introduction

We shall investigate a certain class of finite lattices which we call *supersolvable* lattices (for a reason to be made clear shortly). These lattices L have a number of interesting combinatorial properties connaeted with the counting of chains in L, which can be formulated in terms of Möbius functions. I am grateful to the referee for his helpful suggestions, which have led to more general results with simpler proofs.

1.1. DEFINITION. Let L be a finite lattice and Δ a maximal chain of L. If, for every chain K of L, the sublattice generated by K and Δ is distributive, then we call Δ an M-chain of L; and we call (L, Δ) a supersolvable lattice (or SS-lattice).

Sometimes, by abuse of notation, we refer to L itself as an SS-lattice, the M-chain Δ being tacitly assumed.

A wide variety of examples of SS-lattices is given in the next section. In this section, we define two fundamental concepts associated with SS-lattices, viz., the rank-selected Möbius invariant and the set of Jordan-Holder permutations. We shall outline their connection with each other, together with some consequences. Proofs will be given in later sections.

If L is an SS-lattice whose M-chain d has length n (or cardinality n+1), then were maximal chain K of L has length n since all maximal chains of the distributive lattice generated by d and K have the same length. Hence if $\hat{0}$ denotes the bottom element and $\hat{1}$ the top element of L, then L has defined on it a unique rank function $r.L = \langle 0, 1, 2, \ldots n \rangle$ satisfying $r(\hat{0}) = 0$, $r(\hat{1}) = n$, r(p) = r(x) + 1 if y coverx x (i.e., y > x and no $r \in L$ satisfies y > x > x). Let S be any subset of the set n-1, where we use the notation

$$\mathbf{k} = \{1, 2, ..., k\}$$

We will also write $S = \{m_1, m_2, ..., m_s\}^<$ to signify that $m_1 < m_2 < \cdots < m_s$. Define $\alpha(S)$ to be the number of chains

$$\hat{0} = y_0 < y_1 < \cdots < y_s < \hat{1}$$

in L such that $r(y_i) = m_i$, i = 1, 2, ..., s. In particular, if $S = \{m\}$, then $\alpha(S)$ is the number

The research was supported by the Air Force Office of Scientific Research, AF 44620-70-C-0079, at M.I.T.

Presented by R. P. Dilworth. Received June 4, 1971. Accepted for publication in final form May 17, 1972.

pages 361-371

RICHARD P. STANLEY

1. Introduction

In this paper we extend some aspects of the theory of 'supersolvable lattices' [3] to a more general class of finite lattices which includes the upper-semimodular lattices. In particular, all conjectures made in [3] concerning upper-semimodular lattices will be proved. For instance, we will prove that if L is finite upper-semimodular and it L' denotes L with any set of 'levels' removed, then the Möbius function of L' alternates in sign. Familiarity with [3] will be hefpful bur to resential for the understanding of the results of this paper. However, many of the proofs are identical to the proofs in [3] (note the machinery has been suitably generalized) and will be omitted.

2. Admissible labelings

Let L be a finite lattice with bottom $\hat{0}$ and top $\hat{1}$, such that every maximal chain of L has the same length n. Hence L has a rank function ϱ satisfying $\varrho(\hat{0})=0, \varrho(\hat{1})=n,$ and $\varrho(y)=1+\varrho(x)$ whenever y covers x in L. We call L a graded lattice.

Let I denote the set of join-irreducible elements of L. A labeling ω of L is any map $\omega: I \rightarrow P$, where P denotes the positive integers. A labeling ω is said to be *natural* if $z, z' \in I$ and $z \leq z'$ implies $\omega(z) \leq \omega(z')$. If x < y in L and ω is a fixed labeling of L, define

 $\gamma(x, y) = \min \{ \omega(z) \mid z \in I, x < x \lor z \le y \}.$

Thus, (x, y) is the least label of a join-irreducible which is less than or equal to y but not less than or equal to x. Note that $\gamma(x, y)$ is always defined since y is a join of join-irreducibles. We are now able to make the key definition of this paper. A labeling ω is said to be admissible if whenever x < y in L, there is a unique unrefinable chain $x = x_0 < x_1 < \cdots < x_{n-1} >$ between x < u > y for $x_0 < (y - (y) - (x))$ (whether x > u > y) is L.

$$\gamma(x_0, x_1) \le \gamma(x_1, x_2) \le \cdots \le \gamma(x_{m-1}, x_m).$$
 (1)

We then call the pair (L, ω) an admissible lattice. Our motivation for this definition is that admissibility seems to be the weakest condition for which Theorem 3.1 holds.

Presented by R. P. Dilworth. Received July 9, 1973. Accepted for publication in final form June 20, 1974.

¹⁾ The research was supported by a Miller Research Fellowship at the University of California at Berkeley.

15.			
16.	<u>A Brylawski decomposition for finite ordered sets</u> , <i>Discrete Math.</i> 4 (1973), 77-82.		
17	Review of Claude Berge, Principles of Combinatorics, in Bull. Amer. Math. Soc. 77 (1971), 685-689.		
17.	A combinatorial packing problem (with five other authors), SIAM-AMS Proc. 4 (1971), 97-108.		
18.	Acualic orientations of graphs Discrete Math 5 (1973) 171-178		
19.	regene orientations of graphs, Discrete main, 5 (1775), 111 176.		
	Linear homogeneous diophantine equations and magic labelings of graphs, Duke Math. J. 40 (1973), 607-632		
20.	007 052.		
	Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974), 295-299		
21.			
22	Finite lattices and Jordan-Hölder sets, Algebra Universalis 4 (1974), 361-371.		
44.	Combinatorial reciprocity theorems, Advances in Math. 14 (1974), 194-253.		
23.	(1 + 1) = (1 +		
	Mathematical Centre Tracts 56 , Mathematisch Centrum, Amsterdam, 1974, pp. 107-118.		
24.			
	Generating functions, in <i>Studies in Combinatorics</i> (GC. Rota, ed.), Mathematical Association of America, 1978, pp 100-141.		
25.			
26.	Cohen-Macaulay rings and constructible polytopes, Bull. Amer. Math. Soc. 81 (1975), 133-135.		
	Branchings and partitions (with L. Carlitz), Proc. Amer. Math. Soc. 53 (1975), 246-249.		
27.	The Upper Bound Conjecture and Cohen-Macaulay rings, Studies in Applied Math. 54 (1975), 135-142.		
28.			
	Binomial posets, Möbius inversion, and permutation enumeration, J. Combinatorial Theory (A) 20 (1976) 336-356		
29.			
30	Stirling polynomials (with I. Gessel), J. Combinatorial Theory (A) 24 (1978), 24-33.		
50.	Hilbert functions of graded algebras, Advances in Math. 28 (1978), 57-83.	/ E X = E	
31.			
Cı	urtis Greene () Richard Stanley: The Legend Part I: Early Ye Ju	ie 23, 2014	

9 / 12

ACYCLIC ORIENTATIONS OF GRAPHS*

Richard P. STANLEY

Department of Mathematics, University of California, Berkeley, Calif. 94720, USA

Received 1 June 1972

Abtract. Let G be a finite graph with p vertices and χ its chromatic polynomial. A combinatotal interpretation is given to the positive integer (-1) $p^{2}(-1)$, where Λ is a positive integer, in terms of acyclic orientations of G. In particular, (-1) P(-1) is the namber of acyclic orientations of G. An application is given to the conversion of labeled acyclic dispaths. An algebra of full binomial type, in the same of Doublet-Rota-Stanky, is constructed which yields the generating functions which occur in the above context.

1. The chromatic polynomial with negative arguments

Let G be a finite graph, which we assume to be without loops or multiple edges. Let P = V(G) denote the set of vertices of G and X = X(G) the set of edges. An edge $e \in X$ is thought of as an unordered pair $\{u, v\}$ of two distinct vertices. The integers p and q denote the cadinalities of Y and X, rapsectively. An orientation of G is an assignment of a direction to each edge $\{u, u\}$, denoted by $u \to v v \to u$, as the case may be An orientation of G is said to be arc/let if it has no directed cycles.

Let $\chi(\lambda) = \chi(G, \lambda)$ denote the chromatic polynomial of G evaluated at $\lambda \in C$. If λ is a non-negative integer, then $\chi(\lambda)$ has the following rather unorthodox interpretation.

Proposition 1.1. $\chi(\lambda)$ is equal to the number of pairs (0, 0), where 0 is any map $\sigma: V + \{1, 2, ..., \lambda\}$ and 0 is an orientation of G, subject to the two conditions:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

(a) The orientation 0 is acyclic.

(b) If $u \rightarrow v$ in the orientation 0, then $\sigma(u) > \sigma(v)$.

* The research was supported by a Miller Research Fellowship.

18.

18.	Acyclic orientations of graphs Discrete Math 5 (1973) 171-178
19.	regene orientations of graphs, Discrete main. 5 (1775), 171 170.
•	Linear homogeneous diophantine equations and magic labelings of graphs, <i>Duke Math. J.</i> 40 (1973), 607-632.
20.	Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974), 295-299
21.	
22	Finite lattices and Jordan-Hölder sets, Algebra Universalis 4 (1974), 361-371.
44.	Combinatorial reciprocity theorems, Advances in Math. 14 (1974), 194-253.
23.	
	Combinatorial reciprocity theorems, in Combinatorics (Part 2) (M. Hall, Jr., and J. H. Van Lint, eds.), Mathematical Centre Tracts 56, Mathematisch Centrum, Amsterdam, 1974, pp. 107-118.
24.	Generating functions, in Studies in Combinatorics (GC. Rota, ed.), Mathematical Association of America, 1978, pp 100-141.
25.	
26.	Cohen-Macaulay rings and constructible polytopes, Bull. Amer. Math. Soc. 81 (1975), 133-135.
-01	Branchings and partitions (with L. Carlitz), Proc. Amer. Math. Soc. 53 (1975), 246-249.
27.	
28.	The Upper Bound Conjecture and Cohen-Macaulay rings, Studies in Applied Math. 54 (1975), 135-142.
	Binomial posets, Möbius inversion, and permutation enumeration, J. Combinatorial Theory (A) 20 (1976), 336-356.
29.	Stirling polynomials (with I. Gassel) I. Combinatorial Theory (A) 24 (1078) 24-33
	\mathcal{O}

30.

Hilbert functions of graded algebras, Advances in Math. 28 (1978), 57-83.

31.

Magic labelings of graphs, symmetric magic squares, systems of parameters, and Cohen-Macaulay rings, Duke Math. J. 43 (1976), 511-531.

32.

Relative invariants of finite groups generated by pseudo-reflections, J. Algebra 49 (1977), 134-148.

33.

< ∃→ Some combinatorial aspects of the Schubert calculus, in Combinatorie et Réprésentation du Groupe

Curtis Greene ()

Richard Stanley: The Legend Part I: Early Ye

3 June 23, 2014 10 / 12

	8. A multi-extended interaction of a multi- $D_{1}^{2} = -4 M_{1} d_{1} = 5 (1072) + 171 + 170$
1	Acyclic orientations of graphs, Discrete Math. 5 (1975), 171-178.
2	Linear homogeneous diophantine equations and magic labelings of graphs, Duke Math. J. 40 (19/3), 607-632. 20. Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974),
1	295-299. 11.
2	<u>Finite lattices and Jordan-Hölder sets</u> , <i>Algebra Universalis</i> 4 (1974), 361-371.
	Combinatorial reciprocity theorems, Advances in Math. 14 (1974), 194-253.
	Combinatorial reciprocity theorems, in Combinatorics (Part 2) (M. Hall, Jr., and J. H. Van Lint, eds.), Mathematical Centre Tracts 56, Mathematisch Centrum, Amsterdam, 1974, pp. 107-118.
	Generating functions, in <i>Studies in Combinatorics</i> (GC. Rota, ed.), Mathematical Association of America, 1978, pp 100-141.
2	S. Cohen-Macaulay rings and constructible polytopes, Bull. Amer. Math. Soc. 81 (1975), 133-135.
	26.
	Branchings and partitions (with L. Carlitz), Proc. Amer. Math. Soc. 53 (1975), 246-249.
1	Branchings and partitions (with L. Carlitz), <i>Proc. Amer. Math. Soc.</i> 53 (1975), 246-249. The Upper Bound Conjecture and Cohen-Macaulay rings, Studies in Applied Math. 54 (1975), 135-142.
1	Branchings and partitions (with L. Carlitz), <i>Proc. Amer. Math. Soc.</i> 53 (1975), 246-249. The Upper Bound Conjecture and Cohen-Macaulay rings, <i>Studies in Applied Math.</i> 54 (1975), 135-142. Binomial posets, Möbius inversion, and permutation enumeration, <i>J. Combinatorial Theory</i> (A) 20 (1976), 336-356.
	 Branchings and partitions (with L. Carlitz), <i>Proc. Amer. Math. Soc.</i> 53 (1975), 246-249. The Upper Bound Conjecture and Cohen-Macaulay rings, <i>Studies in Applied Math.</i> 54 (1975), 135-142. Binomial posets, Möbius inversion, and permutation enumeration, <i>J. Combinatorial Theory</i> (A) 20 (1976), 336-356. Stirling polynomials (with I. Gessel), <i>J. Combinatorial Theory</i> (A) 24 (1978), 24-33.
	 Branchings and partitions (with L. Carlitz), <i>Proc. Amer. Math. Soc.</i> 53 (1975), 246-249. The Upper Bound Conjecture and Cohen-Macaulay rings, <i>Studies in Applied Math.</i> 54 (1975), 135-142, Binomial posets, Möbius inversion, and permutation enumeration, <i>J. Combinatorial Theory</i> (A) 20 (1976), 336-356. Stirling polynomials (with I. Gessel), <i>J. Combinatorial Theory</i> (A) 24 (1978), 24-33. Hilbert functions of graded algebra. Advances in Math. 28 (1078), 57-82.
	 Branchings and partitions (with L. Carlitz), <i>Proc. Amer. Math. Soc.</i> 53 (1975), 246-249. The Upper Bound Conjecture and Cohen-Macaulay rings, <i>Studies in Applied Math.</i> 54 (1975), 135-142, Binomial posets, Möbius inversion, and permutation enumeration, <i>J. Combinatorial Theory</i> (A) 20 (1976), 336-356. Stirling polynomials (with I. Gessel), <i>J. Combinatorial Theory</i> (A) 24 (1978), 24-33. Hilbert functions of graded algebras, <i>Advances in Math.</i> 28 (1978), 57-83. Magic labelings of graphs, symmetric magic squares, systems of parameters, and Cohen-Macaulay rings,
	 Branchings and partitions (with L. Carlitz), <i>Proc. Amer. Math. Soc.</i> 53 (1975), 246-249. The Upper Bound Conjecture and Cohen-Macaulay rings, <i>Studies in Applied Math.</i> 54 (1975), 135-142, Binomial posets, Möbius inversion, and permutation enumeration, <i>J. Combinatorial Theory</i> (A) 20 (1976), 336-356. Stirling polynomials (with I. Gessel), <i>J. Combinatorial Theory</i> (A) 24 (1978), 24-33. Hilbert functions of graded algebras, <i>Advances in Math.</i> 28 (1978), 57-83. Magic labelings of graphs, symmetric magic squares, systems of parameters, and Cohen-Macaulay rings, <i>Duke Math. J.</i> 43 (1976), 511-531.

Curtis Greene ()

Richard Stanley: The Legend Part I: Early Ye

Some combinatorial aspects of the Schubert calculus, in Combinatoire et Réprésentation du Groupe

June 23, 2014 10 / 12

æ

< ≣⇒

LINEAR HOMOGENEOUS DIOPHANTINE EQUATIONS AND MAGIC LABELINGS OF GRAPHS

RICHARD P. STANLEY

1. Introduction. Let G be a finite graph allowing loops and multiple edges. Hence G is a pseudo-graph in the terminology of [10]. We shall denote the set of vertices of G by Y, the set of edges by E, the number [V] of vertices by p, and the number [20] of edges by γ . Also if an edge of a incident to a vertex e, we write $s \in s$. Any undefined graph-theoretical terminology used here may be $(0, 1, 2, \cdots) \in A$ nonmegative integer $L(\delta)$ to call edge of G such that, for each vertex of G the sum of the halves of all edges incident to s is r (counting each loop at s once only). In other words,

(1)
$$\sum_{e \in e} L(e) = \tau$$
, for all $v \in V$.

For each edge e of G let z, be an indeterminate and let z be an additional indeterminate. For each vertex v of G define the homogeneous linear form

$$P_{*} = z - \sum_{e \neq e_{e}} z_{e}, \quad v \in V,$$

where the sum is over all e incident to v. Hence by (1) a magic labeling L of Gcorresponds to a solution of the system of equations

(3)
$$P_{*} = 0$$
, $v \in V$,

in nonnegative integers (the value of z is the index of L). Thus the theory of magic labelings can be put into the more general context of *linear homogeneous diophantine equations*. Many of our results will be given in this more general context and then specialized to magic labelings.

It may happen that there are edges $e \in G$ that are always labeled 0 in any magic labeling. If this is the case, then these edges may be ignored in so far as studying magic labeling is concerned; so we may assume without loss of genentity that for any edges of G there is angic labeling $L \in O$ for which $L(\phi) > 0$. We then all G positive possible that L = positive magic labeling <math>L = O for which $L(\phi) > 0$. We then all G positive possible that L = positive magic labeling <math>L = O for which $L(\phi) > 0$. The magic labeling, we define their sum $L = L_0 + L_0$ by $L(\phi) = L_0(\phi) + L_0(\phi)$ magic of index $r + r_n$. Now note that every positive possible for possissen a positive one, and lat $L = \sum L_1$.

Received October 1, 1972. Revisions received April 30, 1973. This research was supported by a Miller Research Fellowship at the University of California at Berkeley.

Vol. 43, No. 3 DUKE MATHEMATICAL JOURNAL® September 1976

MAGIC LABELINGS OF GRAPHS, SYMMETRIC MAGIC SQUARES, SYSTEMS OF PARAMETERS, AND COHEN-MACAULAY RINGS

RICHARD P. STANLEY

1. Introduction.

Let T be a finite graph allowing loops and multiple edges, so that T is a pseudopraph in the terminology of [0]. Let F = E(T) denote the set of edges of T and N the set of non-negative integers. A mapic labeling of P of judger 1 is an assignment $1: E \rightarrow N$ of a non-negative integers. A mapic labeling of P of judger 1 is r counter $1: E \rightarrow N$ of a non-negative integers. A mapic labeling of P of judger 1 is r counter $1: E \rightarrow N$ of a non-negative integers. A mapic labeling of P of judger 1 is r counter $1: E \rightarrow N$ of a non-negative integers. A mapic labeling of P of judger 1 is r counter $1: E \rightarrow N$ of a non-negative integer $1: E \rightarrow N$ of a non-negative integer

Let $H_{c}(\epsilon)$ denote the number of margic labelings of T of index r. It may happen that there are edges of T that are always labeled of nan y margic labeling. If these edges are removed, we obtain a pesidograph Δ satisfying the two conditions: (i) $H_{c}(\epsilon) = H_{c}(\epsilon)$ ro all $\epsilon \in \mathbf{N}$, and (ii) some margic labeling L of Δ satisfies $L(\epsilon) > 0$ for every edge ϵ of Δ . We call a pseudograph Δ satisfying (ii) Δ position pseudograph, B(i) of and (ii), in taivlying the function $H_{c}(\epsilon)$ it suffices to assume that T is positive. A margic labeling L of T satisfying $L(\epsilon) > 0$ for all edges $\epsilon \in \mathbf{Z}(\Gamma)$ is called a positive margic labeling. Any undefined graph theory terminology used in this paper may be found in any textbook on graph theory, cag, L(i)

In [14] the following two theorems were proved.

THEOREM 1.1. [14, Thm. 1.1]. Let Γ be a finite pseudograph. Then either $H_{\tau}(r) = \delta_{u_r}$ (the Kronecker delta), or else there exist polynomials $P_{\tau}(r)$ and $Q_{\tau}(r)$ such that $H_{\tau}(r) = P_{\tau}(r) + (-1)'Q_{\tau}(r)$ for all $r \in \mathbb{N}$.

THEOREM 1.2 [14, Prop. 5.2]. Let Γ be a finite positive pseudograph with at least one edge. Then deg $P_{\Gamma}(r) = q - p + b$, where q is the number of edges of Γ , p the number of vertices, and b the number of connected components which are bipartite.

For reasons which will become clear shortly, we define the *dimension* of Γ , denoted dim Γ , by dim $\Gamma = 1 + \deg P_1(r)$. In [14, p. 630], the problem was raised of obtaining a reasonable upper bound on deg $Q_1(r)$. It is trivial that deg $Q_1(r) \leq \deg P_1(r)$, and [14, Cor. 2.10] gives a condition for $Q_1(r) = 0$. Empirical evidence suggests that if Γ is a "typical" pseudograph, then deg $Q_1(r)$

Received November 11, 1975.

15.					
16.	<u>A Brylawski decomposition for finite ordered sets</u> , <i>Discrete Math.</i> 4 (1973), 77-82.				
	Review of Claude Berge, Principles of Combinatorics, in Bull. Amer. Math. Soc. 77 (1971), 685-68	39.			
17.	A combinatorial packing problem (with five other authors), SIAM-AMS Proc. 4 (1971), 97-108.				
18.					
10	Acyclic orientations of graphs, Discrete Math. 5 (1973), 171-178.				
19.	Linear homogeneous diophantine equations and magic labelings of graphs, Duke Math. J. 40 (1973)),			
	607-632.				
20.	Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1)	974),			
21.	273-277.				
	Finite lattices and Jordan-Hölder sets, Algebra Universalis 4 (1974), 361-371.				
22.					
22	Combinatorial reciprocity theorems, Advances in Math. 14 (1974), 194-253.				
23.	Combinatorial reciprocity theorems in Combinatorics (Part 2) (M Hall Jr. and J. H. Van Lint eds	.			
	Mathematical Centre Tracts 56 , Mathematisch Centrum, Amsterdam, 1974, pp. 107-118.				
24.					
	Generating functions, in <i>Studies in Combinatorics</i> (GC. Rota, ed.), Mathematical Association of				
25.	America, 1978, pp 100-141.				
	Cohen-Macaulay rings and constructible polytopes, Bull. Amer. Math. Soc. 81 (1975), 133-135.				
26.					
27	Branchings and partitions (with L. Carlitz), Proc. Amer. Math. Soc. 53 (1975), 246-249.				
27.	The Upper Bound Conjecture and Cohen-Macaulay rings, Studies in Applied Math. 54 (1975), 135-	-142.			
28.					
	Binomial posets, Möbius inversion, and permutation enumeration, J. Combinatorial Theory (A) 20				
29.	(1970), 558-558.				
	Stirling polynomials (with I. Gessel), J. Combinatorial Theory (A) 24 (1978), 24-33.				
30.					
31	Hilbert functions of graded algebras, Advances in Math. 28 (1978), 57-83.	●臣	•	æ.	୬ବନ
51. Cı	rtis Greene () Richard Stanley: The Legend Part I: Early Ye	June 23,	2014		11 / 12

Combinatorial Reciprocity Theorems*

RICHARD P. STANLEY

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

CONTENTS

Notation	194
1. Binomial Coefficients	195
2. The Order Polynomial	197
3. Zeta Polynomials	200
a. Natural Partial Orders	202
b. ConvexPolytopes	203
c. The Dehn-Sommerville Equations	204
4. Chromatic Polynomials	205
5. (P, ω)-Partitions and Generating Functions	206
6. The Ehrhart-Macdonald Law of Reciprocity	207
7. Homogeneous Linear Equations	211
a. Self-Reciprocal Systems	214
b. Connection with Partially Ordered Sets	215
c. Connection with Convex Polytopes	216
d. Magic Squares	216
8. Reciprocal Domains	217
9. Inhomogeneous Equations	225
10. The Monster Reciprocity Theorem	237
11. Ramifications of the Monster Theorem	247

A combinatorial reciprocity theorem is a result which establishes a kind of duality between two related enumeration problems. This rather vague concept will become clearer as more and more examples of such theorems are given. We will begin with simple, known results and see to what extent they can be generalized. The culmination of our efforts will be the "Monster Reciprocity Theorem" of Section 10,

* The research was supported by a Miller Research Fellowship at the University of California at Berkeley and by NSF Grant No. P36739 at Massachusetts Institute of Technology.

194 Copyright @ 1974 by Academic Press, Inc. All rights of reproduction in any form reserved.

Ask any of the chickies in my pen They'll tell you I'm the biggest Mutha. . . .Hen I love them all and all of them love me -Because the system works; the system called reciprocity!

< ロト < 同ト < ヨト < ヨト

Ask any of the chickies in my pen They'll tell you I'm the biggest Mutha. . . .Hen I love them all and all of them love me -Because the system works; the system called reciprocity!

Got a little motto Always sees me through -When you're good to Mama Mama's good to you!

Ask any of the chickies in my pen They'll tell you I'm the biggest Mutha. . . .Hen I love them all and all of them love me -Because the system works; the system called reciprocity!

Got a little motto Always sees me through -When you're good to Mama Mama's good to you!

Let's all stroke together Like the Princeton crew -When you're strokin' Mama Mama's strokin' you!

Curtis Greene ()

Ask any of the chickies in my pen They'll tell you I'm the biggest Mutha. . . .Hen I love them all and all of them love me -Because the system works; the system called reciprocity!

Got a little motto Always sees me through -When you're good to Mama Mama's good to you!

Let's all stroke together Like the Princeton crew -When you're strokin' Mama Mama's strokin' you!

HAPPY BIRTHDAY RICHARD!

Curtis Greene ()

Richard Stanley: The Legend Part I: Early Ye

June 23, 2014 12 / 12