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Part I

Symbols, Systems and Sets







CHAPTER 1

Discrete Systems

Discrete mathematics is the study of techniques, ideas and modes of
reasoning that are indispensable in applied disciplines such as com-
puter science or information technology. It is also a gateway into advanced
theoretical mathematics.

To understand its focus, it is helpful to appreciate the meaning of—and
differences between—analog and discrete systems. Discrete mathematics
is the study of discrete (as opposed to analog) systems.

1.1 Analog versus Discrete Systems

The difference between analog and discrete systems is that analog systems
involve smooth, continuous, unbroken movement or structures, whereas
discrete systems involve individual parts or states that are clearly separate
from one another.

This is illustrated by the difference between a traditional (analog) clock
and a digital (discrete) clock. The hands of an analog clock move in a fluid,
continuous motion. In the one minute between 10:12 and 10:13, the minute
hand moves in a smooth, unbroken motion passing through all instants
between these two times. In an hour it passes through infinitely many
different instants of time. This is an analog system. By contrast, a digital
clock jumps from 10:12 to 10:13 in an instant. In an hour it records a finite
(in fact, 60) instants of time. This is a discrete system.

10:12

Analog clock Discrete (digital) clock

Although calculus is not really essential to mastering most topics in
discrete mathematics, it can help us gain a deeper understanding the
difference between analog and discrete systems. Calculus is based on the
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real number system, which is an analog system. We visualize the real
numbers as a smooth, unbroken, infinitely long line. You can put your finger
on 0 and move it continuously to the right in a fluid motion, stopping at
(say) 3. As you do this, your finger moves through infinitely many numbers,
one for each point on the line from 0 to 3. This is an analog system.

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

Real numbers (analog system) Integers (discrete system)

Discrete mathematics is more concerned with number systems such as
the integers (whole numbers) ...—3,-2,-1,0,1,2,3... whose parts (numbers
in this case) are discrete entities. Putting your finger at 0 and moving to
the right, you jump from 0, to 1, to 2, to 3, and so on.

But discrete mathematics deals with much more than just integers.
More broadly, it encompasses mathematical structures or processes that
consists of individual parts. You can think of discrete mathematics as
the discipline concerned with mathematical structures whose parts can be
described by a finite sequence of characters from a computer keyboard.

For example, the set of integers is a discrete mathematical system be-
cause even though there are infinitely many integers (and you’d never be
finished typing all of them), any one integer can be expressed by typing a
finite sequence of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and possibly a minus
sign “~” (for negative integers).

Similarly, the set of rational numbers (fractions of integers) is also a
discrete system because any rational number, such as —397/24 is expressible
as a finite sequence of the symbols 0,1,2,3,4,5,6,7,8,9,— and /.

By contrast, the system of real numbers is not a discrete system: it has
irrational numbers like 7 = 3.14159265359... that cannot be typed because
they involve infinitely many decimal places.

In this sense, the times represented by a digital clock are a discrete
system because any time can be expressed with an integer from 1 to 12,
followed by a colon, and then a number from 00 to 59. (As in 5:00, or 11:45.)
An analog clock is inherently different. For an instant, an analog clock
reads 7 o’clock, which occurs a small fraction of a second after 3:14. But a
digital clock jumps from 3:14 to 3:15, blissfully ignoring the messiness of
irrational numbers such as 7. This is the spirit of discrete mathematics.
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Even the process of rolling a dice two times in a row is a discrete system,
as there are exactly 36 outcomes.

OO 9 09 68 O G O OO B9 O OF
15500 3 5 3 53 15 53 2 3 1 0 3 A 53 e W X 5 I 4 )
53 0 5 3 5 53 [ 3 G 6 G 6

Any one of these outcomes could be encoded in symbols, as (x,y), where x
and y are integers between 1 and 6, representing the results of the first and
second rolls. (For example, (&) is encoded as (3,5), etc.) The set of all such
outcomes is called a sample space. Such sets can be useful. For example,
if we wanted to know the probability of rolling a double, we can see that
exactly 6 of these 36 equally likely outcomes is a double, so the probability
of rolling a double is % = %. Chapters 2 and 4 introduce sets and counting,
theories relevant to situations such as this, and we investigate the theory
of probability in Chapter 5.

Another example of a discrete structure is a graph. In mathematics,
the word “graph” is used in two different contexts. In algebra or calculus
a graph is a visual description of a function, graphed on a coordinate axis.
Although we do use such graphs in discrete mathematics, we more often
use the word a graph to mean a network of nodes with connections between
them. Here is a picture of a typical graph.

a b

e d

Its nodes are described by the discrete set {a,b,c,d, e}, and its connections
(called edges) are {ab,bc,cc,de,ea,eb}. Therefore this particular graph is
completely described by typing the information

({a,b,c,d,e}, {ab,bc,cc,de,ea,eb}).

The theory of graphs is a major branch of discrete mathematics. Graphs have
wide ranging applications. For example, the Internet is a huge graph whose
nodes are web pages and whose edges are links between them. Google’s
search algorithm involves the mathematics of this structure.

The fact that a graph can be described by sets of vertices and edges is
another indication of the fundamental importance of sets, which we will
study carefully in Chapter 2.
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This book is organized as follows. Chapter 2 introduces the theory of
sets, a language capable of describing any discrete (or analog) structure.
This is followed by a short chapter on logic, a system that bridges the gap
between natural language and mathematics, giving precision to the modes
of speech we use in discussing mathematics.

Chapters 4 and 5 build on this, laying the foundation for enumerating
or counting the parts of discrete structures. Chapter 6 introduces the study
of algorithms. a fundamental idea that is at the heart of computer science.
Chapter 7 covers some additional topics in logic.

As you delve deeper into mathematics and its applications, you will
find yourself in situations where you need to prove that a certain result is
correct (i.e., true), and you will need to read and understand proofs written
by others. This is the topic of chapters 8 through 14. This is a major part of
the text, and it will build on the previous chapters. This material is applied
in Chapter 15, a brief introduction to graph theory. Chapters 16 and 17 deal
with the important topics of relations and functions. All of this material is
essential for real progress in mathematics and computer science.

Although calculus is not necessary to understand the ideas in this book,
you have probably studied it, and that background will serve you well. For
instance, calculus requires a certain fluency in algebra and arithmetic, and
that fluency is equally essential in discrete mathematics. Calculus requires
a working knowledge of functions, and that background will be useful. It
has also given you a grounding in certain useful notations, such as the
sigma notation for expressing sums. Given a list of numbers a1,as,as,...,a,,
their sum is compactly expressed as

n
aitag+tag+---+a, = Zak.
k=1

All of these background topics will play a role for us.

Before beginning with the theory of sets, we pause to review the binary
and hexadecimal number systems. Although not absolutely fundamental for
most of this text, they are important because they are the number systems
that form the basis for the internal workings of computer circuitry and
computations. These systems will also show up in certain examples and
exercises throughout the text.

Exponential notation makes an appearance here. Recall that for any
number a and positive integer n, the power a” =a-a----- a is the product of
a with itself n times. Recall from algebra that if a is non-zero, then a° = 1.
In the following pages you will encounter 10°=1, 2°=1 and 16° = 1.
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1.2 The Binary Number System

In daily life we use the familiar base-10 number system, also called the
Hindu-Arabic number system, or the decimal number system. It uses
ten symbols 0,1,2,3,4,5,6,7,8,9, representing the quantities zero through
nine. There is no single symbol for the quantity ten — instead we ex-
press it as the combination “10,” signifying that ten equals 1 ten plus
0 ones. Any other positive integer is represented as a string of symbols
0,1,2,3,4,5,6,7,8,9, standing for the sum of the digits in the string times
powers of ten, decreasing to the zeroth power 10° = 1. For example,

7-10% + 4-102 +0-10' +6-10°
7-1000+4-100+0-10 + 6-1.

7406

Thus the number seven-thousand-four-hundred-six is represented as 7406,
with a 7 in the thousand’s place, a 4 in the hundred’s place, a 0 in the ten’s
place, and a 6 in the one’s place. There is little need to elaborate because
you internalized this early in life.

There is nothing sacred about base of ten, other than the fact that it
caters to humans (who have ten fingers). If we had eight fingers, our number
system would surely be base-8. Actually, for any integer n > 1 there is a
base-n number system using n symbols. Although base-10 is convenient
for humans, base-2 is better suited for computer circuitry, because its two
symbols can be represented by a zero or positive voltage.

The base-2, or binary number system uses only two digits, 0 and 1,
representing the quantities zero and one. There is no single symbol for the
number two — instead we express it as the combination “10,” signifying that
two equals 1 two plus 0 ones. Any other quantity is represented as a string
of the symbols 0,1, standing for the sum of the digits in the string times
powers of two, decreasing to 2° = 1.

For example, the base-2 number 10011 equals the base-10 number

1-244+0-22+0.22+1-21+1-20 =

1-16+0-8+0-4+1-2+1-1 19.

The number nineteen is represented as “10011” in base-2 because it is the
sum of 1 sixteen, 0 eights, 0 fours, 1 two and 1 one. It is represented as
“19” in base-10 because it is the sum of 1 ten and 9 ones.

For clarity, we sometimes use a subscript to indicate what base is being
used, so the above computation is summarized as 100112 = 194.
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Table 1.1 shows the first sixteen decimal numbers in the left column,
with their corresponding binary representations on the right. Be sure you
agree with this. For instance, 1103 = 619 because 1-22+1-21+0-20 =6.

binary powers of 2 decimal
number 16 8 4 2 1 number
0| = 01 = 0
1= 11 = 1

10 | = 12401 = 2
11 | = 12411 = 3
100 | = 1-4+0-2+0-1 = 4
101 | = 1-4+0-2+1-1 = 5
110 | = 14+1-2+0-1 = 6
111 | = 1-4+1-2+1-1 = 7
1000 | = 1.8+0-4+0-2+0-1 = 8
1001 | = 1.8+0-4+0-2+1-1 = 9
1010 | = 1-8+0-4+1-2+0-1 = 10
1011 | = 1-8+0-4+1-2+1-1 = 11
1100 | = 1-8+1:4+0-2+0-1 = 12
1101 | = 1-8+1-4+0-2+1-1 = 13
1110 | = 1-8+1-4+1-2+0-1 = 14
1111 | = 1-8+1-4+1-2+1-1 = 15
10000 | = 1:16+0-8+0-4+0-2+0-1 = 16

Table 1.1. Binary and decimal representations of numbers

In converting between binary and decimal representations of numbers,
it’s helpful to know the various powers of 2. They are listed in Table 1.2.
For example, 2° =2-2-2-2-2 =32, so 32 appears below 25.

212 211 210 29 28 27 26 25 24 23 22 21 20

4096 | 2048 | 1024 | 512 | 256 | 128 |64 |32 |16 | 8| 4| 2| 1

Table 1.2. Powers of 2

Table 1.1 suggests a method for converting binary numbers to deci-
mal. To convert a given a binary number to decimal, multiply its digits by
decreasing powers of two, down to 2° = 1, and add them. For example,

1-22+41-22+1-21+0-20
1-8+1-4+1-2+0-1 = 14.

1110
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Example 1.1 Convert the binary number 110101 to decimal.
Solution: We simply write this number as a sum of powers of 2 in base-10.

110101 = 1-25 + 1-2* +0-22+1-22 + 0-21 + 1-2°
= 132 +1-16+0-8+14 +0-2 +1-1 = 53
Thus 1101015 = 5319, that is, 110101 (base 2) is 53 (base 10). )

Converting decimal to binary involves running this process in reverse,
which can involve some reverse engineering.
Example 1.2 Convert the decimal number 347 to binary.

Solution: We need to find how 347 is a sum of powers of 2. Table 1.2 shows
that the highest power of 2 less than 347 is 28 = 256, and

347 256 +91

= 28 491

Now look at the 91. Table 1.2 shows that the highest power of 2 less than
91 is 26 =64, and 91 =64 + 27 = 26 + 27, so the above becomes

347 =28 +25+27,
From here we can reason out 27 =16+8+2+1=2%+23 1+ 21 + 20, Therefore
347=28+261 2%+ 23 1214 20,
Powers 27, 25 and 22 do not appear, so we insert them, multiplied by O:
347=1-284+0-2"+1-2°+0-2°+1-2*+1-23+0-2%2 +1-2' +1-2°.

Therefore 347 is the base-2 number 101011011. Vo)

Various cultures throughout history have used base-n number systems.
The ancient Babylonians used a base-60 system with 60 different cuneiform
digits (including a blank, used for what we now call 0). The Aztecs used
base-20. In the modern era, some early computers used the base-3 system,
with three digits represented by a positive, zero or negative voltage.

Today the binary system is the foundation for computer circuitry, with 0
represented by a zero voltage, and 1 by a positive voltage. Though the binary
system has just two digits, it is inefficient in the sense that many digits are
needed to express even relatively small numbers. Base-16 remedies this. It
is closely related to binary, but it is much more compact.
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1.3 The Hexadecimal Number System

Base-16 is called the hexadecimal number system. It uses 16 symbols,
including the familiar ten symbols 0,1,2,3,4,5,6,7,8,9 representing the num-
bers zero through nine, plus the six additional symbols A, B, C, D, E, and F,
representing the numbers ten through fifteen.

Table 1.3 summarizes this. It shows the numbers zero through fifteen
in decimal, binary and hexadecimal notation. For consistency we have
represented all binary numbers as 4-digit strings of 0’s and 1’s by adding
zeros to the left, where needed.

decimal | binary | hexadecimal
0| 0000 0
1| 0001 1
2| 0010 2
3| 0011 3
4| 0100 4
51| 0101 5
6| 0110 6
7 0111 7
8| 1000 8
9| 1001 9
10 | 1010 A
11| 1011 B
12 | 1100 C
13| 1101 D
14 | 1110 E
15| 1111 F

Table 1.3. The first sixteen integers in decimal, binary and hexadecimal

The number sixteen is represented as 10 in hexadecimal, because sixteen
is 1 sixteen and 0 ones. Note 1619 = 1016 = 100005.

Just as powers of two are fundamental to interpreting binary numbers,
powers of sixteen are necessary for understanding hexadecimal. Here are
the first few powers. (Memorizing these is not essential.)

16° 164 | 163 | 162 | 16! | 160

1,048,576 | 65,536 | 4096 | 256 | 16 1

Table 1.4. Powers of 16
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We can convert between hexadecimal and decimal in the same way that
we converted between binary and decimal.

Example 1.3 Convert the hexadecimal number 1A2C to decimal.

Solution: Simply write 1A2C as a sum of powers of sixteen in hexadecimal,
then convert the sums to decimal. (In interpreting the first line, recall that
10 is the hexadecimal representation of sixteen, i.e., 1015 = 161¢.)

1A2C = 1-10° + A-10%2 +2-101 + C-10°  (hexadecimal)
= 1-16% + 10-162+2-161+12-16°  (decimal)
= 1-4096+10-256+2-16 + 12-1 (decimal)
= 6700 (decimal)
Thus 1A2C1g = 670010, that is, 1A2C (base 16) is 6700 (base 10). o)

Converting between hexadecimal and binary is extremely simple. We
will illustrate the technique first, before explaining why it works. Suppose
we wish to convert the binary number 111111001000001011 to hexadecimal.
The first step is to divide the digits of this binary number into groups of
four, beginning from the right.

11 1111 0010 0000 1011

If necessary, add extra zeros to left end of the left-most grouping, so that it
too contains four digits.

0011 1111 0010 0000 1011

Now use Table 1.3 (or innate numerical reasoning) to convert each 4-digit
binary grouping to the corresponding hexadecimal digit.

0011 1111 0010 0000 1011
3 F 2 0 B

We conclude that 1111110010000010115 = 3F20B 4.

The reverse process works for converting hexadecimal to binary. Suppose
we wanted to convert 1A2C to binary. Taking the reverse of the above
approach (and using Table 1.3 if necessary), we write

1 A 2 C
0001 1010 0010 1100.

Ignoring the three 0’s on the far left, we see 1A2C15=110100010 11005.



12 Discrete Systems

It is easy to see why this technique works. Just use the computation
from Exercise 1.3 on page 11, but convert 1A2C to binary instead of decimal.
(Here we use the fact that 1015 = 100005.)

1-10% + A-10%2 + 2-10! + C-10° (base-16)
= 1-100003 +1010- 100002 + 10-10000* +1100-10000° (binary).

1A2C

Doing the addition in columns, we get:

1 0000 0000 0000
1010 0000 0000

10 0000

+ 1100

11010 0010 1100

This is the same number we would get by replacing each digit in 1A2C with
its binary equivalent.

Exercises for Chapter 1
A. Convert the decimal number to binary and hexadecimal.
1. 347 2. 10,000 3. 2039 4. 64
5. 256 6. 257 7. 258 8. 258

B. Convert the binary number to hexadecimal and decimal.
9. 110110011 10. 10101010 11. 1111111 12. 111000111
13. 101101001 14. 10011010 15. 1000001 16. 100100101

C. Convert the hexadecimal number to decimal and binary
17. 123 18. ABC 19. 5A4D 20. F12
21. BOCA 22, COFFEE 23. BEEF 24. ABBA




Solutions for Chapter 1

1.4 Solutions for Chapter 1

1.

11.

13.

15.

17.

19.

21.

23.

347=256+64+16+8+2+1=1-2840-27+1-264+0.25+1.24+1-23+1.224+1.21+1.20,

Thus 34719 =1010110113 = 0001 0101 10112 = 15B1s.

. 2039=1024+512+256+128+64+32+16+4+2+1=

1-21041.2941.284+41.2741-2641.2°+1.2440-23+1-22+1-21+1.20,
Thus 203919 =111111101115=01111111 01115 = 7F716.

. 256=28=.2840-274+0-26+0-2540-24+0-23+0-22+0-21 +1-20,

Thus 25670 = 1000000002 = 0001 0000 00002 = 10016.

. 258=256+2=-28+0-27+0-26+0-25+0-24+0-23+0-22+1-21+0-29,

Thus 2589 = 1000000102 = 0001 0000 00102 = 10216.

. 1101100115 =00011011 00115 = 1B315=1-162+11-161 +3-16° = 4351,

11111119 =011111119=7F1=7-16 + 15 = 1271,.
1011010013 = 0001 0110 10013 = 16916 = 1-16% +6-16+9 = 3611.
1000001 = 010000013 =411 =4-16+1=651.

12316=1-162+2-16' +3-16° =256 + 32+ 3 = 2911.
12316 = 0001 0010 00115 = 1001000115.

5A4D1=5-163+10-162+4-161+13-16° =5-4096 +10-256 +4- 16 + 13 = 231171o.

5A4D16=01011010010011012 = 1011010010011015.

BOCA15=11-162+0-162+12-161+10-16°=11-4096+0-256 + 12- 16 + 10 = 452581.

BOCA;6 =10110000 110010102 = 1011000011002

BEEF5=11-163+14-162+14-161+15-16911-4096 + 14- 256 + 14- 16 + 15 = 4887919.

BEEF;6=10111110111010102 =10111110111010103.



CHAPTER 2

Sets

11 of mathematics can be described with sets. This becomes more and

more apparent the deeper into mathematics you go. It will be apparent

in this course, and beyond it. The theory of sets is a language that is perfectly
suited to describing and explaining all types of mathematical structures.

2.1 Introduction to Sets

A set is a collection of things. The things in the collection are called ele-
ments of the set. We are mainly concerned with sets whose elements are
mathematical entities, such as numbers, points, functions, etc.

A set is often expressed by listing its elements between commas, enclosed
by braces. For example, the collection {2,4,6,8} is a set which has four
elements, the numbers 2,4,6 and 8. Some sets have infinitely many elements.
For example, consider the collection of all integers,

{...,-4,-3,-2,-1,0,1,2,3,4,...}.

Here the dots indicate a pattern of numbers that continues forever in both
the positive and negative directions. A set is called an infinite set if it has
infinitely many elements; otherwise it is called a finite set.

Two sets are equal if they contain exactly the same elements. Thus
{2,4,6,8} = {4,2,8,6} because even though they are listed in a different order,
the elements are identical; but {2,4,6,8} # {2,4,6,7}. Also

{..-4,-3,-2,-1,0,1,2,3,4...} ={0,-1,1,-2,2,-3,3,-4,4,...}.

We often use uppercase letters to stand for sets. In discussing the set
{2,4,6,8} we might declare A = {2,4,6,8} and then use A to stand for {2,4,6,8}.
To express that 2 is an element of the set A, we write 2€ A, and read this as
“2is an element of A,” or “2isin A,” or just “2in A.” We alsohave4€e A,6€ A
and 8€ A, but 5¢ A. We read this last expression as “5 is not an element of
A, or “5 not in A.” Expressions like 6,2€ A or 2,4,8 € A are used to indicate
that several things are in a set.
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Some sets are so significant that special symbols are reserved for them.
The set of natural numbers (the positive whole numbers) is denoted by N:

N={1,2,3,4,5,6,7,...}.

The set of integers
z={...,-4,-3,-2,-1,0,1,2,3,4,...}

is another fundamental set. The symbol R stands for the set of all real
numbers, a set that is undoubtedly familiar to you from calculus. Other
special sets will be listed later in this section.

Context can play a role in our interpretation of sets. If we are using
binary notation for integers, then N={1,10,11,100,101,110,111,...}. Thus

{1,2,3,4,5,6,7,...} = {1,10,11,100,101,110,111,...}

because both sets represent the same thing — the set of natural numbers.
(The symbol for a particular number is not the same thing as the number
itself, just as your name is not the same thing as you yourself. Here, for
instance 5 = 1013, so 5 and 101 represent the same thing, namely the number
five.) But if we are dealing strictly with decimal notation, then

{1,2,8,4,5,6,7,...} #{1,10,11,100,101,110,111,...}

because these sets contain different numbers. To keep things simple, we
will almost use the binary number system when expressing sets of numbers.

Sets need not have just numbers as elements. The set B = {T,F} consists
of two letters, perhaps representing the values “true” and “false.” The set
C ={a,e,i,o0,u} consists of the lowercase vowels in the English alphabet.
The set D ={(0,0),(1,0),(0,1),(1,1)} has as elements the four corner points
of a square on the x-y coordinate plane. Thus (0,0) € D, (1,0) € D, etc.,
but (1,2) ¢ D (for instance). It is even possible for a set to have other sets
as elements. Consider E = {1,{2,3},{2,4}}, which has three elements: the
number 1, the set {2,3} and the set {2,4}. Thus 1€ E and {2,3} € E and
{2,4} €E. But note that 2¢ E, 3¢ E and 4 ¢ E.

Consider the set M ={[39],[39],[1 9]} of three two-by-two matrices. We
have [J3] € M, but [§ 1] ¢ M. Letters can serve as symbols denoting a set’s
elements: Ifa=[39],6=[}9] and ¢ =[1 9], then M ={a,b,c}.

If X is a finite set, its cardinality or size is the number of elements
it has, and this number is denoted as |X|. Thus for the sets above, |A| =4,
IB|=2,|C|=5,|D|=4, |E|=3 and [M|=3.
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There is a special set that, although small, plays a big role. The empty
set is the set {} that has no elements. We denote it as @, so @ = {}. Whenever
you see the symbol @, it stands for {}. Observe that |@| = 0. The empty set is
the only set whose cardinality is zero.

Be careful in writing the empty set. Don’t write {#} when you mean @.
These sets can’t be equal because @ contains nothing while {@} contains
one thing, namely the empty set. If this is confusing, think of a set as a
box with things in it, so, for example, {2,4,6,8} is a “box” containing four
numbers. The empty set ¢ = {} is an empty box. By contrast, {#} is a box
with an empty box inside it. Obviously, there’s a difference: An empty box
is not the same as a box with an empty box inside it. Thus ¢ # {#}. (You
might also note || =0 and |{g}| = 1 as additional evidence that ¢ # {®}.)

This box analogy can clarify sets. The set F = {@,{#},{{o}}} may look
strange but it is quite simple. It is a box containing three things: an empty
box, a box containing an empty box, and a box containing a box containing
an empty box. Thus |F|=3. The set I = {N,Z} is a box containing two boxes,
a box of natural numbers and a box of integers. Thus |I| = 2.

A special notation called set-builder notation is used to describe sets
that are too big to list between braces. Consider the set of even integers
E={...,-6,-4,-2,0,2,4,6,...}. In set-builder notation this set is written as

E={2n:nez}.

We read the first brace as “the set of all things of form,” and the colon as
“such that.” So the expression E = {2n:n € Z} is read as “E equals the set of
all things of form 2n, such that n is an element of Z.” The idea is that E
consists of all possible values of 2n, where n takes on all values in Z.

In general, a set X written with set-builder notation has the syntax

X = {expression :rule},

where X is understood to contain all values of “expression” that are specified
by “rule.” For example, the set E above is the set of all values of the expres-
sion 2n that satisfy the rule n € Z. The same set can be expressed many ways.
For example, E = {2n:n € Z} = {n :n is an even integer} = {n :n = 2k,k € Z}.
Another common way of writing it is

E={neZ:niseven},

read “E is the set of all n in Z such that n is even.” Some writers use a bar
instead of a colon; for example, E = {n € Z| n is even}. We use the colon.
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Example 2.1 Here are some further illustrations of set-builder notation.

1. {n:nis a prime number}=1{2,3,5,7,11,13,17,...}
2. {neN:nisprime}=1{2,3,57,11,13,17,...}

3. {n?:nez}={0,1,4,9,16,25,...}

4. {xeR: x?2-2= 0} = { —\/§}

5. {xez: x2-2= 0}=9

6. {xezZ:lxl<4}={-3,-2,-1,0,1,2,3}

7. {2x:xeZlxl<4}={-6,-4,-2,0,2,4,6}

8. {xez:|2xl<4}={-1,0,1}

Items 6-8 highlight a conflict of notation that we should be alert to. The
expression |X| means absolute value if X is a number and cardinality if
X is a set. The distinction should always be clear from context. Consider
{x€Z:|x| <4} in item 6 above. Here x € Z, so x is a number (not a set),
and thus the bars in |x| must mean absolute value, not cardinality. On the
other hand, suppose A = {{1,2},{3,4,5,6},{7}} and B={X € A:|X| <3}. The
elements of A are sets (not numbers), so the |X| in the expression for B must
mean cardinality. Therefore B = {{1,2},{7}}. 2

Example 2.2 Describe the set A ={7a+3b : a,b € Z}.

Solution: This set contains all numbers of form 7a + 3b, where a and b
are integers. Each such number 7a + 3b is an integer, so A contains only
integers. But which integers? If n is any integer, then n = 7n + 3(-2n), so
n="Ta+3bwherea=nand b=-2n. ThusneA, and so A=7. o)

We close this section with a summary of special sets. These are sets
that are so common that they are given special names and symbols.

* The empty set: ¢ ={}
*  The natural numbers: N={1,2,3,4,5,...}
* Theintegers: Zz={...,-3,-2,-1,0,1,2,3,4,5,...}
* The rational numbers: Q={x : x = %, where m,n€Z and n # 0}
* The real numbers: R
We visualize the set R of real numbers is as an infinitely long number line.

-4 -3 -2 -1 0 1 2 3 4
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In the parlance of Chapter 1, R is not a discrete system. But it is a funda-
mental set that is nonetheless important in discrete mathematics.

Notice that Q is the set of all numbers in R that can be expressed as a
fraction of two integers. You may be aware that Q #R, as v2¢ Q but v2eR.
(If not, this point will be addressed in Chapter 10.)

In calculus you encountered intervals on the number line. Like R, these
too are infinite sets of numbers. Any two numbers a,b € R with a < b give
rise to various intervals. Graphically, they are represented by a darkened
segment between a and b. A solid circle at an endpoint indicates that that
number is included in the interval. A hollow circle indicates a point that is
not included in the interval.

* Closed interval: [a,b] = {x€R:a <x < b} . 3
* Openinterval: (a,b)={xeR:a<x<b} o g
* Half-open interval: (a,b]={x€R:a<x<b} 5 3
* Half-open interval: [a,b)={x€R:a<x<b} . 4
* Infinite interval: (a,00)={xe€R:a <x} 3 >
* Infinite interval: [a,00)={x€R:a <x} . >
* Infinite interval: (—o0o,b) = {x e R:x < b} < 4
* Infinite interval: (-oo0,b] = {x e R:x < b} < 3

Each of these intervals is an infinite set containing infinitely many
numbers as elements. For example, though its length is short, the interval
(0.1,0.2) contains infinitely many numbers, that is, all numbers between
0.1 and 0.2. It is an unfortunate notational accident that (a,b) can denote
both an open interval on the line and a point on the plane. The difference
is usually clear from context. In the next section we will see yet another
meaning of (a,b).

Exercises for Section 2.1

A. Write each of the following sets by listing their elements between braces.
1. {bx-1:x€7} 5. {xeR:x%>=3}
2. {8x+2:x€7} 6. {xeR:x%=9}
3. {xez:-2=<x<T} 7. {xeR:x%+5x=-6}
4. {xeN:-2<x<T} 8. {xeR:x3+5x2 = —6x}
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9. {xeR:sinmx =0} 13. {xe€Z:|6x| <5}
10. {xeR:cosx =1} 14. {5x:x€7,|2x| <8}
11. {xeZ:|x| <5} 15. {5a+2b:a,be 7}
12. {xeZ:|2x| <5} 16. {6a+2b:a,be 7}
B. Write each of the following sets in set-builder notation.
17. {2,4,8,16,32,64...} 23. {3,4,5,6,7,8}
18. {0,4,16,36,64,100,...} 24. {-4,-3,-2,-1,0,1,2}
19. {...,-6,-3,0,3,6,9,12,15,...} 25. {...,3, 111248, .}
20. {...,-8,-3,2,7,12,17,...} 26. {...,5,5,2,1,3,9,27,...}
21. {0,1,4,9,16,25,36,...} 27. {...,-n,-2,0,%, 7,3 27,52 ...}
22. {3,6,11,18,27,38,...} 28. {.. ,_g -30,2323L9 .}
C. Find the following cardinalities of the following sets
29. {{1},{2,{3,4}},8} 34. {xeN:|x| <10}
30. {{1,4},a,b,{{3,4}},{2}} 35. {xeZ:x%<10}
31. {{{1},{2,{3,4}},0}} 36. {xEN:x2<10}
32. {{{1,4},a,0,{{3,4}}.{2}}} 37. {xEN:x2 <0}
33. {xezZ:|xI<10} 38. {xeN:5x <20}
D. Sketch the following sets of points in the x-y plane.
39. {(x,y):x€[1,2],y€[1,2]} 46. {(x,y):x,yeR,x%+y% <1}
40. {(x,y):x€[0,1],y €[1,2]} 47. {(x,y):x,yeR,y=x%? -1}
41. {(x,y):x€[-1,1],y =1} 48. {(x,y):x,yeR,x>1}
42, {(x,y):x=2,y€[0,11} 49. {(x,x+y):xeR,ye 7}
43. {(x,y):|x| =2,y €[0,11} 50. {(x,%):xeﬂ@,yel\l}
44. {(x,x?):xeR} 51. {(x,y)eR? : (y—x)(y+x)=0}
45. {(x,y):x,yeRx2+y? =1} 52. {(x,y)€R? : (y —x®)(y +x?)=0}

E. These problems concern sets of numbers in binary or hexadecimal notation.

53. Consider the set {x € N:100 < x < 1011} whose elements are expressed in
binary form. List the elements of this set.

54. Consider the set {x € N:100 < x < 1011 and x is even} whose elements are
expressed in binary form. List the elements of this set.

55. Consider the set {x € N: A <x <20} whose elements are expressed in hex-
adecimal form. List the elements of this set.

56. Consider the set {x € N: EA4 < x < EBO} whose elements are expressed in
hexadecimal form. List the elements of this set.
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2.2 The Cartesian Product

Given two sets A and B, it is possible to “multiply” them to produce a new
set denoted as A x B. This operation is called the Cartesian product. To
understand it, we must first understand the idea of an ordered pair.

Definition 2.1 An ordered pair is a list (x,y) of two things x and vy,
enclosed in parentheses and separated by a comma.

For example, (2,4) is an ordered pair, as is (4,2). These ordered pairs are
different because even though they have the same things in them, the order
is different. We write (2,4) # (4,2). Right away you can see that ordered
pairs can be used to describe points on the plane, as was done in calculus,
but they are not limited to just that. The things in an ordered pair don’t
have to be numbers. You can have ordered pairs of letters, such as (m,?),
ordered pairs of sets such as ({2,5},{3,2}), even ordered pairs of ordered
pairs like ((2,4),(4,2)). The following are also ordered pairs: (2,{1,2,3}) and
(R,(0,0)). Any list of two things enclosed by parentheses is an ordered pair.
Now we are ready to define the Cartesian product.

Definition 2.2 The Cartesian product of two sets A and B is another
set, denoted as A x B and defined as A xB ={(a,b):a € A,b € B}.

Thus A x B is a set of ordered pairs of elements from A and B. For
example, if A = {k,¢,m} and B = {q,r}, then

AxB={(k,q), (k,r), (¢,q), (¢,r), (m,q), (m,r) }.

Figure 2.1 shows how to make a schematic diagram of A x B. Line up the
elements of A horizontally and line up the elements of B vertically, as if
A and B form an x- and y-axis. Then fill in the ordered pairs so that each
element (x,y) is in the column headed by x and the row headed by »y.

B A xB
r (k,r) (¢,r) (m,r)
q (k,q) (¢,q) (m,q)
C & ¢ m A

Figure 2.1. A diagram of a Cartesian product
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For another example, {0,1} x {2,1} = {(0,2),(0,1),(1,2),(1,1)}. If you are a
visual thinker, you may wish to draw a diagram similar to Figure 2.1. The
rectangular array of such diagrams give us the following general fact.

Fact 2.1 If A and B are finite sets, then |A x B| = |A|-|B|. \

Example 2.3 Suppose A = {(J,(3,63,63,63,63} is a set consisting of the six
faces of a dice. The Cartesian product A x A is diagramed below.

(e 36 (1) @68 ¢G6) G
CLE) EE) @) EE) EE) @)
€I ) O (LB ) ) E3E)
© G @) @O @) G @)
I ) O (D) EL) D) E)
© GO OO @O @O @GL) @)
o J

(6 80 ® B8 ®8 8 )a

Note that A x A has 6-6 = 36 elements. We can think of it as the set of
possible outcomes in rolling a dice two times in a row. Each element of the
product is an ordered pair of form

( result of 1st roll , result of 2nd roll ).

This models the sample space mentioned on page 5. Cartesian products are
useful for describing and analyzing such situations. £

The set R x R = {(x,y) : x,y € R} should be very familiar. It can be viewed
as the set of points on the Cartesian plane, and is drawn in Figure 2.2(a).
The set RxN = {(x,y):x € R,y € N} can be regarded as all of the points on
the Cartesian plane whose second coordinate is a natural number. This is
illustrated in Figure 2.2(b), which shows that RxN looks like infinitely many
horizontal lines at integer heights above the x axis. The set Nx N can be
visualized as the set of all points on the Cartesian plane whose coordinates
are both natural numbers. It looks like a grid of dots in the first quadrant,
as illustrated in Figure 2.2(c).
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R xR RxN N x N

(a) (b) (c)

Figure 2.2. Drawings of some Cartesian products

It is even possible to form Cartesian products of Cartesian products, as
in Rx(Nx2Z)={(x,(y,2):x €R, (y,2) eNx Z}.

We can also define Cartesian products of three or more sets by moving
beyond ordered pairs. An ordered triple is a list (x,y,z). The Cartesian
product of the three sets R, Nand Z is RxNx Z = {(x,y,2) :x€R, yeN, z € Z}.
Of course there is no reason to stop with ordered triples. In general,

A xAgx---x Ay ={(x1,x2,...,x,) : x; € A; for each i =1,2,...,n}.

Be mindful of parentheses. There is a slight difference between Rx (N x Z)
and R xNx Z. The first is a Cartesian product of two sets; its elements are
ordered pairs (x,(y,z)). The second is a Cartesian product of three sets; its
elements look like (x,y,z). To be sure, in many situations there is no harm
in blurring the distinction between expressions like (x,(y,z)) and (x, y,z), but
for now we regard them as different.

We can also take Cartesian powers of sets. For any set A and positive
integer n, the power A" is the Cartesian product of A with itself n times:

A" =AxAx-xA={(x1,%2,...,%) : X1,%2,...,%, € A}.

In this way, R? is the familiar Cartesian plane and R? is three-dimensional
space. You can visualize how, if R? is the plane, then 7% = {(m,n): m,n € 7}
is a grid of points on the plane. Likewise, as R? is 3-dimensional space,
73 = {(m,n,p): m,n,p € Z} is a grid of points in space.

In other courses you may encounter sets that are very similar to R*, but
yet have slightly different shades of meaning. Consider, for example, the
set of all two-by-three matrices with entries from R:

M={[%5%]:u,v,w,x,y,z€R}.
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This is not really all that different from the set
R6 = {w,v,w,x,y,2) : u,v,w,x,y,z €R}.

The elements of these sets are merely certain arrangements of six real
numbers. Despite their similarity, we maintain that M # RS, for two-by-
three matrices are not the same things as sequences of six numbers.

We close with one further example of a Cartesian power.

Example 2.4 We can describe the two sides of a coin by the set S = {H,T}.
The possible outcomes of tossing the coin seven times in a row can be
described with the Cartesian power S”. A typical element of S looks like

(H,H,T,H,T,T,T),

meaning a head was tossed first, then another head, then a tail, then a
head followed by three tails. We can thus regard the elements of S” as lists
of length 7 made from the symbols H and T.

Note that |S7| = 27 = 128. If this is not clear now, then it will be explained
fully in Chapter 4, where we will undertake a careful study of lists. ya)

Exercises for Section 2.2

A. Write out the indicated sets by listing their elements between braces.
1. Suppose A ={1,2,3,4} and B = {a,c}.

(a) AxB (c) AxA (e) xB (g) Ax(BxB)
(b) BxA (d) BxB ) (AxB)xB (h) B3

2. Suppose A = {r,e,0} and B ={0,1}.
(a) AxB (c) AxA (e) Axg (g) Ax(BxB)
(b) BxA (d) BxB (f) (AxB)xB (h) AxBxB

3. {xeR:x?=2}x{a,c,e} 6. {xeR:x?=x}x{xeN:x?=x}

4. {ne€zZ:2<n<5}x{ne€Z:|n|=5} 7. {8} x{0,2} x {0,1}
5. {xeR:x%2=2} x{xeR:|x|=2} 8. {0,1}4

B. Sketch these Cartesian products on the x-y plane R? (or R? for the last two).

9. {1,2,3} x{-1,0,1} 15. {1} x[0,1]

10. {-1,0,1} x{1,2,3} 16. [0,1]x {1}

11. [0,11x[0,1] 17. NxZ

12. [-1,11x[1,2] 18. ZxZ

13. {1,1.5,2} x[1,2] 19. [0,1]1x[0,1]x[0,1]

14. [1,2]x{1,1.5,2} 20. {(x,y)eR%:x%+y% <1} x[0,1]
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2.3 Subsets

It can happen that every element of a set A is an element of another set B.
For example, each element of A = {0,2,4} is also an element of B = {0,1,2,3,4}.
When A and B are related this way we say that A is a subset of B.

Definition 2.3 Suppose A and B are sets. If every element of A is also
an element of B, then we say A is a subset of B, and we denote this as
A cB. We write A £ B if A is not a subset of B, that is, if it is not true that
every element of A is also an element of B. Thus A £ B means that there
is at least one element of A that is not an element of B.

Example 2.5 Be sure you understand why each of the following is true.
1. {2,3,7'<{2,3,4,5,6,7}
{2,3,7} £ {2,4,5,6,7}
{2,3,7} = {2,3,7}
{2n:nez}cz
{(x,sin(x)) : x € R} < R?

{2,3,5,7,11,13,17,...} =N

® NS e N

RxNcCRxR Vo)

This brings us to a significant fact: If B is any set whatsoever, then ¢ < B.
To see why this is true, look at the last sentence of Definition 2.3. It says
that ¢ £ B would mean that there is at least one element of @ that is not an
element of B. But this cannot be so because @ contains no elements! Thus
it is not the case that @ £ B, so it must be that @ = B.

Fact 2.2 The empty set is a subset of every set, that is, ¢ < B
for any set B.

Here is another way to look at it. Imagine a subset of B as a thing you
make by starting with braces {}, then filling them with selections from B.
For example, to make one particular subset of B = {a,b,c}, start with {},
select b and ¢ from B and insert them into {} to form the subset {b,c}.
Alternatively, you could have chosen just a to make {a}, and so on. But one
option is to simply select nothing from B. This leaves you with the subset
{}. Thus {} = B. More often we write it as @ < B.
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This idea of “making” a subset can help us list out all the subsets of a
given set B. As an example, let B = {a,b,c}. Let’s list all of its subsets. One
way of approaching this is to make a tree-like structure. Begin with the
subset {}, which is shown on the left of Figure 2.3. Considering the element
a of B, we have a choice: insert it or not. The lines from {} point to what
we get depending whether or not we insert a, either {} or {a}. Now move
on to the element b of B. For each of the sets just formed we can either
insert or not insert b, and the lines on the diagram point to the resulting
sets {}, {b},{a}, or {a,b}. Finally, to each of these sets, we can either insert
¢ or not insert it, and this gives us, on the far right-hand column, the sets
{}, {c}, {b}, {b,c}, {a}, {a,c}, {a,b} and {a,b,c}. These are the eight subsets
of B={a,b,c}.

Insert a? Insertb? Insert c¢?

!
j ———
/No/ Yes\{ }
b
NO/ Yes\{b} N _— {b}

Yes
— Yes
N —
W foct
~
Yes\ /No/ {a,b}
{ ’b}\ Yes

Figure 2.3. A “tree” for listing subsets

We can see from the way this tree branches out that if it happened that
B = {a}, then B would have just two subsets, those in the second column of
the diagram. If it happened that B = {a,b}, then B would have four subsets,
those listed in the third column, and so on. At each branching of the tree,
the number of subsets doubles. Thus in general, if |B| = n, then B must have
2" subsets.

Fact 2.3 If a finite set has n elements, then it has 2" subsets.
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For a slightly more complex example, consider listing the subsets of
B ={1,2,{1,3}}. This B has just three elements: 1, 2 and {1,3}. At this point
you probably don’t even have to draw a tree to list out B’s subsets. You just
make all the possible selections from B and put them between braces to get

i 115 425 L3 {1.2) {1{1,3}), {2,{1,3}), {1,2,{L,3}}.

These are the eight subsets of B. Exercises like this help you identify what
is and isn’t a subset. You know immediately that a set such as {1,3} is not a
subset of B because it can’t be made by selecting elements from B, as the 3
is not an element of B and thus is not a valid selection. Notice that although
{1,3} ¢ B, it is true that {1,3} € B. Also, {{1,3}} =B.

Example 2.6 Be sure you understand why the following statements are
true. Each illustrates an aspect of set theory that you've learned so far.

1 1e{t,{1}} .o 1is the first element listed in {1, {1}}
2. 12{L {1} because 1 is not a set
3. {e{r {1} {1} is the second element listed in {1,{1}}
4. {Be{r{1}}....ooo make subset {1} by selecting 1 from {1,{1}}
5 {{1fpe{r,{1}}......... because {1,{1}} contains only 1 and {1}, and not {{1}}
6. {{ippe{r{1}}......iiit. make subset {{1}} by selecting {1} from {1,{1}}
7. NeN......oooe... N is a set (not a number) and N contains only numbers
8. NCEN . e because X c X for every set X
9. @GeN.......i... because the set N contains only numbers and no sets
10, BON . e because @ is a subset of every set

=
=
2
m |
—~—
2
—

......................... because {N} has just one element, the set N
120 Ng{N} oo because, for instance, 1 €N but 1 ¢ {N}
13 @e{N} ..o note that the only element of {N} is N, and N # @
14, @dN}o oo because @ is a subset of every set
15 @e{@,N} oo @ is the first element listed in {®,N}
16. B{@d,N} oo because ¢ is a subset of every set
17 {Nbe{a,N}b. o make subset {N} by selecting N from {@,N}
18. (N} {o, INM . o because N ¢ {@, {N}}
19. (N} e{a, {N}} ooovenniiiiit, {N} is the second element listed in {@, {N}}
20. {(1,2),(2,2),(7,1)} <N xN oo

Though they should help you understand the concept of subset, the
above examples are somewhat artificial. But in general, subsets arise very
naturally. For instance, consider the unit circle C = {(x,y) e R?: 22 + y? = 1}.
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This is a subset C < R%2. Likewise the graph of a function y = f(x) is a set
of points G = {(x,f(x)) : x € R}, and G < R%. Surely sets such as C and G
are more easily understood or visualized when regarded as subsets of R.
Mathematics is filled with such instances where it is important to regard
one set as a subset of another.

Exercises for Section 2.3
A. List all the subsets of the following sets.

1. {1,2,3,4} 5. {0}

2. {1,2,0} 6. {R,Q,N}

3. {{r}} 7. {R.{Q.N}}

4. ¢ 8. {{0,1},{0,1,{2}},{0}}

B. Write out the following sets by listing their elements between braces.

9. {X:Xc{3,2,a} and |X|=2} 11. {X:X<{3,2,a} and |X|=4}
10. {XcN:|X|=<1} 12. {X:X <{3,2,a} and |X|=1}
C. Decide if the following statements are true or false. Explain.
13. R3cR? 15. {(x,y):x-1=0}c{(x,y): 2% —x =0}
14. RZcR3 16. {(x,y):xz—xZO}g{(x,y):x—le}

2.4 Power Sets

Given a set, you can form a new set with the power set operation, defined as
follows.

Definition 2.4 If A is a set, the power set of A is another set, denoted
as #(A) and defined to be the set of all subsets of A. In symbols, &2(A) =
{X:XcA}

For example, suppose A = {1,2,3}. The power set of A is the set of all
subsets of A. We learned how to find these subsets in the previous section,
and they are {}, {1}, {2}, {3}, {1,2}, {1,8}, {2,3} and {1,2,3}. Therefore the
power set of A is

2A)={ ¢, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} }.

As we saw in the previous section, if a finite set A has n elements, then
it has 2" subsets, and thus its power set has 2" elements.
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Fact 2.4 If A is a finite set, then | 22(A)| = 2141,

Example 2.7 Be sure you understand the following statements.

L 2({o,1,3})={e, {0}, {1}, {3}, {0,1}, {0,3}, {1,3},{0,1,3} }
2 ({1.2}) ={9o, {1}, {2}, {1.2}}
27 ({1}) ={e, {1}}
2(@)={o}

2 ({a})={2, {a}}

2 ({o})={2, {2}}
2 ({a}) x 7 ({2}) ={(2,9), (2.{2}), ({a}.2), ({a}.{2}) }
2(2({e})) =10, {2}, {{2}}, {2.{2}}}
2zl ={e {1}, {{1.2}}, {1.{1.2}}}
10. 2 ({z,N}) ={ 2, {z}, {N}, {Z,N}}

Next are some that are wrong. See if you can determine why they are wrong and
make sure you understand the explanation on the right.

© ® N> ;s W

11, 2 ={a, {1} } .o meaningless because 1 is not a set
12. 2 ({1,{1,2}}) = {8, {1},{1,2},{1,{1,2}}} ....... wrong because {1,2} £ {1,{1,2}}
13. 2 ({1,{1,2}}) = {.{{1}}.{{1,2}}. {0, {1,2}}} ... wrong because {{1}} ¢ {1,{1,2}}

In 1-10, notice that | 2(A)| = 24! in accordance with Fact 2.4. )

If A is finite, it is possible (though maybe not practical) to list out #(A)
between braces as was done in Example 2.7 above. That is not possible if A
is infinite. For example, consider &(N). If you start listing its elements you
quickly discover that N has infinitely many subsets, and it’s not clear how
(or if) they could be arranged as a list with a definite pattern:

PN ={2,{1},12},...,11,2},{1,3},...,{39,47,
.,{3,87,131},...,{2,4,6,8,...},... ? ...}

The set #(R?) is mind boggling. Think of R? = {(x,y):x,y € R} as the set
of all points on the Cartesian plane. A subset of R? (that is, an element of
Z(R?)) is a set of points in the plane. Let’s look at some of these sets. Since
{(0,0),(1,1)} < R%, we know that {(0,0),(1,1)} € Z(R?). We can even draw a
picture of this subset, as in Figure 2.4(a). For another example, the graph
of y = x2 is the set of points G = {(x,x?): x € R} and this is a subset of R?, so
G € Z(R?). Figure 2.4(b) is a picture of G. This can be done for any function,
so the graph of any imaginable function f :R — R is an element of Z2(R?).



Power Sets 29
y Yy

J . \ / INF

l X X

:

(a) (b) (c)

NITE

—_—
8

Figure 2.4. Three of the many, many sets in 2(R?)

In fact, any black-and-white image on the plane can be thought of as
a subset of R?, where the black points belong to the subset and the white
points do not. So the text “INFINITE” in Figure 2.4(c) is a subset of R and
therefore an element of 22(R?). By that token, #(R?) contains a copy of the
page you are reading now.

Thus in addition to containing every imaginable function and every
imaginable black-and-white image, Z(R?) also contains the full text of
every book that was ever written, those that are yet to be written and those
that will never be written. Inside of Z(R?) is a detailed biography of your
life, from beginning to end, as well as the biographies of all of your unborn
descendants. It is startling that the five symbols used to write 2(R?) can
express such an incomprehensibly large set.

Homework: Think about Z(Z2(R2)).

Exercises for Section 2.4
A. Find the indicated sets.

L 2 ({{a,b}.{c}}) 7. Z({a,0}) x 2 ({0,1})

2. #({1,2,3,4}) 8. Z({1,2} x{3})

3. 7({{e}.5}) 9. Z({a,b}x{0})

4. 7 ({R,Q}) 10. {Xe2({1,2,3}):1XI=1}

5. 2(2({2})) 1. Xc2({1,2,3}):1XI=1}

6. 2({1,2})x 2 ({3}) 12. {Xe 2 ({1,2,3}):2e X}
B. Suppose that |A|=m and |B| =n. Find the following cardinalities.

13. | P2(P2(Z(A)) 17. |{X e 2(4):1X| <1}

14. | 2(Z(A)) 18. |Z(A x Z(B))|

15. | Z(A x B)| 19. | P(P(P(A x p)))|

16. |2(A) x Z(B)| 20. |{X c 2(4):1X| <1}|
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2.5 Union, Intersection, Difference

Just as numbers are combined with operations such as addition, subtraction
and multiplication, there are various operations that can be applied to sets.
The Cartesian product (defined in Section 2.2) is one such operation; given
sets A and B, we can combine them with x to get a new set A x B. Here are
three new operations called union, intersection and difference.

Definition 2.5 Suppose A and B are sets.
The union of A and B is the set AuB={x:x€A or xeBj.
The intersection of A and B istheset AnB={x:x€A and x€B}.
The difference of A and Bistheset = A-B={x:xcA and x¢B}.

In words, the union A UB is the set of all things that are in A or in B (or
in both). The intersection A N B is the set of all things in both A and B. The
difference A — B is the set of all things that are in A but not in B.

Example 2.8 Suppose A ={a,b,c,d,e}, B={d,e,f} and C ={1,2,3}.
AUB= {a,b,c,d,e,f}

AnB={d,e}
A-B={a,b,c}
B-a-if}

(A-B)u(B-A4)={a,b,c,f}
AuC={a,b,c,d,e,1,2,3}
AnC=9¢
A-C= {a b,c,d e}
(AnC)u(A-C)={a,b,c,d,e}

10. (AnB)xB={(d,d),(d,e),(d,f),(e,d),(e,e),(e,f)}

11. (AxC)n(BxC)=1{d,1),(d,2),(d,3),(e,1),(e,2),(e,3)}

Observe that for any sets X and Y it is always true that X uY =Y uX

and XNY =Y nX, but in general X -Y #Y - X.
Continuing the example, parts 12—15 below use the interval notation

discussed in Section 2.1, so [2,5] = {x € R: 2 < x < 5}, etc. Sketching these
examples on the number line may help you understand them.

12. [2,5]uUl3,6]=[2,6]
13. [2,51n[3,6]1=1[3,5]
14. [2,51-13,61=12,3)
15. [0,3]1-[1,21=[0,1)U(2,3] L2

© ® N> U N
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AUB . A - B,
B AnNnB

«—

(@) (b) (©) (d

Figure 2.5. The union, intersection and difference of sets A and B

Example 2.9 Let A = {(x,x?): x € R} be the graph of the equation y = 2
and let B = {(x,x+2) : x € R} be the graph of the equation y = x + 2. These sets
are subsets of R2. They are sketched together in Figure 2.5(a). Figure 2.5(b)
shows A UB, the set of all points (x,y) that are on one (or both) of the two
graphs. Observe that AnB ={(-1,1),(2,4)} consists of just two elements,
the two points where the graphs intersect, as illustrated in Figure 2.5(c).
Figure 2.5(d) shows A — B, which is the set A with “holes” where B crossed it.
In set builder notation, we could write AUB = {(x,y):x € R,y =x% or y =x+2}
andA—B={(x,x2):x€|R—{—1,2}}. fox)

Exercises for Section 2.5
1. Suppose A ={4,3,6,7,1,9}, B = {5,6,8,4} and C = {5,8,4}. Find:

(a) AuB d) A-C (g) BnC
(b) AnB (e) B-A (h) BuC
(c) A-B ® AncC (i) C-B
2. Suppose A ={0,2,4,6,8}, B=1{1,3,5,7} and C = {2,8,4}. Find:
(a) AUB d A-cC (g) BnC
(b) AnB (e) B-A (h) C-A
(c) A-B f) AnC (i) C-B
3. Suppose A ={0,1} and B = {1,2}. Find:
(a) (AxB)n(BxB) (d) (AnB)xA (g) #(A)- Z(B)
(b) (AxB)U(BxB) (e) (AxB)nB (h) #(AnB)
(c) (AxB)-(BxB) ) ZA)n Z(B) (i) Z(AxB)
4. Suppose A ={b,c,d} and B = {a,b}. Find:
(a) (AxB)n(BxB) (d) (AnB)xA (8) Z(A)-2(B)
(b) (AxB)uU(BxB) (e) (AxB)nB (h) Z(AnB)

(¢) (AxB)-(BxB) ® 2A)nP2B) (i) Z(A)x Z(B)
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5. Sketch the sets X =[1,3]1x[1,3] and Y =[2,4] x[2,4] on the plane R2. On separate
drawings, shade in the sets XuY,XnY,X-Y and Y -X. (Hint: X and Y are
Cartesian products of intervals. You may wish to review how you drew sets like
[1,3]x[1,3] in the exercises for Section 2.2.)

6. Sketch the sets X =[-1,3]x[0,2] and Y =[0,3]x[1,4] on the plane R2. On separate
drawings, shade in the sets XuY,XnY,X-Y andY - X.

7. Sketch the sets X = {(x,y) eR%:x%+y? <1} and Y = {(x,y) e R? :x = 0} on R%. On
separate drawings, shade in the sets XuY,XnY,X-Y andY - X.

8. Sketch the sets X = {(x,y)eR%:x?+y% <1} and Y = {(x,y) eR?: -1 < y <0} on R%.
On separate drawings, shade in the sets XuY,XnY,X-Y and Y - X.

9. Is the statement (R x Z)N(Z x R) = Z x Z true or false? What about the statement
RxZ)U(ZxR)=RxR?

10. Do you think the statement (R—Z) x N = (R x N) — (Z x N) is true, or false? Justify.

2.6 Complement

This section introduces yet another set operation, called the set complement.
The definition requires the idea of a universal set, which we now discuss.
When dealing with a set, we almost always regard it as a subset of
some larger set. For example, consider the set of prime numbers P =
{2,8,5,7,11,13,...}. If asked to name some things that are not in P, we
might mention some composite numbers like 4 or 6 or 423. It probably
would not occur to us to say that Vladimir Putin is not in P. True, Vladimir
Putin is not in P, but he lies entirely outside of the discussion of what is a
prime number and what is not. We have an unstated assumption that

PcN

because N is the most natural setting in which to discuss prime numbers.
In this context, anything not in P should still be in N. This larger set N is
called the universal set or universe for P.

Almost every useful set in mathematics can be regarded as having some
natural universal set. For instance, the unit circle is the set C = {(x,y) e R?:
%%+ y? =1}, and since all these points are in the plane R? it is natural to
regard R? as the universal set for C. In the absence of specifics, if A is a set,
then its universal set is often denoted as U. We are now ready to define the
complement operation.

Definition 2.6 Let A be a set with a universal set U. The complement
of A, denoted 4, is the set A=U —A.
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Example 2.10 If P is the set of prime numbers, then
P=N-P={1,4,6,8,9,10,12,...}.

Thus P is the set of composite numbers and 1. £

Example 2.11 Let A = {(x,x2): x € R} be the graph of the equation y = x2.
Figure 2.6(a) shows A in its universal set R2. The complement of A is A =
R?2—A = {(x,y) e R?: y # x?}, illustrated by the shaded area in Figure 2.6(b).

A

(a) (b)

Figure 2.6. A set and its complement

Exercises for Section 2.6
1. Let A=1{4,3,6,7,1,9} and B = {5,6,8,4} have universal set U = {0,1,2,...,10}. Find:

(a) A (d) AuA (g A-B
(b) B (e) A-A (h) AnB
(¢) AnA 6 A-B (i) AnB
2. Let A=1{0,2,4,6,8} and B = {1,3,5,7} have universal set U = {0,1,2,...,8}. Find:
(@ A (d) AuA (g) AnB
(b) B (e) A-A (h) AnB
(¢) AnA (f) AuB (i) AxB

3. Sketch the set X =[1,3]x[1,2] on the plane R2. On separate drawings, shade in
the sets X and X n([0,2]x [0, 3]).

4. Sketch the set X =[-1,3]x[0,2] on the plane R2. On separate drawings, shade in
the sets X and X n([-2,4] x[-1,3]).

5. Sketch the set X = {(x,y) € R? : 1 < +y® < 4} on the plane R>. On a separate
drawing, shade in the set X.

6. Sketch the set X = {(x,y) e R?: y <x?} on R?. Shade in the set X.
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2.7 Venn Diagrams

In thinking about sets, it is sometimes helpful to draw informal, schematic
diagrams of them. In doing this we often represent a set with a circle
(or oval), which we regard as enclosing all the elements of the set. Such
diagrams can illustrate how sets combine using various operations. For
example, Figures 2.7(a—c) show two sets A and B that overlap in a middle
region. The sets AuUB, AnB and A — B are shaded. Such graphical repre-
sentations of sets are called Venn diagrams, after their inventor, British
logician John Venn, 1834-1923.

A B A B A B
(a) (b) (c)

Figure 2.7. Venn diagrams for two sets

Though you may never draw a Venn diagram in writing up the solution
of a problem, you will probably find them to be useful “scratch work” devices
that help you to understand how sets combine, and to develop strategies
for proving certain theorems or solving certain problems. The remainder of
this section uses Venn diagrams to explore how three sets can be combined
using U and n.

Let’s begin with the set AuBuUC. Our definitions suggest this should
consist of all elements which are in one or more of the sets A, B and C.
Figure 2.8(a) shows a Venn diagram for this. Similarly, we think of AnBnC
as all elements common to each of A, B and C, so in Figure 2.8(b) the region
belonging to all three sets is shaded.

C c

A B A B
AuBuUC AnBnC

(a) (b)

Figure 2.8. Venn diagrams for three sets
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We can also think of AnBnC as the two-step operation (AnB)nC. In
this expression the set AnB is represented by the region common to both A
and B, and when we intersect this with C we get Figure 2.8(b). This is a
visual representation of the fact that AnBnC = (AnB)nC. Similarly, we
have AnBnC=AnMBnNC). Likewise, AUBUC = (AuB)UC=AuU(BuUCQC).

Notice that in these examples, where the expression either contains only
the symbol U or only the symbol n, the placement of the parentheses is
irrelevant, so we are free to drop them. It is analogous to the situations in
algebra involving expressions (a+b)+c=a+(b+c)or (a-b)-c = a-(b-c). We tend
to drop the parentheses and write simply a+b+c or a-b-c. By contrast, in
an expression like (a + b)-c the parentheses are absolutely essential because
(a+b)-c and a +(b-c) are generally not equal.

Now let’s use Venn diagrams to help us understand the expressions
(AuB)NC and Au(BnC), which use a mix of u and n. Figure 2.9 shows
how to draw a Venn diagram for (A uB)nC. In the drawing on the left, the
set A UB is shaded with horizontal lines, while C is shaded with vertical
lines. Thus the set (A uB)NC is represented by the cross-hatched region
where A UB and C overlap. The superfluous shadings are omitted in the
drawing on the right showing the set (AuB)nC.

)=——" B

Figure 2.9. How to make a Venn diagram for (AuB)nC

Now think about Au(BnC). In Figure 2.10 the set A is shaded with
horizontal lines, and BN C is shaded with vertical lines. The union Au(BnC)
is represented by the totality of all shaded regions, as shown on the right.

A B A B

Figure 2.10. How to make a Venn diagram for Au(BnC)
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Compare the diagrams for (AuB)NC and Au(BnC) in Figures 2.9 and
2.10. The fact that the diagrams are different indicates that (AuB)nC #
AU(BNC)in general. Thus an expression such as A uBnC is absolutely
meaningless because we can’t tell whether it means (AuB)NC or Au(BnC).
In summary, Venn diagrams have helped us understand the following.

Important Points:

o If an expression involving sets uses only u, then parentheses are optional.
o If an expression involving sets uses only n, then parentheses are optional.
o If an expression uses both u and n, then parentheses are essential.

In the next section we will study types of expressions that use only u or
only n. These expressions will not require the use of parentheses.

Exercises for Section 2.7

Draw a Venn diagram for A.

Draw a Venn diagram for B — A.

Draw a Venn diagram for (A -B)nC.

Draw a Venn diagram for (AuB)-C.

Draw Venn diagrams for Au(BnC) and (AuB)n(AuC). Based on your drawings,

do you think Au(BnC) =(AuB)n(AuC)?

6. Draw Venn diagrams for An(BuC) and (AnB)U(AnC). Based on your drawings,
do you think An(BuC) =(AnB)U(ANC)?

7. Supp_ose_sets A and B are in a universal set U. Draw Venn diagrins fgr W
and A UB. Based on your drawings, do you think it’s true that AnB = AuB?

8. Suppose sets A and B are in a universal set U. Draw Venn diagrams for AuB
and A nB. Based on your drawings, do you think it’s true that AuB = AnB?

A ol

9. Draw a Venn diagram for (AnB)-C.
10. Draw a Venn diagram for (A -B)uC.

Following are Venn diagrams for expressions involving sets A,B and C. Write the
corresponding expression.

C () C C
11. @ 12. @B 13. @B 14. @
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2.8 Indexed Sets

When a mathematical problem involves lots of sets, it is often convenient to
keep track of them by using subscripts (also called indices). Thus instead of
denoting three sets as A,B and C, we might instead write them as A;,A9
and As. These are called indexed sets.

Although we defined union and intersection to be operations that com-
bine two sets, you by now have no difficulty forming unions and intersections
of three or more sets. (For instance, in the previous section we drew Venn
diagrams for the intersection and union of three sets.) But let’s take a
moment to write down careful definitions. Given sets A1,As,...,A,, the set
A1UAgUA3U---UA, consists of everything that is in at least one of the sets
A;. Likewise AinAgsnAsn---nA, consists of everything that is common to
all of the sets A;. Here is a careful definition.

Definition 2.7 Suppose A1,As,...,A, are sets. Then
AjUA3UA3U---UA, = {x:x€A, foratleast one set A;, for 1 <i<n},

A1nAgnAsn---nA, = {x:xeA;foreverysetA;, for 1<i=<n}.

But if the number n of sets is large, these expressions can get messy. To
overcome this, we now develop some notation akin to sigma notation. You
already know that sigma notation is a convenient symbolism for expressing
sums of many numbers. Given numbers a1,as,as,...,a,, then

n
Y aj=ai+as+ag+---+an.
i=1
Even if the list of numbers is infinite, the sum
o0
Zai =ai1tag+tag+---+a;+--

i=1

is often still meaningful. The notation we are about to introduce is very
similar to this. Given sets A1,A9,As3, ..., A,, we define

n n
UAi:A1UA2UA3U~"UAn and ﬂAiZAlﬂAzﬂAgﬁ---ﬁAn.
i=1 =1

Example 2.12 Suppose A1 ={0,2,5}, A2 ={1,2,5} and A3 ={2,5,7}. Then

3 3
UAiIAlLJAQUA3={O,1,2,5,7} and ﬂAi=A10A20A3={2,5}. o)
i=1 i=1
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This notation is also used when the list of sets A1,A9,A3,Ay4... is infinite:

o0

JA; = A1tuAqUAzuU--- = {x:x€A, for at least one set A; with 1<i}.
i=1

o0

A = AinA2nAgn--- = {x:x€A, for every set A; with 1<i}.

i=1

Example 2.13 This example involves the following infinite list of sets.

Al:{_l’oal}a AQZ{_25072}7 A3:{_37073}a Tt Ai:{_i707i}>
o0 o0

Observe that | JA; =7, and () A; ={0}. o
i=1 =1

Here is a useful twist on our new notation. We can write

3
Ua, = U A,

i=1 1€{1,2,3}

as this takes the union of the sets A; for i =1,2,3. Likewise:

A = [ A

i=1 1€{1,2,3}
o0

Ua = UAa
i=1 1eN

o0

NA: = A
i=1 ieN

Here we are taking the union or intersection of a collection of sets A; where
i is an element of some set, be it {1,2,3} or N. In general, the way this works
is that we will have a collection of sets A; for i € I, where I is the set of
possible subscripts. The set I is called an index set.

It is important to realize that the set I need not even consist of integers.
(We could subscript with letters or real numbers, etc.) Since we are pro-
grammed to think of i as an integer, let’s make a slight notational change:
We use «a, not i, to stand for an element of I. Thus we are dealing with a
collection of sets A, for a € I. This leads to the following definition.

Definition 2.8 If A, is a set for every a in some index set I, then

JAs = {x:=xeA,for at least one set A, with a eI}

ael
(NAz = {x:x€A, for every set A, with a€I}.

ael
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Example 2.14 In this example, all sets A, are all subsets of the plane R
Each a belongs to the index set I =[0,2] = {x€R : 0 <x <2}, which is the set
of all real numbers between 0 and 2. For each number a € I, define A, to be
the set A, =[a,2] x [0, a], which is the rectangle on the xy-plane whose base
runs from a to 2 on the x-axis, and whose height is . Some of these are
shown shaded below. (The dotted diagonal line y = x is not a part of any of
the sets, but is shown for clarity, as the upper left corner of each A, touches
it.) Note that these sets are not indexed with just integers. For example, as
V2el, thereis aset A /3> which shown below on the right.

N
-

oo

Ag

oo

Now consider the infinite union | J A,. It is the shaded triangle shown
ael
below, because any point (x, y) on this triangle belongs to the set A,, and is

therefore in the union.

U Aq

ael

Now let’s work out the intersection [) A,. Notice that the point (2,0) on

ael
the x-axis is the lower right corner of any set A,, so (2,0)e A, for any a € 1.

Therefore the point (2,0) is in the intersection of all the A,. But any other
point (x,y) #(2,0) on the triangle does not belong to all of the sets A,. The
reason is that if x <2, then (x,y) ¢ A, for any x < a <2. (Check this.) And if
x =2, then (x,y) ¢ A, for any 0 < ¢ < y. Consequently

N Aa={2,00}.

acl

This intersection consists of only one element, the point (2,0). Jea)
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Exercises for Section 2.8
1. Suppose A1 ={a,b,d,e,g,f}, Az ={a,b,c,d}, As=1{b,d,a} and A4 ={a,b,h}.
4 4
@ UAi= b) NA;=
i=1 i=1

Ay = {0,2,4,8,10,12,14,16,18,20,22,24},
2. Suppose { Ay = {0,3,6,9,12,15,18,21,24},
As = {0,4,8,12,16,20,24}.
3 3
@ A= (b) NA;=
i=1 i=1
3. ForeachneN, let 4, ={0,1,2,3,...,n}.
@ A= b) NAi=
ieN ieN
4. For each neN, let A, ={-2n,0,2n}.
@ UYAi= (b) NAi=
ieN ieN
5. (@ Yli,i+1]= ) NG,i+1l=
ieN 1eN
6. (@ (JI0,i+1]= (b) (I0,i+1]=
ieN ieN
7. (@) URx[;,i+1]= (b) (Rx[i,i+1]=
ieN ieN
8. (a J{a}xI0,11= ) (N {a}xIl0,11=
acR acR
9. (a) U X = (b) m X =
XeZ2(N) Xe2(N)
10. (@) | [x,11x[0,4%]= ®) () [x11x[0,x%]=
x€[0,1] x€[0,1]

11. Is [ Aq < |J A, always true for any collection of sets A, with index set I?

acl acl

12. If () A, = |J Aq, what do you think can be said about the relationships between
ael ael

the sets A,?

13. If J # ¢ and J < I, does it follow that | J A, = [ J Ao? What about [ Ag =[] As?

acd acl aed ael

14. If J # ¢ and J =1, does it follow that [ A, < [ A.? Explain.

acl acd
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2.9 Sets that Are Number Systems

In practice, the sets we tend to be most interested in often have special
properties and structures. For example, the sets Z, Q and R are familiar
number systems: Given such a set, any two of its elements can be added
(or multiplied, etc.) together to produce another element in the set. These
operations obey the familiar commutative, associative and distributive
properties that we have dealt with for years. Such properties lead to the
standard algebraic techniques for solving equations. Even though much
of this book will be concerned with the idea of proof, we will not find it
necessary to define or prove these properties and techniques; we will accept
them as the ground rules upon which further deductions are based.

We also accept as fact the natural ordering of the elements of N, Z,Q and
R, so that (for example) the meaning of “5 < 7” is understood and does not
need to be justified or explained. Similarly, if x < y and a # 0, we know that
ax <ay or ax = ay, depending on whether a is positive or negative.

Another thing that our ingrained understanding of the ordering of num-
bers tells us is that any non-empty subset of N has a smallest element. In
other words, if A =N and A # @, then there is an element xy € A that is
smaller than every other element of A. (To find it, start at 1, then move
in increments to 2, 3, 4, etc., until you hit a number x( € A; this is the
smallest element of A.) Similarly, given an integer b, any non-empty subset
Ac{b,b+1,b+2,b+3,...} has a smallest element. This fact is sometimes
called the well-ordering principle. There is no need to remember this
term, but do be aware that we will use this simple, intuitive idea often in
proofs, usually without a second thought.

The well-ordering principle seems innocent enough, but it actually says
something very fundamental and special about the positive integers N.
In fact, the corresponding statement about the positive real numbers is
false: The subset A = {2 : n € N} of the positive reals has no smallest element
because for any xg = % € A that we might pick, there is always a smaller
element ﬁ €A.

Despite the fact that we will scarcely mention it again in this book, the
well-ordering principle plays a fundamental role in discrete mathematics.
For example, imagine a loop in a computer program that continues to
execute as long as some integer value x is positive. If each iteration of the
loop decreases the value of x, then it is the well-ordering principle that
assures us that the loop eventually terminates. This is because the set A
of all values that x takes on is a subset of N and therefore has a smallest
element, namely the value of x in the last iteration of the loop.
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2.10 Case Study: Russell’s Paradox

This section contains some background information that may be interesting,
but is not used in the remainder of the book.

The philosopher and mathematician Bertrand Russell (1872-1970) did
groundbreaking work on the theory of sets and the foundations of math-
ematics. He was probably among the first to understand how the misuse
of sets can lead to bizarre and paradoxical situations. He is famous for an
idea that has come to be known as Russell’s paradox.

Russell’s paradox involves the following set of sets:

A={X: Xisasetand X ¢X }. (2.1)

In words, A is the set of all sets that do not include themselves as elements.
Most sets we can think of are in A. The set Z of integers is not an integer
(i.e., Z ¢ 7Z) and therefore Z€ A. Also ¢ € A because @ is a set and @ ¢ @.

Is there a set that is not in A? Consider B = {{{{...}}}}. Think of B as a
box containing a box, containing a box, containing a box, and so on, forever.
Or a set of Russian dolls, nested one inside the other, endlessly. The curious
thing about B is that it has just one element, namely B itself:

Thus B € B. As B does not satisfy B ¢ B, Equation (2.1) says B¢ A.

Russell’s paradox arises from the question “Is A an element of A?”

For a set X, Equation (2.1) says X € A means the same thing as X ¢ X.
So for X = A, the previous line says A € A means the same thing as A ¢ A.
Conclusion: if A € A is true, then it is false; if A € A is false, then it is true.
This is Russell’s paradox.

Initially Russell’s paradox sparked a crisis among mathematicians. How
could a mathematical statement be both true and false? This seemed to be
in opposition to the very essence of mathematics.

The paradox instigated a very careful examination of set theory and
an evaluation of what can and cannot be regarded as a set. Eventually
mathematicians settled upon a collection of axioms for set theory—the
so-called Zermelo-Fraenkel axioms. One of these axioms is the well-
ordering principle of the previous section. Another, the axiom of foundation,
states that no non-empty set X is allowed to have the property X nx # @ for
all its elements x. This rules out such circularly defined “sets” as B = {B}
mentioned above. If we adhere to these axioms, then situations like Russell’s
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paradox disappear. Most mathematicians accept all this on faith and happily
ignore the Zermelo-Fraenkel axioms. Paradoxes like Russell’s do not tend
to come up in everyday mathematics—you have to go out of your way to
construct them.

Still, Russell’s paradox reminds us that precision of thought and lan-
guage is an important part of doing mathematics. The next chapter deals
with the topic of logic, a codification of thought and language.

Additional Reading on Sets. For a lively account of Bertrand Russell’s
life and work (including his paradox), see the graphic novel Logicomix: An
Epic Search For Truth, by Apostolos Doxiadis and Christos Papadimitriou.
Also see cartoonist Jessica Hagy’s online strip Indexed—it is based largely
on Venn diagrams.
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2.11 Solutions for Chapter 2

Section 2.1

1. {bx-1:x€27}={..—-11,-6,-1,4,9,14,19,24,29, ...}
3. xe€Z:-2<x<T)=1{-2,-1,0,1,2,3,4,5,6}

5. {xER:x2=3}={—\/§,\/§}

7. {xeR:x?+5x=-6}={-2,-3}

9. xeR:sinnx=0}={..,-2,-1,0,1,2,3,4,...} =Z

11.
. {xeZ:|6x| <5} ={0}
15.
17.
19.
21.
23.
25.

217,

29.
31.

39.

41.

43.

{x€Z:|x| <5} ={-4,-3,-2,-1,0,1,2,3,4}

(5a+2b:a,bez}={...,-2,-1,0,1,2,3,...}=Z
{2,4,8,16,32,64...} = {2° :x e N}

{..,—6,-8,0,3,6,9,12,15,...} = {3x:x €7}

{0,1,4,9,16,25,36,...} = {x*:x € 7}
{3,4,5,6,7,8}={x€Z:3<x<8}={xeN:3<x<8}
{.3,5,3,1,248, . }=@2":1ne7}
{...,—n,—%,O,%,ﬂ,‘%’ﬂn,%”,...}={%’T:keZ}

1{{1},{2,18,4}},2} =3 88. [{xeZ:|x|<10}=19 387. |{xeN:x2<0}|=0
1{{{1},{2,{3,4}}, 01} =1 85. [{xeZ:x% <10} =7

{(x,y):x€[1,2],y €[1,2]} 45. {(x,y):x,yeRx?+y? =1}
2 2
1
R
-3 -2 -1 1 2 3 -3 -2 - 2 3
-1 il\./i
-9 -2
{(x,y):x€[-1,1],y =1} 47. {(x,y):x,y€R,y zxz—l}
3
2
2
—
1
-3 -2 -1 1 2 3
-1 -3 -2 -1 1 2 3
_2 -
-2
{(x,9):1x] =2,y €[0,1]}
2
1
-3 -2 -1 1 2 3
-1
-2
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51. {(x,y)E[R2 (y—x)y +x)=0}

53. {xeN:100<x <1011} = {100,101,110,111,1000,1001,1010,1011}
55. {xEN:ASxS20}=
{A,B,C,D,E,F,10,11,12,13,14,15,16,17,18,19,1A,1B,1C, 1D, 1E, 1F, 20}

Section 2.2

1. Suppose A ={1,2,3,4} and B = {a,c}.
(a) AxB=1{1,a),(1,¢),(2,a),(2,0),(3,a),(3,c),(4,a),(4,c)}
(b) BxA = {(a,1),(a,2),(a,3),(a,4),(c,1),(c,2),(c,3),(c,4)}

() AxA={1,1,(1,2),(,3),(1,4),(2,1),(2,2),(2,3),(2,4),
(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}

(d) BxB={(a,a),(a,c),(c,a),(c,c)}
(e) pxB=1{(a,b):acp,beB}=p (There are no ordered pairs (a,b) with a € @.)

) (AxB)xB=
{((1,a),a),((1,¢),a),((2,a),a),((2,¢),a),((3,a),a),((3,c),a),((4,a),a),((4,c),a),
((1,a),¢),((1,¢),¢),((2,a),c),((2,¢),c),((3,a),c),((3,¢),c),((4,a),c),((4,c),c)}

(g) Ax(BxB)=
{1,(a,a)),(1,(a,c)),(1,(c,a)),(1,(c,c)),
2,(a,a)),(2,(a,c)),(2,(c,a)),(2,(c,c)),
3,(a,a)),(3,(a,c)),(3,(c,a)),(3,(c,c)),
4,(a,a)),4,(a,c)),4,(c,a)),4,(c,c))}

(h) B?={(a,a,a),(a,a,c),(a,c,a),(a,c,c),(c,a,a),(c,a,c),(c,c,a),(c,c,c)}
3. {xeR:x%=2} x{a,c,e} = {(-V2,0),(v2,a),(-V2,¢),(v2,¢),(-V2,e),(v2,e)}
5. {xeR:x%=2} x {xeR: x| =2} = {(-V2,-2),(v2,2),(-V2,2),(vV2,-2)}
7. {9} x{0,0}x{0,1} = {(#,0,0),(9,0,1),(p,8,0),(®,®,1)}

Sketch the following Cartesian products on the x-y plane.
9. {1,2,3} x{-1,0,1}

2

1 . . .

-3 -2 -1 1 2 3
-1 e o e
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11. [0,1]x[0,1] 17. NxZ .« o e
9 2
1 1
-3 -2 -1 1 2 3 -3 -2 -1 1 2 3
21 -1 o o e
-9 -2
13. {1,1.5,2} x[1,2] 19. [0,11x[0,1]x[0,1]
Al
1
-3 -2 -1 1 2 3
-1
-2

15. {1} x[0,1]

-3 -2 -1 1 2 3
-1

Section 2.3
A. List all the subsets of the following sets.

1. The subsets of {1,2,3,4} are: {}, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4},
(3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}.

3. The subsets of {{R}} are: {} and {{R}}.
5. The subsets of {¢} are {} and {@}.
7. The subsets of {R,{Q,N}} are {}, {R},{Q,N}}, {R,{Q,N}}.

B. Write out the following sets by listing their elements between braces.
9. {X:X c1{3,2,a} and |X| = 2} =1{{3,2},{3,a},{2,a}}
11. {X:X <{3,2,a} and |X|=4} ={}=9

C. Decide if the following statements are true or false.
13. R3 cR3 is true because any set is a subset of itself.
15. {(x,y):x-1=0}c{(x,y):2% —x = 0}. This is true. (The even-numbered ones
are both false. You have to explain why.)

Section 2.4
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A. Find the indicated sets.

1. Z({{a,b},{chh) = {3,{{a,b}},{{c}},{{a,b},{c}}}

3. Z({{s},5) = {8, {{o}h, 15}, ({2}, 51}

5. 2(2(2) = {9,{2}, {21}, {2, (21}

7. P(a,b) x 2({0,1}) =

{ (8,9), (®,{0}), (@,{1}), (#,10,1}),
(a},®),  (a},{0), (a},{1}), (a},{0,1}),
({b},®),  ({B},{0h,  ({b},{1}),  ({b},{0,1}),
(a,b},8), (a,b},{0), (a,b},{1), (a,b},{0,1}) }

9. Z(a,b}x{0) = {®,{(a,0)},{(b,0)},{(a,0),(5,0)}}
11. (X< 2({1,2,3):1X|<1}=
(@, {2}, {1, {21, {31, ({1, 21}, {{1, 31}, {{2, 31}, {{1, 2, 3}}}

B. Suppose that |A|=m and |B| =n. Find the following cardinalities.

13. |22 = 227"

15. | 2(A x B)| = 2"

17. (X e Z2A): X|<1=m+1

19. | P(P(P (A x )| = | P(P(P ()| =4
Section 2.5

1. Suppose A ={4,3,6,7,1,9}, B=1{5,6,8,4} and C ={5,8,4}. Find:
(a) AuB=1{1,3,4,5,6,7,8,9} f) AnC={4}
(b) AnB={4,6}
(¢c) A-B=1{3,7,1,9}
d) A-C=1{3,6,7,1,9}
(e) B-A=1{5,8} (i) C-B=¢

(g BNC=1{5,8,4}
(h) BuC = {5,6,8,4}

3. Suppose A ={0,1} and B ={1,2}. Find:
(a) (AxB)n(BxB)=1{(1,1),(1,2)}
(b) (A xB)u(BxB)=1{0,1),(0,2),(1,1),(1,2),(2,1),(2,2)}

(¢) (AxB)-(BxB)={(0,1),(0,2)} ) 2(A)nFB)={p,{1}}
(d) (AnB)xA={(1,0),(1,1)} (g) 7(A)-2(B)= {{0},{0,1}}
(e) (AxB)nB=¢ (h) Z(AnB)={{},{1}}

1) {2,{(0,1)},{(0,2)},{(1,1)},{(1,2)},{(0,1),(0,2)},{(0, 1),(1, 1)},{(0, 1),(1,2)},{(0,2),(1, 1)},
{(0,2),(1,2)},{(1,1),(1,2)},{(0,2),(1,1),(1,2)},{(0,1),(1,1),(1,2)},{(0, 1),(0,2),(1,2)},
{(0,1),(0,2),(1,1)},{(0,1),(0,2),(1,1),(1,2)}}

5. Sketch the sets X =[1,3]x[1,3] and Y =[2,4] x [2,4] on the plane k2. On separate
drawings, shade in the sets XuY, XnY,X-Y and Y -X. (Hint: X and Y are

Cartesian products of intervals. You may wish to review how you drew sets like
[1,3]x[1,3] in the Section 2.2.)
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4 4 4 4 4
\\§ Y-X
3 3 3 D 3 3
2 2 2 2 2
X Xny X-Y
1 1 1 1 1
"1 2 34 " 1 2 34 " 1 2 3 4 " 12 3 4 " 1 2 3 4

7. Sketch the sets X = {(x,y)eR?:x2+y? <1} and Y = {(x,y) e R?:x >0} on R%. On
separate drawings, shade in the sets X uY,XnY,X-Y andY - X.

9. The first statement is true. (A picture should convince you; draw one if necessary.)
The second statement is false: Notice for instance that (0.5,0.5) is in the right-
hand set, but not the left-hand set.

Section 2.6
1. Suppose A ={4,3,6,7,1,9} and B = {5,6,8,4} have universalset U ={n€ Z:0<n < 10}.

(a) A=1{0,2,5,8,10} () A-B=14,6)
(b) B:io,1,2,3,7,9,10} @ A-B=5.8

(¢) AnA=9p o

() AULA=1(0,123456,78910 =y ™ ANB=58

(e) A—KZA (i) KﬂB:{O’1’2’3,4’6’7’9,10}

3. Sketch t}f set X =[1,3]x[1,2] on the plane R2. On separate drawings, shade in
the sets X, and X n([0,2] x [0, 3]).

3 3 3“

2 2 2

1 : -
2 3 -1

X
] l 1 2 3 4 l 1 1 2 3
-1 -1 -1+ Xn(0,2]x[0,3])

5. Sketch the set X = {(x,y)€R?:1<x®+y® <4} on the plane R?. On a separate
drawing, shade in the set X.
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3 3

2 X

1

g (4)
3 123 _
A (shaded
Solution of 1.6, #5. Solution of 1.7, #1.
Section 2.7

1. Draw a Venn diagram for A. (Solution above right)
3. Draw a Venn diagram for (A-B)nC.

Scratch work is shown on the right. The set
A -B is indicated with vertical shading. The

C C
set C is indicated with horizontal shading. %
The intersection of A—B and C is thus the ——
overlapping region that is shaded with both ==
vertical and horizontal lines. The final an- '
A

swer is drawn on the far right, where the set AU
(A -B)nC is shaded in gray.
5. Draw Venn diagrams for Au(BNC) and (AuB)n(AuC). Based on your drawings,
do you think Au(BNC) =(AuB)n(AuC)?

If you do the drawings carefully, you will find C
that your Venn diagrams are the same for both

AUBNC) and (AuB)N(AuC). Each looks as
illustrated on the right. Based on this, we are

inclined to say that the equation Au(BnC) =
(AuB)N(AuC) holds for all sets A, B and C. A

7. Suppose sets A and B are in a universal set U. Draw Venn diagrams for AnB
and A UB. Based on your drawings, do you think it’s true that AnB = AUB?

The diagrams for AnB and A UB look exactly
alike. In either case the diagram is the shaded

region illustrated on the right. Thus we would .

expect that the equation AnB = AUB is true for

any sets A and B.

9. Draw a Venn diagram for (AnB)-_C.

11. The simplest answer is (BNC)—-A.
13. One answer is (AUBUC)-(AnBNC).
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Section 2.8

1.

11.
13.

Suppose Al = {ayb’d’e’g;f}a AZ = {aab’c’d}a A3 = {b’d’a} and A4 = {a:b’h}-
4 4

(@ JA;={a,b,c,d,e,f,g,h}
i=1

. ForeachneN,let A, ={0,1,2,3,...,n}.

(@ JA;={0juN
1eN

. (@ Uli,i+11=[1,00)

ieN
(@ URx[,i+11={(x,y):x,yeR,y=1}
ieN

(@ U X=N

XeZN)
Yes, this is always true.

The first is true, the second is false.

(b) (A; = {a,b}
=1

M) A =101}

1eN

) Nli,i+1]1=¢
ieN

(b) NRx[i,i+1]=g
ieN

b N X=9
XeZ(N)

Sets



CHAPTER 3

Logic

ogic is a systematic way of thinking that allows us to deduce new infor-
mation from old information and to parse the meanings of sentences.
We introduce logic now because it is the key to understanding certain words
like “and,” “or,” and “if” that have special meanings in a mathematical
context. Understanding these meanings is essential throughout this book,
and beyond it. Logic becomes even more important Part II if this book, as
we begin proving theorems and verifying mathematical truths.
You use logic informally in everyday life and certainly also in doing math-
ematics. For example, suppose you are working with a certain circle, call it
“Circle X,” and you have available the following two pieces of information.

1. Circle X has radius equal to 3.
2. If any circle has radius r, then its area is 7r2 square units.

You have no trouble putting these two facts together to get:
3. Circle X has area 97 square units.

In doing this you are using logic to combine existing information to pro-
duce new information. Because deducing new information is central to
mathematics, logic plays a fundamental role.

It is important to realize that logic is a process of deducing information
correctly, not just deducing correct information. For example, suppose we
were mistaken and Circle X actually had a radius of 4, not 3. Let’s look at
our exact same argument again.

1. Circle X has radius equal to 3.
2. If any circle has radius r, then its area is nr? square units.

3. Circle X has area 97 square units.

The sentence “Circle X has radius equal to 3.” is now untrue, and so is our
conclusion “Circle X has area 97 square units.” But the logic is perfectly
correct; the information was combined correctly, even if some of it was false.
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This distinction between correct logic and correct information is significant
because it is often important to follow the consequences of an incorrect
assumption. Ideally, we want both our logic and our information to be
correct, but the point is that they are different things.

The study of logic begins with statements.
3.1 Statements

A statement is a sentence or a mathematical expression that is either
definitely true or definitely false. You can think of statements as pieces of
information that are either correct or incorrect. Thus statements are pieces
of information that we might apply logic to in order to produce other pieces
of information (which are also statements).

Example 3.1 Here are some examples of statements. They are all true.
If a circle has radius r, then its area is 772 square units.
Every even number is divisible by 2.
AW
V2¢Z
NcZ
The set {0,1,2} has three elements.

Some right triangles are isosceles. 2]

Example 3.2 Here are some additional statements. They are all false.
All right triangles are isosceles.
5=2
V2¢R
Z<N
{0,1,2nN=g £

Example 3.3 Here we pair sentences or expressions that are not state-
ments with similar expressions that are statements.

NOT Statements: Statements:

Add 5 to both sides. Adding 5 to both sides of x —5 =37 gives x = 42.
z 42¢7

42 42 is not a number.

What is the solution of 2x = 84? | The solution of 2x = 84 is 42.
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Example 3.4 We will often use the letters P, @, R and S to stand for
specific statements. When more letters are needed we can use subscripts.
Here are more statements, designated with letters. You decide which of
them are true and which are false.

P : For every integer n > 1, the number 2" -1 is prime.

@ : Every polynomial of degree n has at most n roots.

R : The function f(x) = x? is continuous.

S1:Zc @

S9:{0,-1,-2}NN =g L2l

Designating statements with letters (as was done above) is a very useful
shorthand. In discussing a particular statement, such as “The function
f(x) = x? is continuous,” it is convenient to just refer to it as R to avoid having
to write or say it many times.

Statements can contain variables. Here is an example.

P : If an integer x is a multiple of 6, then x is even.

This is a sentence that is true. (All multiples of 6 are even, so no matter
which multiple of 6 the integer x happens to be, it is even.) Since the sentence
P is definitely true, it is a statement. When a sentence or statement P
contains a variable such as x, we sometimes denote it as P(x) to indicate that
it is saying something about x. Thus the above statement can be denoted as

P(x): If an integer x is a multiple of 6, then x is even.

A statement or sentence involving two variables might be denoted P(x, y),
and so on.

It is quite possible for a sentence containing variables to not be a state-
ment. Consider the following example.

®(x): The integer x is even.

Is this a statement? Whether it is true or false depends on just which integer
x is. It is true if x =4 and false if x = 7, etc. But without any stipulations on
the value of x it is impossible to say whether Q(x) is true or false. Since it
is neither definitely true nor definitely false, @(x) cannot be a statement.
A sentence such as this, whose truth depends on the value of one or more
variables, is called an open sentence. The variables in an open sentence
(or statement) can represent any type of entity, not just numbers. Here is
an open sentence where the variables are functions:
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R(f,g): The function f is the derivative of the function g.

This open sentence is true if f(x) = 2x and g(x) = x2. It is false if f(x) = x®
and g(x) = x2, etc. We point out that a sentence such as R(f, g) (that involves
variables) can be denoted either as R(f,g) or just R. We use the expression
R(f,g) when we want to emphasize that the sentence involves variables.

We will have more to say about open sentences later, but for now let’s
return to statements.

Statements are everywhere in mathematics. Any result or theorem
that has been proved true is a statement. The quadratic formula and the
Pythagorean theorem are both statements:

—-b+VbZ-4ac

P: The solutions of the equation ax? +bx+c¢=0 are x = 5
a

@ : If aright triangle has legs of lengths a and 4 and hypotenuse of
length ¢, then a2 + b2 = ¢2.

Here is a very famous statement, so famous, in fact, that it has a name.
It is called Fermat’s last theorem after Pierre Fermat, a seventeenth-
century French mathematician who scribbled it in the margin of a notebook.

R : For all numbers a,b,c,n € N with n > 2, it is the case that a™ +b™ # c".

Fermat believed this statement was true. He noted that he could prove
it was true, except his notebook’s margin was too narrow to contain his
proof. It is doubtful that he really had a correct proof in mind, for after his
death generations of brilliant mathematicians tried unsuccessfully to prove
that his statement was true (or false). Finally, in 1993, Andrew Wiles of
Princeton University announced that he had devised a proof. Wiles had
worked on the problem for over seven years, and his proof runs through
hundreds of pages. The moral of this story is that some true statements
are not obviously true.

Here is another statement famous enough to be named. It was first
posed in the eighteenth century by the German mathematician Christian
Goldbach, and thus is called the Goldbach conjecture:

S : Every even integer greater than 2 is a sum of two prime numbers.

You must agree that S is either true or false. It appears to be true, because
when you examine even numbers that are bigger than 2, they seem to be
sums of two primes: 4=2+2, 6=3+3, 8=3+5, 10=5+5, 12=5+17,
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100 = 17+ 83 and so on. But that’s not to say there isn’t some large even
number that’s not the sum of two primes. If such a number exists, then S
is false. The thing is, in the over 260 years since Goldbach first posed this
problem, no one has been able to determine whether it’s true or false. But
since it is clearly either true or false, S is a statement.

Much of this book is about the methods that can be used to prove that
S (or any other statement) is true or false. To prove that a statement is
true, we start with obvious statements (or other statements that have been
proven true) and use logic to deduce more and more complex statements
until finally we obtain a statement such as S. Of course some statements
are more difficult to prove than others, and S appears to be notoriously
difficult; we will concentrate on statements that are easier to prove.

But the point is this: In proving that statements are true, we use logic
to help us understand statements and to combine pieces of information
to produce new pieces of information. In the next several sections we
explore some standard ways that statements can be combined to form new
statements, or broken down into simpler statements.

Exercises for Section 3.1

Decide whether or not the following are statements. In the case of a statement,
say if it is true or false, if possible.

Every real number is an even integer.

Every even integer is a real number.

If x and y are real numbers and 5x =5y, then x = y.
Sets Z and N.

Sets Z and N are infinite.

Some sets are finite.

. The derivative of any polynomial of degree 5 is a polynomial of degree 6.
. N¢ Z(N).

. cos(x)=-1

. RxN)N(NxR)=NxN

. The integer x is a multiple of 7.

© 0 NS PR ® N s
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. If the integer x is a multiple of 7, then it is divisible by 7.
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. Either x is a multiple of 7, or it is not.
. Call me Ishmael.
. In the beginning, God created the heaven and the earth.

-
[ I




56 Logic

3.2 And, Or, Not

The word “and” can be used to combine two statements to form a new
statement. Consider for example the following sentence.

R1: The number 2 is even and the number 3 is odd.

We recognize this as a true statement, based on our common-sense under-
standing of the meaning of the word “and.” Notice that R; is made up of
two simpler statements:

P : The number 2 is even.
Q : The number 3 is odd.

These are joined together by the word “and” to form the more complex
statement R1. The statement R; asserts that P and @ are both true. Since
both P and @ are in fact true, the statement R is also true.

Had one or both of P and @ been false, then R; would be false. For
instance, each of the following statements is false.

Rs5: The number 1 is even and the number 3 is odd.
R3: The number 2 is even and the number 4 is odd.
R4 : The number 3 is even and the number 2 is odd.

From these examples we see that any two statements P and @ can be
combined to form a new statement “P and @.” In the spirit of using letters
to denote statements, we now introduce the special symbol A to stand for the
word “and.” Thus if P and @ are statements, P A @ stands for the statement
“Pand @.” The statement P AQ is true if both P and @ are true; otherwise
it is false. This is summarized in the following table, called a truth table.

P/\Q

ﬁ:*qsﬂﬂ

N NS

RGO

In this table, T stands for “True,” and F stands for “False.” (T and F are
called truth values.) Each line lists one of the four possible combinations
or truth values for P and @, and the column headed by P A Q tells whether
the statement P A @ is true or false in each case.
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Statements can also be combined using the word “or.” Consider the
following four statements.

S1: The number 2 is even or the number 3 is odd.
Ss : The number 1 is even or the number 3 is odd.
S3: The number 2 is even or the number 4 is odd.
S4: The number 3 is even or the number 2 is odd.

In mathematics, the assertion “P or @” is always understood to mean that
one or both of P and @ is true. Thus statements S, Sy, S3 are all true,
while S, is false. The symbol v is used to stand for the word “or.” So if P
and @ are statements, P v @ represents the statement “P or @.” Here is the
truth table.

h:ﬁ:ssﬂ

’H'ﬂ'ﬁ'ﬂa
~
<
P

SN R

It is important to be aware that the meaning of “or” expressed in the
above table differs from the way it is often used in everyday conversation.
For example, suppose a university official makes the following threat:

You pay your tuition or you will be withdrawn from school.

You understand that this means that either you pay your tuition or you will
be withdrawn from school, but not both. In mathematics we never use the
word “or” in such a sense. For us “or” means exactly what is stated in the
table for v. Thus P v @ being true means one or both of P and @ is true. If
we ever need to express the fact that exactly one of P and @ is true, we use
one of the following constructions:

P or @, but not both.
Either P or Q.
Exactly one of P or Q.

If the university official were a mathematician, he might have qualified his
statement in one of the following ways.

Pay your tuition or you will be withdrawn from school, but not both.

Either you pay your tuition or you will be withdrawn from school.
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To conclude this section, we mention another way of obtaining new
statements from old ones. Given any statement P, we can form the new
statement “It is not true that P.” For example, consider the following
statement.

The number 2 is even.

This statement is true. Now change it by inserting the words “It is not true
that” at the beginning:

It is not true that the number 2 is even.

This new statement is false.

For another example, starting with the false statement “2 € @,” we get
the true statement “It is not true that 2€ ¢.”

We use the symbol ~ to stand for the words “It’s not true that,” so ~ P
means “It’s not true that P.” We often read ~ P simply as “not P.” Unlike
A and v, which combine two statements, the symbol ~ just alters a single
statement. Thus its truth table has just two lines, one for each possible
truth value of P.

PP
T F
Fl| T

The statement ~ P is called the negation of P. The negation of a specific
statement can be expressed in numerous ways. Consider

P : The number 2 is even.
Here are several ways of expressing its negation.

~ P : It’s not true that the number 2 is even.
~ P : It is false that the number 2 is even.
~ P : The number 2 is not even.

In this section we've learned how to combine or modify statements with
the operations A, v and ~. Of course we can also apply these operations
to open sentences or a mixture of open sentences and statements. For
example, (x is an even integer) A (3 is an odd integer) is an open sentence
that is a combination of an open sentence and a statement.
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Exercises for Section 3.2
Express each statement or open sentence in one of the forms PAQ, Pv @, or ~P.
Be sure to also state exactly what statements P and @ stand for.
The number 8 is both even and a power of 2.
The matrix A is not invertible.
x#y 4, x<y 5. y=x
. There is a quiz scheduled for Wednesday or Friday.
. The number x equals zero, but the number y does not.
. At least one of the numbers x and y equals 0.
. xeEA-B 10. xc AUB 11. Ae{Xe P(N):|X|<oo}
12. Happy families are all alike, but each unhappy family is unhappy in its own way.
(Leo Tolstoy, Anna Karenina)
13. Human beings want to be good, but not too good, and not all the time.
(George Orwell)
14. A man should look for what is, and not for what he thinks should be.
(Albert Einstein)

3.3 Conditional Statements

There is yet another way to combine two statements. Suppose we have in
mind a specific integer a. Consider the following statement about a.

R : If the integer a is a multiple of 6, then a is divisible by 2.

We immediately spot this as a true statement based on our knowledge of
integers and the meanings of the words “if” and “then.” If integer a is a
multiple of 6, then a is even, so therefore a is divisible by 2. Notice that R is
built up from two simpler statements:

P : The integer a is a multiple of 6.
® : The integer a is divisible by 2.
R: If P, then Q.

In general, given any two statements P and @ whatsoever, we can form
the new statement “If P, then @.” This is written symbolically as P = @
which we read as “If P, then @,” or “P implies @.” Like A and v, the symbol
= has a very specific meaning. When we assert that the statement P = @
is true, we mean that if P is true then @ must also be true. (In other words
we mean that the condition P being true forces @ to be true.) A statement
of form P = @ is called a conditional statement because it means @ will
be true under the condition that P is true.
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Think of P = @ as a promise that whenever P is true, @ will be true also.
There is only one way this promise can be broken (i.e. be false) and that is if
P is true but @ is false. Thus the truth table for the promise P = @ is this:

ple]P=q]
T[T T
T/ F| F
FlT| T
FIF| T

Perhaps you are bothered by the fact that P = @ is true in the last two
lines of this table. Here’s an example to convince you that the table is
correct. Suppose your professor makes the following ptomise:

If you pass the final exam, then you will pass the course.
(You pass the exam) = (You pass the course).
Under what circumstances did she lie? There are four possible scenarios,

depending on whether or not you passed the exam and whether or not you
passed the course. These scenarios are tallied below.

You pass exam | You pass course H (You pass exam) = (You pass course)

T T T
T F F
F T T
F F T

In the first line you pass the exam and you pass the course. Your professor
kept her promise, and the T in the third column indicates she told the truth.
In the second line, you passed the exam, but your professor gave you a
failing grade in the course. In this case she broke her promise, and the F in
the third column indicates that what she said was untrue.

Now consider the third row. In this scenario you failed the exam but
still passed the course. How could that happen? Maybe your professor felt
sorry for you. But that doesn’t make her a liar. Her only promise was that
if you passed the exam then you would pass the course. She did not say
passing the exam was the only way to pass the course. Since she didn’t lie,
then she told the truth, so there is a T in the third column.

Finally look at the fourth row. In that scenario you failed the exam and
you failed the course. Your professor did not lie; she did exactly what she
said she would do. Hence the T in the third column.
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Here is another example that explains why P = @ is true whenever P is
false. Consider the following statement.

If this month is September, then there is an equinox this month.

An equinox is a day for which there are equal hours of darkness and light.
There are two equinoxes per year, one in September and the other in March.
The above statement is thus unquestionably true, for it asserts correctly
that if the current month is September, then an equinox will occur this
month. In symbolic form, our statement is

(This month is September) = (There is an equinox this month).

This statement is always true, no matter the month in which we say it. It
is true if we say it in September, and it is true if we say it in March, or May,
or any other month. But the open sentences P: “This month is September,”
and Q: “There is an equinox this month,” are either true or false, depending
on what month it is. Still, P = @ is always true. This is tallied below for six
months. Remember that in this example P = @ is always true, and notice
how this can be so even when P is false.

This month | 1" 15 a0 (This month ) _ (Zhjfsoli an)
is September tlcllis month is September tl?is month

Sept. T T T

Oct. F F T

Novw. F F T

Dec. F F T

Jan. F F T

Feb. F F T

March F T T

Here is a summary of what we have learned so far about conditional
statements.

The truth table for P = @ is shown on the right.

In mathematics, the sentence “If P, then @” means ’ P ‘ Q H P=0Q ‘
exactly what the truth table for P = @ expresses.

It promises that P being true will make @ true too. r\T T

It promises nothing about what happens if P is T F F
false, so we cannot ever say that P = @ is false F| T T
when P is false. The only way P = @ can be false F|F T

is if P is true and @ is false.
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Of course there are other grammatical constructions that mean exactly
the same thing as P = @. Here is a summary of the main ones.

If P, then Q.

Q if P.

@ whenever P.

@, provided that P.

Whenever P, then also Q.

P is a sufficient condition for Q.
For @, it is sufficient that P.

@ is a necessary condition for P.
For P, it is necessary that @.

P only if @.

» P=>Q

These can all be used in the place of (and mean exactly the same thing as)
“If P, then @.” You should analyze the meaning of each one and convince
yourself that it captures the meaning of P = @. For example, P = @ means
the condition of P being true is enough (i.e., sufficient) to make @ true;
hence “P is a sufficient condition for @.”

The wording can be tricky. Often an everyday situation involving a con-
ditional statement can help clarify it. For example, consider your professor’s
promise:

(You pass the exam) = (You pass the course)

This means that your passing the exam is a sufficient (though perhaps not
necessary) condition for your passing the course. Thus your professor might
just as well have phrased her promise in one of the following ways.

Passing the exam is a sufficient condition for passing the course.

For you to pass the course, it is sufficient that you pass the exam.

However, when we want to say “If P, then @” in everyday conversation,
we do not normally express this as “Q is a necessary condition for P” or “P
only if @.” But such constructions are not uncommon in mathematics. To
understand why they make sense, notice that P = @ being true means that
it’s impossible that P is true but @ is false, so in order for P to be true it is
necessary that @ is true; hence “Q is a necessary condition for P.” And this
means that P can only be true if @ is true, i.e., “P only if Q.”



Biconditional Statements 63

Exercises for Section 3.3

Without changing their meanings, convert each of the following sentences into a
sentence having the form “If P, then @.”

. A matrix is invertible provided that its determinant is not zero.

. For a function to be continuous, it is sufficient that it is differentiable.
. For a function to be integrable, it is necessary that it is continuous.

. A function is rational if it is a polynomial.

. An integer is divisible by 8 only if it is divisible by 4.

. Whenever a surface has only one side, it is non-orientable.

. A series converges whenever it converges absolutely.

. A geometric series with ratio r converges if || < 1.

© P 3 Ok W N =

. A function is integrable provided the function is continuous.

[a—y
=]

. The discriminant is negative only if the quadratic equation has no real solutions.
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. You fail only if you stop writing. (Ray Bradbury)

[y
N

. People will generally accept facts as truth only if the facts agree with what they
already believe. (Andy Rooney)

13. Whenever people agree with me I feel I must be wrong. (Oscar Wilde)

3.4 Biconditional Statements

It is important to understand that P = @ is not the same as @ = P. To see
why, suppose that a is some integer and consider the statements

(a is a multiple of 6) = (a is divisible by 2),
(a is divisible by 2) = (a is a multiple of 6).

The first statement asserts that if a is a multiple of 6 then a is divisible
by 2. This is clearly true, for any multiple of 6 is even and therefore divisible
by 2. The second statement asserts that if a is divisible by 2 then it is a
multiple of 6. This is not necessarily true, for a = 4 (for instance) is divisible
by 2, yet not a multiple of 6. Therefore the meanings of P> @ and @ = P
are in general quite different. The conditional statement @ = P is called
the converse of P = @, so a conditional statement and its converse express
entirely different things.
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But sometimes, if P and @ are just the right statements, it can happen
that P = @ and @ = P are both necessarily true. For example, consider the
statements

(aiseven) = (a is divisible by 2),

(a is divisible by 2) = (a is even).

No matter what value a has, both of these statements are true. Since both
P =@ and @ = P are true, it follows that (P = @) A(Q = P) is true.

We now introduce a new symbol < to express the meaning of the state-
ment (P = Q) A(Q = P). The expression P © @ is understood to have exactly
the same meaning as (P = Q) A (Q = P). According to the previous section,
@R > Pisread as “P if @,” and P = @ can be read as “P only if @.” Therefore
we pronounce P < @ as “P if and only if @.” For example, given an integer
a, we have the true statement

(a is even) < (a is divisible by 2),

which we can read as “Integer a is even if and only if a is divisible by 2.”

The truth table for < is shown below. Notice that in the first and last
rows, both P = @ and @ = P are true (according to the truth table for =), so
(P => Q)A(Q = P) is true, and hence P « @ is true. However, in the middle
two rows one of P = @ or @ = P is false, so (P > Q) A (Q = P) is false, making
P o @ false.

PlefPeq]
T[T T
T/ F|| F
FlT| F
FIF| T

Compare the statement R : (a is even) © (a is divisible by 2) with this
truth table. If a is even then the two statements on either side of < are
true, so according to the table R is true. If a is odd then the two statements
on either side of © are false, and again according to the table R is true.
Thus R is true no matter what value a has. In general, P < @ being true
means P and @ are both true or both false.

Not surprisingly, there are many ways of saying P © @ in English. The
following constructions all mean P < Q:
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P if and only if .

P is a necessary and sufficient condition for @.
For P it is necessary and sufficient that @.

If P, then @, and conversely.

Po@

The first three of these just combine constructions from the previous section
to express that P = @ and @ = P. In the last one, the words “...and conversely”
mean that in addition to “If P, then @” being true, the converse statement
“If @, then P” is also true.

Exercises for Section 3.4

Without changing their meanings, convert each of the following sentences into a
sentence having the form “P if and only if @.”
1. For matrix A to be invertible, it is necessary and sufficient that det(A) # 0.

2. If a function has a constant derivative then it is linear, and conversely.

e

If xy =0 then x =0 or ¥y =0, and conversely.
If a € Q then 5a € Q, and if 5a € Q then a € Q.

For an occurrence to become an adventure, it is necessary and sufficient for one
to recount it. (Jean-Paul Sartre)

ok

3.5 Truth Tables for Statements

You should now know the truth tables for A, v, ~, = and <. They should
be internalized as well as memorized. You must understand the symbols
thoroughly, for we now combine them to form more complex statements.

For example, suppose we want to convey that one or the other of P and
® is true but they are not both true. No single symbol expresses this, but
we could combine them as

PVRIA~(PAQ),

which literally means:

P or Q is true, and it is not the case that both P and @ are true.

This statement will be true or false depending on the truth values of P and
Q. In fact we can make a truth table for the entire statement. Begin as usual
by listing the possible true/false combinations of P and @ on four lines. The
statement (P v @Q)A ~ (P AQ) contains the individual statements (P v @) and
(P AQ), so we next tally their truth values in the third and fourth columns.
The fifth column lists values for ~ (P A @), and these are just the opposites
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of the corresponding entries in the fourth column. Finally, combining the
third and fifth columns with A, we get the values for (P v@)A ~ (P AQ) in
the sixth column.

(P]Q] ev@) [ Pr@ | ~Pr@) [ ®v@r~@rQ) |

T|T T T F F
T|F T F T T
F | T T F T T
F | F F F T F

This truth table tells us that (P v @Q)A ~ (P A Q) is true precisely when one
but not both of P and @ are true, so it has the meaning we intended. (Notice
that the middle three columns of our truth table are just “helper columns”
and are not necessary parts of the table. In writing truth tables, you may
choose to omit such columns if you are confident about your work.)

For another example, consider the following familiar statement concern-

ing two real numbers x and y:

The product xy equals zero if and only if x =0 or y =0.

This can be modeled as (xy =0) © (x=0 v y=0). If we introduce letters P,@
and R for the statements xy =0, x = 0and y =0, it becomes P < (@ VR). Notice
that the parentheses are necessary here, for without them we wouldn’t know

whether to read the statement as P © (Q VR) or (P © @)V R.

Making a truth table for P < (@ v R) entails a line for each T/F combina-
tion for the three statements P, @ and R. The eight possible combinations
are tallied in the first three columns of the following table.

]P\Q\RH QVR HP@(QVR)
TlT|T T T
T T|F T

T F|T T T
T F|F|| F F
FlT|T T F
F|T|F T F
F|F|T T F
FIF|F| F T

We fill in the fourth column using our knowledge of the truth table for v.
Finally the fifth column is filled in by combining the first and fourth columns
with our understanding of the truth table for <. The resulting table gives
the true/false values of P < (@ v R) for all values of P,Q and R.
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Notice that when we plug in various values for x and y, the statements
P:xy=0,Q:x=0and R :y=0 have various truth values, but the statement
P < (Q vR) is always true. For example, if x =2 and y =3, then P,@ and
R are all false. This scenario is described in the last row of the table, and
there we see that P < (Q v R) is true. Likewise if x =0 and y =7, then P
and @ are true and R is false, a scenario described in the second line of
the table, where again P < (@ v R) is true. There is a simple reason why
P < (Q VR) is true for any values of x and y: It is that P © (Q v R) represents
(xy=0)o (x=0 v y=0), which is a true mathematical statement. It is
absolutely impossible for it to be false.

This may make you wonder about the lines in the table where P < (@ VR)
is false. Why are they there? The reason is that P < (Q v R) can also
represent a false statement. To see how, imagine that at the end of the
semester your professor makes the following promise.

You pass the class if and only if you get an “A” on the final or you get a
“B” on the final.

This promise has the form P < (@ v R), so its truth values are tabulated in
the above table. Imagine it turned out that you got an “A” on the exam but
failed the course. Then surely your professor lied to you. In fact, P is false,
Q is true and R is false. This scenario is reflected in the sixth line of the
table, and indeed P < (@ v R) is false (i.e., it is a lie).

The moral of this example is that people can lie, but true mathematical
statements never lie.

We close this section with a word about the use of parentheses. The
symbol ~ is analogous to the minus sign in algebra. It negates the expression
it precedes. Thus ~P v@ means (~P)v@, not ~(PVv Q). In ~(P v@Q), the
value of the entire expression P v Q is negated.

Exercises for Section 3.5

Write a truth table for the logical statements in problems 1-9:

1. Pv(@=>R) 4, ~(PvQ@)v(~P) 7. PA~P)=>@Q
2. QVR)o (RAQ) 5. (PA~P)v@ 8. Pv(QA~R)
3. ~(P=>Q) 6. PA~P)AQ 9. ~(~Pv~Q)

10. Suppose the statement (P AQ)VR)= (R v S) is false. Find the truth values of
P,Q,R and S. (This can be done without a truth table.)

11. Suppose P is false and that the statement (R = S) ¢ (P AQ) is true. Find the
truth values of R and S. (This can be done without a truth table.)
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3.6 Logical Equivalence

In contemplating the truth table for P < @, you probably noticed that P & @
is true exactly when P and @ are both true or both false. In other words,
P < @ is true precisely when at least one of the statements PAQ or ~PA ~@Q
is true. This may tempt us to say that P < @ means the same thing as
PAQ)V(~PA~@Q).

To see if this is really so, we can write truth tables for P © @ and
PAQQ)V(~PA ~@Q). In doing this, it is more efficient to put these two
statements into the same table, as follows. (This table has helper columns
for the intermediate expressions ~P, ~@, (P AQ) and (~PA ~@Q).)

(PIQ[-P[~Q[Pr@ [P~ @[ @r@v(~Pr~@ [PoQq]
T|T| F F T F T T
T|F| F T F F F F
F|\T| T F F F F F
F|F| T T F T T T

The table shows that P © @ and (PAQ)V (~PA ~ @) have the same truth
value, no matter the values P and Q. Itisasif P © @ and (PAQ)V(~PA~@Q)
are algebraic expressions that are equal no matter what is “plugged into”
variables P and @. We express this state of affairs by writing

Po@ = (PAQV(~PA~Q)

and saying that P & @ and (P AQ) Vv (~ PA ~ Q) are logically equivalent.
In general, two statements are logically equivalent if their truth
values match up line-for-line in a truth table.
Logical equivalence is important because it can give us different (and
potentially useful) ways of looking at the same thing. As an example, the
following table shows that P = @ is logically equivalent to (~ @) = (~ P).

Ple[~Pl~@[c@=-P)[P=q]

T|\T]| F F T T
T |F F T F F
F|T T F T T
F | F T T T T
The fact that P=>@ = (~Q)= (~P) is useful because so many theorems

have the form P = @. As we will see in Chapter 5, proving such a theorem
may be easier if we express it in the logically equivalent form (~ @)= (~ P).
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There are two pairs of logically equivalent statements that come up
again and again throughout this book and beyond. They are prevalent
enough to be dignified by a special name: DeMorgan’s laws.

Fact 3.1 (DeMorgan’s Laws)
1. ~(PAQ) = (~P)V(~Q)
2. ~(PVv@) = (~P)A(~Q)

The first of DeMorgan’s laws is verified by the following table. You are asked
to verify the second in one of the exercises.

(PQ[~P|~Q[PrQ [ ~Pr@ | -P)V(~Q)
T|T| F F T F F
T|F| F T F T T
F|\T| T F F T T
F|\F| T T F T T

DeMorgan’s laws are actually very natural and intuitive. Consider the
statement ~ (P A @), which we can interpret as meaning that it is not the
case that both P and @ are true. If it is not the case that both P and @ are
true, then at least one of P or @ is false, in which case (~ P) v (~ Q) is true.
Thus ~ (P A®) means the same thing as (~ P) v (~ Q).

DeMorgan’s laws can be very useful. Suppose we happen to know that
some statement having form ~ (P v @) is true. The second of DeMorgan’s
laws tells us that (~ @) A (~ P) is also true, hence ~ P and ~ @ are both true
as well. Being able to quickly obtain such additional pieces of information
can be extremely useful.

Here is a summary of some significant logical equivalences. Those that
are not immediately obvious can be verified with a truth table.

P=>Q = (~@Q)=>(~P) Contrapositive law (3.1)
:8;08; _ :gx N qQ } DeMorgan’s laws (3.2)

208 _ 805 } Commutative laws (3.3)

PA@vE) = BA@VEAR) L Digiributivelaws  (3.4)
llzcgg Cg; z g C 8; Cg } Associative laws (3.5)
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Notice how the distributive law PA(Q VR) = (P AQ) Vv (P AR) has the
same structure as the distributive law p-(g+r)=p-q+ p-r from algebra.
Concerning the associative laws, the fact that P A(Q AR) = (P AQ) AR means
that the position of the parentheses is irrelevant, and we can write this as
P AQ AR without ambiguity. Similarly, we may drop the parentheses in an
expression such as P v(Q VR).

But parentheses are essential when there is a mix of A and v, as in
Pv(Q AR). Indeed, Pv(Q AR) and (P vQ)AR are not logically equivalent.
(See Exercise 13 for Section 3.6, below.)

Exercises for Section 3.6

A. Use truth tables to show that the following statements are logically equivalent.

1. PA@QVR)=(PAQ)V(PAR) 5. ~(PVQVR) = (~P)A(~Q)A(~R)
2. PVQAR)=(PVQ)A(PVR) 6. ~(PAQAR) = (~P)V(~Q)V(~R)
3. P>Q=(~P)vQ 7. P>Q = PA~Q)=>QA~Q)
4. ~(PvQ) = (=P)A(~Q) 8. ~PoQ=P=>~Q)A(~Q=P)

B. Decide whether or not the following pairs of statements are logically equivalent.
9. PAQ and ~(~Pv ~Q) 12. ~(P=>Q) and PA~@Q
10. (P=>Q@)VR and ~(PA~Q)A~R) 13. PV(QAR)and (PVQ)AR
11. (~P)A(P>Q) and ~(Q > P) 14. PA(QVv ~Q)and (~P)=(QA~Q)
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3.7 Solutions for Chapter 3
Section 3.1

Decide whether or not the following are statements. In the case of a statement,
say if it is true or false.

g W e

11.

13.

15.

. Every real number is an even integer. (Statement, False)
. If x and y are real numbers and 5x =5y, then x = y. (Statement, True)
. Sets Z and N are infinite. (Statement, True)

. The derivative of any polynomial of degree 5 is a polynomial of degree 6. (State-

ment, False)

. cos(x)=-1

This is not a statement. It is an open sentence because whether it’s true or false
depends on the value of x.

The integer x is a multiple of 7.
This is an open sentence, and not a statement.

Either x is a multiple of 7, or it is not.
This is a statement, for the sentence is true no matter what x is.

In the beginning God created the heaven and the earth.

This is a statement, for it is either definitely true or definitely false. There is
some controversy over whether it’s true or false, but no one claims that it is
neither true nor false.

Section 3.2

Express each statement as one of the forms PAQ, Pv @, or ~P. Be sure to also
state exactly what statements P and @ stand for.

1.

The number 8 is both even and a power of 2.

PAQ

P: 8is even

Q: 8 is a power of 2

Note: Do not say “@: a power of 2,” because that is not a statement.

CXEY ~(x=y) (Also ~P where P:x=1y.)
Cy=x ~(y<x) (Also ~P where P:y<x.)
. The number x equals zero, but the number y does not.
PA~@Q
P:x=0
Q:y=0
. xeA-B

(xeAA~(x€B)
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11. Ae{X e Z(N): |X]| < oo}

13.

(ASN)A(JA] < o).

Human beings want to be good, but not too good, and not all the time.
PA~QA~R

P : Human beings want to be good.

® : Human beings want to be too good.

R : Human beings want to be good all the time.

Section 3.3

Without changing their meanings, convert each of the following sentences into a
sentence having the form “If P, then Q.”

1.

11.

13.

A matrix is invertible provided that its determinant is not zero.
Answer: If a matrix has a determinant not equal to zero, then it is invertible.

. For a function to be integrable, it is necessary that it is continuous.

Answer: If a function is integrable, then it is continuous.

. An integer is divisible by 8 only if it is divisible by 4.

Answer: If an integer is divisible by 8, then it is divisible by 4.

. A series converges whenever it converges absolutely.

Answer: If a series converges absolutely, then it converges.

. A function is integrable provided the function is continuous.

Answer: If a function is continuous, then that function is integrable.
You fail only if you stop writing.
Answer: If you fail, then you have stopped writing.

Whenever people agree with me I feel I must be wrong.
Answer: If people agree with me, then I feel I must be wrong.

Section 3.4

Without changing their meanings, convert each of the following sentences into a
sentence having the form “P if and only if .”

1.

For a matrix to be invertible, it is necessary and sufficient that its determinant

is not zero.
Answer: A matrix is invertible if and only if its determinant is not zero.

. If xy =0 then x =0 or y =0, and conversely.

Answer: xy=0if and onlyifx=00r y=0

. For an occurrence to become an adventure, it is necessary and sufficient for one

to recount it.
Answer: An occurrence becomes an adventure if and only if one recounts it.

Section 3.5
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1. Write a truth table for Pv(Q => R) 5. Write a truth table for (PA~P)v@Q

(P[Q[R[Q@=R[Pv@=R] Ple|@r~P [ @r~PvQ
Tttt T T T|T F T
T|T|F| F T T|F F F
T|FrlT| T T F|T F T
T F|F| T T F|F F F
Flr|T| T T
FlTF 7 F 7. Write a truth table for (PA ~P)=Q
FIFIT)] T T Pl @r~P)[[Pr~P)=q
FIF|F| T T 7 - -
3. Write a truth table for ~ (P = Q) T|F F T
F|T F T
Plefr=e|-r=a] FlF| F T
rlr| 7T F
T|F| F T
FlT| T F
FIF| T F

9. Write a truth table for ~(~Pv ~@Q).

ple] -p[-Q [-Pv-@] ~cPv-0
T[T F | F F T
T|F|| F | T T F
Flr| r | F T F
FIF| 7 | T T F

11. Suppose P is false and that the statement (R = S) < (P AQ) is true. Find the
truth values of R and S. (This can be done without a truth table.)
Answer: Since P is false, it follows that (P A Q) is false also. But then in order
for (R = S) < (P AQ) to be true, it must be that (R = S) is false. The only way for

(R = S) to be false is if’ R is true and S is false. ‘

Section 3.6

A. Use truth tables to show that the following statements are logically equivalent.
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1. PA(QVR)=(PAQ)V(PAR)

]P\Q\RH QVR \ PAQ \ PAR H PA@QVR) | PAQ)V(PAR)
T T T T T T T
TiT|F|| T T F T
Tlrlr|| T F T T T
T|F|F| F F F F F
Flr|T] T F F F F
FIT|F| T F F F F
FlF|T| T F F F F
FlF|F| F F F F F

Thus since their columns agree, the two statements are logically equivalent.
3. P>Q=(~P)v@Q

Plef-pc-PvalP=0]
T[T] F T T
T|F|| F F F
FlrT| T T T
FIF| T T T

Thus since their columns agree, the two statements are logically equivalent.
5. ~(PVQVR) = (~P)A(~Q)A(~R)

]P \ Q \R H PVQVR \ ~P \ ~Q \ ~R H ~(PVQVR) | (~P)A(~Q)A(~R)

T|T|T T F F F F F
T|T|F T F F T F F
T|F|T T F T F F F
T|F|F T F T T F F
F|T|T T T F F F F
F|T|F T T F T F F
F|F|T T T T F F F
F |F|F F T T T T T

Thus since their columns agree, the two statements are logically equivalent.

7. P=Q = (PA~Q)=>@QAr~Q)

Plef~@|Pr~@[@r~@ [ PA~@=>@r~Q [ P=Q]
T|T F F F T T
T|F T T F F F
F|T F F F T T
F | F T F F T T
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Thus since their columns agree, the two statements are logically equivalent.

B. Decide whether or not the following pairs of statements are logically equivalent.

9. By DeMorgan’s law, we have ~(~Pv ~Q)=~~PA ~~@Q =P AQ. Thus the two
statements are logically equivalent.

11. (~P)A(P=>Q) and ~(Q = P)

PlQ[~P|P=@|@=P|-PrP=>@|~@=P
Tt F| T T F F
T|F| F| F T F F
Flr| ][ r F T T
Flr| | T T T F

The columns for the two statements do not quite agree, thus the two statements
are not logically equivalent.
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CHAPTER 4

Counting

A its most basic level, counting is a process of pointing to each object
in a collection and calling off “one, two, three,...” until the quantity
is determined. But this primitive approach to counting is inadequate for
applications that demand us to count large quantities in complex situations.
We might need to find how many steps an algorithm makes to process a
certain input, in order to find whether it can complete its task in a reasonable
duration, or to compare it to other algorithms. Or we might need to count
the possible outcomes in some game or process in order to determine a
winning strategy or compute the probability of success.

This chapter presents fundamental methods of sophisticated counting.
Sets play a big role because the things we need to count are often naturally
grouped together into a set. The concept of a list is also extremely useful.

4.1 Lists

A list is an ordered sequence of objects. A list is denoted by an opening
parenthesis, followed by the objects, separated by commas, followed by a
closing parenthesis. For example (a,b,c,d,e) is a list consisting of the first
five letters of the English alphabet, in order. The objects a,b,c,d,e are called
the entries of the list; the first entry is a, the second is b, and so on. If the
entries are rearranged we get a different list, so, for instance,

(a,b,c,d,e) #(b,a,c,d,e).

A list is somewhat like a set, but instead of being a mere collection of objects,
the entries of a list have a definite order. For sets we have

{a,b,c,d,e} =1{b,a,c,d,e},

but—as noted above—the analogous equality for lists does not hold.
Unlike sets, lists can have repeated entries. Thus (5,3,5,4,3,3) is a

perfectly acceptable list, as is (S,0,S). The length of a list is its number of

entries. So (5,3,5,4,3,3) has length six, and (S,0,S) has length three.
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For more examples, (a,15) is a list of length two. And (0,(0,1,1)) is a list
of length two whose second entry is a list of length three. Two lists are
equal if they have exactly the same entries in exactly the same positions.
Thus equal lists have the same number of entries. If two lists have different
lengths, then they can not be equal. Thus (0,0,0,0,0,0) #(0,0,0,0,0). Also

bananas
coffee

brﬁid
; mi
(g,’“,O,C,e,r,y, Z,Z,S,t) ;ﬁ ( eggs )

because the list on the left has length eleven but the list on the right has
just one entry (a piece of paper with some words on it).

There is one very special list which has no entries at all. It is called the
empty list and is denoted (). It is the only list whose length is zero.

For brevity we often write lists without parentheses, or even commas.
For instance, we may write (S,0,S) as SOS if there is no risk of confusion.
But be alert that doing this can lead to ambiguity: writing (9,10,11) as
91011 may cause us to confuse it with (9,1,0,1,1). Here it’s best to retain
the parenthesis/comma notation or at least write the list as 9,10,11. A list
of symbols written without parentheses and commas is called a string.

The process of tossing a coin ten times may be described by a string such
as HHTHTTTHHT. Tossing it twice could lead to any of the outcomes HH,
HT,TH or TT. Tossing it zero times is described by the empty list ().

Imagine rolling a dice five times and recording the outcomes. This might
be described by the list (&3,63,63,(),E7), meaning that you rolled (3 first, then
(¢, then (9, etc. We might abbreviate this list as =010, or 8,5,3,1,6.

Now imagine rolling a pair of dice, one white and one black. A typical
outcome might be modeled as a set like {J,8}. Rolling the pair six times
might be described with a list of six such outcomes:

({08}, {&.8}, {&,8}, {8}, {8}, {,8}).
We might abbreviate this list as CJ8, (763,360, (-6, (-8, (&,

We study lists because many real-world phenomena can be described
and understood in terms of them. Your phone number can be identified
as a list of ten digits. (Order is essential, for rearranging the digits can
produce a different phone number.) A byte is another important example
of a list. A byte is simply a length-eight list of 0’s and 1’s. The world of
information technology revolves around bytes. And the examples above
show that multi-step processes (such as rolling a dice twice) can be modeled
as lists.

We now explore methods of counting or enumerating lists and processes.
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4.2 The Multiplication Principle

Many practical problems involve counting the number of possible lists that
satisfy some condition or property.

For example, suppose we make a list of length three having the property
that the first entry must be an element of the set {a,b,c}, the second entry
must be in {5,7} and the third entry must be in {a,x}. Thus (a,5,a) and
(b,5,a) are two such lists. How many such lists are there all together? To
answer this question, imagine making the list by selecting the first entry,
then the second and finally the third. This is described in Figure 4.1. The
choices for the first list entry are a,b or ¢, and the left of the diagram
branches out in three directions, one for each choice. Once this choice is
made there are two choices (5 or 7) for the second entry, and this is described
graphically by two branches from each of the three choices for the first entry.
This pattern continues for the choice for the third entry, which is either
a or x. Thus, in the diagram there are 3-2-2 = 12 paths from left to right,
each corresponding to a particular choice for each entry in the list. The
corresponding lists are tallied at the far-right end of each path. So, to
answer our original question, there are 12 possible lists with the stated
properties.

Resulting list

first choice  second choice third choice /

N
J l (a,5,a)

(a,5,x)
(a,7,a)
(a,7,x)
(b,5,a)
(b,5,x)
b,7,a)
b,7,x)
(¢,5,a)
(¢,5,x)
(c,7,a)
(¢,7,x)

Figure 4.1. Constructing lists of length 3

In the above example there are 3 choices for the first entry, 2 choices for
the second entry, and 2 for the third, and the total number of possible lists
is the product of choices 3-2-2 = 12. This kind of reasoning is an instance of
what we will call the multiplication principle. We will do one more example
before stating this important idea.



82 Counting

Consider making a list of length 4 from the four letters {a,b,c,d}, where
the list is not allowed to have a repeated letter. For example, abed and cadb
are allowed, but aabc and cacb are not allowed. How many such lists are
there?

Let’s analyze this question with a tree representing the choices we have
for each list entry. In making such a list we could start with the first entry:
we have 4 choices for it, namely a,b,c or d, and the left side of the tree
branches out to each of these choices. But once we’ve chosen a letter for
the first entry, we can’t use that letter in the list again, so there are only 3
choices for the second entry. And once we’ve chosen letters for the first and
second entries we can’t use these letters in the third entry, so there are just
2 choices for it. By the time we get to the fourth entry we are forced to use
whatever letter we have left; there is only 1 choice.

The situation is described fully in the below tree showing how to make
all allowable lists by choosing 4 letters for the first entry, 3 for the second
entry, 2 for the third entry and 1 for the fourth entry. We see that the total
number of lists is the product 4-3-2-1=24.

1st choice 3rd choice Resulting list

4th choice /
!

abed
abdc
acbd
acdb
adbc
adcb
bacd
badc
becad
beda
bdac
bdca
cabd
cadb
cbad
cbda
cdab
cdbe
dabc
dacb
dbac
dbca
dcab
dcba

2nd choice

@ ® ® @ @ ® @ @ ® O D—
OEEEEEEEEE®REERE®EEEOD®( —
EREREEEEREEEEOE®O®PEOEEEO®

Figure 4.2. Constructing lists from letters in {a,b,c,d}, without repetition.
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These trees show that the number of lists constructible by some specified
process equals the product of the numbers of choices for each list entry. We
summarize this kind of reasoning as an important fact.

Fact 4.1 (Multiplication Principle) Suppose in making a list of
length n there are a; possible choices for the first entry, as possible
choices for the second entry, a3 possible choices for the third entry, and
so on. Then the total number of different lists that can be made this way
is the product a1 -ag-a3----ay.

In using the multiplication principle you do not need to draw a tree
with a1-ag----- an, branches. Just multiply the numbers!

Example 4.1 A standard license plate consists of three letters followed
by four numbers. For example, JRB-4412 and MMX-8901 are two standard
license plates. How many different standard license plates are possible?

Solution: A license plate such as JRB-4412 corresponds to a length-7 list
(J,R,B,4,4,1,2), so we just need to count how many such lists are possible.
We use the multiplication principle. There are a1 = 26 possibilities (one for
each letter of the alphabet) for the first entry of the list. Similarly, there are
as = 26 possibilities for the second entry and a3 = 26 possibilities for the third.
There are a4 = 10 possibilities for the fourth entry. Likewise a5 = ag = a7 = 10.
So there is a total of a1-as-a3-a4-a5-ag-a7 = 26-26-26-10-10-10-10 =
175,760,000 possible standard license plates. “

Example 4.2 In ordering a café latte, you have a choice of whole, skim or
soy milk; small, medium or large; and either one or two shots of espresso.
How many choices do you have in ordering one drink?

Solution: Your choice is modeled by a list of form (milk, size, shots). There
are 3 choices for the first entry, 3 for the second and 2 for the third. By the
multiplication principle, the number of choices is 3-3-2=18. “

There are two types of list-counting problems. On one hand, there are
situations in which list entries can be repeated, as in license plates or
telephone numbers. The sequence CCX-4144 is a perfectly valid license
plate in which the symbols C and 4 appear more than once. On the other
hand, for some lists repeated symbols do not make sense or are not allowed,
as in the (milk, size, shots) list from Example 4.2. We say repetition is
allowed in the first type of list and repetition is not allowed in the second
kind of list. (We will call a list in which repetition is not allowed a non-
repetitive list.) The next example illustrates the difference.
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Example 4.3 Consider lists of length 4 made with symbols A,B,C,D,E,F,G.
(a) How many such lists are possible if repetition is allowed?
(b) How many such lists are possible if repetition is not allowed?
(c) How many are there if repetition is not allowed and the list has an E?
(d) How many are there if repetition is allowed and the list has an E?

Solutions:

(a) Imagine the list as containing four boxes that we fill with selections
from the letters A, B, C, D, E, F and G, as illustrated below.

7 cho1cel%|
7 ch01ce
7 choices

7 choices

We have 7 choices in filling each box. The multiplication principle says
the total number of lists that can be made this way is 7-7-7-7 = 2401.

(b) This problem is the same as the previous one except that repetition
is not allowed. We have seven choices for the first box, but once it is
filled we can no longer use the symbol that was placed in it. Hence
there are only six possibilities for the second box. Once the second
box has been filled we have used up two of our letters, and there are
only five left to choose from in filling the third box. Finally, when the
third box is filled we have only four possible letters for the last box.

7 ch01ces
6 choices
5 choices

4 choices

Thus there are 7-6-5-4 = 840 lists in which repetition does not occur.

(c) We are asked to count the length-4 lists in which repetition is not
allowed and the symbol E must appear somewhere in the list. Thus E
occurs once and only once in each list. Let us divide these lists into
four categories depending on whether the E occurs as the first, second,
third or fourth entry. These four types of lists are illustrated below.

Type 1 Type 2 Type 3 Type 4
(IQ?,)(QI )(Q )(Q TI)
6 choices 6 choices 6 ch01ces 6 choices
5 choices ch01ces 5 choices 5 choices

4 choices 4 choices 4 choices 4 choices
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Consider lists of the first type, in which the E appears in the first
entry. We have six remaining choices (A, B, C, D, F or G) for the second
entry, five choices for the third entry and four choices for the fourth
entry. Hence there are 6-5-4 = 120 lists having an E in the first entry.
As shown above, there are also 6-5-4 = 120 lists having an E in the
second, third or fourth entry. So there are 120+ 120+ 120 + 120 = 480
lists with exactly one E.

(d) Now we seek the number of length-4 lists where repetition is allowed
and the list must contain an E. Here is our strategy: By Part (a) of
this exercise there are 7-7-7-7 = 74 = 2401 lists with repetition allowed.
Obviously this is not the answer to our current question, for many of
these lists contain no E. We will subtract from 2401 the number of
lists that do not contain an E. In making a list that does not contain
an E, we have six choices for each list entry (because we can choose
any one of the six letters A, B, C, D, F or G). Thus there are 6-6-6-6 =
6% = 1296 lists without an E. So the answer to our question is that
there are 2401 — 1296 = 1105 lists with repetition allowed that contain
at least one E. £

Before moving on from Example 4.3, let’s address an important point.
Perhaps you wondered if Part (d) could be solved in the same way as Part (c).
Let’s try doing it that way. We want to count the length-4 lists (repetition
allowed) that contain at least one E. The following diagram is adapted from
Part (c). The only difference is that there are now seven choices in each slot
because we are allowed to repeat any of the seven letters.

Type 1 Type 2 Type 3 Type 4
7 cEces 7 cllfces 7 cEces 7 cEces
7 ch01ces 7 ch01ces 7 chmces 7 ch01ces
7 choices 7 choices 7 choices 7 choices

We get a total of 73 + 73 + 73 + 73 = 1372 lists, an answer that is larger
than the (correct) value of 1105 from our solution to Part (d) above. It is
easy to see what went wrong. The list (E,E,A,B) is of type 1 and type 2,
so it got counted twice. Similarly (E,E,C,E) is of type 1, 2 and 4, so it got
counted three times. In fact, you can find many similar lists that were
counted multiple times. In solving counting problems, we must always be
careful to avoid this kind of double-counting or triple-counting, or worse.
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The next section presents two new counting principles that codify the
kind of thinking we used in parts (c) and (d) above. Combined with the
multiplication principle, they solve complex counting problems in ways that
avoid the pitfalls of double counting. But first, one more example of the
multiplication principle highlights another pitfall to be alert to.

Example 4.4 A non-repetitive list of length 5 is to be made from the
symbols A, B, C, D, E, F, G. The first entry must be either a B, C or D, and
the last entry must be a vowel. How many such lists are possible?

Solution: Start by making a list of five boxes. The first box must contain
either B, C or D, so there are three choices for it.

(03,0, 0,0, 0D

3 choices

Now there are 6 letters left for the remaining 4 boxes. The knee-jerk action
is to fill them in, one at a time, using up an additional letter each time.

? TD)

6 choices
5 choice
4 choices

But when we get to the last box, there is a problem. It is supposed to
contain a vowel, but for all we know we have already used up one or both
vowels in the previous boxes. The multiplication principle breaks down
because there is no way to tell how many choices there are for the last box.

The correct way to solve this problem is to fill in the first and last boxes
(the ones that have restrictions) first.

(C.0.0.0.0)

3 choices 2 choices

Then fill the remaining middle boxes with the 5 remaining letters.

3 ch01ces 2 ch01ces
5 ch01ce
4 choices
3 choices

By the multiplication principle, there are 3-5-4-3-2 = 360 lists. £

The new principles to be introduced in the next section are usually used
in conjunction with the multiplication principle. So work a few exercises
now to test your understanding of it.
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Exercises for Section 4.2

1.

10.

Consider lists made from the letters 7, H, E, O, R, Y, with repetition allowed.
(a) How many length-4 lists are there?
(b) How many length-4 lists are there that begin with 7'?
(¢) How many length-4 lists are there that do not begin with 7'?

. Airports are identified with 3-letter codes. For example, Richmond, Virginia has

the code RIC, and Memphis, Tennessee has MEM. How many different 3-letter
codes are possible?

. How many lists of length 3 can be made from the symbols A, B, C, D, E, F if...

(a) ... repetition is allowed.

(b) ... repetition is not allowed.

(e) ... repetition is not allowed and the list must contain the letter A.
(d) ... repetition is allowed and the list must contain the letter A.

. In ordering coffee you have a choice of regular or decaf; small, medium or large;

here or to go. How many different ways are there to order a coffee?

. This problem involves 8-digit binary strings such as 10011011 or 00001010 (i.e.,

8-digit numbers composed of 0’s and 1’s).
(a) How many such strings are there?
(b) How many such strings end in 0?
(¢) How many such strings have 1’s for their second and fourth digits?
(d) How many such strings have 1’s for their second or fourth digits?

. You toss a coin, then roll a dice, and then draw a card from a 52-card deck. How

many different outcomes are there? How many outcomes are there in which the
dice lands on 1? How many outcomes are there in which the dice lands on an
odd number? How many outcomes are there in which the dice lands on an odd
number and the card is a King?

. This problem concerns 4-letter codes made from the letters A, B, C, D, ... , Z.

(a) How many such codes can be made?
(b) How many such codes have no two consecutive letters the same?

. A coin is tossed 10 times in a row. How many possible sequences of heads and

tails are there?

. A new car comes in a choice of five colors, three engine sizes and two transmis-

sions. How many different combinations are there?

A dice is tossed four times in a row. There are many possible outcomes, such as
(JEIELS, or ). How many different outcomes are possible?
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4.3 The Addition and Subtraction Principles

We now discuss two new counting principles, the addition and subtraction
principles. Actually, they are not entirely new—you’ve used them intuitively
for years. Here we give names to these two fundamental thought patterns,
and phrase them in the language of sets. Doing this helps us recognize when
we are using them, and, more importantly, it helps us see new situations in
which they can be used.

The addition principle simply asserts that if a set can be broken into
pieces, then the size of the set is the sum of the sizes of the pieces.

Fact 4.2 (Addition Principle)
Suppose a finite set X can be decomposed as a union X = X;uXoU---UX,,
where X; N X; = ¢ whenever i #j. Then |X|=|X1|+|Xo|+---+|Xa|.

(Xl X4

& Xy X3 X5

In our first example we will rework an instance where we used the
addition principle naturally, without comment: in Part (c) of Example 4.3.

Example 4.5 How many length-4 non-repetitive lists can be made from
the symbols A, B, C, D, E, F, G, if the list must contain an E?

In Example 4.3 (c) our approach was to divide these lists into four types,
depending on whether the E is in the first, second, third or fourth position.

Type 1 Type 2 Type 3 Type 4
EIL LI LIEL L] LI IEL] LILILIE
6 5 4 6 5 4 6 5 4 6 5 4

Then we used the multiplication principle to count the lists of type 1.
There are 6 choices for the second entry, 5 for the third, and 4 for the fourth.
This is indicated above, where the number below a box is the number of
choices we have for that position. The multiplication principle implies that
there are 6-5-4 =120 lists of type 1. Similarly there are 6-5-4 = 120 lists of
types 2, 3, and 4.

X1 EaBc | X2 AEBc | X3 ABEC | X4 ABCE
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We then used the addition principle intuitively, conceiving of the lists to be
counted as the elements of a set X, broken up into parts X1, Xo, X3 and X4,
which are the lists of types 1,2, 3 and 4, respectively.

The addition principle says that the number of lists that contain an E is
I X|=1X1]+|Xa|+|X3|+|X4| =120+ 120+ 120 + 120 = 480. oa)

We use the addition principle when we need to count the things in some
set X. If we can find a way to break X up as X = X;uXsuU---uX,,, where each
X; is easier to count than X, then the addition principle gives an answer of
X =1X11+ Xl +1 X5+ + | Xpl.

But for this to work the intersection of any two pieces X; must be @,
as stated in Fact 4.2. For instance, if X; and X, shared an element, then
that element would be counted once in |X;| and again in |X3|, and we’d
get | X| <|X1|+|X2|+---+|X,|. (This is precisely the double counting issue
mentioned after Example 4.3.)

Example 4.6 How many even 5-digit numbers are there for which no
digit is 0, and the digit 6 appears exactly once? For instance, 55634 and
16118 are such numbers, but not 63304 (has a 0), nor 63364 (too many 6’s),
nor 55637 (not even).

Solution: Let X be the set of all such numbers. The answer will be | X]|, so
our task is to find |X|. Put X = X; uXouUX3UX4UXj5, where X is the set of
those numbers in X whose ith digit is 6, as diagramed below. Note X;nX; =
whenever i # j because the numbers in X; have their 6 in a different position
than the numbers in X;. Our plan is to use the multiplication principle to
compute each |X;|, and follow this with the addition principle.

X1 X X3 X4 X5
e [ [ 1) [[el [ [J[[[el [ ] [[[Tlel ] [[][] 6]
8 8 8 3 8 8 8 3 8 8 8 3 8 8 8 3 8 8 8 8

The first digit of any number in X; is 6, and the three digits following it
can be any of the ten digits except 0 (not allowed) or 6 (already appears).
Thus there are eight choices for each of three digits following the first 6.
But because any number in X; is even, its final digit must be one of 2,4
or 8, so there are just three choices for this final digit. By the multiplication
principle, |X1|=8-8-8-3 =1536. Likewise | X3| =|X3|=|X4|=8-8-8-3=1536.

But X5 is slightly different because we do not choose the final digit,
which is already 6. The multiplication principle gives | X5|=8-8-8-8 = 4096.

The addition principle gives our final answer. The number of even 5-
digit numbers with no 0’s and one 6 is |X| = |X1| + | Xo| + |X3| + | X4| +1X5] =
1536 + 1536 + 1536 + 1536 + 4096 = 10,240.
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Now we introduce our next counting U
method, the subtraction principle. To set
it up, imagine that a set X is a subset of a
universal set U, as shown on the right. U-X
The complement X = U — X is shaded.
Suppose we wanted to count the things
in this shaded region. Surely this is the number of things in U minus

the number of things in X, which is to say |U - X| = |U| - |X|. That is the
subtraction principle.

Fact 4.3 (Subtraction Principle)
If X is a subset of a finite set U, then |X| =|U| - |X]|.
In other words, if X cU then |U - X| = |U|-|X]|.

The subtraction principle is used in situations where it is easier to count
the things in some set U that we wish to exclude from consideration than
it is to count those things that are included. We have seen this kind of
thinking before. We quietly and naturally used it in part (d) of Example 4.3.
For convenience we repeat that example now, casting it into the language
of the subtraction principle.

Example 4.7 How many length-4 lists can be made from the symbols
A, B, C, D, E, F, G if the list has at least one E, and repetition is allowed?

Solution: Such a list might contain one, two, three or four E’s, which could
occur in various positions. This is a fairly complex situation.

But it is very easy to count the set U of all lists of length 4 made from
A, B, C, D, E, F, G if we don’t care whether or not the lists have any E’s.
The multiplication principle says |U|=7-7-7-7 = 2401.

It is equally easy to count the set X of those lists that contain no E’s.
The multiplication principle says |X|=6-6-6-6=1296.

We are interested in those lists that have at least one E, and this is
the set U — X. By the subtraction principle, the answer to our question is
lU-X|=|U|-|X|=2401-1296 =1105. £

As we continue with counting we will have many opportunities to use
the multiplication, addition and subtraction principles. Usually these will
arise in the context of other counting principles that we have yet to explore.
It is thus important that you solidify the current ideas now, by working
some exercises before moving on.
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Exercises for Section 4.3

1.

10.

11.

12.

Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such lineups are there that have at least one red card? How many such
lineups are there in which the cards are either all black or all hearts?

. Five cards are dealt off of a standard 52-card deck and lined up in a row. How

many such lineups are there in which all 5 cards are of the same suit?

. Five cards are dealt off of a standard 52-card deck and lined up in a row. How

many such lineups are there in which all 5 cards are of the same color (i.e., all
black or all red)?

. Five cards are dealt off of a standard 52-card deck and lined up in a row. How

many such lineups are there in which exactly one of the 5 cards is a queen?

. How many integers between 1 and 9999 have no repeated digits? How many

have at least one repeated digit?

. Consider lists made from the symbols A, B, C, D, E, with repetition allowed.

(a) How many such length-5 lists have at least one letter repeated?
(b) How many such length-6 lists have at least one letter repeated?

. A password on a certain site must be five characters long, made from letters

of the alphabet, and have at least one upper case letter. How many different
passwords are there? What if there must be a mix of upper and lower case?

. This problem concerns lists made from the letters A, B, C, D, E, F, G, H, I, J.

(a) How many length-5 lists can be made from these letters if repetition is
not allowed and the list must begin with a vowel?

(b) How many length-5 lists can be made from these letters if repetition is
not allowed and the list must begin and end with a vowel?

(¢) How many length-5 lists can be made from these letters if repetition is
not allowed and the list must contain exactly one A?

. Consider lists of length 6 made from the letters A, B, C, D, E, F, G, H. How

many such lists are possible if repetition is not allowed and the list contains two
consecutive vowels?

Consider the lists of length six made with the symbols P, R, O, F, S, where
repetition is allowed. (For example, the following is such a list: (P,R,0,0,F,S).)
How many such lists can be made if the list must end in an S and the symbol O
is used more than once?

How many integers between 1 and 1000 are divisible by 5? How many are not
divisible by 5?

Six math books, four physics books and three chemistry books are arranged on
a shelf. How many arrangements are possible if all books of the same subject
are grouped together?
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4.4 Factorials and Permutations

In working examples from the previous two sections you may have noticed
that we often need to count the number of non-repetitive lists of length n
that are made from n symbols. This kind of problem occurs so often that a
special idea, called a factorial, is used to handle it.

The table below motivates this. The first column lists successive integer
values n, from 0 onward. The second contains a set {a,b,...} of n symbols.
The third column shows all the possible non-repetitive lists of length n
that can be made from these symbols. Finally, the last column tallies up
how many lists there are of that type. When n =0 there is only one list of
length 0 that can be made from 0 symbols, namely the empty list (). Thus
the value 1 is entered in the last column of that row.

’ n ‘ Symbols ‘ Non-repetitive lists of length n made from the symbols ‘ n! ‘

ol o :
1 {a} a 1
2 {a,b} ab, ba 2
3 | {a,b,c} abc, acb, bac, bca, cab, cba 6

abed, acbd, bacd, bcad, cabd, cbad,

4 {a b cd} abdc, acdb, bade, beda, cadb, cbda, 24
b adbc, adcb, bdac, bdca, cdab, cdba,

dabe, dacb, dbac, dbca, dcab, dcba

For n > 0, the number that appears in the last column can be computed
using the multiplication principle. The number of non-repetitive lists of
length n that can be made from n symbols is n(n—1)(n—2)---3-2-1. Thus, for
instance, the number in the last column of the row for n =4 is 4-3-2-1=24.

The number that appears in the last column of Row n is called the
factorial of n. It is denoted with the special symbol n!, which we pronounce
as “n factorial." Here is the definition:

Definition 4.1 If n is a non-negative integer, then n! is the number of
lists of length n that can be made from n symbols, without repetition.
ThusO0!'=1and 1!=1. Ifn>1, thenn!=n(n-1)(n-2)---3-2-1.
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It follows that 0! =
1! =
21 =
3! =
4! =
51 =
6! = 6-

U WM R -

[y
DO
\‘IO

20, and so on.

Students are often tempted to say 0! = 0, but this is wrong. The correct
value is 0! = 1, as the above definition and table show. Here is another way
to see that 0! must equal 1: Notice that 5!=5-4-3-2-1=5-(4-3-2-1)=5-4!.
Also4!=4-3-2-1=4-(3-2-1) = 4-3!. Generalizing this, we get a formula.

nl=n-(n-1)! 4.1)

Plugginginn=1gives 1!=1-(1-1)! =1-0!, that is, 1! = 1-0!. If we mistakenly
thought 0! were 0, this would give the incorrect result 1! =0.

Example 4.8 This problem involves making lists of length seven from the
letters a, b, ¢, d, e, fand g.

(a) How many such lists are there if repetition is not allowed?

(b) How many such lists are there if repetition is not allowed and the first
two entries must be vowels?

(c) How many such lists are there in which repetition is allowed, and the
list must contain at least one repeated letter?

To answer the first question, note that there are seven letters, so the
number of lists is 7! = 5040. To answer the second question, notice that
the set {a, b, ¢, d, e, f, g} contains two vowels and five consonants. Thus in
making the list the first two entries must be filled by vowels and the final
five must be filled with consonants. By the multiplication principle, the
number of such lists is 2-1-5-4-3-2-1 = 2!5! = 240.

To answer part (c) we use the subtraction principle. Let U be the set of all
lists made from a, b, ¢, d, e, f, g, with repetition allowed. The multiplication
principle gives [U|=7-7-7-7-7-7-7="7" = 823,543. Notice that U includes
lists that are non-repetitive, like (a,g.f,b,d,c,e), as well as lists that have
some repetition, like (f,g,b,g,a,a,a). We want to find the number of lists that
have at least one repeated letter, so we will subtract away from U all those
lists that have no repetition. Let X < U be those lists that have no repetition,
so |X| =17!. Thus the answer to our question is |[U-X|=|U|-|X|=7"-7!=
823,543 - 5040 = 818,503. o
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In part (a) of Example 4.8 we counted the number of non-repetitive lists
made from all seven of the symbols in the set X = {a, b, ¢, d, ¢, ; g}, and
there were 7! = 5040 such lists. Any such list, such as bcedagf, gfedcba or
abcdefg is simply an arrangement of the elements of X in a row. There is a
name for such an arrangement. It is called a permutation of X.

A permutation of a set is an arrangement of all of the set’s elements
in a row, that is, a list without repetition that uses every element of the set.
For example, the permutations of the set X = {1,2,3} are the six lists

123, 132, 213, 231, 312, 321.

That we get six different permutations of X is predicted by Definition 4.1,
which says there are 3! =3-2-1 = 6 non-repetitive lists that can be made
from the three symbols in X.

Think of the numbers 1, 2 and 3 as representing three books. The above
shows that there are six ways to arrange them on a shelf.

From a deck of cards you take the four queens and lay them in a row.
By the multiplication principle there are 4! =4-3-2-1 =24 ways to do this,
that is, there are 24 permutations of the set of four Queen cards.

2o [ro][s0] [0
S ’o@ -0 ’o@
S ’oe <>©H<>«®
2o [vo][20][s0
so|[so ’(3«@‘ 20
10| [eo] ] [so
+o|[so ]@«e‘ 20
20| [1e0 »@‘ P
»o|[co o@‘ o0
P ’»a ’G«@Hi-@
so|[co|[on][ce
S ’G@‘ S ’ao‘
oo|[se][co][ro
»D ’oe >0 ’<>«®

[co][so][co] [#2]

[oo][so][co][#]

EEIE N ED)

(2] [co][+o][co]

[co] [wo][2o][so]
[co|[#o][2o][2o

EERIERED)
(o] [co][#o][ce]
[s2][co][co][<o]
[co] [co][+o][co]

In general, a set with n elements will have n! different permutations.

Above, the set {1,2,3} has 3! = 6 permutations, while { 9 ,, , 9 } has

4! = 24 permutations. The set {a,b,c,d,e,f,g} has 7! = 5040 permuﬁtions,
though there’s not much point in listing them all out. The important thing
is that the factorial counts the number of permutations.

In saying a permutation of a set is an arrangement of its elements in a
row, we are speaking informally because sometimes the elements are not
literally in a row. Imagine a classroom of 20 desks, in four rows of five desks
each. Let X be a class (set) of 20 students. If the students walk in and seat
themselves, one per desk, we can regard this as a permutation of the 20
students because we can number the desks 1,2,3,...,20 and in this sense
the students have arranged themselves in a list of length 20. There are
20! =2,432,902,008,176,640,000 permutations of the students.
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Now we discuss a variation of the idea of a permutation of a set X.
Imagine taking some number % < |X| of elements from the set X and then
arranging them in a row. The result is what we call a k-permutation of X.
A permutation of X is a non-repetitive list made from all elements of X.
A k-permutation of X is a non-repetitive list made from % elements of X.

For example, take X = {a,b,c,d}. The 1-permutations of X are the lists
we could make with just one element from X. There are only 4 such lists:

a b c d.

The 2-permutations of X are the non-repetitive lists that we could make
from two elements of X. There are 12 of them:

ab ac ad ba bc bd ca c¢cb cd da db dec.

Even before writing them all down, we’d know there are 12 of them because
in making a non-repetitive length-2 list from X we have 4 choices for the first
element, then 3 choices for the second, so by the multiplication principle
the total number of 2-permutations of X is 4-3=12.

Now let’s count the number of 3-permutations of X. They are the length-
3 non-repetitive lists made from elements of X. The multiplication principle
says there will be 4-3-2 =24 of them. Here they are:

abc acb bac beca cab cba
abd adb bad bda dab dba
acd adc cad cda dac dca
bed bdc cbd cdb dbc dcb

The 4-permutations of X are the non-repetitive lists made from all 4
elements of X. These are simply the 4!=4-3-2-1 =24 permutations of X.

Let’s go back and think about the 0-permutations of X. They are the
non-repetitive lists of length 0 made from the elements of X. Of course
there is only one such list, namely the empty list ().

Now we are going to introduce some notation. The expression P(n,k%)
denotes the number of 2-permutations of an n-element set. By the examples
on this page we have P(4,0) = 1, P(4,1) = 4, P(4,2) = 12, P(4,3) = 24, and
P(4,4)=24.

What about, say, P(4,5)? This is the number of 5-permutations of a
4-element set, that is, the number of non-repetitive length-5 lists that can
be made from 4 symbols. There is no such list, so P(4,5) =0.
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If n >0, then P(n,k) can be computed with the multiplication principle.
In making a non-repetitive length-% list from n symbols we have n choices
for the 1st entry, n —1 for the 2nd, n — 2 for the 3rd, and n — 3 for the 4th.

1st 2nd 3rd 4th 5th o kth

f ot
n (n-1)(n-2)(n-3)(n-4) o (n-k+1)

Notice that the number of choices for the ith position is n—i+1. For example,
the 5th position has n—5+1=n -4 choices. Continuing in this pattern, the
last (kth) entry has n — k& + 1 choices. Therefore

Pn,k)=n(n-1)(n-2)---(n—k+1). (4.2)

All together there are % factors in this product, so to compute P(n,k) just
perform n(n—1)(n—2)(n—3)--- until you’'ve multiplied 2 numbers. Examples:

P(10,1) = 10 = 10

P(10,2) = 10-9 = 90

P(10,3) = 10-9-8 = 720
9-8-7 = 5040

P(10,4) = 10-

P(10,10) = 10-9-8-7-6-5-4-3-2-1 = 3,628,800
P(10,11) = 10-9-8-7-6:-5-4-3-2:1-0 = 0.

Note P(10,11) = 0, as the 11th factor in the product is 0. This makes
sense because P(10,11) is the number of non-repetitive length-11 lists made
from just 10 symbols. There are no such lists, so P(10,11) =0 is right. In
fact you can check that Equation (4.2) gives P(n,k) = 0 whenever & > n.

Also notice above that P(10,10) = 10!. In general P(n,n)=n!.

We now derive another formula for P(n,%), one that works for 0 <k <n.
Using Equation (4.2) with cancellation and the definition of a factorial,

P(n,k) = nn-1D)(n-2)---(n—k+1)

nn-1)n-2)---(n—-k+1)n-kn-k-1)---3-2-1 n!

(n-kn-k-1)---3-2.1  (n—Fk)!

To illustrate, let’s find P(8,5) in two ways. Equation (4.2) says P(8,5) =

8! 8! 40,320
8:7-6-5-4=6720. By the above formula, P(8,5) = B_5)! =31 ’6 =6720.
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We summarize these ideas in the following definition and fact.

Fact 4.4 A k-permutation of an n-element set is a non-repetitive
length-£ list made from elements of the set. Informally we think of
a k-permutation as an arrangement of %2 of the set’s elements in a row.

The number of 2-permutations of an n-element set is denoted P(n,k), and

Pn,k) =n(n-1)(n-2)---(n—k+1).

If 0<k=n, then P(n,k) = n(n-1(n=2)(1-k+1) = ”‘k)y.
n— .
Notice that P(n,0) = ﬁ = Z—: =1, which makes sense because only one

list of length 0 can be made from n symbols, namely the empty list. Also
P(0,0)= ﬁ = 8—§ = % =1, which is to be expected because there is only one
list of length 0 that can be made with 0 symbols, again the empty list.

Example 4.9 Ten contestants run a marathon. All finish, and there are
no ties. How many different possible rankings are there for first-, second-
and third-place?

Solution: Call the contestants A, B, C, D, E, F, G, H, I and J. A ranking
of winners can be regarded as a 3-permutation of the set of 10 contestants.
For example, ECH means E in first-place, C in second-place and H in third.
Thus there are P(10,3) = 10-9-8 = 720 possible rankings. o)

Example 4.10 You deal five cards off of a standard 52-card deck, and line
them up in a row. How many such lineups are there that either consist of
all red cards, or all clubs?

Solution: There are 26 red cards. The number of ways to line up five of
them is P(26,5)=26-25-24-23-22 = 7,893,600.

There are 13 club cards (which are black). The number of ways to line up
five of them is P(13,5)=13-12-11-10-9 = 154,440.

By the addition principle, the answer to our question is that there are
P(26,5)+P(13,5) = 8,048,040 lineups that are either all red cards, or all club
cards. £

Notice that we do not need to use the notation P(n,%) to solve the prob-
lems on this page. Straightforward applications of the multiplication and
addition principles would suffice. However, the P(n,k) notation often proves
to be a convenient shorthand.
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Exercises for Section 4.4

10.

11.

12.

13.

14.
15.

16.

17.

18.

. What is the smallest n for which n! has more than 10 digits?
. For which values of n does n! have n or fewer digits?
. How many 5-digit positive integers are there in which there are no repeated

digits and all digits are odd?

f 100!
95! *
120!

Using only pencil and paper, find the value o

. Using only pencil and paper, find the value of 17g;.

There are two 0’s at the end of 10! = 3,628,800. Using only pencil and paper,
determine how many 0’s are at the end of the number 100!.

Find how many 9-digit numbers can be made from the digits 1, 2, 3,4, 5,6, 7,
8, 9 if repetition is not allowed and all the odd digits occur first (on the left)
followed by all the even digits (i.e., as in 137598264, but not 123456789).

. Compute how many 7-digit numbers can be made from the digits 1, 2, 3,4, 5,6, 7

if there is no repetition and the odd digits must appear in an unbroken sequence.
(Examples: 3571264 or 2413576 or 2467531, etc., but not 7234615.)

How many permutations of the letters A, B, C, D, E, F, G are there in which the
three letters ABC appear consecutively, in alphabetical order?

How many permutations of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are there in which
the digits alternate even and odd? (For example, 2183470965.)

You deal 7 cards off of a 52-card deck and line them up in a row. How many
possible lineups are there in which not all cards are red?

You deal 7 cards off of a 52-card deck and line them up in a row. How many
possible lineups are there in which no card is a club?

How many lists of length six (with no repetition) can be made from the 26 letters
of the English alphabet?

Five of ten books are arranged on a shelf. In how many ways can this be done?

In a club of 15 people, we need to choose a president, vice-president, secretary,
and treasurer. In how many ways can this be done?

How many 4-permutations are there of the set {A,B,C,D,E,F} if whenever A
appears in the permutation, it is followed by E?

Three people in a group of ten line up at a ticket counter to buy tickets. How
many lineups are possible?

There is a very interesting function I':[0,00) — R called the gamma function.
It is defined as I'(x) = [;°t*"Le~!d¢. It has the remarkable property that if x € N,
then I'(x) = (x — 1)!. Check that this is true for x =1,2,3,4.

Notice that this function provides a way of extending factorials to numbers other
than integers. Since I'(n) = (n — 1)! for all n € N, we have the formula n!=I'(n +1).
But I" can be evaluated at any number in [0,00), not just at integers, so we have
a formula for n! for any real number n €[0,00). Extra credit: Compute x!.
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4.5 Counting Subsets

The previous section dealt with counting lists made by selecting & entries
from a set of n elements. We turn now to a related question: How many
subsets can be made by selecting % elements from a set with n elements?

To see the difference between these two problems, take A = {a,b,c,d,e}.
Consider the non-repetitive lists made from selecting two elements from A.
Fact 4.4 says there are P(5,2) =5-4 =20 such lists, namely

(a,b), (a,c), (a,d), (a,e), (b,c), (b,d), (b,e), (c,d), (c,e), (d,e),
(b,a), (c,a), (d,a), (e,a), (c,b), (d,b), (e,b), (d,c), (e,c), (e,d).

But there are only ten 2-element subsets of A. They are
{a,b}, {a,c}, {a,d}, {a,e}, {b,c}, {b,d}, {b,e}, {c,d}, {c,e}, {d,e}.

The reason that there are more lists than subsets is that changing the
order of the entries of a list produces a different list, but changing the order
of the elements of a set does not change the set. Using elements a,b € A, we
can make two lists (a,b) and (b,a), but only one subset {a,b}.

This section is concerned with counting subsets, not lists. As noted above,
the basic question is this: How many subsets can be made by choosing %
elements from an n-element set? We begin with some notation that gives a
name to the answer to this question.

Definition 4.2 Ifn and % are integers, then () denotes the number of
subsets that can be made by choosing & elements from an n-element set.
We read (},) as “n choose k.” (Some textbooks write C(n,k) instead of (}).)

This is illustrated in the following table that tallies the £-element subsets
of the 4-element set A = {a,b,c,d}, for various values of k.

k | k-element subsets of A = {a,b,c,d} ()

-1 (f)=0
0|2 (=1
1| {a}.{b},{c}.{d} (D=4
2 | {a,b}{a,c} {a,d} {b,c {b.d) e, d} | () =6
3 | {a,b,¢},{a,b,d},{a,c,d},{b,c,d} (3) =4
4 | {a,b,c,d} H=1
5 (5)=0
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The values of & appear in the far-left column of the table. To the right of
each % are all of the subsets (if any) of A of size k. For example, when 2 =1,
set A has four subsets of size k&, namely {a}, {b}, {c} and {d}. Therefore
(1) =4. When % =2 there are six subsets of size k so (}) = 6.

When % =0, there is only one subset of A that has cardinality %2, namely
the empty set, @. Therefore (g) =1.

Notice that if % is negative or greater than |A|, then A has no subsets of
cardinality %, so (;) =0 in these cases. In general (}) =0 whenever k£ <0 or
k> n. In particular this means (}) =0 if n is negative.

Although it was not hard to work out the values of (2) by writing out
subsets in the above table, this method of actually listing sets would not
be practical for computing (Z) when n and % are large. We need a formula.
To find one, we will now carefully work out the value of (3) in a way that
highlights a pattern that points the way to a formula for any (}).

To begin, note that (3) is the number of 3-element subsets of {a,b,c,d,e}.
These are listed in the top row of the table below, where we see ( ) = 10.
The column under each subset tallies the 3! = 6 permutations of that subset.
The first subset {a,b,c} has 3! = 6 permutations; these are listed below it.
The second column tallies the permutations of {a,b,d}, and so on.

(3)
{a,b,c}{a,b,d}{a,b,e} {a,c,d} {a,c.e} {a,d,e} {b,c,d} {b,c.e} {b,d,e} {c,d,e}

abec abd abe acd ace ade bed bee bde cde
acb adb aeb adc aec aqed bdc bec bed ced
bac bad bae cad cae dae cbd cbe dbe dce
bca bda bea cda cea dea cdb ceb deb dec
cba dba eba dca eca eda deb echb edb edc
cab dab eab dac eac ead dbc ebc ebd ecd

The body of this table has ( ) columns and 3! rows, so it has a total of

3!(3) lists. But notice also that the table consists of every 3-permutation of
{a,b,c,d,e}. Fact 4.4 says that there are P(5,3) = % such 3-permutations.
Thus the total number of lists in the table can be written as either 3!(2) or
which is to say 3! ( )= &5 3), Dividing both sides by 3! yields

5\ 5!
3| 3815-3)"

Working this out, you will find that it does give the correct value of 10.

(5— 3)' ’
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But there was nothing special about the values 5 and 3. We could do the
above analysis for any (}) instead of (3). The table would have (}) columns
and k! rows. We would get

n\| n!
k| Rln-k)

We have established the following fact, which holds for all &2,n € Z.

n!

. ny
= =B Otherwise (k) =0.

Fact 4.5 If0<%k <n, then (Z)

Let’s now use our new knowledge to work some exercises.

Example 4.11 How many size-4 subsets does {1,2,3,4,5,6,7,8,9} have?

(%) _ _ 9 _ 9 _ 98765 _ 9876 _ 9876 _
The answer is () = g0z = a5 = = 2 = Y0 = 126, £

415!

Example 4.12 How many 5-element subsets of A = {1,2,3,4,5,6,7,8,9}
have exactly two even elements?

Solution: Making a 5-element subset of A with exactly two even elements
is a 2-step process. First select two of the four even elements from A.
There are (3) = 6 ways to do this. Next, there are (}) = 10 ways select three
of the five odd elements of A. By the multiplication principle, there are
(5)(3) = 6-10 = 60 ways to select two even and three odd elements from A. So
there are 60 5-element subsets of A with exactly two even elements. &%

Example 4.13 A single 5-card hand is dealt off of a standard 52-card deck.
How many different 5-card hands are possible?

Solution: Think of the deck as a set D of 52 cards. Then a 5-card hand is
just a 5-element subset of D. There are many such subsets, such as

7 2 3 A 5
Sl a|0])

Thus the number of 5-card hands is the number of 5-element subsets of D,
which is

52 52! 52-51-50-49-48-47! 52.51-50-49-48
( ) = = =2,598,960.

5| Bl.47! 51.47! 51

Answer: There are 2,598,960 different five-card hands that can be dealt
from a deck of 52 cards. o)
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Example 4.14 This problem concerns 5-card hands that can be dealt off
of a 52-card deck. How many such hands are there in which two of the cards
are clubs and three are hearts?

Solution: Such a hand is described by a list of length two of the form

(NSNS NN

where the first entry is a 2-element subset of the set of 13 club cards, and
the second entry is a 3-element subset of the set of 13 heart cards. There
are () choices for the first entry and () choices for the second, so by
the multiplication principle there are (5)(%) = 525 21 = 22,308 such lists.
Thus there are 22,308 such 5-card hands. Jea)
Example 4.15 A lottery features a bucket of 36 balls numbered 1 through
36. Six balls will be drawn randomly. For $1 you buy a ticket with six blanks:
. You fill in the blanks with six different numbers between 1
and 36. You win $1,000,000 if you chose the same numbers that are drawn,

regardless of order. What are your chances of winning?

Solution: In filling out the ticket you are choosing six numbers from a set of
36 numbers. Thus there are (366) = 6!(57616)! =1,947,792 different combinations
of numbers you might write. Only one of these will be a winner. Your
chances of winning are one in 1,947,792, Jia)

Example 4.16 How many 7-digit binary strings (0010100, 1101011, etc.)
have an odd number of 1’s?

Solution: Let A be the set of all 7-digit binary strings with an odd number
of 1’s, so the answer will be |A|. To find |A|, we break A into smaller parts.
Notice any string in A will have either one, three, five or seven 1’s. Let A1 be
the set of 7-digit binary strings with only one 1. Let Az be the set of 7-digit
binary strings with three 1’s. Let A5 be the set of 7-digit binary strings with
five 1’s, and let A7 be the set of 7-digit binary strings with seven 1’s. Then
A=A1UA3UA5UA7. Any two of the sets A; have empty intersection, so the
addition principle gives |A| =|A1|+|A3|+|A5|+|A7].

Now we must compute the individual terms of this sum. Take Ag, the
set of 7-digit binary strings with three 1’s. Such a string can be formed by
selecting three out of seven positions for the 1’s and putting 0’s in the other
spaces. Thus |As| = (g) Similarly |[A{| = (Z), |As| = (Z), and |A7| = (Z)
Answer: |A|=|A1]+|As3] + A5 +1A71= (D) + (D) + (D) + () =7+35+21+1=64.

375
There are 64 7-digit binary strings with an odd number of 1’s. o)
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Exercises for Section 4.5

1.

10.

11.

12.

13.

14.

15.
16.

17.

18.
19.

Suppose a set A has 37 elements. How many subsets of A have 10 elements?
How many subsets have 30 elements? How many have 0 elements?

. Suppose A is a set for which |A| = 100. How many subsets of A have 5 elements?

How many subsets have 10 elements? How many have 99 elements?

. A set X has exactly 56 subsets with 3 elements. What is the cardinality of X?
. Suppose a set B has the property that |[{X : X € 2(B),|X| = 6}| = 28. Find |B|.
. How many 16-digit binary strings contain exactly seven 1’s? (Examples of such

strings include 0111000011110000 and 0011001100110010, etc.)
|{X € 2({0,1,2,3,4,5,6,7,8,9}): IX| = 4}| =
|{X € 2({0,1,2,3,4,5,6,7,8,9}) : | X| < 4}| =

. This problem concerns lists made from the symbols A, B, C, D, E, F, G, H, I.

(a) How many length-5 lists can be made if there is no repetition and the list
is in alphabetical order? (Example: BDEFI or ABCGH, but not BACGH.)

(b) How many length-5 lists can be made if repetition is not allowed and the
list is not in alphabetical order?

. This problem concerns lists of length 6 made from the letters A,B,C,D,E,F,

without repetition. How many such lists have the property that the D occurs
before the A?

A department consists of 5 men and 7 women. From this department you select
a committee with 3 men and 2 women. In how many ways can you do this?

How many positive 10-digit integers contain no 0’s and exactly three 6’s?

Twenty-one people are to be divided into two teams, the Red Team and the Blue
Team. There will be 10 people on Red Team and 11 people on Blue Team. In
how many ways can this be done?

Suppose n,k € Z, and 0 <k <n. Use Fact 4.5, the formula (}) = Wik)!’ to show
that (;) = (,2,)-

Suppose n,k€Z, and 0 <k <n. Use Definition 4.2 alone (without using Fact 4.5)
to show that () =(,",)-

How many 10-digit binary strings are there that do not have exactly four 1’s?
How many 6-element subsets of A ={0,1,2,3,4,5,6,7,8,9} have exactly three even
elements? How many do not have exactly three even elements?

How many 10-digit binary strings are there that have exactly four 1’s or exactly
five 1’s? How many do not have exactly four 1’s or exactly five 1’s?

How many 10-digit binary strings have an even number of 1’s?

A 5-card poker hand is called a flush if all cards are the same suit. How many
different flushes are there?
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4.6 Pascal’s Triangle and the Binomial Theorem

There are some beautiful and significant patterns among the numbers (}).
We now investigate a pattern based on one equation in particular. It happens

that
n+1 n n
7))
for any integers n and & with 1<k <n.

To see why this is true, notice that the left-hand side ("; ) is the number
of k-element subsets of the set A ={0,1,2,3,...,n}, which has n + 1 elements.
Such a subset either contains 0 or it does not. The (,”,) on the right is
the number of subsets of A that contain 0, because to make such a subset
we can start with {0} and append it an additional % — 1 numbers selected
from {1,2,3,...,n}, and there are (,",) ways to do this. Also, the (}) on the
right is the number of subsets of A that do not contain 0, for it is the
number of ways to select £ elements from {1,2,3,...,n}. In light of all this,
Equation (4.3) just states the obvious fact that the number of k-element
subsets of A equals the number of k-element subsets that contain 0 plus
the number of 2-element subsets that do not contain 0.

Having seen why Equation (4.3) is true, we now highlight it by arranging
the numbers (}) in a triangular pattern. The left-hand side of Figure 4.3
shows the numbers (;) arranged in a pyramid with (8) at the apex, just
above a row containing (,1) with k =0 and % = 1. Below this is a row listing
the values of (2) for £ =0,1,2, and so on.

0 1
9 (0) 9 (1) 9 1 1
3(0)31)3(2)3 1 2 1
4(0)4(1)4(2)4(3)4 1 3 3 1
RERENCENED a6 4
6 (0) 6 (1) 6 (2) 6 (3) 6 (4) 6 (5) 6 1 5 10 10 5 1
O QO 6 6 @ 6 1 6 15 20 15 6 1

OO0 0 ® 17T 1

Figure 4.3. Pascal’s triangle

Any number (”Zl) for 0 < £ <n in this pyramid is just below and between
the two numbers (,”,) and (}) in the previous row. But Equation (4.3) says

("9 = (,,) + (}). Therefore any number (other than 1) in the pyramid is

the sum of the two numbers immediately above it.
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This pattern is especially evident on the right of Figure 4.3, where each
(7) is worked out. Notice how 21 is the sum of the numbers 6 and 15 above
it. Similarly, 5 is the sum of the 1 and 4 above it and so on.

This arrangement is called Pascal’s triangle, after Blaise Pascal, 1623—
1662, a French philosopher and mathematician who discovered many of its
properties. We’ve shown only the first eight rows, but the triangle extends
downward forever. We can always add a new row at the bottom by placing
a 1 at each end and obtaining each remaining number by adding the two
numbers above its position. Doing this in Figure 4.3 (right) gives a new
bottom row

1 8 28 56 70 56 28 8 1.

This row consists of the numbers (k) for 0 <% <8, and we have computed
them without the formula ( )= k,(g mi- Any (;;) can be computed this way.
The very top row (containing only 1) of Pascal’s triangle is called Row 0.
Row 1 is the next down, followed by Row 2, then Row 3, etc. Thus Row n
lists the numbers (}) for 0 <% <n. Exercises 4.5.13 and 4.5.14 established

NN

for each 0 <% <n. In words, the kth entry of Row n of Pascal’s triangle
equals the (n — k)th entry. This means that Pascal’s triangle is symmetric
with respect to the vertical line through its apex, as is evident in Figure 4.3.

1 1
1 1 1x + 1y
1 2 1 12 + 20y + 1y2
1 3 3 1 13 + 822y + 3xy? + 1y3
1 4 6 4 1 Lt + 428y +622y2 + 4uyd + 1yt

1 5 10 10 5 1 18 + Bxty +10x3y2+10x2y3 + Bay? + 1y°

Figure 4.4. The n'" row of Pascal’s triangle lists the coefficients of (x + y)"

Notice that Row n appears to be a list of the coefficients of (x + y)".
For example (x + y)? = 122 + 2xy + 1y%, and Row 2 lists the coefficients 1 2 1.
Also (x+y)% = 123 + 322y + 3xy%2 + 1y3, and Row 3 is 1 3 3 1. See Figure 4.4,
which suggests that the numbers in Row n are the coefficients of (x + y)™.
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In fact this turns out to be true for every n. This fact is known as the
binomial theorem, and it is worth mentioning here. It tells how to raise
a binomial x + y to a non-negative integer power n.

Theorem 4.1 (Binomial Theorem) If n is a non-negative integer, then
x+y)" = ()x"+ (Pa Ly + (5)a"2y2 + (3)a"By3 + -+ (" Jay™ L+ ()"

For now we will be content to accept the binomial theorem without proof.
(You will be asked to prove it in an exercise in Chapter 14.) You may find it
useful from time to time. For instance, you can use it if you ever need to
expand an expression such as (x+y)”. To do this, look at Row 7 of Pascal’s
triangle in Figure 4.3 and apply the binomial theorem to get

(x+ y)7 =x"+ 7x6y + 21x5y2 + 353c4y3 + 359533/4 + 21x2y5 + 7xy6 + y7.
For another example,

(2a)+(=b))*
(2a)* +4(2a)3(=b) + 6(2a)%(=b)? + 4(2a)(-b)® + (-b)*
16a* - 32a%b + 24a%b% — 8ab? + b*

(2a-b)*

Exercises for Section 4.6

1. Write out Row 11 of Pascal’s triangle.

2. Use the binomial theorem to find the coefficient of x8y° in (x + y)13.

3. Use the binomial theorem to find the coefficient of x8 in (x +2)!3.

4. Use the binomial theorem to find the coefficient of x%y3 in (3x —2y)°.

5. Use the binomial theorem to show ¥} _,(;) =2".

6. Use Definition 4.2 (page 99) and Fact 2.3 (page 25) to show Y.} _,(;) =2".

7. Use the binomial theorem to show ¥7_, 3% (}) =4".

8. Use Fact 4.5 (page 101) to derive Equation 4.3 (page 104).

9. Use the binomial theorem to show (7)-(7)+(5)-(3)+ () —---+D"(7) =0, for n > 0.
10. Show that the formula k(}) = n(}"}) is true for all integers n,k with 0<k <n.

[a—y
[y

. Use the binomial theorem to show 9" =¥7_ (-1)¥(})10"7%.
- Show that (3)(;) = () (;-)-

k—m
2\, (3Y ., (4, (B -1
« Show that (3) = (5) + (3) + (5) + () +---+ ("3 )-
. The first five rows of Pascal’s triangle appear in the digits of powers of 11: 110 =1,
111 =11, 112 =121, 113 =1331 and 11* = 14641. Why is this so? Why does the

pattern not continue with 11%?

[y
[

-t
- W
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4.7 The Inclusion-Exclusion Principle

Many counting problems involve computing the cardinality of a union AuB
of two finite sets. We examine this kind of problem now.

First we develop a formula for |A UB]|. It is tempting to say that |A uB|
must equal |A|+|B|, but that is not quite right. If we count the elements of
A and then count the elements of B and add the two figures together, we
get |[A|+|B|. But if A and B have some elements in common, then we have
counted each element in A N B twice.

Therefore |A| + |B| exceeds |A UB| by |AnB|, and consequently |[A UB| =
|A|+|B|—|ANnB|. This can be a useful equation.

Fact 4.6 Inclusion-Exclusion Formula
If A and B are finite sets, then |AuB|=|A|+|B|-|ANnB].

Notice that the sets A, B and A nB are all generally smaller than A UB,
so Fact 4.6 has the potential of reducing the problem of determining |A U B|
to three simpler counting problems. It is called the inclusion-exclusion
formula because elements in A nB are included (twice) in |A| + |B|, then
excluded when |A nB| is subtracted. Notice that if AnB = @, then we do
in fact get |JAUB| =|A| +|B|. (This is an instance of the addition principle!)
Conversely, if |[AuB|=|A| + |B|, then it must be that AnB = @.

Example 4.17 A 3-card hand is dealt off of a standard 52-card deck. How
many different such hands are there for which all three cards are red or all
three cards are face cards?

Solution: Let A be the set of 3-card hands where all three cards are red
(i.e., either © or ). Let B be the set of 3-card hands in which all three cards
are face cards (i.e., J,K or @ of any suit). These sets are illustrated below.

{{,’}’{’,},{,;’}’m} (Red cards)
MIIRAIN VARV 5
B =

R AHH AL e
LIRS MNERR N
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We seek the number of 3-card hands that are all red or all face cards, and
this number is |A uB|. By Fact 4.6, |AuUB|=|A|+|B|-|AnB|. Let’s examine
|A|,|B| and |A nB| separately. Any hand in A is formed by selecting three
cards from the 26 red cards in the deck, so |A| = (236). Similarly, any hand in
B is formed by selecting three cards from the 12 face cards in the deck, so
B| = (7). Now think about AnB. It contains all the 3-card hands made up
of cards that are red face cards.

K|| K|| J K|| J Ql| J (Red face
A m B = > o b o > 9 ’ i ” P
VIR RV VIRV S [1¢ cards)

The deck has only 6 red face cards, so |AnB| = (3).

Now we can answer our question. The number of 3-card hands that are
all red or all face cards is |JAuUB|=|A|+|B|-|AnB| = (236)+ (132)— (g) = 2600+
220 —-20 = 2800. &£

Example 4.18 A 3-card hand is dealt off of a standard 52-card deck. How
many different such hands are there for which it is not the case that all 3
cards are red or all three cards are face cards?

Solution: We will use the subtraction principle combined with our answer
to Example 4.17, above. The total number of 3-card hands is (532) = % =
52! _ 52:51.50

301 = 231> = 26-17-50 = 22,100. To get our answer, we must subtract from
this the number of 3-card hands that are all red or all face cards, that is,
we must subtract the answer from Example 4.17. Thus the answer to our
question is 22,100 — 2800 = 19,300. o)

There is an analogue of Fact 4.6 that involves three sets. Consider three
sets A, B and C, as represented in the following Venn Diagram.

[N
797

Using the same kind of reasoning that resulted in Fact 4.6, you can convince
yourself that

[AUBUC|=|A|+|B|+IC|—|AnNB|—-|ANnC|-|BnC|+|AnBnC|. (4.5)
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There’s probably not much harm in ignoring this one for now, but if you
find this kind of thing intriguing you should definitely take a course in
combinatorics. (Ask your instructor!)

Exercises for Section 4.7

1.

10.
11.
12.

13.
14.

15.

At a certain university 523 of the seniors are history majors or math majors (or
both). There are 100 senior math majors, and 33 seniors are majoring in both
history and math. How many seniors are majoring in history?

. How many 4-digit positive integers are there for which there are no repeated

digits, or for which there may be repeated digits, but all digits are odd?

. How many 4-digit positive integers are there that are even or contain no 0’s?
. This problem involves lists made from the letters 7, H, E, O, R, Y, with repetition

allowed.
(a) How many 4-letter lists are there that don’t begin with T, or don’t end in Y?
(b) How many 4-letter lists are there in which the sequence of letters T, H, E
appears consecutively (in that order)?
(¢) How many 6-letter lists are there in which the sequence of letters 7, H, E
appears consecutively (in that order)?

. How many 7-digit binary strings begin in 1 or end in 1 or have exactly four 1’s?
. Is the following statement true or false? Explain. If A;nAsn A3 = @, then

[A{UAgUA3| = |A1]+]Ag| +]Ag].

. Consider 4-card hands dealt off of a standard 52-card deck. How many hands

are there for which all 4 cards are of the same suit or all 4 cards are red?

. Consider 4-card hands dealt off of a standard 52-card deck. How many hands

are there for which all 4 cards are of different suits or all 4 cards are red?

. A 4-letter list is made from the letters L, I, S, T, E, D according to the following

rule: Repetition is allowed, and the first two letters on the list are vowels or the
list ends in D. How many such lists are possible?

How many 6-digit numbers are even or are divisible by 5?
How many 7-digit numbers are even or have exactly three digits equal to 0?7

How many 5-digit numbers are there in which three of the digits are 7, or two of
the digits are 2?

How many 8-digit binary strings end in 1 or have exactly four 1’s?

How many 3-card hands (from a standard 52-card deck) have the property that
it is not the case that all cards are black or all cards are of the same suit?

How many 10-digit binary strings begin in 1 or end in 1?
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4.8 Counting Multisets

You have in your pocket four pennies, two nickels, a dime and two quarters.
You might be tempted to regard this collection as a set

{1,1,1,1,5,5,10,25,25}.

But this is not a valid model of your collection of change, because a set
cannot have repeated elements. To overcome this difficulty, we make a new
construction called a multiset. A multiset is like a set, except that elements
can be repeated. We will use square brackets [ ]instead of braces { } to denote
multisets. For example, your multiset of change is

[1,1,1,1,5,5,10,25,25].

A multiset is a hybrid of a set and a list; in a multiset, elements can be
repeated, but order does not matter. For instance

[1,1,1,1,5,5,10,25,25]

[25,5,1,1,10,1,1,5,25]
= [25,10,25,1,5,1,5,1,1].

Given a multiset A, its cardinality |A| is the number of elements it
has, including repetition. So if A =[1,1,1,1,5,5,10,25,25], then |A| =9. The
multiplicity of an element x € A is the number of times that x appears, so
1€ A has multiplicity 4, while 5 and 25 each have multiplicity 2, and 10 has
multiplicity 1. Notice that every set can be regarded as a multiset for which
each element has multiplicity 1. In this sense we can think of @ ={} =[] as
the multiset that has no elements.

To illustrate the idea of multisets, consider the multisets of cardinality 2
that can be made from the symbols {a,b,c,d}. They are

[a,a] [a,b] la,c]l [a,d] [b,b] [b,c] [b,d] [c,c] [c,d] [d,d]

We have listed them so that the letters in each multiset are in alphabetical
order (remember, we can order the elements of a multiset in any way we
choose), and the 10 multisets are arranged in dictionary order.

For multisets of cardinality 3 made from {a,b,c,d}, we have

la,a,a] l[a,a,b] la,a,c] l[a,a,d] [a,b,b]
[a,b,c] la,b,d] Ila,c,c] la,c,d]l la,d,d]
[6,b,b] [b,b,c] [b,b,d] I[b,c,c] [b,c,dl]
[b,d,d] Ilec,c,e]l lec,e,d]l le,d,d] [d,d,dl.
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Though X = {a,b,c,d} has no subsets of cardinality 5, there are many
maultisets of cardinality 5 made from these elements, including [a,a,a,a,al,
[a,a,b,c,d] and [b,c,c,d,d], and so on. Exactly how many are there?

This is the first question about multisets that we shall tackle: Given a
finite set X, how many cardinality-£ multisets can be made from X?

Let’s start by counting the cardinality-5 multisets made from symbols
X ={a,b,c,d}. (Our approach will lead to a general formula.) We know we
can write any such multiset with its letters in alphabetical order. Tweaking
the notation slightly, we could write any such multiset with bars separating
the groupings of a,b,c,d, as shown in the table below. Notice that if a
symbol does not appear in the multiset, we still write the bar that would
have separated it from the others.

Multiset | with separating bars | encoding
[a,a,b,c,d] aa|b|c|d sk | | o |
[a,b,b,c,d] albb|c|d *| % x| x| %
[a,b,c,c,d] a|b|cc|d EIERIE;
la,a,c,c,d] aal|cc|d sk || x| %
[b,b,d,d,d] |bb||ddd | % || % * %
la,a,a,a,a] aaaaall| w5k k||

This suggests that we can encode the multisets as lists made from the two
symbols * and |, with an * for each element of the multiset, as follows.

x for eacha =« foreach b = foreachc¢ = foreachd

For examples see the right-hand column of the table. Any such encoding is
a list made from 5 stars and 3 bars, so the list has a total of 8 entries. How
many such lists are there? We can form such a list by choosing 3 of the 8
positions for the bars, and filling the remaining three positions with stars.
Therefore the number of such lists is (§) = 25 = 56.

That is our answer. There are 56 cardinality-5 multisets that can

be made from the symbols in X ={a,b,c,d}.

If we wanted to count the cardinality-3 multisets made from X, then the
exact same reasoning would apply, but with 3 stars instead of 5. We’d be
counting the length-6 lists with 3 stars and 3 bars. There are (g) = £ =20
such lists. So there are 20 cardinality-3 multisets made from X ={a,b,c,d}.

This agrees with our accounting on the previous page.
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In general, given a set X = {x1,x9,...,x,} of n elements, any cardinality-Z
multiset made from its elements can be encoded in a star-and-bar list

x for each x; * for each x9 * for each x3 * for each x,
N N N

- ~ | - ~ | - ~ —_—

*****|*****|*****| ------ |*****

Such a list has % stars (one for each element of the multiset) and n -1
separating bars (a bar between each of the n groupings of stars). Therefore
its length is £+ n—1. We can make such a list by selecting n —1 list positions
out of & +n — 1 positions for the bars and inserting stars in the left-over
positions. Thus there are (* ;’_‘Il) such lists. Alternatively we could choose %
positions for the stars and fill in the remaining n — & with bars, so there are

(**37") such lists. Note that (**; ™) = (*;"1") by Equation (4.4) on page 105.

Let’s summarize our reckoning.

Fact 4.7 The number of k-element multisets that can be made from the
elements of an n-element set X = {x1,x2,...,x,} is

)

This works because any cardinality-k multiset made from the n elements
of X can be encoded in a star-and-bar list of length & + n — 1, having form

x for each x; = for each xg « for each x3 x for each x,
N ~ N

- ~ | - ~ | - ~ ——

*****|*****|*****| ~~~~~~ |*****

with & stars and n — 1 bars separating the n groupings of stars. Such a
list can be made by selecting n — 1 positions for the bars, and filling the

remaining positions with stars, and there are (k ;f;l) ways to do this.

For example, the number of 2-element multisets that can be made from
the 4-element set X = {a,b,¢,d} is (*"3 ") = (5) = 10. This agrees with our
accounting of them on page 110. The number of 3-element multisets that
can be made from the elements of X is (**; ') = (§) = 20. Again this agrees
with our list of them on page 110.

The number of 1-element multisets made from X is (**{7!) = (}) = 4.
Indeed, the four multisets are [a],[6],[c] and [d]. The number of 0-element
multisets made from X is (**37") = (3) = 1. This is right, because there is

only one such multiset, namely @.
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Example 4.19 A bag contains 20 identical red marbles, 20 identical green
marbles, and 20 identical blue marbles. You reach in and grab 20 marbles.
There are many possible outcomes. You could have 11 reds, 4 greens and 5
blues. Or you could have 20 reds, 0 greens and 0 blues, etc. All together,
how many outcomes are possible?

Solution: Each outcome can be thought of as a 20-element multiset made
from the elements of the 3-element set X = {r,a,B}. For example, 11 reds, 4
greens and 5 blues would correspond to the multiset

[ R,R,R,R,R,R,R,R,R,R,R,G,G,G,G,B,B,B,B,B |.
The outcome consisting of 10 reds and 10 blues corresponds to the multiset
[ R,R,R,R,R,R,R,R,R,R,B,B,B,B,B,B,B,B,B,B |.

Thus the total number of outcomes is the number of 20-element multisets
made from the elements of the 3-element set X ={r,a,B}. By Fact 4.7, the

answer is (*3371) = (22) = 231 possible outcomes. £

Rather than remembering the formula in Fact 4.7, it is probably best
to work out a new stars-and-bars model as needed. This is because it is
often easy to see how a particular problem can be modeled with stars and
bars, and once they have been set up, the formula in Fact 4.7 falls out
automatically.

For instance, we could solve Example 4.19 by noting that each outcome
has a star-and-bar encoding using 20 stars and 2 bars. (The outcome
[R,R,R,R,R,R,R,R,R,R,R,G,G,G,G,B,B,B,B,B] can be encoded in stars and bars as
%ok ok ok ok ok ok ok ok ok k| ok ok x| % % x x %, ete.) We can form such a list by choosing
2 out of 22 slots for bars and filling the remaining 20 slots with stars. There
are (%) =231 ways of doing this.

Our next example involves counting the number of non-negative integer
solutions of the equation w +x+y+2z = 20. By a non-negative integer solution
to the equation, we mean an assignment of non-negative integers to the vari-
ables that makes the equation true. For example, one solutionisw =17, x =3,
y =5, z=>5. We can write this solution compactly as (w,x,y,z) = (7,3,5,5).
Two other solutions are (w,x,y,z) =(1,3,1,15) and (w,x,y,z) = (0,20,0,0). We
would not include (w,x,y,z) =(1,-1,10,10) as a solution because even though
it satisfies the equation, the value of x is negative. How many solutions are
there all together? The next example presents a way of solving this type of
question.
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Example 4.20 How many non-negative integer solutions does the equa-
tion w+x +y +2z =20 have?

Solution: We can model a solution with stars and bars. For example,
encode the solution (w,x,y,2) =(3,4,5,8) as

3 4 5 8

—_— | —— | —— | —A————

In general, any solution (w,x,y,z) = (a,b,c,d) gets encoded as

a stars b stars c stars d stars

where all together there are 20 stars and 3 bars. So, for instance the solution
(w,x,y,2)=(0,0,10,10) gets encoded as || * * * * * * * % * *| % % % * % * * % %, and
the solution (w,x,y,z) = (7,3,5,5) is encoded as # # # s s s s | # s & |4 sk sk ok [ o % 5%,
Thus we can describe any non-negative integer solution to the equation as
a list of length 20 + 3 =23 that has 20 stars and 3 bars. We can make any
such list by choosing 3 out of 23 spots for the bars, and filling the remaining
20 spots with stars. The number of ways to do this is (%) = 2, = 232221 —
23-11-7 = 1771. Thus there are 1771 non-negative integer solutions of
w+x+y+z=20.

For another approach to this example, model solutions of w+x+y+2z =20
as 20-element multisets made from the elements of {w,x,y,z}. For example,
solution (5,5,4,6) corresponds to [w,w,w,w,w, x,%,%,%,%, ¥,Y,Y,¥, 2,2,2,2,2,2].
By Fact 4.7, there are (*°50 ") = (33) = 1771 such multisets, so this is the
number of solutions to w+x +y +2z = 20. o)

Example 4.21 This problem concerns the lists (w,x,y,2) of integers with
the property that 0 =w <x <y <z <10. That is, each entry is an integer
between 0 and 10, and the entries are ordered from smallest to largest. For
example, (0,3,3,7), (1,1,1,1) and (2,3,6,9) have this property, but (2,3,6,4)
does not. How many such lists are there?

Solution: We can encode such a list with 10 stars and 4 bars, where w is
the number of stars to the left of the first bar, x is the number of stars to
the left of the second bar, y is the number of stars to the left of the third
bar, and z is the number of stars to the left of the fourth bar.

For example, (2,3,6,9) is encoded as * | * | * % x|« * % |x, and (1,2,3,4) is
encoded as | | * | % | * % % * x .
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Here are some other examples of lists paired with their encodings.

0,3,3,7) | % % || % % % % | % %%
(1,1,1,1) w ||| % % % % % % % %%
9,9,9,10) *okok ok ok ok ok ok k||| % |

Such encodings are lists of length 14, with 10 stars and 4 bars. We can
make such a list by choosing 4 of the 14 slots for the bars and filling the
remaining slots with stars. The number of ways to do this is () = 1001.
Answer: There are 1001 such lists. Jia)

We will examine one more type of multiset problem. To motivate it,
consider the permutations of the letters of the word “BOOK.” At first glance
there are 4 letters, so we should get 4! = 24 permutations. But this is not
quite right because two of the letters are identical. We could interchange the
two O’s but still have the same permutation. To get a grip on the problem,
let’s make one of the letters lower case: BOoK. Now our 24 permutations
are listed below in the oval.

BO0K ! KOoB ! 00KB ! 00BK ! OBoK ! OKoB ! OKBo ! OBKo ! BKOo ! KBOo ! KOBo ! BOKo
BoOK | KoOB i 00KB 1 00BK i 0BOK ! 0KOB 1 0KBO 1 0BKO : BKoO i KBoO : KoBO i BoKO

A T T e e

BOOK KOOB OOKB OOBK OBOK OKOB OKBO OBKO BKOO KBOO KOBO BOKO

The columns in the oval correspond to the same permutation of the letters
of BOOK, as indicated in the row below the oval. Thus there are actually
%’ = % =12 permutations of the letters of BOOK.

This is actually a problem about multisets. The letters in “BOOK” form a
multiset [B,0,0,K], and we have determined that there are 12 permutations
of this multiset.

For another motivational example, consider the permutations of the
letters of the word BANANA. Here there are two N’s and three A’s. Though
some of the letters look identical, think of them as distinct physical objects
that we can permute into different orderings. It helps to subscript the
letters to emphasize that they are actually six distinct objects:

BA;{N;AsNy Ag.

Now, there are 6! = 720 permutations of these six letters. It’s not practical
to write out all of them, but we can get a sense of the problem by making a
partial listing in the box below.
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(BA1N1A2N2A3 i A1BNjAgNg Ag i h
BA;NjA3Ng Ag i A1 BN1A3Ng Ag i
BAyN1A|{NyAs | AsBN{A|NgA;3 |
BAsN1A3NgA; | AgBNjAgNgA; |
BA3N1AsN2 A1 1 AsBN1AgNp A7 |
BA3N1A1N2Ag | A3BN1A1NgAg | 720 permutations
BA{NgA9Nj Ag i A1BNgoA9N; Ag i of BA;NjA9Ng Ag
BA;NgA3NjAg | A1BNgA3Nj Ag |
BAgNgA1NjAg i A9BN2A; N Ag i
BAgNgA3N1A; | AgBNoA3Ny A |
BAgNgAgN; A; | A3BNaAgNjA; !
\BA3N21\1N1A2 i A3BN21\1N1A2 i )
BANANA ABNANA

The first column lists the permutations of B A; N; A; Ny Az corresponding to
the word BANANA. By the multiplication principle, the column has 3!2! = 12
permutations because the three A;’s can be permuted in 3! ways within
their positions, and the two N;’s can be permuted in 2! ways. Similarly, the
second column lists the 3!2! = 12 permutations corresponding to the “word”
ABNANA.

All together there are 6! = 720 permutations of BA;N;AsNs Az, and
groupings of 12 of them correspond to particular permutations of BANANA.
Therefore the total number of permutations of BANANA is 3(,;—;, = % =60.

The kind of reasoning used here generalizes to the following fact.

Fact 4.8 Suppose a multiset A has n elements, with multiplicities
P1,P2,...,pr. Then the total number of permutations of A is

n!

pilpa! - pi!

Example 4.22 Count the permutations of the letters in MISSISSIPPI.

Solution: Think of this word as an 11-element multiset with one M, four
I’s, four S’s and two P’s. By Fact 4.8, it has % = 34,650 permutations.

Example 4.23 Determine the number of permutations of the multiset
[1,1,1,1,5,5,10,25,25].

Solution: By Fact 4.8 the answer is ﬁ!mz =3780. o)



Counting Multisets 117

Exercises for Section 4.8

o

10.
11.

12,

13.

14.

15.
16.

17.

18.
19.

20.

21.

. How many 10-element multisets can be made from the symbols {1,2,3,4}?
. How many 2-element multisets can be made from the 26 letters of the alphabet?
. You have a dollar in pennies, a dollar in nickels, a dollar in dimes, and a dollar

in quarters. You give a friend four coins. How many ways can this be done?

. A bag contains 20 identical red balls, 20 identical blue balls, 20 identical green

balls, and 20 identical white balls. You reach in and grab 15 balls. How many
different outcomes are possible?

. A bag contains 20 identical red balls, 20 identical blue balls, 20 identical green

balls, and one white ball. You reach in and grab 15 balls. How many different
outcomes are possible?

. A bag contains 20 identical red balls, 20 identical blue balls, 20 identical green

balls, one white ball, and one black ball. You reach in and grab 20 balls. How
many different outcomes are possible?

. In how many ways can you place 20 identical balls into five different boxes?
. How many lists (x, y,z) of three integers are there with 0 <x <y <2 <100?
. A bag contains 50 pennies, 50 nickels, 50 dimes and 50 quarters. You reach in

and grab 30 coins. How many different outcomes are possible?

How many non-negative integer solutions does u +v+w +x+y+2z =90 have?
How many integer solutions does the equation w +x + y +2z = 100 have if w =4,
x=2,y=0and z=0?

How many integer solutions does the equation w+x+y+z =100 have if w =7,
x=0,y=5and z =47

How many length-6 lists can be made from the symbols {a, B, c, b, E, F, G}, if
repetition is allowed and the list is in alphabetical order? (Examples: BBCEGG,
but not BBBAGG.)

How many permutations are there of the letters in the word “PEPPERMINT”?
How many permutations are there of the letters in the word “TENNESSEE”?

A community in Canada’s Northwest Territories is known in the local language
as “TUKTUYAAQTUUQ.” How many permutations does this name have?

You roll a dice six times in a row. How many possible outcomes are there that
have two 1’s three 5’s and one 6?

Flip a coin ten times in a row. How many outcomes have 3 heads and 7 tails?
In how many ways can you place 15 identical balls into 20 different boxes if each
box can hold at most one ball?

You distribute 25 identical pieces of candy among five children. In how many
ways can this be done?

How many numbers between 10,000 and 99,999 contain one or more of the digits
3, 4 and 8, but no others?
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4.9 The Division and Pigeonhole Principles

Our final fundamental counting principle is called the division principle.
Before discussing it, we need some notation. Given a number x, its floor
lx] is x rounded down to the nearest integer. Thus L%J =2, and [9.31] =9,
and |7] =7, etc. The ceiling of x, denoted [x], is x rounded up to the nearest
integer. Thus [%] =3, and [9.311 =10, and [7] =17.

The division principle is often illustrated by a simple situation involving
pigeons. Imagine n pigeons that live in k2 pigeonholes, or boxes. (Possibly
n #k.) At night all the pigeons fly into the boxes. When this happens, some
of the & boxes may contain more than one pigeon, and some may be empty.
But no matter what, the average number of pigeons per box is 7. Obviously,
at least one of the boxes contains 7 or more pigeons. (Because not all the
boxes can contain fewer than the average number of pigeons per box.) And
because a box must contain a whole number of pigeons, we round up to
conclude that at least one box contains [7] or more pigeons.

Similarly, at least one box must contain 7 or fewer pigeons, because not
all boxes can contain more than the average number of pigeons per box.
Rounding down, at least one box contains |;] or fewer pigeons.

We call this line of reasoning the division principle. (Some texts call it
the strong form of the pigeonhole principle.)

Fact 4.9 (Division Principle)

Suppose n objects are placed into % boxes.

Then at least one box contains [;1 or more objects,
and at least one box contains |7 ] or fewer objects.

This has a useful variant. If n > %, then 7 > 1, so [#] > 1, and this means
some box contains more than one object. On the other hand, if n < % then
7 <1, so [%] <1, meaning at least one box is empty. Thus the division
principle yields the following consequence, called the pigeonhole principle.

Fact 4.10 (Pigeonhole Principle)

Suppose n objects are placed into % boxes.

If n >k, then at least one box contains more than one object.
If n <k, then at least one box is empty.

The pigeonhole principle is named for the scenario in which n pigeons
fly into & pigeonholes (or boxes). If there are more pigeons than boxes (n > &)



The Division and Pigeonhole Principles 119

then some box gets more than one pigeon. And if there are fewer pigeons
than boxes (n < k) then there must be at least one empty box.

Like the multiplication, addition and subtraction principles, the division
and pigeonhole principles are intuitive and obvious, but they can prove
things that are not obvious. The challenge is seeing where and how to apply
them. Our examples will start simple and get progressively more complex.

For an extremely simple application, notice that in any group of 13
people, at least two of them were born on the same month. Although this is
obvious, it really does follow from the pigeonhole principle. Think of the 13
people as objects, and put each person in the “box” that is his birth month.
As there are more people than boxes (months), at least one box (month) has
two or more people in it, meaning at least two of the 13 people were born in
the same month.

Further, for any group of 100 people, the division principle says that

there is a month in which [%1 =9 or more of the people were born. It also

guarantees a month in which L%J = 8 or fewer of the people were born.

Example 4.24 Pick six integers between 0 and 9 (inclusive). Show that
two of them must add up to 9.

For example, suppose you picked 0, 1, 3, 5, 7 and 8. Then 1+8=9. If you
picked 4, 5, 6, 7, 8, 9. then 4+5=9. The problem asks us to show that this
happens no matter how we pick the numbers.

Solution: Pick six numbers between 0 and 9. Here’s why two of them sum
to 9: Imagine five boxes, each marked with two numbers, as shown below.
Each box is labeled so that the two numbers written on it sum to 9.

0,9 1,8 2,7 3,6 4,5

For each number that was picked, put it in the box having that number
written on it. For example, if we picked 7, it goes in the box labeled “2, 7.”
(The number 2, if picked, would go in that box too.) In this way we place the
six chosen numbers in five boxes. As there are more numbers than boxes,
the pigeonhole principle says that some box has more than one (hence two)
of the picked numbers in it. Those two numbers sum to 9. £

Notice that if we picked only five numbers from 0 to 9, then it’s possible
that no two sum to 9: we could be unlucky and pick 0, 1, 2, 3, 4. But the
pigeonhole principle ensures that if six are picked then two do sum to 9.
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Example 4.25 A store has a gumball machine containing a large number
of red, green, blue and white gumballs. You get one gumball for each nickel
you put into the machine. The store offers the following deal: You agree to
buy some number of gumballs, and if 13 or more of them have the same
color you get $5. What is the fewest number of gumballs you need to buy to
be 100% certain that you will make money on the deal?

Solution: Let n be the number of gumballs that you buy. Imagine sorting
your n gumballs into four boxes labeled RED, GREEN, BLUE, and WHITE.
(That is, red balls go in the red box, green balls go in the green box, etc.)

RED GREEN BLUE WHITE

The division principle says that one box contains [%] or more gumballs.
Provided [%] = 13, you will know you have 13 gumballs of the same color.
This happens if 7 > 12 (so the ceiling of % rounds to a value larger than 12).
Therefore you need n > 4-12 = 48, so if n = 49 you know you have at least
[‘%’] =[12.25] = 13 gumballs of the same color.

Answer: Buy 49 gumballs for 49 nickels, which is $2.45. You get $5, and
therefore have made $2.55.

Note that if you bought just 48 gumballs, you might win, but there is a
chance that you'd get 12 gumballs of each color and miss out on the $5. And
if you bought more than 49, you’d still get the $5, but you would have spent
more nickels. o)

Explicitly mentioning the boxes in the above solution is not necessary.
Some people prefer to draw a conclusion based averaging alone. They
might solve the problem by letting n be the number of gumballs bought,
son=r+g+b+w, where r is the number of them that are red, g is the
number that are green, b is the number of blues and w is the number
of whites. Then the average number of gumballs of a particular color is

b
rrevorw % We need this to be greater than 12 to ensure 13 of the

same color, and the smallest number that does the job is n =49. This is still
the division principle, in a pure form.
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Example 4.26 Nine points are randomly placed on the right triangle
shown below. Show that three of these points form a triangle whose area is
% square unit or less. (We allow triangles with zero area, in which case the
three points lie on a line.)

[ S S
1

Solution: Divide the triangle into four smaller triangles, as indicated
by the dashed lines below. Each of these four triangles has an area of
%bh = %%% = % square units. Think of these smaller

triangles as “boxes.” So we have placed 9 points in 4

boxes. (If one of the 9 points happens to be on a

1 dashed line, say it belongs to the box below or to its

left.) The division principle says one of the boxes

has at least [%1 = 3 of the points in it. Those three

- points form a triangle whose area is no larger than
1 the area of the “box” that it is in. Thus these three

points form a triangle whose area is % orless. &£

Exercises for Section 4.9

1. Show that if six numbers are chosen at random, then at least two of them will
have the same remainder when divided by 5.

2. You deal a pile of cards, face down, from a standard 52-card deck. What is
the least number of cards the pile must have before you can be assured that it
contains at least five cards of the same suit?

3. What is the fewest number of times you must roll a six-sided dice before you can
be assured that 10 or more of the rolls resulted in the same number?

4. Select any five points on a square whose side-length is one unit. Show that at

least two of these points are within ‘/TQ units of each other.

5. Prove that any set of seven distinct natural numbers contains a pair of numbers
whose sum or difference is divisible by 10.

6. Given a sphere S, a great circle of S is the intersection of S with a plane through
its center. Every great circle divides S into two parts. A hemisphere is the union
of the great circle and one of these two parts. Show that if five points are placed
arbitrarily on S, then there is a hemisphere that contains four of them.
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4.10 Combinatorial Proof

Combinatorial proof is a method of proving two different expressions are
equal by showing that they are both answers to the same counting question.
We have already used combinatorial proof (without calling it combinatorial
proof) in proving Pascal’s formula (";') = (,”,) + (}) on page 104.

There we argued that the left-hand side (”,:1) is, by definition, the number
of k-element subsets of the set S ={0,1,2,...,n} with |S| = n+1. But the right-
hand side also gives the number of k2-element subsets of S, because such a
subset either contains 0 or it does not. We can make any k-element subset of
S that contains 0 by starting with 0 and selecting £ — 1 other elements from
{1,2,...,n},1in (") ways. We can make any k-element subset that does not
contain 0 by selecting % elements from {1,2,...,n}, and there are (};) ways to
do this. Thus,

—— ——r ——
number of number of number of
k-element k-element k-element
subsets of subsets of subsets of

S={0,1,...,n} S with 0 S without 0

Both sides count the number of 2-element subsets of S, so they are equal.
This is combinatorial proof.

Example 4.27 Use combinatorial proof to show (}) =(,",)-

Solution. First, by definition, if £ <0 or & > n, then both sides are 0, and
thus equal. Therefore for the rest of the proof we can assume 0 <k <n.
The left-hand side (};) is the number of k-element subsets of S = {1,2,...,n}.
Every k-element subset X < S pairs with a unique (n—k)-element subset
X =S-X 8. Thus the number of k-element subsets of S equals the number

of (n—k)-element subsets of S, which is to say (}) = (,",)- o2

We could also derive () = (,”,) by using the formula for () and quickly
get

n | _ n! B n! B n! _n
n-k| (m-Bl(n-(-k)!) (-kIk k(- |k

But you may feel that the combinatorial proof is “slicker” because it uses
the meanings of the terms. Often it is flat-out easier than using formulas,
as in the next example.
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Our next example will prove that i (2)2 = (2,:‘), for any positive integer n,
k=0

which is to say that (8)2 +(P+ () (D)2

1 2 n (2: ). For example, if n = 5, this

statement asserts (3)2 + (?)2 + (2)2 + (g)2 + (2)2 + (g)z = (%), that is,

12+5%+102+10% +52 +12 = (19),
which is true, as both sides equal 252. In general, the statement says that

the squares of the entries in the nth row of Pascal’s triangle add up to (2:)

" 2

Example 4.28 Use a combinatorial proof to show that ) (Z) = (2:)
k=0

Solution. First, the right-hand side (2:) is the number of ways to select n

things from a set S that has 2n elements.

Now let’s count this a different way. Divide S into two equal-sized parts,
S =AUB, where |[A|=n and |B|=n,and AnB = ¢.

For any fixed &£ with 0 <% < n, we can select n things from S by taking %
things from A and n —% things from B for a total of 2 + (n — k) = n things. By
the multiplication principle, we get (7)(,”,) n-element subsets of S this way.

As k could be any number from O to n, the number of ways to select n
things from S is thus

—_——
o S

—_——
S

[
=]

N —
+
—_——
— 3
N —
—_——
S

[
—

N —
+
—_——
NS
N —
—_——
S

IS
w

N —
+
+
—_——
S S
N —
—_——
(N

0 from A {
n from B {
1 from A {
n—1from B {
2 from A {
n—2 from B {
3 from A {
n—3 from B {
n from A {
0 from B {

But because (,",) = (7), this expression equals (g)(5)+ (1) (1) + ) G) +--+ () (),
which is (’8)2 + (’1‘)2 + (’21)2 oot (2)2 _ i (2)2

In summary, we’ve counted the v;ays to choose n elements from the set
S with two methods. One method gives (2r7), and the other gives éo (2)2.

Therefore i (2)2 = (2:) “©
£=0
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Be on the lookout for opportunities to use combinatorial proof, and watch
for it in your readings outside of this course. Also, try some of the exercises
below. Sometimes it takes some creative thinking and false starts before
you hit on an idea that works, but once you find it the solution is usually
remarkably simple.

Exercises for Section 4.10

Use combinatorial proof to solve the following problems. You may assume that any
variables m,n,k and p are non-negative integers.

Show that 1(n—0)+2(n-1)+3(n-2)+4(n-3)+---+(n—-1)2+(n-0)1= ("§2)
Show that 1+2+3+---+n=(";1).

Show that (3)(;73) = (;)(5)-

Show that P(n,k)=P(n—-1,k)+k-P(n—1,k—1).

Show that (%) = 2(2) +n2.

Show that (%) = 3(2) +6n(3) + n°.

b +n
Show that kgo (%) (p’fk) — (mp )-

NS R Dd =

8. Show that 3. (})(,24) = (mi)-

9. Show that kzm (F) = ("),

10. Show that ¥ k() =n2"L.
k=1

11. Show that ¥, 2*(7)=3".
k=0

m

12. Show that ¥ (7)(%)=(")2 ™.
k=0
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4.11 Solutions for Chapter 4
Section 4.2

1. Consider lists made from the letters 7, H, E, O, R, Y, with repetition allowed.
(a) How many length-4 lists are there? Answer: 6-6-6-6 = 1296.
(b) How many length-4 lists are there that begin with 7?
Answer: 1-6-6-6 = 216.
(c) How many length-4 lists are there that do not begin with 7?
Answer: 5-6-6-6 = 1080.
3. How many ways can you make a list of length 3 from symbols a,B,c,p,E,F if...
(a) ... repetition is allowed. Answer: 6-6-6 = 216.
(b) ... repetition is not allowed. Answer: 6-5-4 = 120.
(c) ... repetition is not allowed and the list must contain the letter a.
Answer: 5-4+5-4+5-4 = 60.
(d) ... repetition is allowed and the list must contain the letter a.
Answer: 6-6-6-5-5-5=91.
(Note: See Example 4.3 if a more detailed explanation is required.)
5. This problems involves 8-digit binary strings such as 10011011 or 00001010. (i.e.,
8-digit numbers composed of 0’s and 1’s.)
(a) How many such strings are there? Answer: 2-2-2-2-2-2-2-2 = 256.
(b) How many such strings end in 0? Answer: 2-2-2-2-2-2-2-1=128.
(¢) How many such strings have the property that their second and fourth digits
are 1’s? Answer: 2-1-2-1-2-2-2-2 = 64.

(d) How many such strings are such that their second or fourth digits are 1’s?
Solution: These strings can be divided into three types. Type 1 consists of
those strings of form 10 = * * x, Type 2 consist of strings of form #0 # 1 % * = *,
and Type 3 consists of those of form *1 %1% * % . By the multiplication principle
there are 28 = 64 strings of each type, so there are 3-64 = 192 8-digit binary
strings whose second or fourth digits are 1’s.

7. This problem concerns 4-letter codes made from the letters A,B,C,D,...,Z.
(a) How many such codes can be made? Answer: 26-26-26-26 = 456,976

(b) How many such codes have no two consecutive letters the same?
Solution: We use the multiplication principle. There are 26 choices for the first
letter. The second letter can’t be the same as the first letter, so there are only
25 choices for it. The third letter can’t be the same as the second letter, so there
are only 25 choices for it. The fourth letter can’t be the same as the third letter,
so there are only 25 choices for it. Thus there are 26-25-25-25 = 406,250
codes with no two consecutive letters the same.

9. A new car comes in a choice of five colors, three engine sizes and two transmis-
sions. How many different combinations are there? Answer 5-3-2 = 30.
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Section 4.3

1. Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such lineups are there that have at least one red card?

Solution: All together there are 52-51-50-49-48 = 311875200 possible lineups.
The number of lineups that do not have any red cards (i.e. are made up only
of black cards) is 26-25-24-23-22 =7,893,600. By the subtraction principle, the
answer to the question is 311,875,200 - 7,893,600 = 303,981,600.

How many such lineups are there in which the cards are all black or all hearts?

Solution: The number of lineups that are all black is 26-25-24-23-22 = 7,893, 600.
The number of lineups that are hearts (which are red) is 13-12-11-10-9 = 154,440.
By the addition principle, the answer to the question is 7,893,600 + 154,440 =
8,048,040.

3. Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such lineups are there in which all 5 cards are of the same color (i.e., all
black or all red)?

Solution: There are 26-25-24-23-22 = 7,893,600 possible black-card lineups and
26-25-24-23-22 = 7,893,600 possible red-card lineups, so by the addition principle
the answer is 7,893,600 + 7,893,600 = 15,787,200.
5. How many integers between 1 and 9999 have no repeated digits?

Solution: Consider the 1-digit, 2-digit, 3-digit and 4-digit number separately.
The number of 1-digit numbers that have no repeated digits is 9 (i.e., all of
them). The number of 2-digit numbers that have no repeated digits is 9-9 =81.
(The number can’t begin in 0, so there are only 9 choices for its first digit.) The
number of 3-digit numbers that have no repeated digits is 9-9-8 = 648. The
number of 4-digit numbers that have no repeated digits is 9-9-8-7=4536. By
the addition principle, the answer to the question is 9+ 81 + 648 + 4536 = 5274.

How many integers between 1 and 9999 have at least one repeated digit?

Solution: The total number of integers between 1 and 9999 is 9999. Using the
subtraction principle, we can subtract from this the number of digits that have
no repeated digits, which is 5274, as above. Therefore the answer to the question
is 9999 — 5274 = 4725.

7. A password on a certain site must have five characters made from letters of the
alphabet, and there must be at least one upper case letter. How many different
passwords are there?

Solution: Let U be the set of all possible passwords made from a choice of upper
and lower case letters. Let X be the set of all possible passwords made from
lower case letters. Then U —X is the set of passwords that have at least one lower
case letter. By the subtraction principle our answer will be |U - X| = |U| - |X]|.
All together, there are 26 + 26 = 52 upper and lower case letters, so by the multi-
plication principle |U| =52-52-52-52-52 = 525 = 380,204, 032.

Likewise |X|=26-26-26-26-26 = 26° = 11,881, 376.

Thus the answer is |U|-|X| = 380,204,032 — 11,881,376 = 368,322, 656.
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11.

What if there must be a mix of upper and lower case?

Solution: The number of passwords using only upper case letters is 26° =
11,881,376, and, as calculated above, this is also the number of passwords that
use only lower case letters. By the addition principe, the number of passwords
that use only lower case or only upper case is 11,881,376+11,881,376 = 23,762, 752.
By the subtraction principle, the number of passwords that use a mix of upper
and lower case it the total number of possible passwords minus the number
that use only lower case or only upper case, namely 380,204,032 — 23,762,752 =
356,441,280.

. This problem concerns lists of length 6 made from the letters A,B,C,D,E,F,G,H.

How many such lists are possible if repetition is not allowed and the list contains
two consecutive vowels?

Solution: There are just two vowels A and E to choose from. The lists we want
to make can be divided into five types. They have one of the forms V'V« x x x,
or *VVxsx%, 0r **VVxx*, or *=*+VVx, or **x*xVV, where V indicates a
vowel and * indicates a consonant. By the multiplication principle, there are
2-1-6-5-4-3="720 lists of form VV x % = *. In fact, that for the same reason there
are 720 lists of each form. Thus by the addition principle, the answer to the
question is 720+ 720+ 720+ 720 + 720 = 3600

How many integers between 1 and 1000 are divisible by 5?7 How many are not?

Solution: The integers that are divisible by 5 are 5,10,15,20,...,995,1000. There
are 1000/5 = 200 such numbers. By the subtraction principle, the number that
are not divisible by 5 is 1000 — 200 = 800.

Sections 4.4

11.

13.

. Answer n = 14. 5. 120 - 120191181 _ 190.119 = 14,280.
. Answer: 5! = 120. 7. Answer: 5!4! = 2880.
. How many permutations of the letters A,B,C,D,E,F,G are there in which the

three letters ABC appear consecutively, in alphabetical order?

Solution: Regard ABC as a single symbol . Then we are looking for the
number of permutations of the five symbols , D, E, F, G. The number of
such permutations is 5! = 120.

You deal 7 cards off of a 52-card deck and line them up in a row. How many
possible lineups are there in which not all cards are red?

Solution: All together, there are P(52,7) 7-card lineups with cards selected from
the entire deck. And there are P(26,7) 7-card lineups with red cards selected
from the 26 red cards in the deck. By the subtraction principle, the number of
lineups that are not all red is P(52,7)— P(26,7) = 670,958,870,400.

P(26,6) = 165,765,600 15. P(15,4)=32,760 17. P(10,3)="720
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Section 4.5

1.

11.

13.
15.

17.

19.

Suppose a set A has 37 elements. How many subsets of A have 10 elements?
How many subsets have 30 elements? How many have 0 elements?

Answers: (}]) = 348,330,136; (3/) = 10,295,472; (3/) = 1.

. A set X has exactly 56 subsets with 3 elements. What is the cardinality of X?

Solution: The answer will be the n for which (3) =56. After some trial and error,
you will discover (g) =56, s0 | X|=8.

. How many 16-digit binary strings contain exactly seven 1’s?

Solution: Make such a string as follows. Start with a list of 16 blank spots.
Choose 7 of the blank spots for the 1’s and put 0’s in the other spots. There are
(16) = 11,440 ways to do this.

. X € 2({0,1,2,3,4,5,6,7,8,9) : IX| < 4}| = (1) +( )+ () +(%)=1+10+45+120 = 176.
. This problem concerns lists of length six made from the letters A,B,C,D,E,F,

without repetition. How many such lists have the property that the D occurs
before the A?

Solution: Make such a list as follows. Begin with six blank spaces and select two
of these spaces. Put the D in the first selected space and the A in the second.
There are (§) = 15 ways of doing this. For each of these 15 choices there are
4! =24 ways of filling in the remaining spaces. Thus the answer to the question
is 15 x 24 = 860 such lists.

How many 10-digit integers contain no 0’s and exactly three 6’s?

Solution: Make such a number as follows: Start with 10 blank spaces and choose
three of these spaces for the 6’s. There are (1) = 120 ways of doing this. For
each of these 120 choices we can fill in the remaining seven blanks with choices
from the digits 1,2,3,4,5,7,8,9, and there are 87 to do this. Thus the answer to
the question is (¥)-8" = 251,658,240.

. 1 ! !
Assume n,k € Z with 0=k <n. Then (}) = o757 = 7o = G = (no)-

How many 10-digit binary strings are there that do not have exactly four 1’s?

Solution: All together, there are 210 different binary strings. The number of
10-digit binary strings with exactly four 1’s is (140), because to make one we need
to choose 4 out of 10 positions for the 1’s and fill the rest in with 0’s. By the

subtraction principle, the answer to our questions is 210 — (140).

How many 10-digit binary numbers are there that have exactly four 1’s or exactly
five 1’s?

Solution: By the addition principle the answer is () + ().
How many do not have exactly four 1’s or exactly five 1’s?

Solution: By the subtraction principle combined with the answer to the first

part of this problem, the answer is 2 - () - (¥)

A 5-card poker hand is called a flush if all cards are the same suit. How many
different flushes are there?
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Solution: There are (153) =1287 5-card hands that are all hearts. Similarly, there
are (153) =1287 5-card hands that are all diamonds, or all clubs, or all spades. By
the addition principle, there are then 1287 + 1287 + 1287 + 1287 = 5148 flushes.

Section 4.6

1.

11.

Write out Row 11 of Pascal’s triangle.
Answer: 1 11 55 165 330 462 462 330 165 55 11 1

. Use the binomial theorem to find the coefficient of x® in (x + 2)13.

Answer: According to the binomial theorem, the coefficient of x8y% in (x + )13 is
(12)«8y® = 1287x8y°. Now plug in y = 2 to get the final answer of 41184x5.

. Use the binomial theorem to show ¥7_ (%) =2". Hint: Observe that 2" = (1+1)".

Now use the binomial theorem to work out (x + y)* and plugin x=1 and y =1.

. Use the binomial theorem to show Y_, gk () =4".

Hint: Observe that 4™ = (1+3)". Now look at the hint for the previous problem.

. Use the binomial theorem to show (§)—(1)+(5)—(5)+(%)-(%)+...=(}) =0. Hint:

Observe that 0=0" =(1+(-1))". Now use the binomial theorem.

Use the binomial theorem to show 9" = ¥7_ (-1)* (}) 10",
Hint: Observe that 9" = (10 +(-1))". Now use the binomial theorem.

13. Assume n =3. Then (3) = (”gl) + (”;1) = (”gz) + (”52) + (”51) == (g) + (g) ot (”;1)
Section 4.7
1. At a certain university 523 of the seniors are history majors or math majors (or

both). There are 100 senior math majors, and 33 seniors are majoring in both
history and math. How many seniors are majoring in history?

Solution: Let A be the set of senior math majors and B be the set of senior
history majors. From |[AuB|=|A|+|B|-|AnB| we get 523 = 100 + |B| — 33, so
|B| =523+ 33 — 100 = 456. There are 456 history majors.

. How many 4-digit positive integers are there that are even or contain no 0’s?

Solution: Let A be the set of 4-digit even positive integers, and let B be the set of
4-digit positive integers that contain no 0’s. We seek |[AuB|. By the multiplication
principle |[A| =9-10-10-5 =4500. (Note the first digit cannot be 0 and the last
digit must be even.) Also |B|=9-9-9-9 =6561. Further, A nB consists of all even
4-digit integers that have no 0’s. It follows that |[AnB|=9-9-9-4 =2916. Then the
answer to our question is [AUB|= |A|+|B|-|ANnB|=4500+6561—-2916 = 8145.

. How many 7-digit binary strings begin in 1 or end in 1 or have exactly four 1’s?

Solution: Let A be the set of such strings that begin in 1. Let B be the set of such
strings that end in 1. Let C be the set of such strings that have exactly four 1’s.
Then the answer to our question is |A uB U C|. Using Equation (4.5) to compute
this number, we have |AUBUC| = |A|+|B|+|C|-|ANnB|-]AnC|-|BNC|+|AnBNC| =
264264 (7)-25—(8)-(8)+(5)=64+64+35-32-20-20+10= 101.

. This problem concerns 4-card hands dealt off of a standard 52-card deck. How

many 4-card hands are there for which all four cards are of the same suit or all
four cards are red?



130 Counting

11.

13.

15.

Solution: Let A be the set of 4-card hands for which all four cards are of the
same suit. Let B be the set of 4-card hands for which all four cards are red.
Then A nB is the set of 4-card hands for which the four cards are either all
hearts or all diamonds. The answer to our question is [AUB|=|A|+|B|—|ANnB| =
4(B3)+ (%) -2()=2(%) + (%) = 1430+ 14,950 = 16,380.

. A 4-letter list is made from the letters L,I,S,T,E,D according to the following

rule: Repetition is allowed, and the first two letters on the list are vowels or the
list ends in D. How many such lists are possible?

Solution: Let A be the set of such lists for which the first two letters are vowels, so
|A| =2-2-6-6 = 144. Let B be the set of such lists that end in D, so |B| = 6-6-6-1 = 216.
Then A N B is the set of such lists for which the first two entries are vowels and
the list ends in D. Thus |[AnB|=2-2-6-1= 24. The answer to our question is
[AuB|=|A|+|B|-]|AnB| =144 +216 —24 = 336.

How many 7-digit numbers are even or have exactly three digits equal to 0?
Solution: Let A be the set of 7-digit numbers that are even. By the multiplication
principle, |A| =9-10-10-10-10-10-5 = 4,500,000. Let B be the set of 7-digit numbers
that have exactly three digits equal to 0. Then |B|=9- (g) -9-9-9. (First digit is
anything but 0. Then choose 3 of 6 of the remaining places in the number for
the 0’s. Finally the remaining 3 places can be anything but 0.)

Note A NB is the set of 7-digit numbers that are even and contain exactly three
0’s. We can compute |A N B| with the addition principle, by dividing A nB into
two parts: the even 7-digit numbers with three digits 0 and the last digit is not
0, and the even 7-digit numbers with three digits 0 and the last digit is 0. The
first part has 9 (5)-9-9-4 elements. The second part has 9-(5)-9-9-9-1 elements.
Thus [AnB|=9-(3)-9-9-4+9-(3)-9-9-9.

By the inclusion-exclusion formula, the answer to our question is |AUB|=|A| +
IB|-1ANB| =4,500,000+9%(%) —93(3) -4 - 9%(3) = 4,536,450.

How many 8-digit binary strings end in 1 or have exactly four 1’s?

Solution: Let A be the set of strings that end in 1. By the multiplication principle
|A| =27. Let B be the number of strings with exactly four 1’s. Then |B| = (2)
because we can make such a string by choosing 4 of 8 spots for the 1’s and
filling the remaining spots with 0’s. Then A nB is the set of strings that end
with 1 and have exactly four 1’s. Note that |[AnB|= (Z) (make the last entry
a 1 and choose 3 of the remaining 7 spots for 1’s). By the inclusion-exclusion
formula, the number 8-digit binary strings that end in 1 or have exactly four 1’s
is [AUB|=|A|+|B|-1AnB|=27+(}) - (}) = 163.

How many 10-digit binary strings begin in 1 or end in 1?

Solution: Let A be the set of strings that begin with 1. By the multiplication
principle |A| = 2. Let B be the number of strings that end with 1. By the
multiplication principle |B| = 2°. Then A NB is the set of strings that begin
and end with 1. By the multiplication principle |A nB| = 28. By the inclusion-
exclusion formula, the number 10-digit binary strings begin in 1 or end in 1 is
JAUB|=|A|+|B|-1AnB|=2°+2%-28 = 768.
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Section 4.8

1.

11.

How many 10-element multisets can be made from the symbols {1,2,3,4}?

Answer: (11571 = (1) = 286.

. You have a dollar in pennies, a dollar in nickels, a dollar in dimes and a dollar

in quarters. You give four coins to a friend. In how many ways can this be done?

Solution: In giving your friend four coins, you are giving her a 4-element multiset

made from elements in {1,5,10,25}. There are (**;7!) = (}) = 85 such multisets.

. A bag contains 20 identical red balls, 20 identical blue balls, 20 identical green

balls, and one white ball. You reach in and grab 15 balls. How many different
outcomes are possible?

Solution: First we count the number of outcomes that don’t have a white ball.
Modeling this with stars and bars, we are looking at length-17 lists of the form

red blue green

— | | | | e

where there are 15 stars and two bars. Therefore there are GZ)) outcomes without

the white ball. Next we count the outcomes that do have the white ball. Then
there are 14 remaining balls in the grab. In counting the ways that they can
be selected we can use the same stars-and-bars model above, but this time the
list is of length 16 and has 14 stars. There are (}g) outcomes. Finally, by the

addition principle, the answer to the question is (17) + (15) = 256.

. In how many ways can you place 20 identical balls into five different boxes?

Solution: Let’s model this with stars and bars. Doing this we get a list of length
24 with 20 stars and 4 bars, where the first grouping of stars has as many stars
as balls in Box 1, the second grouping has as many stars as balls in Box 2, and

SO on.
Box 1 Box 2 Box 3 Box 4 Box 5

—_——~— | —— | —A— | —S—— | —A——

The number of ways to place 20 balls in the five boxes equals the number of such
lists, which is (55) = 10,626.

. A bag contains 50 pennies, 50 nickels, 50 dimes and 50 quarters. You reach in

and grab 30 coins. How many different outcomes are possible?

Solution: The stars-and-bars model is

pennies  nickels dimes  quarters

r—— | —— | —— | ——
***"'*|***"'*|***"'*i***"'*,

so there are (35) = 5456 outcomes.

How many integer solutions does the equation w +x + y +2z = 100 have if w =4,
x=2,y=0and z=0?
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13.

15.

17.

19.

21.

Solution: Imagine a bag containing 100 red balls, 100 blue balls, 100 green balls
and 100 white balls. Each solution of the equation corresponds to an outcome in
selecting 100 balls from the bag, where the selection includes w =4 red balls,
x = 2 blue balls, y =0 green balls and z = 0 white balls.

Now let’s consider making such a selection. Pre-select 4 red balls and 2 blue
balls, so 94 balls remain in the bag. Next the remaining 94 balls are selected.
We can calculate the number of ways that this selection can be made with stars
and bars, where there are 94 stars and 3 bars, so the list’s length is 97.

red blue green white

——t—— | —— | —

The number of outcomes is thus (%) = 147,440.

How many length-6 lists can be made from the symbols {a, B, c, D, E, F, G}, if
repetition is allowed and the list is in alphabetical order?

Solution: Any such list corresponds to a 6-element multiset made from the
symbols {a, B, ¢, D, E, F, g}. For example, the list AAcppaG corresponds to the
multiset [A,A,c,D,D,c]. Thus the number of lists equals the number of multisets,
which is (**17) = (12) = 924.

How many permutations are there of the letters in the word “TENNESSEE”?
Solution: By Fact 4.8, the answer is % = 3,780.

You roll a dice six times in a row. How many possible outcomes are there that
have two 1’s three 5’s and one 6?

Solution: This is the number of permutations of the “word” CL-X==L=E. By
Fact 4.8, the answer is %‘1, =60.

In how many ways can you place 15 identical balls into 20 different boxes if each
box can hold at most one ball?

Solution: Regard each such distribution as a binary string of length 20, where
there is a 1 in the ith position precisely if the ith box contains a ball (and zeros
elsewhere). The answer is the number of permutations of such a string, which
by Fact 4.8 is % =15,504. Alternatively, the answer is the number of ways to
choose 15 positions out of 20, which is (33) = 15,504.

How many numbers between 10,000 and 99,999 contain one or more of the digits
3, 4 and 8, but no others?

Solution: First count the numbers that have three 3’s, one 4, and one 8, like
33,348. By Fact 4.8, the number of permutations of this is % =20.

By the same reasoning there are 20 numbers that contain three 4’s, one 3, and
one 8, and 20 numbers that contain three 8’s, one 3, and one 4.

Next, consider the numbers that have two 3’s, two 4’s and one 8, like 33,448. By
Fact 4.8, the number of permutations of this is %:1' =30.

By the same reasoning there are 30 numbers that contain two 3’s, two 8’s and
one 4, and 30 numbers that contain two 4’s, two 8’s and one 3. This exhausts all
possibilities. By the addition principle the answer is 20+20+20+30+30+30 = 150.



Solutions for Chapter 4 133

Section 4.9

1. Show that if 6 integers are chosen at random, at least two will have the same
remainder when divided by 5.

Solution: Pick six integers n1,n9,n3,n4,n5 and ng at random. Imagine five boxes,
labeled Box 0, Box 1, Box 2, Box 3, Box 4. Each of the picked integers has a
remainder when divided by 5, and that remainder is 0, 1, 2, 3 or 4. For each n;,
let r; be its remainder when divided by 5. Put n; in Box ;. We have now put six
numbers in five boxes, so by the pigeonhole principle one of the boxes has two or
more of the picked numbers in it. Those two numbers have the same remainder
when divided by 5.

3. What is the fewest number of times you must roll a six-sided dice before you can
be assured that 10 or more of the rolls resulted in the same number?

Solution: Imagine six boxes, labeled 1 through 6. Every time you roll a (-, put
an object in Box 1. Every time you roll a (J, put an object in Box 2, etc. After
n rolls, the division principle says that one box contains [§]1 objects, and this
means you rolled the same number %1 times. We seek the smallest n for which
[%1=10. This is the smallest »n for which 7 >9, that is n >9-6 = 54. Thus the
answer is n = 55. You need to roll the dice 55 times.

5. Prove that any set of 7 distinct natural numbers contains a pair of numbers
whose sum or difference is divisible by 10.

Solution: Let S ={a1,a9,a3,a4,a5,a¢,a7} be any set of 7 natural numbers. Let’s
say that a1 <ag <ag <---<ay7. Consider the set

A = {ai1-az,a1-a3,a1—-ay4,a1—0s5,a1—0ag, a1 —0a7,
ai1+ag,a1+as,ay+aq,a1+as,a1+ag, a1 +ay}

Thus |A| = 12. Now imagine 10 boxes numbered 0,1,2,...,9. For each number
a1 *a; € A, put it in the box whose number is the one’s digit of a; +a;. (For
example, if a; +a; =4, put it in Box 4. If a; +a; =8, put it in Box 8, etc.) Now we
have placed the 12 numbers in A into 10 boxes, so the pigeonhole principle says
at least one box contains two elements a1 +a; and a; +a; from A. This means
the last digit of a1 t a; is the same as the last digit of a1 £ a;. Thus the last digit
of the difference (a1 +a;)—(a1+a;) = +a; +a; is 0. Hence +a; +a; is a sum or
difference of elements of S that is divisible by 10.

Section 4.10
1. Show that 1(n —0)+2(n— 1) +3(n—2)+4(n-3)+---+(n - 1)2+(n - 0)1 = ("2,

Solution: Let S ={0,1,2,3,...,n,n + 1}, which is a set with n +2 elements. The
right-hand side (”;2) of our equations is the number of 3-element subsets of S.

Let’s now count these 3-element subsets in a different way. Any such subset X
can be written as X ={j,k, ¢}, where 0<j <k < ¢ <n+1. Note that this forces the
middle element % to be in the range 1 <% <n. Given a fixed middle element &,
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there are % choices for the smallest element j and n + 1 - choices for the largest
element 7.

o1 2 - k-1 k k+1 kR+2 k+3 - n n+1
[ J T J

k choices for j . n+1—% choices for ¢
middle

By the multiplication principle, there are k(n + 1 - k) possible 3-element sets
X with middle element k2. For example, if 2 =1, there are 1(n —0) sets X with
middle element 1. If 2 =2, there are 2(n — 1) sets X with middle element 2. If
k =3, there are 3(n —2) sets X with middle element 3. Thus the left-hand side of
our equation counts up the number of 3-element subsets of S, so it is equal to
the right-hand side.
- k
3. Show that (3)(,75) = () (5)-

Solution: Consider the following problem. From a group of n people, you need to
select & people to serve on a committee, and you also need to select 2 of these %
people to lead the committee’s discussion. In how many ways can this be done?
One approach is to first select % people from n, and then select 2 of these & people
to lead the discussion. By the multiplication principle, there are (7)(%) ways to
make this selection.

Another approach is to first select 2 of the n people to be the discussion leaders,
and there are () ways to do this. Next we need to fill out the committee by

selecting % — 2 people from the remaining n — 2 people, and there are (z:g) ways
to do this. By the multiplication principle, there are (})(;”2) ways to make the

selection.

By the previous two paragraphs, (3)(;"2) and (})(%) are both answers to the same

counting problem, so they are equal.

5. Show that (%) =2(3) +n?.
Solution: Let S be a set with 2n elements. Then the left-hand side counts the
number of 2-element subsets of S.

Let’s now count this in a different way. Split S as S = AuB, where |A| =n = |B|. We
can choose a 2-element subset of S in three ways: We could choose both elements
from A, and there are (;) ways to do this. We could choose both elements from
B, and there are () ways to do this. Or we could choose one element from A
and then another element from B, and by the multiplication principle there
are n-n = n? ways to do this. Thus the number of 2-element subsets of S is
(5)+ (5) +n?=2(}) +n?, and this is the right-hand side. Therefore the equation
holds because both sides count the same thing.

7. Show that éo ) (p,—lk) - (m;ﬂ).

Solution: Take three non-negative integers m,n and p. Let S be a set with
|S|=m +n, so the right-hand side counts the number of p-element subsets of S.
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11.

Now let’s count this in a different way. Split S as S = AuUB, where |A|=m and
|IB| = n. We can make any p-element subset of S by choosing % of its elements
from A in and p — & of its elements from B, for any 0 <k < p. There are (',?) ways
to choose £ elements from A, and ( o ,) ways to choose p — & elements from B,
so there are (7)(,”,) ways to make a p-element subset of S that has % elements
from A. As k could be any number between 0 and p, the left-hand side of our
equation counts up the p-element subsets of S. Thus the left- and right-hand

sides count the same thing, so they are equal.

m+1

. Show that 3 (%)= ("*1).
k=m

Solution: Let S ={0,1,2,...,n}, so |S| =n + 1. The right-hand side of our equation
is the number of subsets X of S with m + 1 elements.

Now let’s think of a way to make such an X €S with |X|=m + 1. We could begin
by selecting a largest element % for X. Now, once we have chosen £, there are
k elements in S to the left of £, and we need to choose m of them to go in X (so
these, along with %, form the set X).

S={ o, 1, 2, 3, 4, 5, ---, k-1, k, k+1, k+2, k+3, ---, n}
choose m of thesgk numbers for X 1 !
argest
number
in X

There are (*) ways to choose these m numbers, so there are (*) subsets of S
whose largest element is k. Notice that we must have m <% <n. (The largest
element % of X cannot be smaller than m because we need at least m elements

on its left.) Summing over all possible largest values in X, we see that i (,]fl)
k=m
equals the number of subsets of S with m + 1 elements.

n+l

»t7) are answers to the

n
The previous two paragraphs show that Y (Z) and (
k=m
same counting question, so they are equal.

Show that ¥ 2*(?) =3".
k=0

Solution: Consider the problem of counting the number of length-n lists made
from the symbols {a,b,c}, with repetition allowed. There are 3" such lists, so the
right-hand side counts the number of such lists.

On the other hand, given k& with 0 <k < n, let’s count the lists that have exactly %
entries unequal to a. There are 2*(}) such lists. (First choose % of n list positions
to be filled with b or ¢, in (}) ways. Then fill these % positions with 4’s and ¢’s
in 2* ways. Fill any remaining positions with a’s.) As % could be any number
between 0 and r, the left-had side of our equation counts up the number of
length-n lists made from the symbols {a, b, c}. Thus the right- and left-hand sides
count the same thing, so they are equal.



CHAPTER 5

Discrete Probability

Ar-l urban legend has it that one Friday a weatherman announced “There’s
a 50% chance of rain on Saturday, and a 50% chance of rain on Sunday,
so there’s a 100% chance of rain this weekend.” Obviously he was wrong,
because under the circumstances there’s still a chance of no rain at all over
the weekend. But what is the correct answer?

Here is one approach to the answer. Make a set of four length-2 lists:

S ={RR, RN, NR, NN}.

This set encodes the four possible outcomes for the weather over the weekend.
The first letter of each list is either r or N depending on whether there is
Rain or No-rain on Saturday. The second letter is either r or N depending on
whether or not there is rain on Sunday. Thus rN means rain on Saturday
and no rain on Sunday; Nr means no rain on Saturday but rain on Sunday;
RR means rain both days; and NN means no rain over the weekend.

The information suggests that each outcome rRR, RN, NR and NN is
equally likely to occur: There is a 25% chance of rr, a 25% chance of rN,
a 25% chance of NRr, and a 25% chance of NN.

We want to determine the chance of rain over the weekend. The event
of rain over the weekend corresponds to the subset {rr, RN, NR} = S.

S (@D )

Thus rain over the weekend will occur in three out of four equally likely
outcomes, so the weatherman should have said there is a ?I =175% chance of
rain over the weekend.

This chapter is about probability and computing the probabilities of
events. The above example sets up the main ideas and definitions that are
needed. Given a situation with a finite number of possible outcomes (like
whether or not there’s rain over the weekend), its sample space is the set
S of all possible outcomes, and an event (like rain over the weekend) is a
subset of S. Let’s set up these ideas carefully.
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5.1 Sample Spaces, Events and Probability

In the study of probability, an experiment is an activity that produces one
of a number of different outcomes that cannot be determined in advance.
The sample space of the experiment is the set S of all possible outcomes.
An event is a subset E = S. We say the event occurs if the experiment is
preformed and the outcome is an element of E.

One example of an experiment was described on the previous page:
Observe whether it rains on each day of a weekend, and record the result
as one of RR, RN, NR or NN. The sample space of this experiment is the
set S = {RR, RN, NR, NN}. The event of rain over the weekend is the subset
E = {rr, rN, N} € S. If we preform the experiment and the outcome is one
RR, RN Or NR, in E, then we say the event E occurs.

There are numerous other events associated with this experiment. The
event of rain on Saturday is the subset E’ = {rr, RN} = S. Here are some
other events E = S = {RR, RN, NR, NN} for this experiment.

Event probability of event
Rain over the weekend: E = {RR, RN, NR} p(E)="E=3= 75%
Rain on Sunday: E = {rr, NR} pE)= llg_ll =2= 50%
No rain over weekend:  E = {nNN} pE)=E=1= 25%
Rain on just one day:  E = {RN, NR} p(E)=1G=1= 50%
Nothing happens: E=¢ pE)= 'lg—ll = g = 0%
Something happens: E = {RR, RN, NR NN} | p(E) = % =4=100%

The probability or chance of an event is the likelihood of its occurring
when the experiment is performed. The probability of an event is a number
from 0 to 1 (that is, from a 0% chance of occurring to a 100% chance of
occurring). We denote the probability of E as p(E). Thus, the experiment of
recording the weather over the weekend when there is a 50% chance of rain
on each day, the probability of the event E = {rr, rN, Nr} is p(E) = 75%, as
calculated on the previous page.

In many cases, all outcomes in a sample space are equally likely to
occur. This is the case in the above weekend weather experiment, where
each outcome RR, RN, NR, or NN has a 25% chance of occurring. In such a
situation, an event E occurs in |[E| out of |S| equally likely outcomes, so its

probability is p(E) = % See the right-hand column of the above table.
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This type of reasoning leads to a formula for the probability of an event
when all outcomes in a sample space are equally likely to occur.

Fact 5.1 Inanexperiment where all outcomes in the sample space S
are equally likely to occur, the probability of an event E =S is
|E|

E)=—.
p(E) S|

Example 5.1 You have two dice, a white one and a black one. You roll
both of them. What is the probability that at least one of them will be a six?

Solution. The sample space S is drawn below, showing the 36 equally likely
outcomes. The event E =S of at least one six is also shown.

- S
@m B OB OB =8E o

B8 (B8 B OB B8 |8
B (8B @B (OB B (8.
08 (08 U8 O8 #8 ©68
R U8 U8 O8 -8 (S
e (B U8 OB =8 B8
=)

-

Note that you will get at least one six in |E| =11 out of |S| = 36 equally likely
outcomes, so Fact 5.1 says the probability of getting at least one six is
|[E| 11 — —
E)=—=—=0.305=30.5%.
PE)=15" 36 ’
This means that if you roll the pair of dice, say, 100 times, you should expect
to get at least one six on about 30 of the rolls. Try it. Jia)

Fact 5.1 applies only to situations in which all outcomes in a sample
space are equally likely to occur. For an example of an experiment that does
not meet this criterion, imagine that one of the dice in Example 5.1 was
weighted so that it was more likely to land on six. Then the outcome G3B
would be more likely than the outcome (say) ()8, and Fact 5.1 would not
apply. In such a case p(E) would be greater than 30.5%. We will treat this
kind of situation in Section 5.4. Until then, all of our experiments will have
outcomes that are equally likely, and we will use Fact 5.1 freely.
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Example 5.2 You toss a coin three times in a row. What is the probability
of getting at least one tail?

Solution. Denote a typical outcome as a length-3 list such as aTH, which
means you rolled a head first, then a tail, and then a head. Here is the
sample space S and the event E of at least one tail:

E
S = {HHH,@HT, HTH, HTT, THH, THT, TTH, TT’D}
\El 7

The chance of getting at least one tail is p(E) = 518" 0.875=87.5%. #

Example 5.3 You deal a 5-card hand from a shuffled deck of 52 cards.
What is the probability that all five cards are of the same suit?

Solution. The sample space S consists of all possible 5-card hands. Such a
hand is a 5-element subset of the set of 52 cards, so we could begin writing
out S as something like

NI A B E T e

However, this is too big to write out conveniently in its entirety. But note
that |S| is the number of ways to select 5 cards from 52 cards, so

52 52! ~52-51-50-49-48
IS| = ( ) =2,598,960.

5 51(52-5)! 5-4.3-2-1

Now consider the event E = S consisting of all 5-card hands in S that are
of the same suit. We can compute |E| using the addition principle (Fact 4.2
on page 88). The set E can be divided into four parts: the hands that are
all hearts, the hands that are all diamonds, the hands that are all clubs
and the hands that are all spades.

As the deck has 13 heart cards, the number of 5-card hands that are
all hearts is (153) = % =1287. For the same reason, the number of
5-card hands that are all diamonds is also 1287. This is also the number of
5-card hands that are all clubs, and the number of 5-card hands that are
all spades. By the addition principle, |E| = 1287 + 1287 + 1287 + 1287 = 5148.

Thus the probability that all cards in the hand are of the same suit is

E| 5148
thus p(E) = — = — 222 _.00198 = 0.198%.
us PE) = 151 = 57598.960 o

So in playing cards, you should expect to be dealt a 5-card hand of the
same suit only approximately 2 out of 1000 times. o)
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Exercises for Section 5.1

For each problem, write out the sample space S (or describe it if it’s too big to write

E|

out) and find |S|. Then write out or describe the relevant event E. Find p(E) = SE
You may need to use various counting techniques from Chapter 4

1.

10.
11.
12,

13.

14.

15.

16.

17.

18.

A card is randomly selected from a deck of 52 cards. What is the chance that
the card is red or a king?

. A card is randomly selected from a deck of 52 cards. What is the chance that

the card is red but not a king?

. Toss a dice 5 times in a row. What is the probability that you don’t get any E¥s?
. Toss a dice 6 times in a row. What is the probability that exactly three of the

tosses are even?

. Toss a dice 5 times in a row. What is the probability that you will get the same

number on each roll? (i.e. LI or CLIIIT, ete.)

. Toss a dice 5 times in a row. What is the probability that every roll is a different

number?

. You have a pair of dice, a white one and a black one. Toss them both. What is

the probability that they show the same number?

. You have a pair of dice, a white one and a black one. Toss them both. What is

the probability that the numbers add up to 7?

. You have a pair of dice, a white one and a black one. Toss them both. What is

the probability that both show even numbers?

Toss a coin 8 times. What is the probability of getting exactly two heads?

Toss a coin 8 times. Find the probability that the first and last tosses are heads.
A hand of four cards is dealt off of a shuffled 52-card deck. What is the probability
that all four cards are of the same color? (All red or all black.)

Five cards are dealt from a shuffled 52-card deck. What is the probability of
getting three red cards and two clubs?

A coin is tossed 7 times. What is the probability that there are more tails than
heads? What if it is tossed 8 times?

Alice and Bob each randomly pick an integer from 0 to 9. What is the probability
that they pick the same number? What is the probability that they pick different
numbers?

Alice and Bob each randomly pick an integer from 0 to 9. What is the probability
that Alice picks an even number and Bob picks an odd number?

What is the probability that a 5-card hand dealt off a shuffled 52-card deck does
not contain an ace?

What is the probability that a 5-card hand dealt off a shuffled 52-card deck does
not contain any red cards?
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5.2 Combining Events

Now we begin combining events. To illustrate this, imagine tossing a coin
four times in a row. Let A be the event “The first two tosses are heads,” and
let B be the event “There are exactly three heads.” The sample space S is
shown below, along with the events A and B. Note that p(A) = 14l _ % =25%

=14l -
and p(B) = gl = & =25%.

HHHH) /HTHH THHH)B TTHH
HTHT THHT © TTHT |
HTTH THTH TTTH

HTTT THTT TTTT

A\ HHTT

Now, the union A UB is a subset of S, so it is an event. Think of it as the
event “The first two tosses are heads or there are exactly three heads.” This

is diagramed below, and we see that p(AuB) = % = 1% =37.5%.

TTHH
TTHT
TTTH
TTTT

S

Also, the intersection A NnB is a subset of S, so it is an event. It is the
event “The first two tosses are heads and there are exactly three heads.” This
is diagramed below. Note that p(A nB) =408l = 2 — 12 59,

IS 16
( HHHH HTHH THHH TTHH
HHHT HTHT THHT TTHT
AnB S
HTTH THTH TTTH

HTTT THTT

HHTH
L HHTT TTTT

Finally, regard S as a universal set and consider the complement A < S,
drawn below. This is yet another event. It is the event “It is not the case

that the first two tosses are heads.” We have p (Z) — Al _12 _75q,

—ISI T 16 T
HHHH HTHH THHH TTHH
HHHT _|HTHT THHT TTHT S
HHTH HTTH THTH TTTH
HHTT HTTT THTT TTTT
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In general, if A and B are events in a sample space, then:

AUB isthe event “A or B occurs,”
ANnB isthe event “A and B occur,”
A isthe event “A does not occur.”

This section develops formulas for p(A UB) and p(A), while the next
section treats p(AnB). These formulas will be useful because often a complex
event has form E=AUB or E = A, where A and B (or A) are easier to deal
with than E. In such cases formulas for p(A UB) and p (A) can be handy.
But before stating them, we need to lay out a definition.

Definition 5.1 Two events A and B in a sample S
space S are mutually exclusive if AnB = ¢.

Mutually exclusive events have no outcomes in common: If one of them
occurs, then the other does not occur. On any trial of the experiment, one of
them may occur, or the other, or neither, but never both.

Events A and B from the previous page are not mutually exclusive, as
ANB = {uuHT, HHTH} # @. You can toss a coin four times and have both
events A: First two tosses are heads, and B: Exactly three heads occur.

Again, toss a coin four times. Say A is the event “Exactly three tails,”
and B is “Exactly three heads.” These events are mutually exclusive. You
could get three heads, or three tails, or neither (HuTT), but you cannot get
three heads and three tails in the same four tosses.

Also, if E is any event in a sample space, then E and E are mutually
exclusive, as EnE = @. An event E cannot both happen and not happen.

Now we are ready to derive our formula for p(A uB). We will get it using

Fact 5.1 and the inclusion-exclusion principle (Fact 4.6 on page 107) that
states |AUB|=|A| +|B|-|AnB|. Simply observe that

(AUB) = [AuB| |A|+IB|-|AnB| _ |A_| N 1Bl |ANB|
P S| S| ST T ISI T TS|

=|p(A)+pB)-p(AnB)|.

Note that if A and B happen to be mutually exclusive, then |AnB|=|g| =0,
and we get simply p(A uB) = p(A)+ p(B).
For the formula for p (A), use A=S - A and note that

_ Al |S-A| |[S|-1A] |IS| |A]
A)l=—= = =—-—=|1-pA4)|.
p( ) S| IS| IS| S| |IS|
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Rearranging p(A) =1-p(A) gives p(A)=1-p(A), also a useful formula. In
summary, we have deduced the following facts.

Fact 5.2 Suppose A and B are events in a sample space S. Then:
1. p(AuB) = p(A)+p(B)-p(AnB)
2. p(AuB) = p(A)+pB) ........... if A and B are mutually exclusive
3. p(A) = 1-p(A)
4. p(A) = 1-p(A)

Recall our weatherman that we began the chapter with, the one who said
that because there was a 50% chance of rain on Saturday and a 50% chance
of rain on Sunday, then there was a 100% chance of rain over the weekend.
He had only a hazy understanding of the events A: Rain on Saturday, and
B: Rain on Sunday, and their union A UB: Rain over the weekend.

s:{NN}
/N

A: Rain Saturday B: Rain Sunday

From the data p(A) =50% and p(B) = 50% he concluded p(AuUB) = p(A)+ p(B)
=50%+50% = 100%. The problem is that A and B are not mutually exclusive,
as AnB={rr} # ¢. In essence he was using Formula 2 of Fact 5.2, above,
when he should have used Formula 1. The correct chance of rain over the
weekend, as given by Formula 1, is

Al Bl {rr}l _2

AUB)= A B)— ANB) = —+ — — =
p(AuB)=p(A)+p(B)-p(AnB) |S|+|S| S| 2

2 1.3 ..

+ Z - Z = Z =75%.

Of course we can also get this answer without the aid of the formula
p(AUB)=p(A)+ p(B)- p(AnB). Just let E = AuUB be the event of rain over
the weekend. Fact 5.1, which states p(E) = Vé—ll, says p(E) = % =75%. But a
word of caution is in order. Recall that Fact 5.1 is only valid in situations in
which all outcomes in S are equally likely to occur. Such is the case in this
rain-over-the-weekend example (and all other examples in the next three
sections), so we do not get into trouble. But the point is that the formulas
from Fact 5.2 turn out to hold even if not all outcomes in S are equally likely
(even though we derived them under that assumption on the previous page).
We will investigate this thoroughly in Section 5.4.

For now, let’s do some examples involving Fact 5.2.
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Example 5.4 Two cards are dealt from a shuffled deck of 52 cards. What
is the probability that both cards are red or both cards are clubs.

Solution. Regard a 2-card hand as a 2-element subset of the set of 52 cards.
So the sample space is the set S of 2-element subsets of the 52 cards.

K 2
A {82 {422

Though this is too large to write out, we can compute |S| = ( ) @ =1326.
We are asked to compute p(E) where E is the event

E: Both cards are red or both cards are clubs.

We can decompose E as E = A UB where A and B are the events

A: Both cards are red B: Both cards are clubs

s 4= [ ll = {l}'}
ot o= {{(B[2). @) [DE} G- fes

Note that these two events are mutually exclusive, as club cards are black.
Further, |A| = ( ) 325 because to make a 2-card hand of red cards we have
to choose 2 of the 26 red cards. Also, |B| = ( ) 78 because to make a 2-card
hand of club cards we have to choose 2 of the 13 clubs. Using Formula 2
from Fact 5.2 as well as Fact 5.1 (page 138), our answer is

1Al Bl
IS| 1S

325 78 403
= + = =~ 0.3039=30.39%. &
1326 1326 1326

pE)=p(AuB)=pA)+pB) =

You may prefer to solve this example without using Fact 5.2. Instead
you can use Fact 5.1 combined with the addition principle, |A UB|=|A|+|B],
which holds when AnB = ¢ (as is the case here because A and B are mutually
exclusive). Then compute the answer as

|[AuB| |A|+|B|] 325+78 403

E)=p(AUB) = - - - ~30.39%.
pE)=pAUB)=—g S| 1326 1326 °

But as noted on the previous page, there will be situations where Fact 5.2
is unavoidable. So it is not advisable to always bypass it. For now your
best strategy is to become accustomed to it, but at the same time be on the
lookout for alternate methods.
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Example 5.5 Two cards are dealt from a shuffled deck of 52 cards. What
is the probability both cards are red or both cards are face cards (J,K,Q)?

Solution. As before, the sample space is the set S of 2-element subsets of
the 52 cards, and |S| = ( ) 1326:

K 2
AR {82 {4220

We are asked to compute p(E) where E is the event
E: Both cards are red or both cards are clubs.
We can decompose E as E = A UB where A and B are the events

A: Both cards are red
B: Both cards are face cards

Let’s take a moment to diagram these two events, and their intersection.

= AR @R B {8E8)-Jes
s - (A (B () {l} fes
ane = {{{ [} {l} (s {E e} fes

Note that A and B are not mutually exclusive, because AnB # @¢. (It is
possible for the two cards to be both red and both face cards.) Also,

26 26-25
A = ( 9 ) == = 325 (choose 2 out of 26 red cards)
12 12-11
|B| = ( 9 ) ==y = 66 (choose 2 out of 12 face cards)
6 6-5
|[AnB| = ol = 5 = 15 (choose 2 out of 6 red face cards)

Using Fact 5.2, we get

Al 1Bl _|ANB|
SRS

325 66 15 376
= + - = =~ 0.2835 = 28.35%. £
1326 1326 1326 1326

pE)=p(AUuB)=pA)+pB)-p(AuB)= —
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Example 5.6 Two cards from dealt off a shuffled deck of 52 cards. What
is the probability they are not both red?

Solution. The sample space is the set S of 2-element subsets of the 52
cards, and |S| = ( ) 1326:

| @R @E BE - @@ EE -}

E: Not ;Jroth red E: Both red

We need to compute the probability of the event E: Not both cards are red.
This event contains pairs of cards that are both black, as well as those for
which one card is red and the other is black. The event E is simpler. It is
the set of all elements of S for which it is not the case that not both cards
are red. In other words, E is the event E: Both cards are red.

It is easy to compute the cardinality of E. It is |E| = ( 6) = 325, the number
of ways to choose 2 cards from the 26 red cards. Fact 5.2 now gives our
solution:

E| 325 1326-325 1001

E)=1-p(E)=1- —=1— - - ~0.7549 = 75.49%.
pE)=1-p(E) S| 1326 1326 1326 ’

That is the answer, but before moving on, let’s redo the problem using
a different approach. The event E is the union of the mutually exclusive
events A: Both cards are black, and B: One card is black and the other is red.
Here |A| = (%) = 325, the number of ways to choose 2 cards from the 26 blacks,
while the multiplication principle says |B| = 26-26 = 676 (chose a black card
and then choose a red one). Fact 5.2 gives
|A| |B| 325 676 1001

E)=p(AUB) = p(A)+ p(B) = 2 - - —75.49%.
pE)=pAUB)=pA)+pB) =1+ 5 = 7306+ 1305 ~ 1326 ¢

Shuffle a 52-card deck; deal two cards, put them back. Repeat 100 times.
On about 75 of the trials, not both cards will be red. )

But what if you shuffled the deck, dealt two cards, but did not put them
back. Then you deal two cards from the remaining 50 cards. Is there still a
75.49% chance of not getting two reds? Does the outcome of the first trial
affect the probability of the second? The next section investigates this kind
of question.
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Exercises for Section 5.2

1.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

A card is taken off the top of a shuffled 52-card deck. What is the probability
that it is black or an ace?

. What is the probability that a 5-card hand dealt off a shuffled 52-card deck

contains at least one ace?

. What is the probability that a 5-card hand dealt off a shuffled 52-card deck

contains at least one red card?

. A hand of five cards is dealt off a shuffled 52-card deck. What is the probability

that the five cards are not all of the same suit?

. You toss a fair coin 8 times. What is the probability that you do not get 4 heads?
. A 4-card hand is dealt off a shuffled 52-card deck. What is the probability that

the cards are all of the same color (i.e. all red or all black)?

. Two cards are dealt off a shuffled 52-card deck.What is the probability that the

cards are both red or both aces?

. A coin is tossed six times. What is the probability that the first two tosses are

heads or the last toss is a head?

. A dice is tossed six times. You win $1 if the first toss is a five or the last toss is

even. What are your chances of winning?

A box contains 3 red balls, 3 blue balls, and 3 green ball. You reach in and grab
2 balls. What is the probability that they have the same color?

A dice is rolled 5 times. Find the probability that not all of the tosses are even.
Two cards are dealt off a well-shuffled deck. You win $1 if either both cards are
red or both cards are black. Find the probability of your winning.

Two cards are dealt off a well-shuffled deck. You win $1 if the two cards are of
different suits. Find the probability of your winning?

A dice is tossed six times. You win $1 if there is at least one 2. Find the
probability of winning.

A coin is tossed 5 times. What is the probability that the first toss is a head or
exactly 2 out of the five tosses are heads?

In a shuffled 52-card deck, what is the probability that the top card is black or
the bottom card is a heart?

In a shuffled 52-card deck, what is the probability that neither the top nor bottom
card is a heart?

A bag contains 20 red marbles, 20 green marbles and 20 blue marbles. You
reach in and grab 15 marbles. What is the probability of getting 5 of each color?

A bag contains 20 red marbles, 20 green marbles and 20 blue marbles. You
reach in and grab 15 marbles. What is the probability that they are all the same
color?
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5.3 Conditional Probability and Independent Events

Sometimes the probability of one event A will change if we know that another
event B has occurred. This is what is known as conditional probability.
Here is an illustration.

Imagine starting a family of three children. Assume the probability of
having a boy is 50% and the probability of having a girl is 50%. What is
more likely: the family has more girls than boys, or the oldest is a boy?

To decide, we write out the sample space for the family, listing the
possible outcomes of having three children. Let cBB mean a girl was born
first, then a boy, and then another boy. Likewise, BGB means a boy was born
first, then a girl, then a boy, etc. The 8 equally-likely outcomes are shown
below, with events A: More girls than boys, and B: Oldest is a boy.

GGG BGG S
A|GGB BGB

GBG BBG

GBB BBB

Note p(A) = llg_\l = % =50%, and p(B) = %‘ = % =50%, so more girls than boys
is just as likely as the oldest being a boy.

But now imagine that the event B has occurred, so the oldest is a boy.
Now what is the probability of more girls than boys? That is, what is p(A)?
There are just four outcomes in event B, and for only one of them are there
more girls than boys. Thus, given this new information (oldest is a boy)

p(A) has changed value to p(4) = § = 25%.

GGG BGG S
A|GGB BGB

GBG BBG

GBB BBB

So we have a situation in which p(A) = 50%, but under the condition that B
has occurred, then p(A) = 25%. We express this as p(A|B) = 25%, which we
read as “the conditional probability of A given that B has occurred is 25%,”
or just “the conditional probability of A given B is 25%.”

Definition 5.2 If A and B are two events in a sample space, then the
conditional probability of A given B, written P(A|B), is the probability
that A will occur if B has already occurred.
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Example 5.7 Toss a coin once. The sample space is S = {1, 1}. Consider
the events A = {u} of getting a head and B = {r} of getting a tail. Then
p(A) = p(B)=50%, but p(A|B) =0 because if B (tails) has happened, then A
(heads) will not happen. Also p(B|A)=0. Note that p(A|A)=1=100%. &

Example 5.8 Take one card from a shuffled deck, and then take another.
Now you have two cards. Consider the following events.

A: Thefirst card is a heart C: The second card is a heart
B: The first card is black D: The second card is red

Find p(4), p(B), p(D), p(C|A), p(A|C), p(A|B), p(DIC) and p(C|D).

Solution. All answers can be found without considering the sample space S.
For example, p(A) = 3 = 1 because in taking the first card there are 13
hearts among the 52 equally-likely cards. But to be clear, note that S is the
set of all non-repetitive length-2 lists whose entries are cards in the deck.
The first list entry is the first card drawn; the second entry is the second

card. Taking 7& and then 2& is a different outcome than 2& and then 7é&.

s={ld[&) ()] [£e) (]2 (2]
Compare this to Example 5.6, where the outcomes were 2-element sets, not
lists. In the present case |S|=P(52,2) =52-51 = 2652.
As noted above, p(A) = £ = 1 because in dealing the first card there are
13 hearts in the 52 cards. Alternatively, the event A = S consists of all the
2-elements lists whose first entry is a heart. There are 13 choices for the
first entry, and then 51 of the remaining cards can be selected for the second

entry. Thus |A|=13-51, and p(A) = % = % = %,

Similarly, | p(B) = 25 = 1 | because in drawing the first card, there are 26

—’\1

black cards out of 52. This could also be done by computing |B|, as above.
Evidently, p(D) = %, as half the cards are red. Alternatively, D consists
of all the lists in S whose second entry is red, so by the multiplication

principle, |[D| =51-26. (Fill in the red second entry first, and then put one

of the remaining 51 cards in the first entry.) Then | p(D) = I@_: = % = %

Note | p(C|A) = % because if A has occurred, then a heart was drawn

first, and there are 12 remaining hearts out of 51 cards for the second draw.

For p(A|C), imagine the two cards have been dealt, one after the other,
face down. The second card is turned over, and it is a heart. Event C has
occurred. Now what is the chance that A occurred? That is, what is the
chance that first card—when turned over—is a heart? It is not the second
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card, and there are 51 other cards, and 12 of them are hearts. Thus the

chance that the first card is a heart is %, so|p(A|C)= %

Also, because if B occurs (first card black), then A (first card

heart) is impossible. Finally, | p(D|C) = 100%, | but ’ p(C|D)=50% ‘ because if
the second card is red, there is a one in two chance that it is a heart. &

We will soon derive formulas for conditional probability, but they involve
a definition that is motivated by the next example of two events having no
bearing on one another.

Example 5.9 Toss a coin and roll a dice. Consider the following events.
A :Coin is heads  B:Dice is [

Find p(A), p(B), p(A|B) and p(B|A).

Solution. Common sense says p(A) = % and p(B) = %. Also, getting (] has

no bearing the coin’s outcome, and vice versa, so P(A|B) = % and p(B|A) = %.

Nonetheless, let’s work it out carefully. The sample space S and events A
and B are diagramed below.

A(ed ed) |80 8 om en)

o oJ (O B@E] O O

We see that P(A) =& =S =1and PB)=Z =2 =¢.
To find p(A|B), imagine that B has occurred. Now what is the chance
that A occurs? Only one of the two outcomes in B is heads, so p(A|B) = %
To find p(B|A), imagine that A has occurred. Now what is the chance

that B occurs? Only 1 of the 6 outcomes in A has (5, so p(B|A) = %. >
In the above example, whether or not B happens has no bearing on the
probability of A, and vice versa. We say that events A and B are independent.

Definition 5.3 Two events A and B are independent if one happening
does not change the probability of the other happening, that is, if p(A) =
p(A|B) and p(B) = p(B|A). Otherwise they are dependent.

Thus events A and B in Example 5.9 are independent.

In Example 5.8 we dealt two cards off a deck. For events A: First card ©,
and B: First card black, we saw p(A) = 1 and p(A|B) = 0. Because 1 #0,
A and B are dependent. (In fact, they also happen to be mutually exclusive.)
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We began this section showing that in a family of three children, the
event A : More girls than boys has p(A) = 50%. But if B: Oldest is a boy
occurs, then p(A|B) =25%. Here A and B are dependent. (But note that
they are not mutually exclusive).

Example 5.10 A box contains six tickets, three white and three gray, and
marked as shown below. You reach in and grab a ticket at random.

EEEEEE]

Consider events A: Ticket is gray, and B: Ticket has a star on it. Are these
events independent or dependent?

Solution. The chance of getting a gray ticket is p(A) = % = % The chance of
getting a star is p(B) = % = %

If B occurs, then one of the four tickets with a star has been drawn. Half
of these are gray, so p(A|B) = %, and this equals p(A).

If A occurs, then one of the three gray tickets has been drawn. Two of
these have stars, so p(B|A) = %, and this equals p(B).

Thus A and B are independent. One of them happening does not change

the probability of the other happening. o)

Now we are going to derive general formulas for p(A|B) and p(B|A). Let
A and B be two events in a sample space S, as shown below on the left.

D [ [aC B [aCEB)

B B B

If B occurs (shown shaded in the middle drawing) then any outcome in the
shaded region could occur, so the shaded set B is like a new sample space.
Now if also A occurs, this means some outcome in A N B occurs. Note that
AnNBcBis an event in B, so Fact 5.1 gives

1 |AnB]|
|B| |B| ﬁ :g;: 2B

Thus p(A|B)=2 (AnB) Reversing the roles of A and B (and referring to the

p(B)
drawing on the above right) we also get p(B|A) = %. Cross-multiplying

gives p(AnB)=p(A|B)-p(B) and p(AnB)=p(A)-p(B|A).
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Thus we have formulas for not only p(A|B) and p(B|A), but also one for
p(ANnB). Moreover, if A and B happen to be independent, then p(A|B) = p(A),
so the equation p(A NnB) = p(A|B)- p(B) simplifies to p(A nB) = p(A)- p(B).

Fact 5.3 Suppose A and B are events in a sample space. Then:
p(AnB)
1. p(AIB)=———
p(A|B) )
p(AnB)
2. p(BJA)=——
p(Bl|A) @A)
3. p(AnB)=p(A|B)-p(B)=p(A)-p(B|A)
4. pANB)=p(A)-pB) «..ovviiinn.. if A and B are independent.

In the earlier examples in this section, we found conditional probabilities
p(A|B) and p(B|A) without the aid of the above formulas. In fact, it turns
out that the above formulas 1 and 2 are of relatively limited use. But their
consequences, formulas 3 and 4 are very useful, as they provide a method
of computing p(A nB), the probability that A and B both occur.

Example 5.11 Two cards are dealt off a deck. You win $1 if the first card
is red and the second card is black. What are your chances of winning?

Solution. Let A be the event “The first card is red,” and let B be the event
“The second card is black.” We seek p(A and B), which is p(AnB). Formula 3

above gives p(ANB)=p(A)-p(B|A) =328 = 13 ~ 0.2549 = 25.49%. s

Example 5.12 A dice is rolled twice. You win $1 if neither roll is (). What
are your chances are winning?

Solution. Let A be the event “The first roll is not (-],” so p(A) = %. Let B be
the event “The second roll is not (-),” so p(B) = g. We seek p(A and B).
Events A and B are independent, because the result of the first roll does
not influence the second. Formula 4 above gives p(A and B) = p(AnB) =
p(A)-p(B) =22 =22 =69.4%. p

Questions about conditional probability can sometimes be answered by
a so-called probability tree. To illustrate this, suppose (as we assume in
this chapter) that there is a 50-50 chance of a child being born a boy or a girl.
Suppose a woman has two children. The events A: First child is a girl, and
B: Second child is a girl are independent; whether or not the first child is a
girl does not change the probability that the second child is a girl. Thus the
chance that both children are girls is p(AnB) =p(A)-p(B) =3 -3 =1 =25%.
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Notice that in this example the complements of A and B are the events
A: First child is a boy, and B: Second child is a boy. The probability
of the outcome B (first child is a girl and the second is a boy) is thus
p(cc) = p(AnB) = p(A)-p(B) =11 =1 =25%. Similarly, we can find the
probabilities of all four outcomes in the branches of the following tree.

1st child 2nd child ~ Outcome
PB) =2 _girl ¢e P(cc)=P(A)-PB)=1-1=1=25%
Y g
P&A\“L g15rlp< 5 : _ By _ 1 1_1_

(B):l bOy GB P(GB)—P(A)’P(B)—5'5—1—25%

1 i —
205 PB)=2 — girl Ba P(G)=P(A)-PB)=%1-1=1=25%

)< 7™ boy < i
P(B)_¢—boy BB P(BB)=P(A)-P(B)=3 3=1=25%

9

This confirms our intuitive supposition that each outcome in the sample
space S = {caG, @B, BG, BB} has a 25% chance of occurring.

Example 5.13 You meet a woman and a girl. The woman tells you that
she has two children, one of whom is the girl. What are the chances that
her other child is a boy?

Solution. Most of us would jump to the conclusion that the answer is 50%.
But this is wrong. To see why, consider the sample space S, below, for the
“experiment” of having two children.

Ga_sa) s> |
BG BG BB
A B

Let A be the event of there being at least one girl. We met a daughter,
so A has occurred. Let B be the event of there being a boy in the family.
The problem thus asks for the probability of B given that A has occurred.
Looking at the above diagram, we see that B occurs in 2 out of the 3 equally
likely outcomes in A, so the answer to the question is p(B|A) = % =66.6%.

Alternatively, we can use Formula 2 from Fact 5.3 to get the answer as

IAnB| 2
p(AnB) 5] 7 2 _
p(B|A) = = = == =66.6%. y.s
|B| 3
p(A) s 4 3

Our next example involves an experiment with a sample space in which
not all outcomes are equally likely.
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Example 5.14 A jar contains 3 red balls and 7 blue balls. You reach in,
pick a ball at random, and remove it. Then you randomly remove a second
ball. Thus the sample space for this experiment S = {rr, rB, BR, BB}. Find
the probability of each outcome in S.

Solution. FOI‘EI the events A: First pick is red, and B: Second pick is red.
Then we have A: First pick is blue, and B: Second pick is blue.

The probability of the first pick is red is p(A) = 10 , as there are 3 out of
10 red balls that we could have picked. Once thls has happened, there are 9
balls left, two of which are red, so p(B|A) = § So the probability that both
picks are red is p(rr) = p(ANB) = p(A)- p(BIA)— 3.2 = 2 This is tallied in
the top branch of the following tree.

1st pick 2nd p1ck Outcome
. pBAZ=S re:d RR P(ANB)=P(A)-P(BIA)=%-2=2
wekom=—
P . P(Bj4)_7—Dblue RB P(ANB)=P(A)-PBIA)=3-§ =5
— 3 i :
2% . pBWAZ=Ss red Br P(AnB)=P(A)-P(BIA)=1%-3=24
S3Z 7 blue
P(B|g)_s—blue BB P(ANnB)=P(A)-P(BIA)=15-§=13
9

Likewise, p(rB) = p(AnB) = p(A)- p(B|A). To find p(B|A), note that if A
has occurred, then there are 9 balls left in the jar, and 7 of them are blue,
so p(A mB)— I Thus p(rB)=p(ANnB)=p(A)-p(B|A) = 10 9 30, and this is
shown in the second from-the-top branch of the tree.

Similar computations for the probabilities of the remaining two outcomes
are shown on the bottom branches. Check that you understand them. From
this tree we see that the probabilities of the various outcomes in S are

S = { RR, RSB, BR, BB}
6.6% 23.3% 23.3% 46.6% 29

If in the above Example 5.14, we had been asked for the probability
of the event E = {rB, Br} of the two picks being different colors, we would
surmise that p(E) = p(RB) + p(BR) = 23.3% + 23.3% = 46.6%.

The next section is a further exploration of situations such as this one,
in which not all outcomes in a sample space are equally likely.
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Exercises for Section 5.3

10.

11.

12,
13.

14.

. A box contains six tickets: . You remove two tickets, one

after the other. What is the probability that the first ticket is an A and the
second is a B?

. A box contains six tickets: . You remove two tickets, one

after the other. What is the probability that both tickets are vowels?

. In a shuffled 52-card deck, what is the probability that the top card is red and

the bottom card is a heart?

. A card is drawn off a 52-card deck. Let A be the event “The card is a heart.”

Let B be the event “The card is a queen.” Are these two events independent or
dependent?

. Suppose A and B are events, and P(A) = %, PB)= %, and P(AnB) = %. Are A and

B independent, dependent, or is there not enough information to say for sure?

. Suppose A and B are events, and P(A) = %, PB)= %, and P(AuB) = % Are A and

B independent, dependent, or is there not enough information to say for sure?

. Say A and B are events with P(A)= 2, P(A|B)= 2, and P(B|A) = ;. Find p(B).

. A box contains 2 red balls, 3 blue balls, and 1 green ball. You remove two

balls, one after the other. Find the probability that both balls are red. Find the
probability that both balls are blue. Find the probability that both balls have
the same color.

. A box contains 2 red balls, 3 black balls, and 4 white balls. One is removed,

and then another is removed. What is the probability that no black balls were
drawn?

A coin is flipped 5 times. What is the probability of all 5 tosses being tails? If
there were more tails than heads, then what is the probability that all 5 tosses
were tails?

A coin is flipped 5 times, and there are more tails than heads. What is the
probability that the first flip was a tail?

Suppose events A and B are independent, p(A) = %, and p(AuB)= % Find p(B).

A 5-card hand is dealt from a shuffled 52-card deck. Exactly 2 of the cards in
the hand are hearts. Find the probability that all the cards in the hand are red.

A 5-card hand is dealt from a shuffled 52-card deck. Exactly 2 of the cards in
the hand are red. Find the probability that all the cards in the hand are hearts.
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5.4 Probability Distributions and Probability Trees

Except for Example 5.14 on the previous page, we have, until now, assumed
that any two outcomes in a sample space are equally likely to occur. This is
reasonable in many situations, such as tossing an unbiased coin or dice, or
dealing a hand from a shuffled deck.

But in reality, things are not always so uniform. Suppose the spots of
a dice are hollowed out, and when tossed it is more likely to land with a
lighter side up (one with more spots). Toss the dice once. The probabilities
of the six outcomes in the sample space might be something like this:

s =4 0 O g 6, & 6 }
15% 15% 16% 16% 18% 20%

(Of course it’s unlikely the percentages would be whole numbers; this is
just an illustration.) Note that the probabilities of all outcomes sum to 1:

p[@)+p@)+p(&)+p([@) +p(@)+p(E) =1,

because if tossed, the probability of its landing on one of its six faces is 100%.
The probability of an event such as E = {3,63,63} (lands on even) is

() +p(@) +p(E) =15+ 16 +20=51%.

Formula 5.1 does not apply here because the outcomes are not all equally
likely. In fact it gives the incorrect probability p(E) = 'llg—" = % =50%.
These ideas motivate the main definition of this section.

Definition 5.4 For an experiment with sample space S = {x1,xg,...,%,},
a probability distribution is a function p that assigns to each outcome
x; € S a probability p(x;) with 0 < p(x;) <1, and for which

p(x1) + plxg) + -+ + p(xy) = 1.

The probability p(E) of an event E < S is the sum of the probabilities of
the elements of E.

In the case where all outcomes are equally likely, any outcome x; € S has

1
probability p(x;) = 5 This is a probability distribution, by Definition 5.4.
It is called the uniform distribution on S. For the uniform distribution

we have the formula p(E) = Sk but, as noted above, this may not hold for

non-uniform probability distributions.
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Example 5.15 A certain voting precinct has 1000 voters, 600 of whom
are republicans and 400 of whom are democrats. In a recent election, 200
republicans voted and 300 democrats voted. You randomly select a member
of the precinct and record whether they are republican or democrat, and
whether or not they voted. Thus the sample space for the experiment is
S ={Rrv, RA, DV, DA}, where rv means your selection was a republican who
voted, whereas ra indicates a republican who abstained from voting, etc.

Find the probability distribution for S. Also, find the probability that
your selection was a republican who voted or a democrat who didn’t.

Solution. The chance that you picked a republican is % =60%, and the
chance that you picked a democrat is 14(?000 =40%. If you picked a republican,
the conditional probability that this person voted is 288, and the condi-
tional probability that they didn’t vote is 300. If you picked a democrat, the
conditional probability that this person voted is 333, and the conditional
probability that they didn’t vote is }ng

Here is the probability tree, where A = {rv, ra} is the event of picking a

republican and B = {rv, pv} is the event of picking a voter.

Outcome
200

pPB\A) = 60 vote RV P(ANB)=P(A)-P(BIA)= %=1 =20%

rep. < .
PBl4) - 40§ abs. R:A P(ANB)=P(A)-PBIA)= 5 -4 =2 =40%

— 300
PB\A) = S0 vote bv P(AnB)=PA)- P(BIA)=4-2=2=30%

» dem< |
PBig 4= 1 abs. DA P(AnB)=P(A)-P(BlA)=+ -1=24=10%

Thus the probability distribution is

S = { Rv, RA, DV, DA }
20% 40% 30% 10%

The probability that you picked a republican who voted or a democrat who
didn’t is p ({rv, DA}) = p(RV) + p(DA) = 20% + 10% = 30%. “

If p is a probability distribution on a sample space S, then Definition 5.4
implies p(S) =1 (because the probabilities of the elements of S sum to 1).
Also, for mutually exclusive events A,B< S, we have p(AuB)=p(A)+ p(B),
because Definition 5.4 says p(A uB) is the sum probabilities of elements
of A, plus those for B. And S=AUA, so 1=p(S)=p(AUA)=p(A)+p(A).
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This implies p(A) = 1-p(4) and p(A) = 1- p(A). Therefore the formulas 2,
3 and 4 of Fact 5.2 (page 143) hold for arbitrary probability distributions,
even though we derived them earlier only for uniform distributions.

Similar reasoning gives the following facts, which can be taken as a
summary of all probability formulas in this chapter so far.

Probability Summary

Suppose p is a probability distribution for a sample space S of some
experiment. Then the probability of an event E = {x1,x9,...xx} € S is
P(E) = p(x1)+ p(xg) +--- + p(xz). Thus p(S)=1 and p(@)=0.

If A,Bc S are arbitrary arbitrary events, then

E=AuB istheevent “A occurs or B occurs,”
E=AnB istheevent “A occurs and B occurs,”
E=A is the event “A does not occur.”

Events A and B are mutually exclusive if AnB = @, meaning p(AnB) =
p(@) =0, that is, A and B cannot both happen at the same time. In general:
1. p(AuB)=p(A)+pB)-p(AnB)
2 p(AuB)=p(A)+pB) ........ if A and B are mutually exclusive
3. p(A)=1-p)
4 p(A)=1-p(A).
The conditional probability of A given B, denoted p(A|B), is the proba-
bility of A, given that B has occurred. Events A and B are independent if

p(A|B) = p(A) and p(B|A) = p(B), that is, if one happening does not change
the probability that the other will happen.

p(ANnB)
5. AB)=—
p(A|B) »(B)
p(AnB)
6. B|A)=—F—"
p(B|A) @A)
7. p(AnB)=p(A|B)-p(B)=p(A)-p(B|A)
8. p(ANB)=p(A) - pB) ....ccvvven... if A and B are independent

If p is the uniform distribution, then

A
9. p(A) = ||S_|| ...................... if p is the uniform distribution.
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At the beginning of Section 5.3 we calculated the probability that, for a
family of three children, more girls than boys is just as likely as the oldest
child being a boy. This was based on the assumption that there is a 50-50
chance of each child being a boy or a girl.

In reality, there is about a 51% chance of a child being born a boy, versus
49% for a girl. (Though the mortality rate for boys is higher, so this statistic
is somewhat equalized in adulthood.) Let’s revisit our question.

Example 5.16 Assume that there is 51% chance of a child being born a
boy, versus 49% of being born a girl. For a family of three children, consider
events A: There are more girls than boys, and B: The oldest child is a boy.
Find p(A) and p(B).

Solution. The sample space is S = {BBB,BBG,BGB,BGG,GBB, GBG, GGB, GGG}.
The following probability tree computes the probability of each outcome.
(We assume that gender of births are independent, that is, the gender of
one child does not influence the gender of the next child born.)

1st child 2nd child 3rd child

_ 05L _—boy p(BBB)= 0.51-0.51-0.51=0.132651
boy :

A

o2

; 049~ girl p(BBG)= 0.51-0.51-0.49 =0.127449
boy :

. 05L _—boy p(BGB)= 0.51-0.49-0.51=0.127449
29 ™ girl :

A

04— girl p(BGG)= 0.51-0.49-0.49 = 0.122451

; 05— boy p(GBB)= 0.49-0.51-0.51=0.127449
boy :

0.4~ girl p(GBG)=0.49-0.51-0.49 = 0.122451

/

. 05Y —boy p(GGB)= 0.49-0.49-0.51=0.122451
girl :

/

049~ girl p(GGG)= 0.49-0.49-0.49 = 0.117649

The probability p(A) of more girls than boys is

p((Baa, GBG, GGB, GGG}) p(BGG) + p(GBG) + p(GBG) + p(GGG)

0.122451 +0.122451 + 0.122451 +0.117649 ~ 48.5%.

The probability p(B) of the oldest being a boy is

p((BBB, BBG, BGB, BGG}) p(BGG) + p(GBG) + p(GBG) + p(GGG)

0.132651 + 127449 + 127449 +0.122451 = 0.51 = 51%.

(This makes sense, as the chance of the firstborn being a boy is 51%.) #
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Exercises for Section 5.4

1. There is a 40% chance of rain on Saturday and a 25% chance of rain on Sunday.
What is the probability that it will rain on at least one day of the weekend?
(You may assume that the events “Rain on Saturday” and “Rain on Sunday” are
independent events.)

2. There is an 80% chance that there will be rain over the weekend, and a 50%
chance of rain on Saturday. What is the chance of rain on Sunday? (You may as-
sume that the events “Rain on Saturday” and “Rain on Sunday” are independent
events.)

3. A club consists of 60 men and 40 women. To fairly choose a president and a
secretary, names of all members are put into a hat and two names are drawn. The
first name drawn is the president, and the second name drawn is the secretary.
What is the probability that the president and the secretary have the same
gender?

4. At a certain college, 40% of the students are male, and 60% are female. Also,
20% of the males are smokers, and 10% of the females are smokers. A student is
chosen at random. What is the probability that the student is a male nonsmoker?

5. At acertain college, 30% of the students are freshmen. Also, 80% of the freshmen
live on campus, while only 60% of the non-freshman students live on campus.
A student is chosen at random. What is the probability that the student is a
freshman who lives off campus?

6. Suppose events A and B are both independent and mutually exclusive. What
can you say about p(A) and p(B)?
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5.5 Bayes’ Formula

We are going to learn one final probability formula, Bayes’ formula, named
for its discoverer, Thomas Bayes (1702-1761). His formula gives an answer
to the following question: Suppose a sample space S for an experiment is a
union S =S;USy, with S1n Sy =@, and E =S is an event. If E occurs, then
what is the probability that S; has occurred? That is, what is p(S1 | E)?

S1 So

A short computation gives the answer.

Si1nE
p(S1|E) = pG10E) by formula 5 on page 158
p(E)
S1)-p(E|S
= IM by formula 7 on page 158
p(E)
S1)-pE|S
- POV pE|S) as E = (S1nE) U (S3nE)
p((S1NE)U(S2nE))
p(S1)-p(E|Sy) because S1NE and SenE
"~ p(S1NE)+p(SenE) are mutually exclusive

p(S1)-p(E|S1)
= . by formula 7 on page 158
pSD-PEISD+pS) pE[S) pag

p(S2)-p(E|S2)
p(S1)-p(E|S1)+p(S2)-p(E|S2)

The same steps give p(Sq | E) =

Fact 5.4 Bayes’ Formula
Suppose a sample space S for an experiment is a union S =S;uUSjy, with
S1NnSg=¢@. Suppose also that E = S is an event.
p(S1)-p(E|S1)
p(S1):-p(E|S1)+p(Se2)-p(E | S2)
p(S2)-p(E|Sg)
p(S1)-p(E|S1)+p(Ss)-p(E|S2)

Then p(S;|E)=

and p(Sq|E)=

Though we will not use it here, we mention that Bayes’ formula extends
to situations in which S decomposes into more than two parts. If S =
S1uSsu---US,, and S;NS; =@ whenever 1<i < j<n, then for any S;,

p(Si)-pEIS;)
p(S1)-p(E|S1)+p(S2)-p(E|S2)+---+p(Sy)-pE|S,)

p(S;|E)= (5.1)



162 Discrete Probability

Example 5.17 There are two boxes. Box 1 contains three black balls and
one white ball. Box 2 contains two black balls and three white balls.

(0]
[ N

(O]
® 0

Box 1 Box 2

Someone chooses a box at random and then randomly takes a ball from it.
The ball is white. What is the probability that the ball is from Box 1?

Solution. The sample space is S={18, 1w, 2B, 2w}, where the number
refers to the box the selected ball came from, and the letter designates
whether the ball is black or white.

Let S1 ={1B, 1w} be the event Sy : The ball came from Box 1.

Let Sy = {28, 2w} be the event Sg: The ball came from Box 2.

Let E = {1w, 2w} be the event E: The ball is white.

The answer to the question is thus p(S1 |E). As S =S;USs and S1nSy = @,
Bayes’ formula applies, and it gives

p(S1)-p(E|S1)

(S11E) =
pio p(S1) - p(E 181 +p(S2)-p(E | S2)
1.1 110,
2 4 8 80
= = = — = — X 29.4%
1 1 1 3 1 3 34
3itz’s st s o4

So there’s a 29.4% chance that the selected white ball came from Box 1. #3

For full disclosure, let it be noted that we could bypass Bayes’ formula
and solve this problem with a probability tree. Note that E = {18, 2B} is the
event of a black ball being chosen. Consider the following probability tree.

) Outcome
. PE\SVZA _plack 1B P(am)=1.8-=3
N B°X1<
?& P(E/SU:l white 1w P(1w)=%'%=%
4 H
— _2 i
(O@ P(E\SZ)’S black 2B P(2B)=%-§:%
9)\\\1 Box 2
2 P(E/S2): 37~ white 2w  P(2w)= 1.3=3
5

Applying Formula 5 from page 158 to these figures, our answer is

s moPSnE) __plawl)  paw 5 10
P p(E) p({1w, 2w}) p(aw)+p(2w) +
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Example 5.18 A certain disease occurs in only 1% of the population. A
pharmaceutical company develops a test for this disease. They make the
following claims about their test’s accuracy in the event a subject is tested:

If you have the disease, then there is a 99% chance you will test positive.
If you don’t have the disease, there is a 99% chance you will test negative.

You take the test and you test positive. Assuming that the pharmaceutical
company’s claims are accurate, what is the chance that you have the disease?

Solution: Given the data, you may suspect that there is a high probability
that you have the disease. However, this is not so, and Baye’s formula can
give the exact answer. We can set up the problem as an experiment: You
take the test. There are four possible outcomes:
HP (you Have the disease and test Positive);
HN (you Have the disease and test Negative);
DP (you Don’t have the disease and test Positive);
DN (you Don’t have the disease and test Negative);
Consequently the sample space is
S={HP,HN,DP,DN},
—_—— ——
S; Sy
where S; = {HP,HN} is the event of having the disease and Sy = {DP,DN}
is the event of not having it. Further, E = {HP,DP} is the event of testing
positive for the disease.
We seek the probability that you have the disease given that you tested
positive, that is, we seek p(S1|E). Note S=S1uUSs and S1nSy =@, so we
have the set-up for Baye’s formula. The formula says our answer will be

p(S1)-pE|S1)

Sq{|E)= .
P B = P 1S1)+ p(Sa) - p(E 1 S2)

Note that, p(S1) = 0.01 because only 1% of the population has the disease.
Similarly, p(S2) =0.99 because 99% of the population does not have it. The
pharmaceutical company said that there is a 99% chance that you will test
positive if you have the disease, which is to say p(E | S1) = 99%. They also
said that there is a 99% chance you will test negative if you don’t have the
disease, and from this we infer that there is a 1% chance that you will test
positive if you don’t have the disease; this means p(E | Sg) = 1%. Thus

0.01-0.99 B 0.0099
0.01-0.99+0.99-0.01  0.0099 +0.0099

p(S11E)= =0.5=50%.

So if you test positive, there is a 50% chance that you have the disease. &3
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Example 5.18 is a cautionary tale about the risks of jumping to a
reasonable-looking (but incorrect) conclusion based on a hasty analysis
of data. If you tested positive, then—given the claims about the test’s
accuracy—it seems as if you would be very likely to have the disease. Yet
the chance is only 50%. This may seem somehow paradoxical.

To see that the answer really makes sense, lets analyze the problem in a
different way, as a scaled-down thought experiment. Imagine that we have
a population of 10,000 people, and they all get tested for the disease. The
experiment will involve picking a person at random, so the sample space S
is the set of all people. Let S; =S be the set of people that have the disease,
and let S3 =S be the set of people that do not have it.

Only 1% of S has the disease, and thus
IS1|=0.01-10,000 = 100 people. And because
99% of the population is disease-free, we
know [Ss| = 0.99-10,000 = 9900 people. We (100 9900 S
record this in the Venn diagram on the right.
(For clarity, the diagram is not quite to scale,
as technically S; should be 1% of the area enclosed by S, a tiny sliver.)

Next, let E be the set of people who tested

S1 So

positive for the disease. The part of E that S, S,

overlaps S; consists of the people who have

the disease and tested positive for it. The @@ E S
pharmaceutical company stated that 99% of

the 100 people in S; (who have the disease)

will test positive, so |S;1nE| =99. On the other hand, the part of E that
overlaps Sg consists of the people who do not have the disease and tested
positive for it. Because 99% of people who do not have the disease will test
negative, only 1% of them will test positive. This means that the part of E
that overlaps Sy contains 1% of the 9900 people in S5, which is 99 people.

Consequently, the set E of those who tested positive consists of 99 people
who have the disease and 99 people who do not have it. So if we randomly
select a person who tested positive, then that person is just as likely to have
the disease (i.e., to be in S1) as not have it (i.e., to be in Sy).

Thus the unexpected answer to Example 5.18 comes from the fact that
the disease is very rare, so S; is a tiny fraction of S. It happens that 99%
of S; is equal to 1% of Sy, so the number of people who tested positive and
have the disease equals the number who tested positive and do not have it.

So the claims about the test’s accuracy are misleading: if you tested
positive, then there is only a 50% that you actually have the disease.
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Exercises for Section 5.5

1. At a certain college, 40% of the students are male, and 60% are female. Also,
20% of the males are smokers, and 10% of the females are smokers. A student
is chosen at random. If the student is a smoker, what is the probability that the
student is female?

2. At a certain college, 30% of the students are freshmen. Also, 80% of the freshmen
live on campus, while only 60% of the non-freshman students live on campus.
A student is chosen at random. If the student lives on campus, what is the
probability that the student is a freshman?

3. A jar contains 4 red balls and 5 white balls. A random ball is removed, and then
another is removed. If the second ball was red, what is the probability that the
first ball was red?
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5.6 Solutions for Chapter 5
Section 5.1

1.

11.

13.

A card is randomly selected from a deck of 52 cards. What is the chance that
the card is red or a king?

Solution: The sample space S is the set of 52 cards. The experiment is drawing
one card. The event E c S is the set of the cards that are red or kings. This is
the set of 26 red cards, plus the king of spades and the king of clubs. Therefore

|E| =28, and p(E) = Z] = 8 ~53.8%.

. Toss a dice 5 times in a row. What is the probability that you don’t get any (¥’s?

Solution: The sample space S is the set of all length-5 lists (repetition allowed)
whose entries are the numbers 1, 2, 3, 4, 5, 6. There are 6° = 7776 such lists, so
|S|=7776. The event E consists of those lists in S that do not contain a 6. There

5_ _IE| _ 3125
are 5° = 3125 of them, so p(E) = jg; = 7773 ~ 40.187%.

. Toss a dice 5 times in a row. What is the probability that you will get the same

number on each roll? (i.e. (I or IO, ete.)

Solution: The sample space S is the set of all length-5 lists (repetition allowed)
whose entries are the numbers 1, 2, 3, 4, 5, 6. There are 6° = 7776 such lists, so
|S| =7776. Note that E ={11111,22222,33333,44444,55555,66666}, so |E| =6, and

_El _ _6
P(E) = I& = 75+ = 0.077%.

. You have a pair of dice, a white one and a black one. Toss them both. What is

the probability that they show the same number?

Solution: The sample space S is shown in Example 5.1 on page 138. You can
see that |S| = 36 and the event E of both dice showing the same number has
cardinality 6, so p(E) = {] = & = 16.6%.

. You have a pair of dice, a Whlte one and a black one. Toss them both. What is

the probability that both show even numbers?

Solution: The sample space S is shown in Example 5.1 on page 138. Note that

= {788, (788, (.06, )88, (I8, (6D, 6 )88, 6288, 38} . Thus p(E) = "gl' =2 =25%.

Toss a coin 8 times. Find the probability that the first and last tosses are heads.

Solution: The sample space S is the set of all length-8 lists made from the two
symbols 1 and T. Thus |S| = 28. The event E of the first and last tosses being heads
consists of all those outcomes in S that have the form (u,d,1,1,,,, u) where

there are two choices for each box. Thus |E| =2, and so p(E) = % = g—ﬁ = Qiz =25%.

Five cards are dealt from a shuffled 52-card deck. What is the probability of
getting three red cards and two clubs?

Solution: The sample space S is the set of all poss1ble 5-card hands that can be
made from the 52 cards in the deck, so |S| = (}) = 2,598,960. There are (%) ways

to get 3 red cards and ( 3) ways to get 2 clubs, so by the multiplication principle

there are (%)(%?) = 202,800 different 5-card hands that have 3 red cards and 2

_ |El _ 202,800
Clubs Therefore p(E) s = m ~12.81%.
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15.

17.

Alice and Bob each randomly pick an integer from 0 to 9. What is the probability
that they pick the same number? What is the probability that they pick different
numbers?

Solution: Lets put S = {(a,b) € ZxZ : 0 <a,b < 9} = {(0,0),(0,1),(0,2),...,(9,9}
where a ordered pair (a,b) means Alice picked a and Bob picked 5. Then
S =10-10 = 100. The event of their both picking the same number is E =
{(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9)}, so |E| = 10. Then the prob-
ability of their picking the same number is p(E) = % = % =10%. The event of
their picking different numbers is E = S — E, so the probability of their picking

different numbers is p(E) = llg_ll = % =90%.

What is the probability that a 5-card hand dealt off a shuffled 52-card deck does
not contain an ace?

Solution: The sample space S is the set of all possible 5-card hands that can be
made from the 52 cards in the deck, so |S|= (552) =2,598,960. To make a 5-card
hand that contains no ace, we have to choose 5 cards from the 48 non-ace cards,
so there are (458) =1,712,304 hands that contain no aces. Thus the probability of

. ) _\E| _ 1,712,304 _
the event E of no aces in the hand is p(E) = iS1 = Z508.960 ~ 65.88%.

Section 5.2

1.

A card is taken off the top of a shuffled 52-card deck. What is the probability
that it is black or an ace?

Solution: Let A be the event of the card being an ace, and let B be the event of
its being black. Then p(A) = 4, and p(B) = %. The event A N B is the event of

52> 5
the card being either the ace of spades or the ace of clubs. Thus |[AnB|=2, and
p(AnB) = 52—2 The answer we seek is p(AUB) = p(A)+p(B)-p(AnB) = % + g—g - % =
2 ~53.8%.

. What is the probability that a 5-card hand dealt off a shuffled 52-card deck

contains at least one red card?

Solution: The sample space S is the set of all 5-card hands, so |S| = (552) =
2,598,960. Let E be the event of a 5-card hand without any red cards. Then

E| = (%) = 65,780 (choose 5 cards from the 26 black cards). Note that the

complement E is the event of at least one red card, so the answer we seek

is p(E)=1-p(E)=1- &l = 1 - 5520 ~ 97.46%.

. You toss a fair coin 8 times. What is the probability that you do not get 4 heads?

Solution: The sample space S is the set of all length-8 lists made from the
symbols # and T. Thus |S| = 28. Now let E be the event of getting exactly 4 heads,

s0 |E| = (§) = 70. (Choose 4 of 8 positions for 1 and fill the rest with T.) Then E is
_ Bl

the event of not getting four heads. Our answer is then p(E)=1-p(E)=1 51 =

- ;—g = 72.65%.

Two cards are dealt off a shuffled 52-card deck.What is the probability that the
cards are both red or both aces?
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11.

13.

15.

Solution: The sample space S consists of all possible 2-card hands, so |S| = ( ) =
1326. Let A be the event of both cards being aces, so |A| = (3) =6. Let B be the
event that both cards are red, so |B| = ( ) 325. Then the event A nB consists on
only one hand, namely the 2-card hand consisting of the ace of hearts and the

ace of diamonds. The answer to our question is p(AUB) = p(A)+p(B)—p(AnB) =

Al |Bl _|AnB| _ _6 325
BT TSI T IST T 1326 T 1326 T 1326 ~ 24.88%.

. A dice is tossed six times. You win $1 if the first toss is a five or the last toss is

even. What are your chances of winning?

Solution: The sample space S is the set of all length-6 lists made from the
symbols 1, 2, 3, 4, 5 and 6. Thus |S| =6°. Let A be the event of the first toss
being a five. By the multiplication principle, |A| = 6°. Let B be the event of
the last toss being even, that is, 2, 4 or 6. Then |B| = 6°-3. Note that AnB is
the set of all lists in S whose first entry is 5 and whose last entry is even. By
the multiplication principle, |A nB| = 6*-3. The probability that the first toss is
a five and the last is even is p(AUB) = p(A)+ p(B)—p(ANB) = IAl 1Bl _ |AQB| _

181 ISI IS|
6° ,6°3_6*3_1_3_3 _21_
Gt @ -5t 36 % ~58.33%. So you have a reasonably good chance of

winning.

A dice is rolled 5 times. Find the probability that not all of the tosses are even.

Solution: Think if the sample space as being the set of all length-5 lists made
from the numbers 1, 2, 3, 4, 5 and 6, where the first entry is the result of the first
roll, the second entry is the result of the second roll, etc. Thus |S|=6°. Now let
E Dbe the event of all rolls being even. Then E is the set of all length-5 lists made
from the numbers 2, 4 and 6, so |E| = 3°. We are interested in the probability
of the event of not all rolls being even, that is, the probability of E. Thus our

answer is p(E)=1-p(E)=1—- lllSE_Il =1- 2—2 ~ 96.875%.

Two cards are dealt off a well-shuffled deck. You win $1 if the two cards are of
different suits. Find the probability of your winning.

Solution: The sample space S is the set of all possible 2-card hands, so |S| = (52) =
1326. There are (}’) = 78 2-card hands with both cards hearts, and similarly 78
hands with both cards diamonds, 78 hands with both cards clubs, and 78 hands
with both cards spades. By the addition principle there are 78+ 78 + 78 + 78 = 312
hands in S for which both cards are of the same suit. So there are |S|-312=1014
hands in S for which the carss are of different suits. Thus the probability of the

two cards being the same suit is 1%1'4 ig%‘é ~76.47%.

A coin is tossed 5 times. What is the probability that the first toss is a head or
exactly 2 out of the five tosses are heads?

Solution: The sample space S is the set of length-5 lists made from the symbols
H and T, so |S| =25 =32. The event A € S of the first toss being a head is the
set of all lists in S of form w0, so |A| = 2* = 16. The event B of exactly two
heads has cardinality |B| = (5) = 10. (Choose two of 5 positions for 1, and fill
the rest with T’s.) Finally, A nB is the set of lists in S whose first entry is u
and exactly one of the four remaining entries is an u, so |AnB| =4. So the
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17.

19.

probability of the first toss being a head or exactly two tosses being heads is

P(ANB)=p(A)+p(B)-p(AnB)= gl + 1Bl - 4GBl = 16, 10 4 = 22 - 68.75%.

In a shuffled 52-card deck, what is the probability that neither the top nor bottom
card is a heart?

Solution: Regard the sample space as the set of 2-element lists (no repetition)
whose entries are the cards in the deck. The first entry represents the top card
and the second entry represents the bottom card. Then |S|=52-51 = 2652. Now
let E be the event that neither the top nor bottom card is a heart. So E consists
of those lists in S for which neither entry is a heart. As there are 39 non-heart

cards, |E| = 39-38 = 1482. The answer is thus p(E) = 5] = 1352 ~ 55.88%.

A bag contains 20 red marbles, 20 green marbles and 20 blue marbles. You
reach in and grab 15 marbles. What is the probability that they are all the same
color?

Solution: An outcome for this experiment is a 15-element multiset made from
the symbols {r, ¢, B}. Thus the sample space S is the set of all such multisets.
Encode the elements of S as stars and bars, so a typical element of S is a list of
length 15+2 =17, made from 15 stars and 2 bars.

- N

«for each r «for each ¢ *for each B

Then |S| = () = 136. Also the event E of all balls being the same color is E =
{***************H, [ s s sk sk sk sk ok sk ok sk sk ok sk ok k| ||***************},

so |E| = 3. Finally, p(E) = [& = 135 ~ 2.2%.

Section 5.3

1.

A box contains six tickets: . You remove two tickets, one

after the other. What is the probability that the first ticket is an A and the
second is a B?

Solution: Let A be the event of the first draw being an a and let B be the event of
the second draw being a B. With the help of Fact 5.3, the answer to this question
is p(AnB)= p(A)-P(B|A)= 2-2 = £ =133%.

. In a shuffled 52-card deck, what is the probability that the top card is red and

the bottom card is a heart?

Solution: Let A be the event of the top card being red, and let B be the event
of the bottom card being a heart. With the help of Fact 5.3, the answer to this
question is p(AnB) = p(B)-P(A|B) = £ - 22 = 25 ~20.16%. (Notice that if you
used the formula p(ANB) = p(A)- p(B|A), then the problem is somewhat harder

to think about.)

. Suppose A and B are events, and P(A) = %, PB)= %, and P(AnB)= %. Are A and

B independent, dependent, or is there not enough information to say for sure?
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11.

13.

Solution: Using the information given, and Fact 5.3, we get % =p(AnB) =
p(A)- p(B|A) = Ip(B|A), which yields p(B|A) = £, so p(B|A) = p(B). Also, § =
p(AnB)=p(B)-p(A|B) = 1 p(A|B), which yields p(A|B) = 1, so p(A) = p(A|B). This

means A and B are independent.

. Say A and B are events with P(A) = Z, P(A|B) = 2, and P(B|A) = 1. Find p(B).

Solution: Fact 5.3 says p(A)- p(B|A) = p(AnB) = p(B)- p(A|B). Plugging in the

given information, this becomes % . % =p(B)- %. Solving, p(B) = g.

. A box contains 2 red balls, 3 black balls, and 4 white balls. One is removed,

and then another is removed. What is the probability that no black balls were
drawn?

Let A be the event of no black ball on the first draw. Let B be the event of
no black ball drawn on the second draw. Then p(A) = g, because 6 of the 9
balls are not black. If A has occurred, then 5 of the remaining 8 balls are
not black, so p(B|A) = %. The probability that no black ball was drawn is then
p(ANB)=p(A)-p(BIA) = $2 = 2 = 41.6%.

A coin is flipped 5 times, and there are more tails than heads. What is the
probability that the first flip was a tail?

Solution: The sample space S is the set of length-5 lists made from symbols u
and T, so |S| =25 =32. Let A be the event of there being more tails than heads,
and let B be the event of the first flip being a tail. Thus the answer to the
question will be p(B|A). Fact 5.3 says p(B|A) = %, so we need to calculate
p(AnB) and p(A). Note that A nB is the event of more tails than heads and the
first flip is a tail. If the first flip is a tail, and there are to be more tails than
heads, then 2, 3 or 4 of the remaining 4 flips must be tails. The number of ways
for this to happen is () + (3) + (}) = 6 +4+1=11, so |AnB| = 11. Considering |A|,
to have more tails than heads, 3, 4 or 5 of the flips must be tails, and it follows
that |A|=(3) + () + (5) =10+5+1=16. To get our final answer, we have

|ANB|
p(AnB) 1S [AnB|] 11
B|A) = = = = — =68.75%.
PBID="0 YV YRS T ‘

A 5-card hand is dealt from a shuffled 52-card deck. Exactly 2 of the cards in
the hand are hearts. Find the probability that all the cards in the hand are red.

Solution: Let A be the event of getting exactly 2 hearts in the hand. Let B be the
event of all cards in the hand being red. Thus the answer to the question will be
p(B|A). Fact 5.3 says p(B|A) = piﬁ;?), so we need to calculate p(A nB) and p(A).
Note that A nB is the event of getting a 5-card hand that has 2 hearts and
3 diamonds. Thus |AnB| = (Y)(¥). Also |A| = (¥)(}) (choose 2 hearts and 3
non-hearts). To get our final answer, we have

|AnB|

sy PANB TS _1AnB_ (D)) _(5) 181211
PBIA) == o =TI T AT (83 © () 39-38.37 o 13%
b ST (2)(3) (3)
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Section 5.4

1. There is a 40% chance of rain on Saturday and a 25% chance of rain on Sunday.
What is the probability that it will rain on at least one day of the weekend?
(You may assume that the events “Rain on Saturday” and “Rain on Sunday” are
independent events.)

Solution: Say A is the event of rain on Saturday and B is the event of rain on
Sunday. Then our sample space is S = {rR, RN, NR, NN}, and A = {rr, rN} and
B ={rr, Nr}. Here is a probability tree for this.

Sautrday Sunday Outcome
. pBIAZ 25% rain R.}; P(ANB)=P(A)-P(BIA) = 10%
= 207 _ rain
P& . P(Blg)_ -~ 1none RN P(ANB)=P(A)-P(BIA)=30%
TR% o
203 - p@B=2" rain Nk P@ANB)=P@)-PBIA) = 15%
)QGO% non

PBIA) = 75, none NN P(AB)=P@A)-PBIA) = 45%

From this, the probability of rain over the weekend is 10% + 30% + 15% = 55%.

If you got the answer without drawing a probability tree, then that is good.
Another solution would be to calculate the probability of no rain over the weekend,
which is p(A)- p(BIA) = p(A)- p(B) = 0.6-0.75 = 45%. Then the probability of rain
over the weekend is 1-0.45=55%.

3. A club consists of 60 men and 40 women. To fairly choose a president and a
secretary, names of all members are put into a hat and two names are drawn. The
first name drawn is the president, and the second name drawn is the secretary.
What is the probability that the president and the secretary have the same
gender?

Solution: Say the sample space is S = {MM, Mmw, wm, ww} where the first letter
indicates the gender of the first draw, and the second letter indicates the gender
of the second draw. Then p(Mmm) = % . % = % and p(ww) = % . % = %. Thus

the probaEhty of both offices being the same gender is p(fMmm, ww}) = % + % =
50y =51.51%
9900 -017.

5. At a certain college, 30% of the students are freshmen. Also, 80% of the freshmen
live on campus, while only 60% of the non-freshman students live on campus.
A student is chosen at random. What is the probability that the student is a
freshman who lives off campus?
Solution: Let A be the event of choosing a freshman. Let B be the event of
choosing someone who lives on campus. The given information states that
p(A) =30% and p(B|A) =20%. (If you chose a freshman, there is an 80% chance
he or she lives on campus, so there is a 20% chance he or she lives off campus.)
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The problem is asking for p(A nB). Now, p(A nB) = p(A)- p(B|A) =0.30-0.20 = 6%.
Thus there is a 6% chance of choosing a freshman who lives off campus.

Section 5.5

1. At a certain college, 40% of the students are male, and 60% are female. Also,
20% of the males are smokers, and 10% of the females are smokers. A student
is chosen at random. If the student is a smoker, what is the probability that the
student is female?

Solution: Let S be the set of all students, S; be the set of female students, and
Ss be the set of male students. Then S =S1US3 and S1NSy =@. Let E =8 be the
set of smokers. The problem asks for p(S;|E). Bayes’ theorem applies and we get
p(S1)-p(EIS1) 0.60-0.10 06

— =75%.

S E = = =
PGB p(S1)-p(EIS1)+p(S2)-p(E[S2) 0.60-0.10+0.40-0.20 0.8

3. Ajar contains 4 red balls and 5 white balls. A random ball is removed, and then
another is removed. If the second ball was red, what is the probability that the
first ball was red?

Solution: The sample space is S = {Rr, RW, WRr, ww }, where the first letter is
the color of the first ball and the second letter is the color of the second ball. Let
S1 = {rR, rRW} be the event of the first ball being red. Let Sp = {wr, ww} be the
event of the first ball being white. Let E = {rr, wr} be the event of the second
ball being red. The answer to the question is thus p(S;|E). As S =S;uUSs and
S1n8Sgy =@, Bayes’ formula applies, and it gives

p(S1)-p(E|S1)

(S11E) =
Pl p(S)-p(E[SD +p(S2)-p(E |S2)
4.3 11 g
9 8 6 6
_ - -8 _°_375%
4 3 5 4 3 5 4
5'8¥3's Tt 5 8

So there’s a 37.5% chance that the first ball was red if the second is red.



CHAPTER 6

Algorithms

he idea of an algorithm is of fundamental importance in computer
science and discrete mathematics. Broadly speaking, an algorithm is
a sequence of commands that, if followed, result in some desirable outcome.
In this sense a recipe for baking a cake is an algorithm. If you follow the
instructions you get a cake. A typical algorithm has what we call input, that
is, material or data that the algorithm uses, and output, which is the end
result of the algorithm. In following the recipe for a cake, the ingredients
are the input. The recipe (algorithm) tells what to do with the ingredients,
and the output is a cake.

For another example, the instructions for making an origami swan from
a piece of paper is an algorithm. The input is the paper, the algorithm is a
sequence of instructions telling how to fold the paper, and the output is a
(paper) swan. Different input (in color, size, etc.) leads to different output.

To run or execute an algorithm means to apply it to input and obtain
output. Running or executing the swan algorithm produces a swan as
output. We freely use the words “input” and “output” as both nouns and a
verbs. The algorithm inputs a piece if paper and outputs a swan.

Today the word “algorithm” almost always refers to a sequence of steps
written in a computer language and executed by a computer, and the input
and output are information or data. Doing a Google search causes an
algorithm to run. The “Google Algorithm” takes as input a word or phrase,
and outputs a list of web pages that contain the word or phrase. When we
do a Google search we type in the input. Pressing the key causes
the algorithm to run, and then the output is presented on the screen.

Running such an algorithm is effortless because the computer does all the
steps. But someone (actually, a group of people) designed and implemented
it, and this required very specialized knowledge and skills. This chapter is
an introduction to these skills. Though our treatment is elementary, the
ideas presented here—if taken further—can be applied to designing quite
complex and significant algorithms.
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In practice, algorithms may have complex “feedback” relationships be-
tween input and output. Input might involve our clicking on a certain icon
or button, and based on this choice the algorithm might prompt us to enter
further information, or even upload files. Output could be as varied as an
email sent to some recipient or an object produced by a 3D printer.

For simplicity we will concentrate on algorithms that simply start with
input information, act on it, and produce output information at the end.
To further simplify our discussion, the input and output information will
be mostly numeric or alphanumeric. This is not as limiting as it may sound.
Any algorithm—no matter how complex—can be decomposed into such
simple “building-block algorithms.”

Although all of our algorithms could be implemented on a computer, we
will not express them any particular computer language. Instead we will
develop a kind of pseudocode that has the basic features of any high-level
computer language. Understanding this pseudocode makes mastering any
computer language easier. Conversely, if you already know a programming
language, then you may find this chapter relatively easy reading.

Our exploration begins with variables.

6.1 Variables and the Assignment Command

In an algorithm, a variable is a symbol that can be assigned various values.
As in algebra, we use letters a,b,c¢,...,z as variables. If convenient, we may
subscript our variables, so x1,x2 and x3 are three different variables.

Though there is no harm in thinking of a variable as a name or symbol
that represents a number, in programming languages a variable actually
represents a location in the computer’s memory that can hold different
quantities (i.e., values) at different times. But it can hold only one value at
any specific time. As an algorithm runs, it can assign various values to a
variable at different points in time.

An algorithm is a sequence of instructions or commands. The command
that says the variable x is to be assigned the value of 2 is expressed as

x:=2,

which we read as “x is assigned the value 2” or “x gets 2.” Once this command
is executed, x stands for the number 2, at least until it is assigned some
other value. If a later command is

x:=1,
then x stands for the value 7. If the next command in the algorithm is

y:=2-x+1,
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then the variable y stands for the number 15. If the next command is

yi=y+2,

then once it executes y has the value 15+2=17.

In the context of algorithms, the term variable has a slightly different
meaning than in algebra. In an algorithm a variable represents a specific
value at any point in time, and that value can change over time. But in
algebra a variable is a (possibly) indefinite quantity. The difference is
highlighted in the algorithm command y:= y + 2, which means y gets a new
value that is its previous value plus 2. By contrast, in algebra the equation
y =y +2 has no solution.

In an algorithm there is a difference between y:=2 and y =2. In an
algorithm, an expression like y =2 is interpreted as an open sentence that
is either true or false. Suppose an algorithm issues the command y := 2.
Then, afterwards, the expression y = 2 has the value True (T'), and y = 3 has
the value False (F). Similarly, y = y+2 is F, no matter the value of y.

6.2 Loops and Algorithm Notation

Programming languages employ certain kinds of loops that execute
sequences of commands multiple times. One of the most basic kinds of
loops is called a while loop. It is a special command to execute a sequence
of commands as long as (or while) an open sentence P(x) involving some
variable x is true. A while loop has the following structure. It begins with
the word while and ends with the word end, and these two words enclose
a sequence of commands. The vertical bar is just a visual reminder that
the commands are all grouped together within the while loop.

while P(x) do
Command 1
Command 2

Command n
end

When the while loop begins running, the variable x has a certain value. If
P(x) is true, then the while loop executes Commands 1 through n, which may
change the value of x. Then, if P(x) is still true the loop executes Commands
1 through n again. It continues to execute Commands 1 through » until
P(x) is false. At that point the loop is finished and the algorithm moves on
to whatever command comes after the while loop.



176 Algorithms

The first time the while loop executes the list of commands is called the
first iteration of the loop. The second time it executes them is called the
second iteration, and so on.

In summary, the while loop executes the sequence of commands 1-n
over and over until P(x) is false. If it happens that P(x) is already false
when the while loop begins, then the while loop does nothing.

Let’s look at some examples. These will use the command output x,
which outputs whatever value x has when the command is executed.

Consider the while loop on the right, after
the line x := 1. It assigns y := 2-x, outputs y,

replaces x with x+ 1, and continues doing this :V'hiie x<6do
as long as x <6. We can keep track of this with yi=2.x

a table. After the first iteration of the loop, we output y
have y=2-1=2 and x=1+1=2, as shown in the xo=x41
table. In any successive iteration, y is twice what end

x was at the end of the previous iteration, and x

is one more than it was, as reflected in the table.

At the end of the 6th iteration, x =7, so x <6 iteration || 1)2)3/4) 5| 6

x 213|4|5| 6

is no longer true, so the loop makes no further
iterations. From the table we can see that the

y 214/6/8(10|12

output is the list of numbers 2,4,6,8,10,12
Now let’s tweak this example by moving the xo=1

output command from inside the loop, to after it. while x <6 do
This time there is no output until the while loop
finishes. The table still applies, and it shows
that y = 12 after the last iteration, so the output end

is the single number 12. output y
Next, consider the example on the right. It is =1

the same as the previous example, except it has while x <6 do
x:=x—1instead of x := x+ 1. Thus x gets smaller
with each iteration, and x < 6 is always true, so
the while loop continues forever, never stopping. end
This is what is called an infinite loop. output y
We regard an algorithm as a set of commands that completes a task in
a finite number of steps. Therefore infinite loops are to be avoided. The
potential for an infinite loop is seen as a mistake or flaw in an algorithm.
Now that we understand assignment commands and while loops, we can
begin writing some complete algorithms. For clarity we will use a systematic
notation. An algorithm will begin with a header with the word “Algorithm,"
followed by a brief description of what the algorithm does. Next, the input

y:=2-x
x:=x+1

yi=2-x
x:=x—-1
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and the output is described. Finally comes the body of the algorithm, a
list of commands enclosed between the words begin and end. For clarity
we write one command per line. We may insert comments on the right
margin, preceded by a row of dots. These comments are to help a reader
(and sometimes the writer!) understand how the algorithm works; they are
not themselves commands. (If the algorithm were written in a computer
language and run on a computer, the computer would ignore the comments.)

To illustrate this, here is an algorithm whose input is a positive integer n,
and whose output is the first n positive even integers. If, for example, the
input is 6, the output is the list 2,4,6,8,10,12. (Clearly this is not the most
impressive algorithm. It is intentionally simple because its purpose is to
illustrate algorithm commands and notation.)

Algorithm 1: computes the first n positive even integers

Input: A positive integer n (Tells reader what the
Output: The first n positive even integers input & output is.)
begin
x:=1
while x <n do
YT 2 e y is the xth even integer
output y
T o T increase x by 1
end
end

In addition to while loops, most programming languages feature a so-
called for loop, whose syntax is as follows. Here i is a variable, and m
and n are integers with m <n.

for i:=m ton do
Command
Command

Com'mand
end

In its first iteration the for loop sets i := m, and executes the list of commands
between its first and last lines. In the next iteration it sets i :=m +1 and
executes the commands again. Then it sets i := m +2 and executes the
commands, and so on, increasing i by 1 and executing the commands in each
iteration. Finally, it reaches i := n in the last iteration and the commands
are executed a final time. None of the commands can alter i, m and n.
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To illustrate this, let’s rewrite Algorithm 1 with a for loop.

Algorithm 2: computes the first n positive even integers
Input: A positive integer n
Output: The first n positive even integers

begin
fori:=1ton do
VT2l e y is the ith even integer
output y
end
end

6.3 Logical Operators in Algorithms

There is an inseparable connection between algorithms and logic. A while
loop continues to execute as long as some open sentence P(x) is true. This
open sentence may even involve several variables and be made up of other
open sentences joined with logical operators. For example, the following
loop executes the list of commands as long as P(x) v ~ Q(y) is true.

while P(x)v ~Q(y) do
Command
Command

end

The list of commands must change the values of x or y, so P(x)Vv ~ Q(y) is
eventually false, or otherwise we may be stuck in an infinite loop.

Another way that algorithms can employ logic is with what is known as
the if-then construction. Its syntax is as follows.

if P(x) then
Command
Command

end

If P(x) is true, then this executes the list of commands between the then
and the end. If P(x) is false it does nothing, and the algorithm continues
on to whatever commands come after the closing end. Of course the open
sentence P(x) could also be a compound sentence like P(x)v ~ Q(y), etc.
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A variation on the if-then command is the if-then-else command:

if P(x) then
Command
Command

else
Command

end

If P(x) is true, this executes the first set of commands, between the then
and the else. And if P(x) is false it executes the second set of commands,
between the else and the end.

Let’s use these new ideas to write an algorithm whose input is n and
whose output is n!. Recall that if n = 0, then n! =1 and otherwise n! =
1-2-3-4----n. Thus our algorithm should have the following structure.

if n =0 then
| output 1 ... .. because 0! =1

else
Compute y:=n! ............ (we need to add the lines that do this)

output y
end

To finish it, we need to add in the lines that compute y=1-2-3-4----n. We
do this by first setting y = 1 and then use a for loop to multiply y by 1, then
by 2, then by 3, and so on, up to a final multiplication by n.

Algorithm 3: computes n!
Input: A non-negative integer n

Output: n!
begin
if n =0 then
| outputl ....... ... because 0! =1
else
y:i=1
for i:=1ton do
| yi=yei
end
outputy ..., because now y =n!
end

end
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Lists often occur in algorithms. A list typically has multiple entries,
so when stored in a computer’s memory it’s not stored in single memory
location, but rather multiple locations. A list such as X =(2,4,7,4,3), of
length five, might be stored in six successive locations, with the first one
(called X) containing the length of X:

[6]2[4]7[4[3]
X x1 X2 X3 x4 X5

The memory location X contains the number 5, which indicates that the
next five locations store the five entries of the list X. We denote by x; the
location immediately following X, and the one after that is x9, and so on.
If an algorithm issues the command X :=(2,4,7,4,3), it has created a list
with first entry x; =2, second entry xo =4, and so on. If a later command is
(say) x3:=1, then we have X =(2,4,1,4,3). If we then issued the for loop

fori:=2to5do
‘ x;:=0
end

the list becomes X =(4,0,0,0,0), etc.

We use uppercase letters to denote lists, while their entries are denoted
by a same letter in lowercase, subscripted. Thus if A =(7,6,5,4,3,2,1), then
a1="17, as =6, etc. The command X := A results in X =(7,6,5,4,3,2,1).

The next algorithm illustrates these ideas. It finds the largest entry of a
list. We will deviate from our tendency to use letters to stand for variables,
and use the word biggest as a variable. The algorithm starts by setting
biggest equal to the first list entry. Then it traverses the list, replacing
biggest with any larger entry it finds.

Algorithm 4: finds the largest entry of a list
Input: A list X =(x1,x2,...,%)
Output: The largest entry in the list
begin
biggest: =21 ..ouvvviiinnann.. this is the largest value found so far
for i:=1ton do
if biggest <x; then
| biggest:=x; .......... this is the largest value found so far
end
end
output biggest
end
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Next we create an algorithm that sorts a list into numerical order. For
example, if the input is X =(4,5,1,2,1,3), the output will be X =(1,1,2,3,4,5).
To illustrate the idea, take a very disordered list X =(5,4,3,2,1). Starting
at the first entry, it and the second entry are out of order, so swap them to
get a new list X =(4,5,3,2,1), shown on the second row below. Then move
to the second entry of this new X. It and the third entry are out of order,
so swap them. Now X =(4,3,5,2,1) as on the third row below. Continue, in
this pattern, moving left to right. For this particular list, four swaps occur.

5 4 3 2 1 )
Vv swap# i=1
45 3 2 1 .
v x Voo swap # =2
4 3 5 2 1 ) k=1 (1st pass)
NN x v swap# i=3
4 3 2 5 1 )
AN x swap# i=4
4 3 2 1 5

Now the last entry is in correct position, but those to its left are not.
Make a second pass through the list, swapping any out of order pairs. But
we can stop just before reaching the last entry, as it is placed correctly:

4 3 2 1:i5 .
v Vi swap# i=1
34 2 1:i5 .
A X Vi swap# i=2 1} _9 (2n pass)
3 2 4 1:5 .
v v x ) swap# i=3
3 2 145

Now the last two entries are in their correct places. Make another pass
through the list, this time stopping two positions from the left:

3 3 1:4 .
RN swap# i=1
23 1:4 5 ] k=3 (3rd pass)
v x RN swap # (=2
2 1" "3:4 5

Now the last three entries are correct. We need only swap the first two.

2 1:3 4 5 .
X iV 4y swap#i=l }k=4 (4th pass)
1 2:3 4 5

This final list is in numeric order. Note that in this example the input
list X =(5,4,3,2,1) was totally out of order, and we had two swap every pair
we encountered. In general, if a pair happens not to be out of order, we
simply don’t swap it. Our next algorithm implements this plan.
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In sorting the example list of length n = 5 on the previous page, we
had to make n —1 passes through the list, numbered 2 =1,2,3,...,n—1. In
the kth pass, we compared and swapped i = n —k consecutive pairs of list
entries (one less swap each time time % increases). Our algorithm carries
out this pattern with a for loop letting 2 run from 1 to n — 1. Inside this
loop is another for loop that lets i run from 1 to n — %, and on each iteration
comparing x; to x;,1 and swapping if the first is larger than the second.

Algorithm 5: (Bubble Sort) sorts a list
Input: A list X =(x1,x9,...,%,) of numbers
Output: The list sorted into numeric order
begin

fork:=1ton-1do
fori:=1ton-% do
if X;>Xi+1 then
BeMP =X veverennnnnnnnn. temporarily holds value of x;
X 1= Xi+1
Xit1:=temp ..., now x; and x;.1 are swapped
end
end
end
output X ... now X is sorted

Computer scientists call Algorithm 5 the bubble sort algorithm, be-
cause smaller numbers “bubble up” to the front of the list. It is not the most
efficient sorting algorithm (In Chapter 20 we'll see one that takes far fewer
steps), but it gets the job done.

Our bubble sort algorithm has a for loop inside of another for loop. In
programming, loops inside of loops are said to be nested. Nested loops are
very common in the design of algorithms.

For full disclosure, Algorithm 5 has a minor flaw. You may have noticed it.
What if the input list had length n =1, like X =(3)? Then the first for loop
would try to execute “for & :=1 to 0 do.” This makes no sense, or could
lead to an infinite loop. The same problem happens X is the empty list.
It would be easy to insert an if-else statement to handle this possibility. In
the interest of simplicity (and pedagogy) we did not do this. The purpose
of our Algorithm 5 is really to illustrate the idea of bubble sort, and not to
sort any real-life lists. But professional programmers must be absolutely
certain that their algorithms are robust enough to handle any input.
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Exercises for Sections 6.1, 6.2 and 6.3

1. Find the output. 2. Find the output.
x:=1 s:=0
y:=10 =0
while x? <y do for i:=1to 4do
yi=y+x s:=s+t
x:=x+1 ti=t+i
end end
output x output s
output y output ¢
3. Find the output. 4. Find the output if the input is
a:=0 X =(3,6,4,9,5,1,6,2,5,7).
b:=3 Algorithm
for i:=1to8do Input: X=(x1,x9,...,%,)
if a <b then begin
| a=a+i fori:=2ton do
else Z2i1=Xx;_1
| b:=b+a Xi11=X;
end xX; =z
end end
output a output X
output b end
5. Input is a list of even length. 6. The following algorithm accepts a list
Find the output for input X of numbers as input. What does the
X =(3,5,8,4,6,8,7,4,2,3). algorithm do?
Algorithm
Input: X =(x1,x2,...,%,) Algorithm
begin Input: X =(x1,x2,...,%n)
for]i i éito 5 do Olf)tput: ? e "
xpi=xp+1 begin
end x:=0
for j:=1to 2 do fori=1ton do
k:=2j-1 ‘ xX:=x+x;
xpi=xp—1 end
end x
output X output n

end end
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7.

11.

12.

13.

14.

15.

16.

17.

The Fibonacci sequence is the sequence 1,1,2,3,5,8,13,21,34,55,... whose first
two terms are 1 and 1, and thereafter any term is the sum of the previous two
terms. The numbers in this sequence are called Fibonacci numbers. Write an
algorithm whose input is an integer n and whose output is the first n Fibonacci
numbers.

A geometric sequence with ratio r is a sequence of numbers for which any term
is r times the previous term. For example, 5,10,20,40,80,160,... is a geometric
sequence with ratio 2. Write an algorithm whose input is three numbers a,r € R,
and n € N, and whose output is the first n terms of the geometric sequence with
first term a and ratio r.

. Write an algorithm whose input is two integers n and %, and whose output is (Z)
10.

Write an algorithm whose input is a list of numbers (x1,xs,...,x,), and whose
output is the smallest number in the list.

Write an algorithm whose input is a list of numbers (x1,xs,...,x,), and whose
output is the word "ves" if the list has any repeated entries, and “No” otherwise.

Write an algorithm whose input is two integers n,k and whose output is P(n, k)
(as defined in Fact 4.4 on page 97).

Write an algorithm whose input is two positive integers n,%, and whose output
is the number of non-negative integer solutions of the equation x1 + xo +x +x3 +
-++x, =n. (See Section 4.8.)

Write an algorithm whose input is a list X = (x1,x9,...,x,) and whose output is
the word “ves” if x1 <x9 <--- <x,, or “No” otherwise.

As noted at the bottom of page 182, our Algorithm 5 does not work on lists of
length 1 or 0. Modify it so that it does.

Write an algorithm whose input is a list X =(x4,...,x,), and whose output is the
list X in reverse order. (For example input (1,3,2,3) yields output (3,2,3,1).)
Write an algorithm whose input is an integer n, and whose output is the nth
row of Pascal’s triangle.
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6.4 The Division Algorithm

Many times in this book we will need to use the basic fact that any integer a
can be divided by an integer 4 > 0, resulting in a quotient g and remainder r,
for which 0 <7 < b. In other words, given any two integers o and 5 >0, we
can find two integers ¢ and r for which

a=gb+r, and 0=<r<b.

As an example, b =3 goes into a =17 g =5 times with remainder r = 2.
In symbols, 17=5-3+2,0ora=qb +r.

We are now going to write an algorithm whose input is two integers a =0
and b > 0, and whose output is the two numbers ¢ and r, for whicha =qgb+r
and 0 <r < b. That is, the output is the quotient and remainder that results
in dividing a by 5.

To see how to proceed, notice that if a = ¢b +r, then

a=b+b+b+---+b +r,

q times

where the remainder r is less than . This means that we can get r by
continually subtracting b from a until we get a non-negative number r that
is smaller than 5. And then ¢ is the number of times we had to subtract 4.
Our algorithm does just this. It keeps subtracting b from a until it gets
an answer that is smaller than b (at which point no further 4’s can be
subtracted). A variable g simply counts how many b’s have been subtracted.

Algorithm 6: The division algorithm
Input: Integersa=0and 6 >0
Output: Integers q and r for whicha=gb+rand 0<r<b

begin
qg:=0 ... so far we have subtracted b from a zero times
while ¢ = b do
a:=a-b ...... subtract b from a until a = b is no longer true
g:=q+1 ....... q increases by 1 each time a b is subtracted
end
TiZSQ i, a now equals its original value, minus q b’s
output ¢
output r

end




186 Algorithms

The division algorithm is actually quite old, and its origins are unclear.
It goes back at least as far as ancient Egypt and Babylonia. Obviously it
was not originally something that would be implemented on a computer. It
was just a set of instructions for finding a quotient and remainder.

It has survived because it is so fundamental and useful. Actually, in
mathematics the term division algorithm is usually understood to be the
statement that any two integers a and & > 0 have a quotient and remainder.
It is this statement that will be most useful for us later in this course.

Fact 6.1 (The Division Algorithm) Given integers a and b with b >0,
there exist integers q and r for whicha=qgb+r and 0 <r <b.

This will be very useful for proving many theorems about numbers and
mathematical structures and systems, as we will see later in the course.

Notice that Fact 6.1 does not require a = 0, as our algorithm on the
previous page did. In fact, the division algorithm in general works for any
value of a, positive or negative. For example, if a = —17 and b = 3, then

a=qb+r

is achieved as
~17=-6-3+1,

that is, b = 3 goes into a = —17 ¢ = —6 times, with a remainder of » = 1. Notice
that indeed 0 <r <b. Exercise 6.12 asks us to adapt Algorithm 6 so that it
works for both positive and negative values of a.

6.5 Procedures and Recursion

In writing an algorithm, we may have to reuse certain blocks of code nu-
merous times. Imagine an algorithm that has to sort two or more lists. For
each sort, we’d have to insert code for a separate bubble sort. Rewriting
code like this is cumbersome, inefficient and annoying.

To overcome this problem, most programming languages allow creation
of procedures, which are mini-algorithms that accomplish some task. In
general, a procedure is like a function f(x) or g(x,y) that we plug values into
and get a result in return.

We will first illustrate this with a concrete example, and afterwards
we will define the syntax for general procedures. Here is a procedure that
computes n!.
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Procedure Fac(n)

begin
if n =0 then
I return 1l ... ... ... because 0! =1
else
y:=1
for i:=1ton do
| yi=yi
end
return y ... i e e now y =n!
end
end

This procedure now acts as a function called Fac. It takes as input a number
n and returns the value y = n!, as specified in the return command on the
last line. For example Fac(3) =6, Fac(4) = 24, and Fac(5) = 120. Now that we
have defined it we could use it in (say) an algorithm to compute (};) = ﬁlk),

Algorithm 7: to compute (7)

Input: Integers n and &, with n =0
Output: (})

begin
if (k<0)v (k >n) then
| outputO ... in this case () =0
else
F
‘ output actn) procedure Fac is called here
Fac(k)-Fac(n—k)
end
end

If an algorithm (like the one above) uses a previously-defined procedure,
we say the algorithm calls the procedure.

In general, a procedure named (say) Name has the following syntax. The
first line declares the name of the procedure, followed by a list of variables
that it takes as input. The body of the procedure has a list of commands,
including the return statement, saying what value the procedure returns.

Procedure Name( list of variables)
begin
command

return value
end
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Our next example is a procedure called Largest. Its input is a list
(x1,x2,...x,) of numbers, and it returns the largest entry. For example,
Largest(7,2,3,8,4) = 8. Itisjust a recasting of Algorithm 4 into a procedure.

Procedure Largest(xy, xg, x3, ... ,x,)
begin
biggest:=x1 ...cvovviiiin.. this is the largest value found so far

fori:=1ton do
if biggest <x; then
| biggest:=x; .......... this is the largest value found so far
end
end
return biggest
end

To conclude the section, we explore a significant idea called recursion.
Although this is a far-reaching idea, it will not be used extensively in the
remainder of this book. But it is a fascinating topic, even mind-boggling.

We have seen that a procedure is a set of instructions for completing
some task. We also know that algorithms may call procedures, and you
can imagine writing a procedure that calls another procedure. But under
certain circumstances it makes sense for a procedure to call itself. Such a
procedure is called a recursive procedure.

Here is an example. We will call it RFac (for RecursiveFactorial). It is
our second procedure for computing a factorial, that is, RFac(n) = n!. It uses
the fact that n! =n-(n —1)!, which is to say RFac(n) = n-RFac(n —1).

Procedure RFac(n)

begin
if n =0 then
| return 1l ... ... because 0! =1
else
| return n-RFac(n—1) .............co.... because n!=n-(n—1)!
end
end

To understand how it works, consider what happens when we run, say,
RFac(5). Because 5 # 0, the procedure’s code says it needs to return 5-RFac(4).
But before doing this, it needs to run RFac(4). But RFac(4) needs to return
4-RFac(3), and RFac(3) needs to run RFac(2), and so on.
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Figure 6.1 helps keep track of this. Each call to RFac is indicated by a
shaded rectangle. The rectangles are nested, one within another, reflecting
the pattern in which calls to RFac occur within other calls to RFac.

level

0

RFac(5) 5.4.3.-2-1
P

return 5-RFac(4)<— 4-3-2-1 1
IR

return 4 I RFac(3) 3-2-1
R

return 3 | RFac(2) 2-1
hren 2 o
return 2- ac(l 1
T

return 1 ) RFac(0)
\

return 1,

Figure 6.1. Running RFac(5): First RFac(5) needs to return 5-RFac(4).
Before returning this value, RFac(4) must be run. Now, RFac(4) must
return 4-RFac(3), so it runs RFac(3) and waits for the result. Then RFac(3)
must return 3-RFac(2), so it runs RFac(2) and waits for the result. Then
RFac(2) must return 2-RFac(1), so it runs RFac(1l) and waist for the result.
Then RFac(1) must return 1-RFac(0). Here the pattern stops, as RFac(0)
simply returns 1 (according to the procedure’s code). At this point, none
of the calls RFac(b5), RFac(4), RFac(3), RFac(2), and RFac(1) is finished,
because each is waiting for the next one to finish. Now RFac(1) returns
1-RFac(0)=1-1=1 to RFac(2), which is waiting for that value. Next RFac(2)
returns 2-RFac(1) =2-1 to RFac(3), and RFac(3) returns 3-RFac(2)=3-2-1
to RFac(4). Finally, RFac(4) returns 4-RFac(3)=4-3-2-1 to RFac(5). At last
RFac(5) returns to correct vlaue of 5-RFac(4)=5-4-3-2-1.

A procedure that calls itself is a recursive procedure. The situation in
which a procedure calls itself (i.e., runs a copy of itself) is called recursion.

Some mental energy may be necessary in order to fully grasp recursion,
but practice and experience will bring you to the point that you can design
programs that use it. We will see recursion in several other places in this
text. Section 14.2 will introduce a method of proving that recursion really
works. In Section 20.4 designs a recursive sorting algorithm that is much
quicker and more efficient than bubble sort.
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Exercises for Sections 6.4 and 6.5

1.

2.

3.

10.

11.

12,

13.

14.

15.

Write a procedure whose input is a list of numbers X = (x1,x9,...,x,), and whose
output is the list in reverse order.

Write a procedure whose input is two positive numbers n and %, and whose
output is P(n,k) (as defined in Fact 4.4 on page 97).

Write a procedure whose input is a list of numbers X = (x1,x9,...,x,), and whose
output is “ves” if X is in numeric order (i.e., x; <x2 <--- <x,), and “No” otherwise.

. Write a procedure whose input is a list of numbers X = (x1,x9,...,x,), and whose

output is the number of entries that are negative.

. Write a procedure whose input is a list X =(0,0,1,0,1,...,1) of 0’s and 1’s, of

length n. The procedure returns the number of 1’s in X.

. Write a procedure whose input is a list of numbers X = (x1,x2,...,x,), and whose

output is the average of all the entries.

. Write a procedure whose input is a list of numbers X = (x1,x2,...,x,), and whose

output is the product of x1x2---x, of all the entries.

. Write a procedure whose input is a list of numbers X = (x1,x2,...,x,), and whose

output is the list (x1,2x9,3xs,...,nx,).

. Write a procedure whose input is two lists of numbers X = (x1,x9,...,%,) and

Y =(y1,52,...,¥n), and whose output is the list Z = (x1,x9,%3,...,%1, Yn,.--, 3,2, ¥1)-

Write a procedure whose input is two lists of numbers X = (x1,xs,...,%,) and Y =
(¥1,¥2,-..,¥n), and whose output is the merged list Z = (x1,y1, %2, ¥2,%3,¥3,-.-,%n,¥n)-

Write a procedure whose input is two lists of numbers X = (x1,x2,...,x,) and
Y =(y1,¥2,...,¥n), and whose output is the list Z = (x1+y1, x2+y2, x3+¥3,...,Xn+¥n).
Algorithm 6 is written so that it requires a > 0. Rewrite it so that it works for all
values of a, both positive and negative. (But still assume & >0.)

The Fibonacci sequence is 1,1,2,3,5,8,13,21,34,55,.... The first two terms are
1, and thereafter any term is the sum of the previous two terms. The numbers
in this sequence are called Fibonacci numbers. Write a recursive procedure
whose input is an integer n and whose output is the nth Fibonacci number.

A geometric sequence with ratio r is a sequence of numbers for which any term
is r times the previous term. For example, 5,10,20,40,80,160,... is a geometric
sequence with ratio 2. Write an recursive procedure whose input is three numbers
a,r €R, and n €N, and whose output is the nth term of the geometric sequence
with first term a and ratio r.

An arithmetic sequence with difference d is a sequence of numbers for which
any term is d plus the previous term. For example, 5,8,11,14,17,20,... is a
arithmetic sequence with difference 3. Write an recursive procedure whose input
is three numbers a,d € R, and n € N, and whose output is the nth term of the
arithmetic sequence whose first term is a and whose difference is d.
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6.6 Counting Steps in Algorithms

Computer scientists are attentive to algorithm efficiency. An algorithm
should complete its task in the shortest amount of time possible, with the
fewest number of steps. Of course the number of steps needed probably
depends on what the input is. Thus a significant question is

How many steps does Algorithm X have to make to process input Y?

To get started, suppose an algorithm has the following piece of code,
where n has been assigned an integer value in some pervious line.

fori:=1to 3n do
‘ Command 1

Command 2
end

Command 3
for j:=1ton do
for 2:=1ton do
| Command 4
end
end

In all, how many commands are executed? The first for loop makes 3n
iterations, each issuing two commands, so it makes 3n -2 = 6n commands.
Then a single command (Command 3) is executed. Next comes a nested for
loop, where Command 4 is executed once for each pair (i,k) with 1< j,k <n.
By the multiplication principle, there are n-n = n? such pairs, so Command 4
is executed n? times. So in all, 6n + 1+ n2 commands are executed.

Now let’s count the steps in this chunk of code:

fori:=0ton do
for j:=0toido
for k:=0toj do
| Command 1
end
end
end

Command 1 is executed for each combination of i, 7,2 with O0<k<j<i=<n.
Each combination corresponds to a list of n stars and 3 bars s | |x|** .-

where % is the number of stars to the left of the first bar, j is the number
of stars to the left of the second bar, and i is the number of stars to the
left of the third bar. Such a list has length n + 3, and we can make it by
choosing 3 out of n + 3 spots for the bars and filling the rest with stars.
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There are (";°) such lists, so the number of times Command 1 is executed

is (n;—S) _ nln— 13)'(n 2 _n —3n +2n _ én3 ;nZ + %n

We finish the chapter by comparing two different algorithms that do the
same task, namely search through a sorted list of numbers to determine if
a particular number appears. We will see that the second (somewhat more
complex) algorithm is vastly more efficient in terms of commands executed.

Each algorithm takes as input a number z and a list X = {x1,xg,...,x,} of
numbers in numeric order, that is, x1 <x9 <--- < x,. The output is the word
“vyEs” if z equals some list entry; otherwise it returns the word “~o.”

The first algorithm, called sequential search, simply traverses the list
from left to right, stopping either when it finds z = x;, or when it goes past
the end of the list without ever finding such an x;. A variable found equals
either the word “ves” or the word “~o.” The algorithm starts by assigning
found :=nNo, and changes it to “vEs” only when and if it finds a & for which
z =xp. It has a while loop that continues running as long as found := No
(no match found yet) and k& < n (it hasn’t run past the end of the list).

Algorithm 8: sequential search

Input: A number z and a sorted list X = (x1,x9,...,x,) of numbers
Output: “ves” if z appears in X; otherwise “No

begin
found:=NO .........ciiiiiiiiiia.. means z not yet found in X
=0 k is subscript for list entries x;,
while (found = No) A (E<n) do
Ei=k+1 go to next list entry
if z =x; then
found :=YES ............oou.... the number z appears in X
end
end
output found
end

Two comments. First, we could opt to also output % at the end of the
algorithm, to tell which which list entry x; equals z in the event of vEs.
Second, the sequential search algorithm also works just as well when X is
not in numeric order. (But this will not be the case with our next algorithm.)

Counting steps, Algorithm 8 has two commands prior to the while loop.
Then the while loop does at most n iterations, each with two commands. So
it searches a list of length n in at most 2 + 2n steps. This is a worst-case
scenario, in which z is not found, or it is found at the very end of the list.
At the other extreme, if x; = z, then the algorithm stops after 4 steps.
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Next we design an algorithm that takes a different approach to searching
a list. Unlike sequential search, which examines every list entry, this new
method ignores almost all entries but still returns the correct result.

To illustrate the idea, suppose we need to decide if z =4 is in the list
X =(0,1,1,2,3,3,3,3,4,5,5,5,5,8,8,9). If z is in the list, it is in the shaded
area between the left-most position L =1 and the right-most position R = 16.

x=[o]1f1]2]s]afs|s[4][5]5]5[5]8]8]9]
X1 X2 X3 X4 X5 X6 X7 Xg X9 X10 X11 X12 X13 X14 X15 X16

1 * 1
L=1 M:I-—L;RJ:S R=16

Jump to a middle position M = [I%J =8, the average of L and R, rounded
down (if necessary) to an integer. The number z = 4 we are searching for is

greater than x,, = 3, so it is to the right of xg, in the shaded area below.

x=|o|1]|1]|2]|3|3[3]3]4]|5|5]5]5]8]|8]9]
X1 X2 X3 X4 X5 Xg X7 X8 ?xloxllx%2x13xl4xl5x%6
L=9 M=|%E|=12  R=16

So update L := M +1 and form a new middle M := | £3& | = 12 (shown above).
Now x,, =5, and the number z = 4 we seek is less than x,,, so it is in the

shaded area below. So update R := M-1. Form a new middle M := | &£ | = 10.

x=[o|1]|1]|2]3|3[3]3]4]|5]|5]|5]5]s8]s8]9]
X1 X2 X3 X4 X5 Xg X7 X8 X9 x%0x11x12x13x14x15x16

L=9 M=[%E|=10 R=11

Again, x,, =5, and the number z = 4 we seek is less than x,,, so it is in the
shaded area below. Update R := M —1 and form a new middle M := [£££ | = 9.

x=|o|1]1]2]3|3]3[3]4]5]|5|5]5]8]s8]9]
X1 X2 X3 X4 X5 X¢ X7 X8 ?x10x11x12x13x14x15x16
L=9 M=[%E]=9 R=9

Now L = R, and we have zeroed in at x, = 4, the number sought, and
having ignored most entries of the list.
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This new search strategy is called binary search. Binary search works
by continually maintaining two list positions L (left) and R (right) that the
searched-for entry z must be between. In each iteration, a middle M is
computed. If x,, = z, we have found z. If x,, < z, then z is to the right of M,
so M +1 becomes the new L, If x,, > z, then z is to the left of M, so M -1
becomes the new R. In this way, L and R get closer and closer to each other,
trapping z between them (if indeed X contains z). If z is not in X, then
eventually L = R. At this point the algorithm terminates and reports that z
is not in X.

Algorithm 9: binary search
Input: A number z, and a sorted list X = (x1,x9,...,x,) of numbers
Output: “ves” if z appears in X; otherwise “No”

begin
found:=No ............ this means z has not yet been found in X
Li=1 i left end of search area is x;
Ri=n o right end of search area is x,
while (found = No) A(L < R) do
M .= {L ;RJ .................... M is middle of search area
if z = x,;, then
| found:=YES .......c.ccvuni.n. the number z appears in X
else
if z <x,, then
R=M-1............ if z is in X, it’s between x; and x,,
else
| L:=M+1............ if z is in X, it’s between x,, and x;
end
end
end
output found
end

Let’s analyze the number of steps needed perform a binary search on a
list of length n. Algorithm 9 starts with 3 commands, initializing found,
L and R. Then comes the while loop, which iterates until found = YEs or
L =R. How many iterations could this be? Before the first iteration, the
distance between L and R is n — 1. At each iteration, the distance between
L and R is at least halved.
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Thus, after the first iteration the distance between L and R is less than §
After the second iteration the distance between them is less than % G =g
After the third iteration the distance between them is less than % o8 = o8-
Thus, after i iterations, the distance between L and R is less than 5

So in the worse case, the while loop keeps running, for i iterations, until

o1

Y 21—1
which is the smallest i for which we can be confident that the distance
between R and L is less than 1 (and hence 0). Multiplying this by 2¢ yields

n<2 <2n.

We can isolate the number of iterations i by taking log,, and using various
logarithm properties. !

logo(n) < loge(2)) < loge(2n)
logy(n) < i < logy(2) +logy(n)
logy(n) < i < 1+logy(n).

So the number of iterations i is an integer that is between log,(n) and
1+1logy(n), which means i = [logy(n)]. (Generally logs(n) is not an integer,
unless n = 2* is an integer power of 2, in which case logy(n) = log,(2*) = £.)

In summary, the binary search algorithm (Algorithm 9) issues 3 com-
mands, followed by a while loop that makes at most [logy(n)] iterations.
Each iteration executes 2 commands: the assignment of M = | 5£ || followed
by an if-else statement. Thus the binary search algorithm does a total of at
most 3 +2[logy(n)] steps to search a list of length n.

By contrast, we saw that sequential search (Algorithm 8) needs at most
2+ 2n steps to search a list of length n. Figure 6.2 compares the graphs of
y =2+2n with y = 3+2logy(n), showing that in general binary search involves
far fewer steps than sequential search. This is especially pronounced for
long lists. For example, if a list X has length n = 2% = 32768, a sequential
search could take as many as 2+2-32768 = 65538 steps, but a binary search
is guaranteed to finish in no more than 3 +21log,(32768) = 3+2-15 = 33 steps.

This case study illustrates a very important point. An algorithm that
cannot finish quickly is of limited use, at best. In our technological world,
it is often not acceptable to have to wait seconds, minutes, or hours for an

LIf your logarithm skills are rusty, we will review logarithms in Chapter 19. They will
not be used in a substantial way until Chapter 20.
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algorithm to complete a critical task. Programmers need to compare the
relative efficiencies of different algorithm designs, and to create algorithms
that run quickly. The ability to do this rests on the foundation of the
counting techniques developed in Chapter 4. We will take up this topic
again, in Chapter 20, and push it further.

Yy
y=2+2n (sequential search)

20
18
16
14
12

y=3+2logy(n) (binary search)

N R O ®

steps needed to search list

n (length of list)

1 2 3 4 5 6 7 8 9

Figure 6.2. A comparison of the worst-case performance of sequential
versus binary search, for lists of length n.

Exercises for Section 6.6

1. Count how many times 2. Count how many times
Command is executed. Command is executed.
for i :=1 to 60 do for i :=1 to 60 do
for j:=1toido for j:=1toido
| Command | Command
end end
end end
3. Let n be a positive integer. How 4. Suppose n is a positive integer. How
many times is Command executed? many times is Command executed?
(The answer depends on n.) (The answer depends on n.)
for i:=0ton do fori:=1ton do
for j:=0toi do for j:=1ton do
for £:=0toj do for k:=1ton do
for /:=0to %k do for ¢:=1ton do
| Command | Command
end end
end end
end end

end end
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5.

10.

11.

12.

13.

Count how many times 6. Count how many times
Command is executed. Command is executed.

for i:=1to 2017 do
fori:=0to4do

if iiseven then
\ Command for j:=0to 40 do
else for % :=0 to 400 do
Command \ Command
Command end
end end
end end

. How many steps does the bubble sort algorithm (Algorithm 5 on page 182) take

if its input list X = (x1,x9,...,x,) is already sorted?

. Find a formula for the number of steps that Algorithm 1 (page 177) executes for

an input of n.

. Find a formula for the number of steps that Algorithm 2 (page 178) executes for

an input of n.

Find a formula for the number of steps that Algorithm 3 (page 179) executes for
an input of n > 0.

Find a formula for the number of steps that Algorithm 4 (page 180) executes
when the input is a list of length n.

Find a formula for the worst-case number of steps that the bubble sort algorithm
(Algorithm 5 on page 182) executes when the input is a list of length n.

Find a formula for the number of steps that The division algorithm (Algorithm 6
on page 185) executes when the input is two positive integers a and b. (The
answer will depend on a and 5.)
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6.7 Solutions for Chapter 6
Sections 6.1, 6.2 and 6.3

1. Find the output.
Solution The following table tallies the values of

x:=1 x and y initially, and at the end of each iteration of
y:=10 the while loop.
while x? <y do
yi=y+x iteration 1 2 3
x:=x+1 x 112 3 4
end y 10|11 13 16
output x
output y The final values (which are the output) are x =4 and
y=16.

3. Find the output.

Z :g Solution The following table tallies the values of
T a and b initially, and at the end of each iteration (i)
fori:=1to8do of the for loo
if a <b then p-
| a:=a+i iteration (i) 1234 5 6 7 8
else
| b:=b+a a o013 3 7 7 13 13 21
end b 3/3 3 6 6 13 13 26 26
end
output a The final values (which are the output) are a =21
output b and b = 26.

5. The input of the following algorithm is a list X of even length. Find the output
for input X =(3,5,8,4,6,8,7,4,2,3).

Algorithm Solution The first for loop adds 1 to
{)1;};1; X =(x1,%2,.,%n) each list entry x;, for which the index %
. i . In oth ds, it adds 1 to th
for i:=1to 2 do is even. In other words, it adds 1 to the
‘ k=21 entries X92,X4,X6,X8 and X10.
en dx k= apt1 The second for loop subtracts 1 from each

for j:=1to 2 do list entry x;, for which the index % is odd.

k=2j-1 In other words, it subtracts 1 from the
‘ xpi=ap—1 entries x1,x3,x5,x7 and xg.
end

Therefore the output is
X =(2,6,7,5,5,9,6,5,1,4).

output X
end
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7. Write an algorithm whose input is an integer n and whose output is the first n
Fibonacci numbers.

Algorithm: to compute the first n Fibonacci numbers

Input: An integer n for which n =2

Output: The first n Fibonacci numbers

begin
T x is the 1st Fibonacci number
=T N y is the 2nd Fibonacci number
outputx .......... ... output 1st Fibonacci number
output y .............. output 2nd Fibonacci number
1i=2 i is # of Fibonacci numbers outputted so far

2 T Y s z is most recent Fibonacci number

outputz ..................... output most recent Fibonacci number

A update i

XIT Y i x now second-most-recent Fibonacci number

Y T 2 y now most recent Fibonacci number
end

end

9. Write an algorithm whose input is two integers n and &, and whose output is (}).

Solution: Recall that () =0if n <0, orif n >0but £ <0 or £ >n. Also (}) =1 when
k=0 or k =n. Otherwise, Fact 4.5 (page 101) says

n| n! o nn-Dn-2)--(n-k+3)n-k+2)(n-k+1)

(k) © Rln-R)Y k!

n-k+1)(n-k+2)(n-k+3)--(n-2)(n-1)n
1-2:3---(-2)k—1k '

Our algorithm will carry out this arithmetic by first putting y:= 1, then using a
for loop to multiply y by (n — % + 1), then by (n — % +2), then (n — k& + 3), and so on,
working its way up to multiplying by n. Then a second for loop will divide by 1,
then by 2, then by 3, and so on, until finally dividing by k.
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Algorithm: computes (})

Input: Integers n and %, with n >0
Output: (})

begin
if (n<0)v((k<0)Vv(k>n)) then
| outputO ... in this case (}) =0
else
if ((=0)v(k =n) then
| outputl ... in this case (}) =1
else
VT L e y is initially 1
fori:=n-k+1tondo
| yi=y-1 ol multiply y by i, foreachn-k+1<i<n
end
for i:=1to % do
y =% ....................... divide y by i, foreach 1<i<#k
end
OULPUL Y ..o now y = ()
end
end
end

11. Write an algorithm whose input is a list of numbers (x1,x9,.
output is the word "ves" if the list has any repeated entries,

are no repeated entries.

..,X,), and whose
and “no” if there

Solution: For each x; up to x,_1 we check if it equals an x; later on the list.

Algorithm

Input: A list of numbers x1,x9,x3...,%,
Output: "ves" if the list has repetition, otherwise "~no"
begin
match := NO
fori:=1ton-1do
for k=i+1tondo
if x; = x;, then
| match := YES
end
end
end
end
output match

13. Write an algorithm whose input is two positive integers n,k,

and whose output

is the number of non-negative integer solutions of x; +xg +x+x3+---+x; = n. (See

Section 4.8.)
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Solution: As in Section 4.8 we can model the solutions with stars-and-bars lists

X1 X9 X3 Xk
——t— | — | — ——

>

having n stars and £ —1 bars. Such a list has length n+£ -1, and can be made
by choosing n positions for stars and filling the remaining % — 1 with bars. Thus

there are (”+§_1) such lists, so this is also the number of solutions to the equation.
n+k-1

Thus our algorithm must simply compute ("*

algorithm for (}) in Exercise 9 above.

). For this we can adapt the

k-1
n+n )

Algorithm: computes (

Input: Positive integers n and &
Output: ("1

n

begin
2 T y is initially 1
fori:=kton+k-1do
| yi=y i multiply y by i, foreachk<i<n+k-1
end
fori:=1to %k do
::Z_ ............................... divide y by i, foreach 1<i<k
l
end
k-1
OUEPUL Y ..ottt now y = ("""")
end

15. Fix BubbleSort.

(Better Bubble Sort) sorts any list

Input: A list X = (x1,x9,...,x,) of numbers
Output: The list sorted into numeric order

begin
if 0=n<1then
| outputX .......... . X is already sorted
else
for k:=1ton-1do
fori:=1ton-%do
if x; > x;.1 then
EeMP =X eeeeaennnnnans temporarily holds value of «x;
X 1= X4
Xip1:=temp ..o, now x; and x;,1 are swapped
end
end
end
output X ... ... now X is sorted

end
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17. Design and algorithm whose input is an integer n = 0 and whose output is the
nth row of Pascal’s triangle.

For an input of n, the output will be the sequence

0> @ G G s ()

of n+1 numbers. How could we write such an algorithm? To begin the design,
we would need a for loop with the following structure.

for 2:=0ton do

y:=(3)
output y
end

To finish it we just need to add in the lines that compute y := (;). For this we
can reuse our code from Algorithm 10 in our solution of Exercise 9. Actually,
the above for loop makes % go from 1 to n, so we don’t even need the lines of
Algorithm 10 that deal with the cases n <0V ((k <0) v (k > n)), for which (}) =0.
Here is our algorithm.

Algorithm: computes the nth row of Pascal’s triangle

Input: Integer n with n =0
Output: nth row of Pascal’s triangle
begin

for 2:=0ton do
if (¢, =0)v(k=n) then
| outputl ... in this case (}) =1
else
VT y is initially 1
fori:=n-k+1tondo
| yi=yei
end
fori:=1to % do
e
yi==
l
end
OULPUL Y ..ottt now y = ()
end
end
end

Sections 6.4 and 6.5

1. Write a procedure whose input is a list of numbers X = (x1,x2,...,%,), and whose
output is the list in reverse order.
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Procedure Reverse(X)

begin
Y =X Y =(y1,...,¥,) is a copy of X = (x1,...,x,)
fori:=1tondo
I fill in Y as the reverse of X
end
returnY
end

3. Write a procedure whose input is a list of numbers X = (x1,xs,...,x,), and whose
output is “ves” if X is in numeric order (i.e., x; <xg <--- <x,), and “No” otherwise.

Procedure Check(X)

begin
ordered :=YES ...... list assumed ordered until found not to be ordered
1:=1
while (ordered =YES)A (i <n) do

if Xi > Xi+1 then

| ordered:=No

end

1:=1+1
end

return ordered
end

5. Write a procedure whose input is a list X =(0,0,1,0,1,...,1) of 0’s and 1’s, of
length n. The procedure returns the number of 1’s in X.

Procedure Ones(X)

begin
total :=0 ... so far total number of 1’s found is zero
for i:=1ton do
if x; =1 then
| total :=total +1
end
end
return total
end

7. Write a procedure whose input is a list of numbers X = (x1,x9,...,x,), and whose
output is the product of x1x2---x, of all the entries.
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Procedure Prod(X)

begin
product:=1for i:=1ton do
| product:=product-x;
end
return prod
end

9. Write a procedure whose input is two lists of numbers X = (x1,x9,...,x,) and
Y =(y1,52,...,¥n), and whose output is the list Z = (x1,x9,%3,...,%1,Yn,.--, 3,2, ¥1)-

Procedure Glue(X,Y)

begin
Z:=(0,0,0,...,0) ..t e a list of length 2n
fori:=1tondo
2=
Zn+1-i = )Yi
end

return Z
end

11. Write a procedure whose input is two lists of numbers X = (x1,x9,...,x,) and
Y =(y1,¥2,.-.,¥n), and whose output is the list Z = (x1+y1, x2+y2, x3+¥3,...,Xn+Vn).

Procedure Add(X,Y)

begin
Z = X Z is a copy of X
fori:=1ton do
| zi=zityi
end
return Z
end

13. The Fibonacci sequence is the sequence 1,1,2,3,5,8,13,21,34,55,.... Write a
recursive procedure whose input is an integer n and whose output is the nth
Fibonacci number.

Procedure Fib(n)

begin
if (n=1)v(n=2) then
| return 1
else
| return Fib(n—-1)+Fib(n-2)
end
end

15. An arithmetic sequence with difference d is a sequence of numbers for which
any term is d plus the previous term. For example, 5,8,11,14,17,20,... is a
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arithmetic sequence with difference 3. Write an recursive procedure whose
input is three numbers a,d € R, and n € N, and whose output is the nth term of
the arithmetic sequence whose first term is a and whose difference is d.

Procedure Arithmetic(a,d,n)
begin
if n =1 then
| return a

else
| returnd+Arithmetic(n—-1)

end
end

Section 6.6

1. Count how many times Command is executed.
) Solution Command is issued once for each pair
for i :=1to 60 do

for j:=1to i do (i,j) with 1< j <i <60. Such a pair can be encoded

‘ Command as a star-and-bar list * s ... % | % .. % | % % x... %
end with 60 stars and two bars, where j is the number
end of stars before the first bar and i is the number of

stars before the second bar.
Given that we have 1 < j, the first list entry must be a star. The remaining

entries form a list with 59 stars and two bars, of length 61. The number of such
lists is (%) = 1830 so that is the number of times Command is executed.

3. Suppose n is a positive integer. In the following piece of code, how many times
is Command executed? The answer will depend on the value of n.

for i:=0ton do
for j:=0to i do
for j:=0to jdo
for /=0to %k do
‘ Command
end
end
end
end

Solution: Command is executed for each integer combination of i, j,%2 and ¢ for
which 0 </ <k <j<i<n. We can model such combinations with lists of n stars
and 4 bars * * *| % x| % | % x| % *---x x* where ¢ is the number of stars to the left of
the first bar, % is the number of stars to the left of the second bar, j is the number
of stars to the left of the third bar, and i is the number of stars to the left of the
fourth bar. Such a list has length n + 4, and we can make it by choosing 4 out of
n +4 spots for the bars and filling the rest with stars. Thus there are ("14) such
lists so this is also the number of times Command is executed.
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5.

Count how many times Command is executed.
for i:=1to 2017 do

if iiseven then Solution There are 2018/2 = 1009 odd inte-
| Command gers between 1 and 2017, and 1008 even inte-
else gers between 1 and 2017. Because Command
Command gets issued once for every even integer and twice
Command for every odd integer, it gets executed a total of
end 1009 +2-1008 = 3025 times.

end

7. How many steps does the bubble sort algorithm (Algorithm 5 on page 182) take

11.

13.

if its input list X = (x1,x9,...,x,) is already sorted?

Solution: The if statement inside the nested for loops gets executed once for each
pair (k,1) of integers with 1<k <n-1,and 1 <i <n—-%. We can model such pairs
as lists of length n, made of n — 2 stars and 2 bars. There are & — 1 stars before
the first bar, and i — 1 stars between the two bars.

n—2 stars, and 2 bars

~

s ok ok ok ok | ok sk ok ok k| sk ok ok ok ok ok %

—_— —— —
k-1 stars i-1 stars n—k—i stars

n—-k-1 stars

For example, suppose n = 8. Then * * x| * | * * corresponds to (k,i) = (4,2), whereas
* % *|| % xx corresponds to (k,7) =(4,1). Also | * * % * x| means (k,i) = (1,7), and
|| % % % % % is (k,i) = (1,1). The number of such lists is (3) = @ = %nQ - %n, the
number of ways to choose 2 out of n spots for the bars. So the if-statement gets
executed %nz - %n times (but x; > x;,1 is always false, so the three statements in

its body do not get executed). Thus the algorithm does %nz - %n steps.

. Find a formula for the number of steps that Algorithm 2 (page 178) executes for

an input of n.

Solution: For each i between 1 and n, it executes 2 steps, to the total number of
steps is 2n.

Find a formula for the number of steps (in the worst case) that Algorithm 4
(page 180) executes when the input is a list of length n.

Solution: The algorithm starts by making one assignment (biggest:= x1) and
then executes an if statement n times, so the answer is 1+n.

Find a formula for the number of steps that The division algorithm (Algorithm 6
on page 185) executes when the input is two positive integers a and b. (The
answer will depend on a and 5.)

Solution: There are 4 statements outside of the while loop. The while loop goes
through [£] iterations, and each iteration executes two statements. Thus the
answer is 4+2[%].
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Conditional Proof







CHAPTER 7

Quantified Statements

e have seen that the symbols A, v, ~, = and © can guide the logical

flow of algorithms. We have learned how to use them to deconstruct

many English sentences into a symbolic form. We have studied how this

symbolic form can help us understand the logical structure of sentences

and how different sentences may actually have the same meaning (as in

logical equivalence). This will be particularly significant as we begin proving
theorems in the next chapter.

But these logical symbols alone are not powerful enough to capture 