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Approximating the Second Derivative

@ From last time, we derived that:

F(x) ~ f(x +h) - 2fh(2x) +f(x —h)

the truncation error is O(h?).

@ Further, rounding error analysis predicts rounding errors of
size about ¢/h?.

@ Therefore, the smallest total error occurs when h is about
¢1/4 and then the truncation error and the rounding error
are each about /.

@ With machine precision € ~ 106, this means that h
should not be taken to be less than about 10~4.
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Numerical Derivatives on MATLAB

@ In order to actively see the rounding effects in the second
order approximation, let us use MATLAB.

@ You will find the following MATLAB code on the course
webpage:

f = inline(’'sin(x)’);
fppTrue = inline(-sin(x)’);

h = 0.1;
X = pil3;
fprintf(’ h Abs. Erron\n’);
fprintf(’ \n’);
for i = 1:6
fpp = (f(x+h) - 2 *f(x) + f(x-h))/h"2;
fprintf('%7.1e %8.1e\n’,h,abs(fpp-fppTrue(x)))
h = h/10; 3
end / T
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Rounding errors in action

This MATLAB code produces the following table:

h Abs. Error
1.0e-001 7.2e-004
1.0e-002 7.2e-006
1.0e-003 7.2e-008
1.0e-004 3.2e-009
1.0e-005 3.7e-007
1.0e-006 5.1e-005
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Your Turn

@ Download the code secondDeriv.m from the course web
page.

@ Edit the code such that it approximates the second
derivative of f(x) = x3 — 2 x x2 + x at the point x = 1.

@ Again, let your initial h = 0.1.

@ After running the code change x from x = 1 to x = 1000.
What do you notice?
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Rounding errors again

@ Your code should have changed the inline functions to the

following:
f = inline(x"3 - 2 *X2 + X);
fppTrue = inline('6 *X - 4",
@ This MATLAB code produces the following table:
h Abs. Error
1.0e-001 7.2e-004
1.0e-002 7.2e-006
1.0e-003 7.2e-008
1.0e-004 3.2e-009
1.0e-005 3.7e-007
1.0e-006 5.1e-005
@ How small h can be depends on the size of x. f T
i\
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Recognizing Error Behavior

@ Last time we also saw that Taylor Series of f about the
point x and evaluated at x + h and x — h leads to the
central difference formula:

f(x +h) —f(x —h) h?

h4
/ _ A 1/ T £(5) .

@ This formula describes precisely how the error behaves.

@ This information can be exploited to improve the quality of
the numerical solution without ever knowing f,f®), . . ..

@ Recall that we have a O(h?) approximation.
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Exploiting Knowledge of Higher Order Terms

@ Let us rewrite this in the following form:

f'(xo) = N(h) — h_zf”’(xo) — h_4f(5)(xo) —
6 120
where N(h) = W
@ The key of the process is to now replace h by h/2 in this

formula.

Complete this step:

H
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Canceling Higher Order Terms

Therefore, you find

/ h h2 " h4 (5)
Flxo) =N {5 ) =555 (%) = 155" (X0) =+

Look closely at what we had from before:

F(0) = N(h) — " 17(x0) — 121 xg) =
6 120

Careful substraction cancels a higher order term.

4f'(x0) = 4N (g) CaEp(xg) — A B (xg) -

1920
_f'(xo) = —N(h) + %f/"(xo) + 1h_;Of(5)(XO) 4
3f'(xo) = 4N <%) — N(h) + O (xg) 4

H
il !
i}
Tim Chartier and Anne Greenbaum Richardson’s Extrapolation



A Higher Order Method

@ Thus,

f/(XO) =N <h> 4 N(h/Z)—N(h) + h4 f(S)(Xo)+

2 3 160

is a O(h%) formula.

@ Notice what we have done. We took two O(h?)
approximations and created a O(h*) approximation.

@ We did require, however, that we have functional
evaluations at h and h/2.

H
il !
i}
Tim Chartier and Anne Greenbaum Richardson’s Extrapolation



Further observations

@ Again, we have the O(h%) approximation:

f/(x0) = N (g) + NO/2) ZNO) | 4660 g) -

@ This approximation requires roughly twice as much work
as the second order centered difference formula.

@ However, but the truncation error now decreases much
faster with h.

@ Moreover, the rounding error can be expected to be on the
order of ¢/h, as it was for the centered difference formula,
so the greatest accuracy will be achieved for h% ~ e/h, or,
h =~ /3, and then the error will be about ¢4/5.
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@ Consider f(x) = x exp(x) with X = 2.0 and h = 0.2. Use
the central difference formula to the first derivative and
Richardson’s Extrapolation to give an approximation of
order O(h%).

@ Recall N(h) = fx + h)z—hf(x —h).

@ Therefore, N(0.2) = 22.414160.
@ What do we evaluate next?

NC )=
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@ Consider f(x) = x exp(x) with X = 2.0 and h = 0.2. Use
the central difference formula to the first derivative and
Richardson’s Extrapolation to give an approximation of
order O(h%).

@ Recall N(h) = fx + h)z—hf(x —h).

@ Therefore, N(0.2) = 22.414160.
@ What do we evaluate next?

N( )=
@ We find N(h/2) = N(0.1) = 22.228786.
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Example cont.

@ Therefore, our higher order approximation is
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Example cont.

@ Therefore, our higher order approximation is

@ In particular, we find the approximation:

f(xg) = N (g) N N(h/2)3N(h)
N(0.1) — N(0.2)
3

= N(0.1) +
= 22.1670.

@ Note, f/(x) = x exp(x) + exp(x), so f'(x) = 22.1671 to four
decimal places.

@ You should find that from approximations that contain zero
decimal places of accuracy we attain an approximation T
with two decimal places of accuracy with truncation. \
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Richardson’s Extrapolation

@ This process is known as Richardson’s Extrapolation.

@ More generally, assume we have a formula N(h) that
approximates an unknown value M and that
M — N(h) = Kih + Kyh? + Kzh® + ... |
for some unknown constants Ky, K, Ks, . ... Note that in
this example, the truncation error is O(h).

@ Without knowing K1, Ky, Ks, ... it is possible to produce a
higher order approximation as seen in our previous
example.

@ Note, we could use our result from the previous example to
produce an approximation of order O(h®). To understand
this statement more, let us look at an example.
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Example from numerical integration

The following data gives approximations to the integral

s
M :/ sin xdx.
0

Ny(h) = 1.570796, N, (g) = 1.896119, N; (g) -
1.974242

Assuming M = Ny (h) 4 K;{h? 4+ K;h?* 4 K3h® + K4h8 + O(h10)
construct an extrapolation table to determine an order six
approximation.

Solution As before, we evaluate our series at h and h/2 and
get:

M = N1(h) + K;h? + Koh?* 4 K3h® + K4h8 + 0(h1Y), and
2 4 6

h h® 10y
M = Ni(h/2) + K17 +Kogg + Kagz +Kaggs +O(W0) 1
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Example Continued

Therefore,
N1 (g) + o Kh? 4+ KP4 KR 4
M = N(h) —  Kih? — Kh* — K ..
4N1 (%) Nl + R2h4 + R3h6 —+ -

h
h Nl(i)—Nl(m Ch e
ThUS M—Nl E —|—K2h —|—K3h .

_ h N; (% — Ny(h)
Letting N> = N; <—> + we get

M = Na(h) + Kh* + K3h8.
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Example Continued?

Again, M = Ny(h) + Kh?* 4 K3h®.

Therefore, M = N, h + iK2h4 + iK3h6 which leads to:
2 16 64
16M = 16N, ) + Koh* 4+ IRgh® ...
—-M = Nz(h) — K2h4 — R3h6 + .-
15M = 16N, (g) - + O(h®)

ny_
Hence, M = N, <g) + 7N2(2)15N2(h) + O(h®).
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Example Continued?®

In terms of a table, we find:

: N1 (2)=Nj(h N-(PY=N,(h

Given Ng (1) L NGt (3) + 2(3) Nt
N;(h) = 1.570796
N1 =1.896119 N2(h) = 2.004560

N, (1) = 1.974242 | N, (g) — 2.000270 | 1.999984

BT NIT

In the chapter on humerical integration, we see that this is the
basis of a Romberg integration.
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Example summary

Take a moment and reflect on the process we just followed.

@ We began with O(h?) approximations for which we knew
the Taylor expansion.

@ We used our O(h?) approximations to find N, which were
order O(h%*) and again for which we knew the Taylor
expansions.

@ Finally, we used the N, approximations to find an O(h®)
approximation.

@ Could we continue this to find an order 8 approximation? It
depends — remember that reducing h can lead to round-off
error. As long as we don't hit that threshold, then our
computations do not corrupt our Taylor expansion.
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