RIEMANN'S ZETA FUNCTION AND NEWTON'S METHOD: NUMERICAL EXPERIMENTS FROM A COMPLEX-DYNAMICAL VIEWPOINT *

Tomoki Kawahira

Nagoya University, Nagoya, JAPAN URL: http://math.nagoya-u.ac.jp/~kawahira

Abstract. We apply some root finding algorithms to characterize the zeros of Riemann's zeta. Finally we propose the *Dynamical Riemann Hypothesis* which state the Riemann Hypothesis in terms of dynamical systems.

1 Riemann's zeta and primes

For $s = \sigma + it \in \mathbb{C}$, one can easily see that the series

$$\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} \cdots = \prod_{n=1}^{\infty} \left(1 - \frac{1}{p_n^s}\right)^{-1}$$

converges if $\sigma > 1$, where p_n is the *n*th prime number. Indeed, $\zeta(s)$ is analytic on $\{\text{Re } s = \sigma > 1\}$ and by analytic continuation we consider it a meromorphic function $\zeta : \mathbb{C} \to \bar{\mathbb{C}}$ with only one pole at s = 1, which is simple.

The Riemann Hypothesis. The most famous conjecture on Riemann's zeta function is: ζ has non-real(non-trivial) zeros only on the critical line

^{*}Poster presented at Kanazawa, June 20-24, 2005. Revised on Aug 29 2006. After I presented this poster, I learned that several people were working on this subject before my experiment. Aimo Hinkkanen published a paper on some properties on relaxed Newton's method for Riemann's zeta. Dierk Schleicher and his student generated a picture of λ several years ago. Nick Sullivan generated some pictures of ν in 2002. Here I do not intend to present *new pictures*, but I suggest a possible direction of investigations of the zero-free region in the critical stripe.

Re $s = \sigma = 1/2$ (the Riemann Hypothesis). If this conjecture is affirmative, we will have a nice result on the distribution of prime numbers;

$$p_{n+1} - p_n = O(p_n^{1/2} \log p_n).$$

This is better than any known results, for example;

$$p_{n+1} - p_n = O(p_n^{0.525 + \epsilon})$$

for any $\epsilon > 0$. To show the hypothesis, it is known that we only have to care the zeros on the critical stripe $S = \{s \in \mathbb{C} : 0 < \text{Re } s < 1\}$. In particular, wider zero-free regions imply better estimates of distribution of primes.

For example, it is known that there exists a constant A > 0 such that

$$\left\{ s = \sigma + it \in \mathcal{S} : \sigma \ge 1 - \frac{A}{(\log(|t|+1))^{2/3}(\log\log(|t|+1))^{1/3}} \right\}$$

is zero-free.

2 Newton's method

There are some root finding algorithms, but the most famous one would be Newton's method. From now on, we work with complex variable z = x + yi instead of conventional s for ζ .

For a meromorphic function $f: \mathbb{C} \to \bar{\mathbb{C}}$, we define its Newton's map N_f by

$$N_f(z) = z - \frac{f(z)}{f'(z)},$$

which is again meromorphic. One can easily check that $f(\alpha) = 0$ iff $N_f(\alpha) = \alpha$. The idea of Newton's method is: Start with an initial value z_0 sufficiently close to α . Then the sequence $\{z_n\}$ defined by $z_{n+1} = N_f(z_n)$ converges (rapidly) to α .

More precisely, we have the following property:

If α is a simple zero of f, then $N_f(\alpha) = \alpha$ and $N'_f(\alpha) = 0$. Thus

$$N_f(z) - \alpha = O((z - \alpha)^2) \quad (z \to \alpha).$$

If α is a multiple zero, then $N_f(\alpha) = \alpha$ and $|N'_f(\alpha)| < 1$. Thus

$$|N_f(z) - \alpha| \leq C|z - \alpha| \quad (z \to \alpha)$$

for some
$$0 < C < 1$$
.

Hence the precision of z_n as an approximate value of α is exponentially or linearly increasing according to the multiplicity of α .

Newton's method as a dynamical systems. What makes this method more intriguing is the theory of iteration of holomorphic function developed by Fatou and Julia in early 1920s. For given $z_0 \in \mathbb{C}$, convergence of $z_n = N_f^n(z_0)$ (where N_f^n is nth iteration of N_f) is not guaranteed in general. To investigate the behaver of such sequence, we consider the global dynamical systems

$$\bar{\mathbb{C}} \xrightarrow{N_f} \bar{\mathbb{C}} \xrightarrow{N_f} \bar{\mathbb{C}} \xrightarrow{N_f} \cdots$$

given by iteration of Newton's map. (As we will see, we need a spacial care for poles of N_f .) For example, set $f(z) := z^3 - 1$. Then the iteration of its Newton's map gives the following picture (Figure 1):

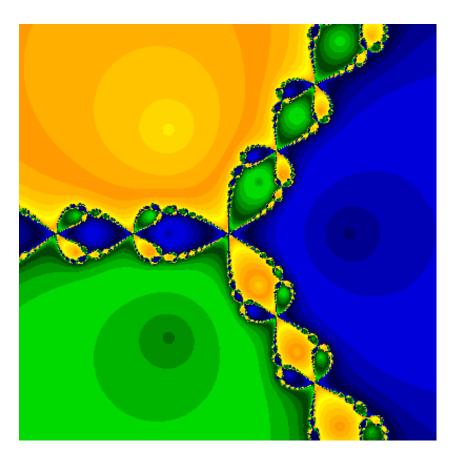


Figure 1: Dynamics of N_f for $f(z) = z^3 - 1$.

Blue, yellow, and green regions are the set of initial values z_0 such that the orbit $z_n = N_f^n(z_0)$ converges to $1, \frac{-1+\sqrt{3}i}{2}$, and $\frac{-1-\sqrt{3}i}{2}$ respectively. Shades distinguish the number of iteration to trap the orbit in small disks around roots. The boundary of these regions has complicated structure known as *fractal*. It is the *Julia set* of N_f , where the dynamics shows chaotic behavior. In particular, orbits from the Julia set stay within the Julia set and never converge to the roots.

Newton's method for meromorphic functions. If f is a rational function, then so is N_f thus it has no essential singularity. For a meromorphic function f, its Newton's map has an essential singularity at infinity. Since $N_f(\infty)$ is indeterminate, we must stop the iteration when the orbit lands on a pole of N_f . In this particular setting, we define its $Fatou\ set\ F(N_f)$ by:

$$z_0 \in F(N_f)$$

 $\iff \exists U \text{ a nbd of } z_0 \text{ s.t. } \{N_f^n|U\}_{n\geq 0} \text{ is defined and a normal family}$

The Julia set $J(N_f)$ is the complement $\mathbb{C} - F(N_f)$.

3 Applying the method to zeta.

Now let us apply Newton's method to Riemann's zeta. For the meromorphic function $\zeta: \mathbb{C} \to \bar{\mathbb{C}}$, we set

$$\nu(z) := N_{\zeta}(z) = z - \frac{\zeta(z)}{\zeta'(z)}.$$

We also apply the method to the functions

$$\eta(z) := (z-1)\zeta(z)$$

and

$$\xi(z) = \frac{1}{2}z(1-z)\pi^{z/2}\Gamma(z/2)\zeta(z),$$

where $\xi(z)$ a classical zeta-related function with symmetry $\xi(z) = \xi(1-z)$. Since $\eta(z)$ and $\xi(z)$ are entire functions, we may expect better dynamics for

$$\mu(z) := z - \frac{\eta(z)}{\eta'(z)}$$
 and $\lambda(z) := z - \frac{\xi(z)}{\xi'(z)}$.

Now let us go to the gallery!

Pictures for ν . The first picture is on the dynamics of ν . The coloring indicates the number of iteration to trap the orbits in attracting fixed points:

0 = orange < yellow < green < blue < purple < red = maximum.

Probably points colored in red are close to the Julia set.

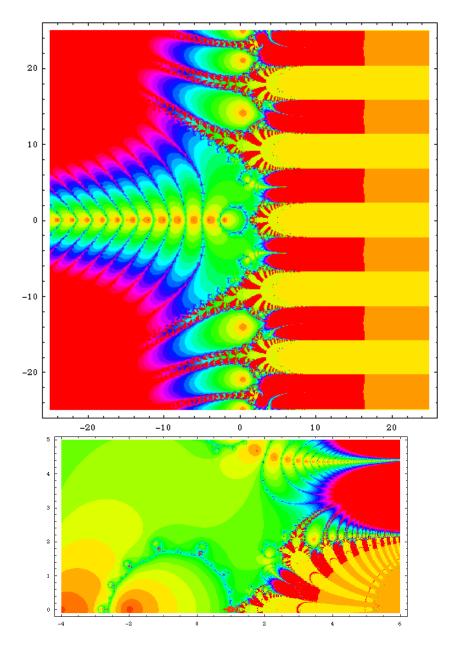


Figure 2: The orange dots are arrayed on $-2\mathbb{N}$ and the critical line. The picture in the bottom is a magnification near the origin. Probably the sequence of orange dots near $\{\operatorname{Im} z = 4.5\}$ are preimages of $-2\mathbb{N}$.

Pictures for μ Next we show the pictures of the dynamics of μ . The Julia set of μ seems much simpler.

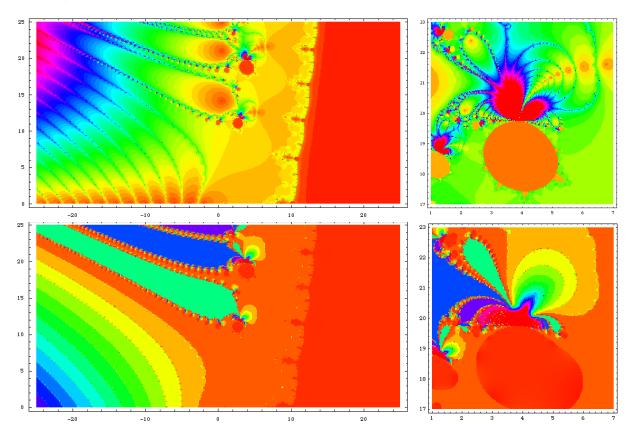


Figure 3: The Julia set of $\mu(z)$. The pictures in the second row are colored to distinguish the fixed points to converge. The pictures on the right shows the details of a prospective pole of $\mu(z)$ ("A head of chicken").

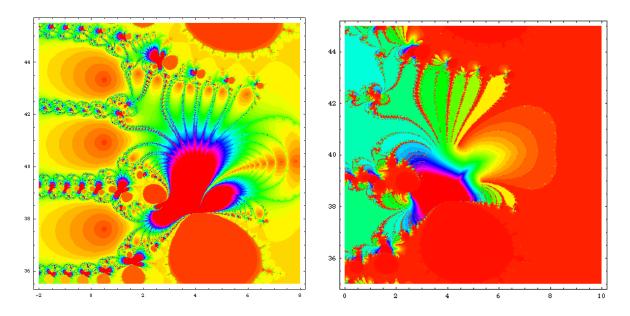


Figure 4: Head of another chicken in different colorings.

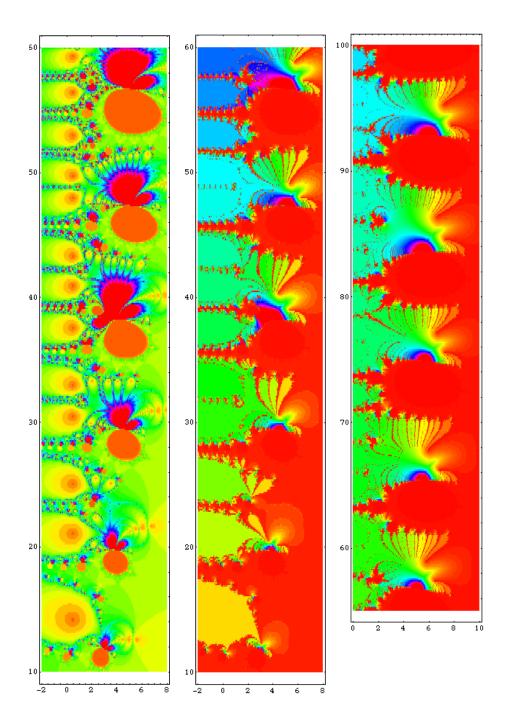


Figure 5: Chickens for $\mu(z)$. Heads appear constantly in this range, though the zeros get denser as their imaginary parts increase.

Pictures for λ . Finally we go to λ . One can easily check that the Newton's map λ has a symmetry with respect to the point z = 1/2. The dynamics seems the simplest, but the calculation for λ is the heaviest.

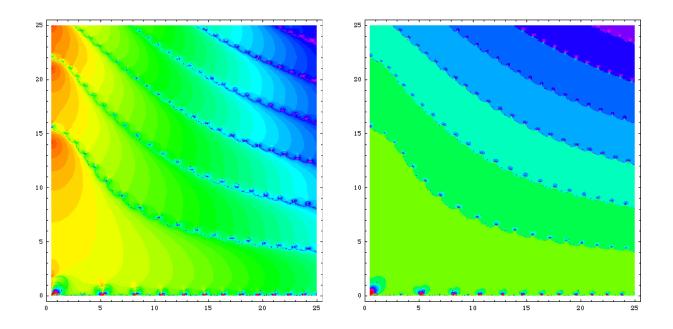


Figure 6: Julia sets for $\lambda(z)$. The dynamics seems very simple: Probably each layer has conformally the same dynamics as $z\mapsto z^2$ on the unit disk.

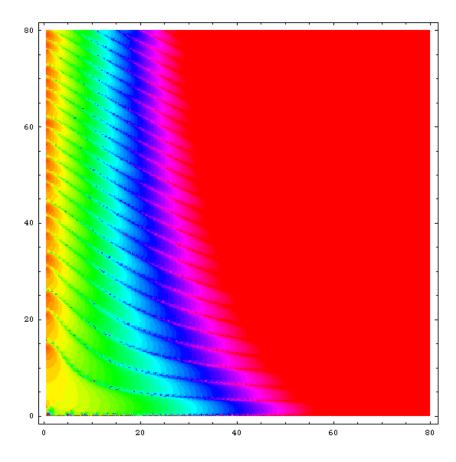


Figure 7: Julia set for $\lambda(z)$ (large scaled).

4 Further applications of the theory of dynamical systems

For these Newton's maps, we have:

fixed-point-free region of ν , μ , and $\lambda \implies$ zero-free region of ζ .

For example, if $\nu(D) \cap D = \emptyset$ for some region D then ζ is zero-free on D. Hence the problem of zero-free region is translated to be rather topological.

More generally, to Riemann's zeta function $\zeta(z)$, one may apply other root finding algorithms, or functions of the form

$$\nu_h(z) = z + h(z)\zeta(z)$$

with holomorphic h(z) which does not vanish on the critical stripe S minus the critical line. We temporarily say such functions are generalized ν functions. For these functions, zeros of $\zeta(z)$ do not necessarily attract nearby points. However, $\zeta(\alpha) = 0$ still implies that α is a fixed point of ν_h .

Now our translation of the Riemann Hypothesis is:

Dynamical Riemann Hypothesis. Any fixed points of generalized ν -functions in the critical stripe \mathcal{S} are arrayed on the critical line.

This is slightly stronger than the original.

For example, even the dynamics of

$$\nu_1(z) = z + \zeta(z)$$

is intriguing to work with. Of course, the entire function

$$\nu_{z-1}(z) = z + (z-1)\zeta(z)$$

may be easier to work with. I hope the Dynamical Riemann Hypothesis brings new perspective for the theory of zeta functions.

Acknowledgment. I would like to thank K. Matsumoto for giving me this opportunity to present this work, and some valuable comments. His articles on Riemann's zeta were helpful also.

5 References

Books about Riemann's zeta function:

- [1] H.M. Edwards. Riemann's Zeta Function. Academic Press, 1974.
- [2] A. Ivić. The Riemann Zeta-Function. Wiley. 1985.

Books about complex dynamics:

- [3] A.F. Beardon. Iteration of Rational Functions. Springer-Verlag, 1991.
- [4] L. Carleson and T. Gamelin. *Complex Dynamics*. Springer-Verlag, 1993.
- [5] X-H. Hua and C-C. Yang. *Dynamics of Transcendental Functions*. Gordon and Breach Science Publishers, 1998.
- [6] J. Milnor. Dynamics in one complex variable: Introductory lectures. vieweg, 1999.

A survey on dynamics of meromorphic functions:

[7] W. Bergweiler. Iteration of meromorphic functions. Bull. Amer. Math. Soc., 26(1999), 151–188.

For the theory of root finding algorithms;

[8] P. Henrici. Elements of Numerical Analysis. Wiley, 1964.