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Abstract. We apply some root finding algorithms to characterize the zeros

of Riemann’s zeta. Finally we propose the Dynamical Riemann Hypothesis

which state the Riemann Hypothesis in terms of dynamical systems.

1 Riemann’s zeta and primes

For s = σ + it ∈ C, one can easily see that the series

ζ(s) = 1 +
1

2s
+

1

3s
· · · =

∞∏
n=1

(
1 − 1

ps
n

)−1

converges if σ > 1, where pn is the nth prime number. Indeed, ζ(s) is

analytic on {Re s = σ > 1} and by analytic continuation we consider it a

meromorphic function ζ : C → C̄ with only one pole at s = 1, which is

simple.

The Riemann Hypothesis. The most famous conjecture on Riemann’s

zeta function is: ζ has non-real(non-trivial) zeros only on the critical line
∗Poster presented at Kanazawa, June 20-24, 2005. Revised on Aug 29 2006. After I presented this

poster, I learned that several people were working on this subject before my experiment. Aimo Hinkkanen
published a paper on some properties on relaxed Newton’s method for Riemann’s zeta. Dierk Schleicher
and his student generated a picture of λ several years ago. Nick Sullivan generated some pictures of ν in
2002. Here I do not intend to present new pictures, but I suggest a possible direction of investigations of
the zero-free region in the critical stripe.
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Re s = σ = 1/2 (the Riemann Hypothesis). If this conjecture is affirmative,

we will have a nice result on the distribution of prime numbers;

pn+1 − pn = O(p1/2
n log pn).

This is better than any known results, for example;

pn+1 − pn = O(p0.525+ε
n )

for any ε > 0. To show the hypothesis, it is known that we only have to care

the zeros on the critical stripe S = {s ∈ C : 0 < Re s < 1}. In particular,

wider zero-free regions imply better estimates of distribution of primes.

For example, it is known that there exists a constant A > 0 such that{
s = σ + it ∈ S : σ ≥ 1 − A

(log(|t| + 1))2/3(log log(|t| + 1))1/3

}

is zero-free.

2 Newton’s method

There are some root finding algorithms, but the most famous one would be

Newton’s method. From now on, we work with complex variable z = x+yi

instead of conventional s for ζ.

For a meromorphic function f : C → C̄, we define its Newton’s map Nf

by

Nf(z) = z − f(z)

f ′(z)
,

which is again meromorphic. One can easily check that f(α) = 0 iff

Nf(α) = α. The idea of Newton’s method is: Start with an initial value z0

sufficiently close to α. Then the sequence {zn} defined by zn+1 = Nf(zn)

converges (rapidly) to α.

More precisely, we have the following property:

If α is a simple zero of f , then Nf(α) = α and N ′
f(α) = 0. Thus

Nf(z) − α = O((z − α)2) (z → α).

If α is a multiple zero, then Nf(α) = α and |N ′
f(α)| < 1. Thus

|Nf(z) − α| ≤ C|z − α| (z → α)
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for some 0 < C < 1.

Hence the precision of zn as an approximate value of α is exponentially or

linearly increasing according to the multiplicity of α.

Newton’s method as a dynamical systems. What makes this method

more intriguing is the theory of iteration of holomorphic function developed

by Fatou and Julia in early 1920s. For given z0 ∈ C, convergence of zn =

Nn
f (z0) (where Nn

f is nth iteration of Nf) is not guaranteed in general. To

investigate the behaver of such sequence, we consider the global dynamical

systems

C̄
Nf−→ C̄

Nf−→ C̄
Nf−→ · · ·

given by iteration of Newton’s map. (As we will see, we need a spacial care

for poles of Nf .) For example, set f(z) := z3 − 1. Then the iteration of its

Newton’s map gives the following picture (Figure 1):

Figure 1: Dynamics of Nf for f(z) = z3 − 1.
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Blue, yellow, and green regions are the set of initial values z0 such

that the orbit zn = Nn
f (z0) converges to 1, −1+

√
3i

2 , and −1−√
3i

2 respectively.

Shades distinguish the number of iteration to trap the orbit in small disks

around roots. The boundary of these regions has complicated structure

known as fractal. It is the Julia set of Nf , where the dynamics shows

chaotic behavior. In particular, orbits from the Julia set stay within the

Julia set and never converge to the roots.

Newton’s method for meromorphic functions. If f is a rational func-

tion, then so is Nf thus it has no essential singularity. For a meromorphic

function f , its Newton’s map has an essential singularity at infinity. Since

Nf(∞) is indeterminate, we must stop the iteration when the orbit lands

on a pole of Nf . In this particular setting, we define its Fatou set F (Nf)

by:

z0 ∈ F (Nf)

⇐⇒ ∃U a nbd of z0 s.t.
{
Nn

f |U
}

n≥0 is defined and a normal family

The Julia set J(Nf) is the complement C − F (Nf).

3 Applying the method to zeta.

Now let us apply Newton’s method to Riemann’s zeta. For the meromor-

phic function ζ : C → C̄, we set

ν(z) := Nζ(z) = z − ζ(z)

ζ ′(z)
.

We also apply the method to the functions

η(z) := (z − 1)ζ(z)

and

ξ(z) =
1

2
z(1 − z)πz/2Γ(z/2)ζ(z),

where ξ(z) a classical zeta-related function with symmetry ξ(z) = ξ(1−z).

Since η(z) and ξ(z) are entire functions, we may expect better dynamics

for

µ(z) := z − η(z)

η′(z)
and λ(z) := z − ξ(z)

ξ′(z)
.
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Now let us go to the gallery!

Pictures for ν. The first picture is on the dynamics of ν. The coloring

indicates the number of iteration to trap the orbits in attracting fixed

points:

0 = orange < yellow < green < blue < purple < red = maximum.

Probably points colored in red are close to the Julia set.

Figure 2: The orange dots are arrayed on −2N and the critical line. The picture in the

bottom is a magnification near the origin. Probably the sequence of orange dots near

{Im z = 4.5} are preimages of −2N.
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Pictures for µ Next we show the pictures of the dynamics of µ. The Julia

set of µ seems much simpler.

Figure 3: The Julia set of µ(z). The pictures in the second row are colored to distinguish

the fixed points to converge. The pictures on the right shows the details of a prospective

pole of µ(z) (“A head of chicken”).

Figure 4: Head of another chicken in different colorings.
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Figure 5: Chickens for µ(z). Heads appear constantly in this range, though the zeros get

denser as their imaginary parts increase.

Pictures for λ. Finally we go to λ. One can easily check that the Newton’s

map λ has a symmetry with respect to the point z = 1/2. The dynamics

seems the simplest, but the calculation for λ is the heaviest.
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Figure 6: Julia sets for λ(z). The dynamics seems very simple: Probably each layer has

conformally the same dynamics as z �→ z2 on the unit disk.

Figure 7: Julia set for λ(z) (large scaled).
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4 Further applications of the theory of dynamical

systems

For these Newton’s maps, we have:

fixed-point-free region of ν, µ, and λ =⇒ zero-free region of ζ.

For example, if ν(D) ∩ D = ∅ for some region D then ζ is zero-free on D.

Hence the problem of zero-free region is translated to be rather topological.

More generally, to Riemann’s zeta function ζ(z), one may apply other

root finding algorithms, or functions of the form

νh(z) = z + h(z)ζ(z)

with holomorphic h(z) which does not vanish on the critical stripe S minus

the critical line. We temporarily say such functions are generalized ν-

functions. For these functions, zeros of ζ(z) do not necessarily attract

nearby points. However, ζ(α) = 0 still implies that α is a fixed point of νh.

Now our translation of the Riemann Hypothesis is:

Dynamical Riemann Hypothesis. Any fixed points of gen-

eralized ν-functions in the critical stripe S are arrayed on the

critical line.

This is slightly stronger than the original.

For example, even the dynamics of

ν1(z) = z + ζ(z)

is intriguing to work with. Of course, the entire function

νz−1(z) = z + (z − 1)ζ(z)

may be easier to work with. I hope the Dynamical Riemann Hypothesis

brings new perspective for the theory of zeta functions.
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