
Chapter 1

Riemann surfaces

1.1 Definition of a Riemann surface and basic examples

In its broadest sense a Riemann surface is a one dimensional complex manifold that
locally looks like an open set of the complex plane, while its global topology can be quite
different from the complex plane. The main reason why Riemann surfaces are interesting
is that one can speak of complex functions on a Riemann surface as much as the complex
function on the complex plane that one encounters in complex analysis.

Elementary example of Riemann surfaces are the complex plane C, the disk

D “ tz P C, |z| ă 1u

or the upper half space

H “ tz P C, =pzq ą 0u.

B. Riemann introduced the concept of Riemann surface to make sense of multivalued
functions like the square root or the logarithm. For the geometric representation of multi-
valued functions of a complex variable w “ wpzq it is not convenient to regard z as a
point of the complex plane. For example, take w “

?
z. On the positive real semiaxis

z P R, z ą 0 the two branches w1 “ `
?

z and w2 “ ´
?

z of this function are well
defined by the condition w1 ą 0. This is no longer possible on the complex plane. Indeed,
the two values w1, 2 of the square root of z “ r eiψ

w1 “
?

r eiψ2 , w2 “ ´
?

r eiψ2 “
?

reiψ`2π
2 , (1.1)

interchange when passing along a path

zptq “ r ei pψ`tq, t P r0, 2πs

1
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encircling the point z “ 0. It is possible to select a branch of the square root as a function
of z by restricting the domain of this function for example, by making a cut from zero to
infinity. Namely the function

?
z is single-valued in the cut plane Czr0,`8q. Riemann’s

idea was to combine the two branches of the function
?

z in a geometric space in such a
way that the function is well defined and single-valued. The rules are as follows: one has
to take two copies of the complex plane cut along the positive real axis and join the two
copies of the complex plane along the cuts. The different sheets have to be glue together
in such a way that the branch of the function on one sheet joins continuously with the
branch defined on the other sheet. The result of this operation is the surface in figure 1.1.

Figure 1.1: The two branches of the function
?

z

Note that such surface can be given for pw, zq P C2 as the zero locus

Fpz,wq “ w2 ´ z “ 0.

A similar procedure of cutting and glueing can be repeated for any other analytic function.
For example the logarithm log z is a single valued function on Czr0,`8q with infinite
branches. Each adjacent branch differs by an additive factor 2πi. The infinite branches
attached along the positive real line are shown in the figure 1.2.

Next we will give a more abstract definition of a Riemann surface and we will show
how the surface defined by the graph of a multivalued function fits in this definition. Let
us recall that a Hausdorff topological space is such that distinct points have distinct open
neighbourhoods.

Definition 1.1. A Riemann surface Γ is defined by the following data:

• a connected Hausdorff topological space Γ;
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Figure 1.2: The infinite branches of the function log z

• an open cover tUαuαPA of Γ;

• for each α P A, a homeomorphism φα

φα : Uα Ñ Vα

to an open subset Vα Ă C in such a way that for each α, β P A, if Uα X Uβ , H, the
transition functions

φβ ˝ φ
´1
α : φαpUα XUβq Ñ φβpUα XUβq,

is bi-holomorphic, namely, holomorphic with inverse holomorphic.

Remark 1.2. Let us observe that the sets φαpUα XUβq and φβpUα XUβq, are subsets of the
complex plane, and therefore the request of having holomorphic maps between these two
subsets makes sense.

The pair tUα, φαu is called complex chart. Complex charts are also called local pa-
rameters or local coordinates. Two charts pUα, φαq and pUβ, φβq are compatible if either
Uα X Uβ “ H or the transition function φβ ˝ φ´1

α is bi-holomorphic. If all the complex
charts tUα, φαuαPA are compatible, they form a complex atlasA of Γ. Two complex atlas
A and Ã are compatible if their unionAY Ã is a complex atlas. The equivalence class of
complex atlas is called a complex structure or also a conformal structure. With the definition
of complex structure we can define a Riemann surface in the equivalent way.

Definition 1.3. A Riemann surface is a connected one-complex dimensional analytic manifold,
or a two real dimensional connected manifold with a complex structure on it.
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Let φ and φ̃ be two local homeomorphism from two open sets U and Ũ of Γ with
U X Ũ ,H. Let P and P0 two points in U X Ũ and denote by z “ φpPq and w “ φ̃pPq the
two local coordinates with z0 “ φpP0q and w0 “ φ̃pP0q. Then the holomorphic transition
function T “ φ ˝ φ̃´1 must be of the form

z “ Tpwq “ Tpw0q `
ÿ

ką0

akpw´ w0q
k, a1 , 0 (1.2)

with holomorphic inverse

w “ T´1pzq “ T´1pz0q `
ÿ

ką0

bkpz´ z0q
k, b1 , 0,

namely the linear coefficient of the above Taylor expansions near the point w0 or z0 is
necessarily nonzero.

Remark 1.4. We recall that that a manifold is called orientable if it has an atlas whose
transition functions have positive Jacobian determinant. If Γ is a Riemann surface, then
the manifold Γ is orientable. Indeed let z “ x ` iy be a local coordinate in some open
neighbourhood of z0 in Γ. Another local coordinate w “ u` iv is connected with the first
by a holomorphic change of variable w “ Tpzq with w0 “ Tpz0q which thus determines a
smooth change of real coordinates. We want to show that the determinant

det

¨

˚

˝

Bu
Bx

Bu
By

Bv
Bx

Bv
By

˛

‹

‚
“ uxvy ´ uyvx

calculated in px0, y0q is positive. We observe that w “ wpzq is a holomorphic function of z

and
dw
dz
|z“z0 , 0. We can use Cauchy Riemann equations ux “ vy and uy “ ´vx to write

dw
dz
“ ux ´ iuy and

dw
dz̄
“ ux ` iuy to conclude that

det

¨

˚

˝

Bu
Bx

Bu
By

Bv
Bx

Bv
By

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ x“x0y“y0

“ pu2
x ` u2

yq| x“x0y“y0
“

ˇ

ˇ

ˇ

ˇ

dw
dz

ˇ

ˇ

ˇ

ˇ

2

z“z0

ą 0.

Example 1.5. Elementary examples of Riemann surfaces

(a) The complex plane C. The complex atlas is define by one chart that is C itself with
the identity map.
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(b) The extended complex plane C̄ “ C Y 8, namely the complex plane C with one
extra point8. We make C̄ into a Riemann surface with an atlas with two charts:

U1 “ C

U2 “ C̄zt0u,

with φ1 the identity map and

φ2pzq “
"

1{z, for z P Czt0u
0, for z “ 8.

1.1.1 Affine plane curves

Let us consider a polynomial Fpz,wq “
řn

i“1 aipzqwi of two complex variables z and w.
The zero set Fpz,wq defines a n-valued function w “ wpzq. The basic idea of Riemann
surface theory is to replace the domain of the function wpzq by its graph

Γ :“ tpz,wq P C2 | Fpz,wq “
n
ÿ

i“0

aipzqwn´i “ 0u (1.3)

and to study the function w as a single-valued function on Γ rather then a multivalued
function of z. As in the example of

?
z, the multivalued function w “ wpzq “

?
z becomes

a single-valued function w “ wpPq of a point P of the algebraic surface Γ: if P “ pz,wq P Γ,
then wpPq “ w (the projection of the graph on the the w-axis). From the real point of
view the algebraic curve (1.3) is a two-dimensional surface in C2 “ R4 given by the two
equations

<Fpz,wq “ 0
=Fpz,wq “ 0

*

.

In the theory of functions of a complex variable one encounters also more complicated
(nonalgebraic) curves, where Fpz,wq is not a polynomial. For example, the equation
ew´ z “ 0 determines the surface of the logarithm or sin w´ z “ 0 determines the surface
of the arcsin. Such surfaces will not be considered here.

Definition 1.6. An affine plane curve Γ is a subset in C2 defined by the equation (1.3 ) where
Fpz,wq is polynomial in z and w. The curve Γ is nonsingular if for any point P0 “ pz0,w0q P Γ
the complex gradient vector

gradCF|P0 “

ˆ

BFpz,wq
Bz

,
BFpz,wq
Bw

˙
ˇ

ˇ

ˇ

ˇ

pz“z0,w“w0q

does not vanish. If the polynomial Fpz,wq is irreducible, the curve Γ is called irreducible affine
plane curve.
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Remark 1.7. A non trivial theorem states that an irreducible affine plane curve is connected
(see Theorem 8.9 in O. Forster, Lectures on Riemann surfaces, Springer Verlag 1981).

In order to define a complex structure on Γ we need the following complex version of
the implicit function theorem.

Lemma 1.8. [Complex implicit function theorem] Let Fpz,wq be an analytic function of the
variables z and w in a neighborhood of the point P0 “ pz0,w0q such that Fpz0,w0q “ 0 and
BwFpz0,w0q , 0. Then there exists a unique function φpzq such that Fpz, φpzqq “ 0 and
φpz0q “ w0. This function is analytic in z in some neighborhood of z0.

Proof. Let z “ x ` iy and w “ u ` iv, F “ f ` ig. Then the equation Fpz,wq “ 0 can be
written as the system

"

f px, y,u, vq “ 0
gpx, y,u, vq “ 0 (1.4)

The condition of the real implicit function theorem are satisfied for this system: the matrix

¨

˚

˚

˚

˝

B f
Bu

B f
Bv

Bg
Bu

Bg
Bv

˛

‹

‹

‹

‚

pz0,w0q

is nonsingular because

det

¨

˚

˚

˚

˝

B f
Bu

B f
Bv

Bg
Bu

Bg
Bv

˛

‹

‹

‹

‚

“

ˇ

ˇ

ˇ

ˇ

BF
Bw

ˇ

ˇ

ˇ

ˇ

2

ą 0,

( we use only the analyticity in w of the function Fpz,wq). Thus, in some neighbourhood of
pz0,w0q there exist a smooth functionφpz, z̄q “ φ1px, yq`iφ2px, yq such that Fpz, φpz, z̄qq “ 0,
with φpz0, z̄0q “ w0. Differentiating with respect to z̄

0 “
d
dz̄

Fpz, φpz, z̄qq “ Fw
d
dz̄
φpz, z̄q.

Since Fw , 0, the above relation implies that
d
dz̄
φpz, z̄q “ 0 which shows that φpzq is an

analytic function of z. �
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Remark 1.9. A constructive way of obtaining the function φpzq is to apply the Residue
Theorem. Indeed let us consider the function Fpz,wq where z is treated as a parameter.
Let D0 be a small disk around w0 where Fpz0,w0q “ 0 and Fwpz0,wq|w“w0 , 0. Then the
number of solutions of the equation Fpz0,wq “ 0 counted with multiplicity is given by the
integral

1
2πi

ż

BD0

Fwpz0,wq
Fpz0,wq

dw,

where BD0 is the boundary of D0. We assume D0 sufficiently small so that the equation
Fpz0,wq “ 0 has only the solution w0 in the closure of D0. Then the above integral is equal
to one. Furthermore by the residue theorem one has

1
2πi

ż

BD0

w
Fwpz0,wq
Fpz0,wq

dw “ w0.

By continuity, for z sufficiently close to z0 there is a disk D centred at w such that the
equation Fpz,wq “ 0 has only one solution w “ φpzq in the closure of D and

1
2πi

ż

BD
w

Fwpz,wq
Fpz,wq

dw “ φpzq,

where φpz0q “ z0 and Fpz, φpzqq “ 0. Clearly the function φpzq is an analytic function of z.

Theorem 1.10. Let Γ be an irreducible affine plane curve defined in (1.3). If Γ is non singular,
then Γ is a Riemann surface.

Proof. Γ is connected since Fpz,wq is irreducible. Let us define a complex structure on Γ.
Let P0 “ pz0,w0q be a nonsingular point of the surface Γ. Suppose, for example, that the

derivative
BF
Bw

is nonzero at this point. Then by the lemma 1.8, in a neighborhood U0 of
the point P0, the surface Γ admits a parametric representation of the form

pz,wpzqq P U0 Ă Γ, wpz0q “ w0, (1.5)

where the function wpzq is holomorphic. Therefore, in this case z is a complex local
coordinate also called local parameter on Γ in a neighborhood U0 of P0 “ pz0,w0q P Γ. For
this kind of local coordinate, the transition function is the identity.

Similarly, if the derivative
BF
Bz

is nonzero at the point P0 “ pz0,w0q, then we can
take w as a local parameter (an obvious variant of the lemma), and the surface Γ can be
represented in a neighborhood U0 of the point P0 in the parametric form

pzpwq,wq P Γ, zpw0q “ z0, (1.6)
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where the function zpwq is, of course, holomorphic. For a local parameter of this second
kind the transition function is the identity map. For a nonsingular surface it is possible to
use both ways for representing the surface on the intersection of domains of the first and

second types, i.e., at points of Γ where
BF
Bw
, 0 and

BF
Bz
, 0 simultaneously. The resulting

transition functions w “ wpzq and, z “ zpwq are holomorphic and invertible. �

The preceding arguments show that such Riemann surfaces are complex manifolds
(with complex dimension 1).

Let us consider a Riemann surface Γ defined in C2 by a monic polynomial

Fpz,wq “ wn ` a1pzqwn´1 ` ¨ ¨ ¨ ` anpzq “ 0. (1.7)

Here the a1pzq, . . . , anpzq are polynomials in z. This Riemann surface is realized as an
n-sheeted covering of the z-plane. The precise meaning of this is as follows: let π : Γ Ñ C
be the projection of the Riemann surface onto the z-plane given by the formula

πpz,wq “ z. (1.8)

Then for almost all z the preimage π´1pzq consists of n distinct points

pz,w1pzqq, pz,w2pzqq, , . . . pz,wnpzqq, (1.9)

of the surface Γ where w1pzq, . . . ,wnpzq are the n roots of (1.7) for given value of z. For
certain values of z, some of the points of the preimage can merge. This happens at the
branch points pz0,w0q of the Riemann surface where the partial derivative Fwpz,wq vanishes
(recall that we consider only nonsingular curves so far).

If z0 is a branch point then the polynomial Fpz0,wq has multiple roots. The multiple
roots can be determined from the system

Fpz0,wq “ 0
Fwpz0,wq “ 0

*

. (1.10)

The ramification points on the z-plane can be determined, therefore, as the zeros of the
resultant of Fpz,wq and Fwpz,wq and denoted by RpF,Fwqpzq. Such quantity is also called
the discriminant of Fpz,wqwith respect to w.

Definition 1.11. Let f pzq “ a0 ` a1z ` ¨ ¨ ¨ ` anzn and gpzq “ b0 ` b1z ` ¨ ¨ ¨ ` bmzm be two
polynomials of degree n and m respectively with ai, b j P C with an , 0 and bm , 0. The resultant
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Rp f , gq is given by the determinant of the pn`mq ˆ pn`mq matrix

Rp f , gq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a0 a1 . . . an 0 0 . . . 0
0 a0 a1 . . . an 0 0 . . . 0
. . . . . . . . .
0 0 . . . . . . a0 a1 a2 . . . an
b0 b1 . . . . . . bm´1 bm 0 . . . 0
0 b0 b1 . . . . . . bm´1 bm 0 . . . 0
. . . . . . . . .
0 . . . b0 b1 . . . . . . bm´1 bm

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (1.11)

Lemma 1.12. Rp f , gq “ 0 if and only if f and g have a common zero.

Proof. The polynomials f and g have a non constant common root rpzq if and only if there
exists polynomials ψpzq and φpzq such that f pzq “ rpzqψpzq and gpzq “ rpzqφpzq. Here ψ
and φ are polynomials of degree n´ 1 and m´ 1 respectively. This implies that

f pzqφpzq “ gpzqψpzq (1.12)

where

φpzq “ α0 ` α1z` . . . αm´1zm´1

and

ψpzq “ β0 ` β1z` ¨ ¨ ¨ ` βn´1zn´1.

Then (1.12) can be considered a system of equations for the coefficients α0, . . . , αm´1
and β0, . . . , βn´1. The solvability of such a system is equivalent to the vanishing of the
determinant (1.11). �

Lemma 1.13.

Rp f , gq “ am
n bn

m

ź

pµ j ´ νkq

where µ j and νk are the roots of the polynomials f and g respectively.

For a proof of this lemma see [15].
The solutions of the system (1.10) are obtained by calculating the resultant of Fpz,wq

and Fwpz,wqwith respect to z, which is also called the discriminant of F with respect to w.
It can be computed as the determinant of a p2n ´ 1q ˆ p2n ´ 1q matrix constructed from
the coefficients of the polynomials

F “ wn ` a1wn´1 ` ¨ ¨ ¨ ` an´1w` an
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and
Fw “ n wn´1 ` pn´ 1qa1wn´2 ` ¨ ¨ ¨ ` an´1

RpF,Fwqpzq “ det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 a1 a2 . . . an´1 an 0 . . . 0
0 1 a1 . . . . . . an´1 an . . . 0
. . . . . . . . . . . . . . .
0 0 . . . . . . . . . an´1 an
n pn´ 1qa1 pn´ 2qa2 . . . an´1 0 . . . . . . 0
0 n pn´ 1qa1 . . . 2an´2 an´1 0 . . . 0

. . . . . . . . .
0 0 . . . . . . . . . 2an´2 an´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

(1.13)

From lemma 1.13, the discriminant is also equal to

RpF,Fwqpzq “ p´1q
npn´1q

2

n
ź

i“1

n´1
ź

j“1

pwipzq ´ w̃ jpzqq (1.14)

where wipzq, i “ 1, . . . ,n, are the roots of the polynomials Fpz,wq and w̃ jpzq, j “ 1, . . . ,n´1
are the roots of the polynomials Fwpz,wq where z is considered as a parameter. Note that
the total number of branch points is finite since RpF,Fwq is a polynomial of finite degree.

The choice of the variables z or w as a local parameter is not always most convenient.
We shall also encounter other ways of choosing a local parameter τ so that the point pz,wq
of Γ can be represented locally in the form

z “ zpτq, w “ wpτq (1.15)

where zpτq and wpτq are holomorphic functions of τ, and

ˆ

dz
dτ
,

dw
dτ

˙

, 0. (1.16)

We study the structure of the mapping π in (1.9) in a neighborhood of a branch point
P0 “ pz0,w0q of Γ defined in (1.3). Let τ be a local parameter on Γ in a neighborhood of
P0. It will be assumed that zpτ “ 0q “ z0, wpτ “ 0q “ w0. Then

z “ z0 ` akτ
k `Opτk`1q, ak , 0

w “ w0 ` bqτ
q `Opτq`1q, bq , 0,

(1.17)
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where ak and bq are nonzero coefficients. Since w can be taken as the local parameter
in a neighborhood of P0 it follows that q “ 1. We get the form of the surface Γ in a
neighborhood of a branch point:

z “ z0 ` akτ
k `Opτk`1q,

w “ w0 ` b1τ`Opτ2q,
(1.18)

where k ą 1.

Definition 1.14. The number bzpPq “ k´ 1 is called the multiplicity of the branch point, or the
branching index of this point with respect to the projection pz,wq Ñ z.

Exercise 1.15: Let P0 “ pz0,w0q be a branch point for the curve (1.7) with respect to the
projection pz,wq Ñ z. Suppose that the local parameter in the neighbourhood of P0 is of
the form (1.18) with k ą 1. Show that

d jFpz,wq
dw j

ˇ

ˇ

ˇ

ˇ

ˇ

pz0,w0q

“ 0, j “ 0, . . . , k´ 1.

Lemma 1.16. Let pz0,w0q be a branch point of a Riemann surface Γ defined in (1.3) with respect
to the projection pz,wq Ñ z. Then there exists a positive integer k ą 1 and k functions w1pzq, . . . ,
wkpzq analytic on a sector Sρ,φ of the punctured disc

0 ă |z´ z0| ă ρ, argpz´ z0q ă φ

for sufficiently small ρ and any positive φ ă 2π such that

Fpz,w jpzqq ” 0 for z P Sρ,φ, j “ 1, . . . , k.

The functions w1pzq, . . . , wkpzq are continuous in the closure S̄ρ,φ and

w1pz0q “ ¨ ¨ ¨ “ wkpz0q “ w0.

Proof. By the nonsingularity assumption Fzpz0,w0q , 0. So the complex curve Fpz,wq “ 0
can be locally parametrized in the form z “ zpwq where the analytic function zpwq is
uniquely determined by the condition zpw0q “ z0. Consider the first nontrivial term of
the Taylor expansion of this function

zpwq “ z0 ` αkpw´ w0q
k ` αk`1pw´ w0q

k`1 ` . . . , k ą 1, αk , 0.

Introduce an auxiliary function

f pwq “ βpw´ w0q

„

1`
αk`1

αk
pw´ w0q `O

`

pw´ w0q
2˘


1
k

“ βpw´ w0q

„

1`
αk`1

kαk
pw´ w0q `O

`

pw´ w0q
2˘
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where the complex number β is chosen in such a way that βk “ αk. The function f pwq
is analytic for sufficiently small |w ´ w0|. Observe that f 1pw0q “ β , 0. Therefore the
analytic inverse function f´1 locally exists. The needed k functions w1pzq, . . . , wkpzq can
be constructed as follows

w jpzq “ f´1
´

e
2πi p j´1q

k pz´ z0q
1{k
¯

, j “ 1, . . . , k (1.19)

where we choose an arbitrary branch of the k-th root of pz´ z0q for z P Sρ,φ. �

Example 1.17. Elliptic and hyperelliptic Riemann surfaces have the form

Γ “ tpz,wq P C2 |w2 “ Pnpzqu, (1.20)

where Pnpzq is a polynomial of degree n. These surfaces are two-sheeted coverings of the
z-plane. Here Fpz,wq “ w2 ´ Pnpzq. The gradient vector gradCF “ p´P1npzq, 2wq. A point
pz0,w0q P Γ is singular if

w0 “ 0, P1npz0q “ 0. (1.21)

Together with the condition (1.20) for a point pz0,w0q to belong to Γ we get that

Pnpz0q “ 0, P1npz0q “ 0, (1.22)

i.e. z0 is a multiple root of the polynomial Pnpzq. Accordingly, the surface (1.20) is
nonsingular if and only if the polynomial Pnpzq does not have multiple roots:

Pnpzq “
n
ź

i“1

pz´ ziq, zi , z j, for i , j. (1.23)

The curve Γ is called an elliptic curve for n “ 3, 4 and it is called hyperelliptic for n ą 4.
We find the branch points of the surface (1.20). To determine them we have the system

w2 “ Pnpzq, w “ 0,

which gives us n branch points Pi “ pz “ zi,w “ 0q, i “ 1, . . . ,n. All the branch points
have multiplicity one. In a neighborhood of any point of Γ that is not a branch point it is
natural to take z as a local parameter, and w “

a

Pnpzq is a holomorphic function. In a
neighborhood of a branch point Pi it is convenient to take

τ “
?

z´ zi, (1.24)
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as a local parameter. Then for points of the Riemann surface (1.20) we get the local
parametric representation

z “ zi ` τ
2, w “ τ

d

ź

j,i

pτ2 ` zi ´ z jq (1.25)

where the radical is a single-valued holomorphic function for sufficiently small τ;(the
expression under the root sign does not vanish), and dw{dτ , 0 for τ “ 0.

Exercise 1.18: Prove that the total multiplicity of all the branch points on Γ over z “ z0 is
equal to the multiplicity of z “ z0 as a root of the discriminant.

Exercise 1.19: Consider the collection of n-sheeted Riemann surfaces of the form

Fpz,wq “
ÿ

i` jďn

ai jziw j (1.26)

for all possible values of the coefficients ai j (so-called planar curves of degree n). Prove
that for a general surface of the form (1.26) there are npn ´ 1q branch points and they
all have multiplicity 1. In other words, conditions for the appearance of branch points
of multiplicity greater than one are written as a collection of algebraic relations on the
coefficients ai j.

1.1.2 Smooth projective plane curves

We recall the the projective spacePn is the quotient ofCn`1zt0u by the equivalence relation
that identifies vectors v and αv in Cn`1zt0uwith α P C˚. Namely Pn “ Cn`1zt0u{C˚. The
space P0 is a singly point, P1 can be thought as the complex plane C plus a single point8
and it can be identified with the Riemann sphere. P2 can be thought as C2 together with
a line at infinity, namely a copy of P1 and so on.

The projective line is the simplest example of a compact Riemann surface. The example
of compact Riemann surfaces that we are going to considered are embedded in P2.

Definition 1.20. The projective plane P2 is the set of one-dimensional subspaces in C3 or equiv-
alently P2 “ C3zt0u{C˚. Let pX,Y,Zq be a nonzero vector in C3. A point in P2 is denoted by
rX : Y : Zs and

rX : Y : Zs “ rλX : λY : λZs, λ , 0, λ P C

As a quotient space, P2 is endowed with the quotient topology. Indeed let the projec-
tion map π : C3zt0u Ñ P2 be defined as

πpX,Y,Zq “ rX : Y : Zs.
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Then we can give to P2 the quotient topology induced from C3zt0u, namely a subset U
of P2 is open if and only if π´1pUq is open in C3zt0u. As a topological space, P2 is a
Hausdorff space, namely two distinct points have disjoint open neighbourhoods.

Proposition 1.21. The space P2 is compact.

Proof. Let

S5 “ tpX,Y,Zq P C3 | |X|2 ` |Y|2 ` |Z|2 “ 1u.

Then S5 is a sphere of real dimension 5. It is a closed and bounded subset of C3 and by
the Heine-Borel theorem is compact. The restriction of πS5 : S5 Ñ P2 is continuos. The
image of a compact set under a continuous mapping is compact. Next let us show that
πS5 is also surjective. Let rX : Y : Zs P P2, then

|X|2 ` |Y|2 ` |Z|2 “ λ, for some λ ą 0.

Then we also have

rX : Y : Zs “ rλ´
1
2 X : λ´

1
2 Y : λ´

1
2 Zs.

Combining the above two relations one has that

|λ´
1
2 X|2 ` |λ´

1
2 Y|2 ` |λ´

1
2 Z|2 “ 1

so that rX : Y : Zs P πpS5q. Namely the map π : S5 Ñ P2 is surjective and continuos which
implies that P2 is compact. �

Remark 1.22. The spaces Pn, n ě 0 are all compact. The proof of this statement is a simple
generalisation of the proof of proposition 1.21.

The space P2 can be covered with three open sets homeomorphic to C2 :

U0 “ trX : Y : Zs P P2 | X , 0u

U1 “ trX : Y : Zs P P2 | Y , 0u

U2 “ trX : Y : Zs P P2 | Z , 0u.

The homeomorphism on U0 is given by the map rX : Y : Zs Ñ pY{X,Z{Xq P C2 and
similarly for the other open sets U1 and U2.

Definition 1.23. Let QpX,Y,Zq be a homogeneous non constant polynomial of degree d, in the
complex variables X, Y and Z with complex coefficients. The locus

Γ “ trX : Y : Zs P P2 | QpX,Y,Zq “ 0u (1.27)

is the projective curve defined by the polynomial Q.
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Remark 1.24. Observe that the curve Γ is well defined since the condition QpX,Y,Zq “
0 is independent from the choice of homogeneous coordinates since QpλX, λY, λZq “
λdQpX,Y,Zq. Furthermore Γ is a closed subset of P2 and therefore it is compact.

The intersection of Γ with any of the Ui is an affine plane curve. For example

Γ0 “ ΓXU0 “ tpu, vq P C2 | Qp1,u, vq “ 0u.

Now we show that under non singularity assumptions, Γ is a Riemann surface.

Definition 1.25. The curve (1.27) defined by the zeros of the homogeneous polynomial QpX,Y,Zq
is nonsingular if there are no non zero solutions to the equations

Q “
BQ
BX

“
BQ
BY

“
BQ
BZ

“ 0.

Exercise 1.26: Show that the projective curve Γ defined in (1.27) is non singular if and
only if each of the affine components Γi “ Γ X Ui, i “ 1, 2, 3 is non singular. Hint: use
Euler equation that is obtained differentiating the identity QpλX, λY, λZq “ λdQpX,Y,Zq
with respect to λ and setting λ “ 1, namely

XQX ` YQY ` ZQZ “ Qd. (1.28)

Suppose that Γ is a smooth projective curve. In order to give a complex structure on Γ
let us recall that each Γi is a smooth irreducible affine plane curve and hence a Riemann
surface. The coordinate charts are given by the projections. For example for the curve
Γ0 the coordinate charts are y{x or z{x and the transition functions are as the same as the
one obtained for smooth affine plane curves. We have then to check that the complex
structures given on each Γi are compatible. Let P P Γ0XΓ1 where P “ rX : Y : Zs and X , 0
and Y , 0. Since each affine plane curve is non singular (see exercise 1.26), we assume
without loss of generality that FX and FZ are non zero. Let φ0 : Γ0 Ñ Cwith φ0pPq “ Y{X
and with inverse φ´1

0 pY{Xq “ r1 : Y{X : hpY{Xqs where h is a holomorphic function. Let
φ1 : Γ1 Ñ Cwith φ1pPq “ Z{Y with inverse φ´1

1 “ rgpZ
Yq, 1,

Z
Y swhere gpZ

Yq is holomorphic
for Y , 0 and non zero since we assume X , 0. Then φ1 ˝ φ

´1
0 pY{Xq “ XhpY{Xq{Y

which is holomorphic because Y , 0, X , 0 and hpY{Xq is holomorphic. In the same way
φ0 ˝ φ

´1
1 pZ{Yq “

1
gpZ{Yq which is holomorphic because Y , 0 and g is nonzero. Similar

checks can be done with the other coordinate charts.
We summarise the above description in the following proposition.

Proposition 1.27. Let QpX,Y,Zq be a homogeneous polynomial such that the projective plane
curve Γ that is the zero locus of Q in P2 is a smooth compact Riemann surface. At every point of
Γ one can take as a local coordinate a ratio of the homogeneous coordinates.
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Lemma 1.28. Let QpX,Y,Zq and FpX,Y,Zq be two homogeneous polynomials of degree d and m
respectively. Suppose that Qp0, 0,Zq , 0 and Fp0, 0,Zq , 0. Then the resultant

RpQZ,FZqpX,Yq

is a homogeneous polynomial in X and Y of degree dm.

Proof. According to the assumptions, QpX,Y,Zq “ q0Zd`q1px,YqZd´1`¨ ¨ ¨`qdpX,Yqwhere
q jpX,Yq are homogeneous polynomials of degree j in X and Y, j “ 0, . . . , d and FpX,Y,Zq “
f0Zm` f1pX,YqZm´1`¨ ¨ ¨` fmpX,Yqwhere f jpX,Yq are homogeneous polynomials of degree
j, j “ 0, . . . ,m.

Then according to the definition of resultant in (1.11)

RpQ,FqpX,Yq “ det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

q0 q1 . . . qd 0 0 . . . 0
0 q0 q1 . . . qd 0 0 . . . 0
. . . . . . . . .
0 0 . . . . . . q0 q1 q2 . . . qd
f0 f1 . . . . . . fm´1 fm 0 . . . 0
0 f0 f1 . . . . . . fm´1 fm 0 . . . 0
. . . . . . . . .
0 . . . f0 f1 . . . . . . fm´1 fm

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (1.29)

We multiply the second row by λ , 0, the third row by λ2 and so on till the m ´ th row
that is multiplied by λm´1. Then we multiply the pm` 2q ´ th row by λ, the pm` 3q ´ th
by λ2 and so on till the pm` dq ´ th that is multiply by λd´1 one has

RpQ,FqpλX, λYq “
1

λ
1
2 pd´1qdλ

1
2 mpm´1q

ˆ det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

q0 λq1 . . . λdqd 0 0 . . . 0
0 λq0 λ2q1 . . . . . . 0 0 . . . 0
. . . . . . . . .
0 0 . . . . . . λm´1q0 λmq1 . . . . . . λd`m´1qd
f0 λ f1 . . . . . . λm´1 fm´1 λm fm 0 . . . 0
0 λ f0 λ2 f1 . . . . . . λm fm´1 λm`1 fm . . . 0
. . . . . . . . .
0 . . . λd´1 f0 λd f1 . . . . . . λm`d´2 fm´1 λm`d´1 fm

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ λmdRpQ,FqpX,Yq,

where we use the fact that and q jpλX, λYq “ λ jq jpX,Yq and f jpλX, λYq “ λ j f jpX,Yq. The
above relation shows that the resultant RpQ,FqpX,Yq is a homogeneous polynomial in X
and Y of degree md. �
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Theorem 1.29 (Bezout’s theorem). Let Γ and M be two projective curves defined by the ho-
mogenous polynomials QpX,Y,Zq and FpX,Y,Zq of degree d and m respectively. Then if Γ and M
do not have a common component, then they intersect in dm points counting multiplicity.

Proof. By Lemma 1.13, Γ and X have a common component if and only if their resultant
is identically zero. Next we consider the case in which Γ and X do not have a common
component. We assume that r0 : 0 : 1s does not belong to both curves. With this
assumption QpX,Y,Zq “ q0pX,YqZd ` q1px,YqZd´1 ` ¨ ¨ ¨ ` qdpX,Yq where q jpX,Yq are
homogeneous polynomials of degree j in X and Y, j “ 0, . . . , d and q0 , 0. In the same way
FpX,Y,Zq “ f0pX,YqZm ` f1pX,YqZm´1 ` ¨ ¨ ¨ ` fmpX,Yq where f jpX,Yq are homogeneous
polynomials of degree j, j “ 0, . . . ,m and f0 , 0. Therefore the resultant is a homogeneous
polynomial of degree md by lemma 1.28 and it has md zeros counting their multiplicity. �

Lemma 1.30. If the projective curve Γ defined in (1.27) is non singular, then the polynomial
QpX,Y,Zq is irreducible. If Γ is irreducible, then it has at most a finite number of singular points.

Proof. Let us suppose that the polynomial is reducible, namely Q “ Q1Q2 where Q1 and
Q2 are homogeneous polynomials in X,Y and Z of degree d1 and d´ d1. The condition of
Γ being singular takes the form

Q2Q1 “ 0, Q2BXQ1 `Q1BXQ2 “ 0, Q2BYQ1 `Q1BYQ2 “ 0, Q2BZQ1 `Q1BZQ2 “ 0.

Such system of equations has always a solution as long as there is a point P in the
intersections of the curves defined by Q1 “ 0 and Q2 “ 0. But this is always the case.
Indeed let us consider the resultant RpQ1,Q2qpX,Yq of the polynomials Q1pX,Y,Zq and
Q2pX,Y,Zq with respect to Z. Assuming that Q1p0, 0, 1q , 0 and Q2p0, 0, 1q , 0 the
resultant RpQ1,Q2qpX,Yq is a homogeneous polynomial of degree d1pd ´ d1q. Therefore
the curves defined by the equations Q1pX,Y,Zq “ 0 and Q2pX,Y,Zq “ 0 intersects by
Bezout’s theorem in d1pd´ d1q points counted with multiplicity. We conclude that if Q is
reducible, then Q is singular. Suppose that Γ is irreducible and defined by the polynomial
Q of degree n. Then Q and QZ do not have a common component so that the resultant
RpQ,QZqpX,Yq is a homogeneous polynomial of degree npn´1q not identically zero. Since
the singular points of Γ are contained in the zeros of the resultant, the number is finite. �

The simplest example of projective curve is the projective line

αX ` βY` γZ “ 0

where pα, β, γq , p0, 0, 0q. The tangent line to a projective curve Γ defined by a homoge-
neous polynomial QpX,Y,Zq at a non singular point pX0,Y0,Z0q has the form

pX ´ X0qQXpX0,Y0,Z0q ` pY´ Y0qQYpX0,Y0,Z0q ` pZ´ Z0qQZpX0,Y0,Z0q “ 0.
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Exercise 1.31: Let QpX,Y,Zq be an irreducible homogeneous polynomial of degree d
defining a smooth projective curve Γ. Suppose that the equation QpX,Y, 1q “ 0 locally
defines Y as a holomorphic function of X. Show that

d2YpXq
dX2 “

1
Q3

Y

det

¨

˝

QXX QXY QX
QYX QYY QY
QX QY 0

˛

‚.

Observe that a point rX0 : Y0 : 1s is an inflection point for the curve Γ if and only if
d2YpXq

dX2
vanishes at X0.

1.1.3 Compactification of affine plane curve

Complex affine plane curves Γ :“ tpz,w P C2 |Fpz,wq “ 0u where F is a nonsingular
polynomial, are non compact Riemann surfaces. To compactify them one needs to add
point(s)81,82, . . .8N at infinity and introducing proper local parameters at these points
in such a way that

Γ̂ “ ΓY81 Y82 Y ¨ ¨ ¨ Y 8N

is a compact Riemann surface.
The plane curve Γ, defined by the polynomial equation Fpz,wq “ 0, can be compactified

by embedding it in CP2. The mappings

pX : Y : Zq Ñ
ˆ

z “
X
Z
, w “

Y
Z

˙

and the inverse mapping

pz,wq Ñ pz : w : 1q

establish an isomorphism between an affine part of CP2 and C2. The whole projective
plane is obtained from the affine part C2 by adding the line at infinity of the form
pX : Y : 0q » CP1

» S2. An embedding of Γ in CP2 is defined as follows. Suppose
that

Fpz,wq “ Fkpz,wq ` Fk´1pz,wq ` ¨ ¨ ¨ ` F0pz,wq,

where each F jpz,wq is a homogeneous polynomial of degree j. Then we define the
homogeneous polynomial

QpX,Y,Zq “ ZkF
ˆ

X
Z
,

Y
Z

˙

(1.30)
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of degree k. A complex compact curve Γ̂ is given in CP2 by the homogeneous equation

Γ̂ :“ trX : Y : Zs P P2 | QpX,Y,Zq “ 0u. (1.31)

The affine part of the curve Γ̂ (where Z , 0) coincides with Γ. The associated points at
infinity have the form

QpX,Y, 0q “ 0.

The surface Γ̂ is compact and is thus the desired compactification of the surface Γ.

Remark 1.32. Even if the curve Γ is non singular, the curve Γ̂ might be singular. If this
is the case, the compactification of the smooth affine plane curve as a singular projective
curve is not a good compactification.

Example 1.33. Γ “ tpz,wq P C2 | w2 “ zu. A local parameter at the branch point
pz “ 0,w “ 0q is given by τ “

?
z, i.e. z “ τ2, w “ τ. The compactification Γ̂ has the form

Γ̂ “ trX : Y : Zs P P2 | Y2 “ XZu. The point at infinity is given by solving the equation
(1.31), that gives P8 “ r1 : 0 : 0s. For X , 0 we introduce the coordinates u, v

u “
Y
X
“

w
z
, v “

Z
X
“

1
z
, (1.32)

which define the affine curve u2 “ v. The point at infinity is given by pv “ 0,u “ 0qwhich
is clearly a branch point for the curve defined by the equation u2 “ v and

?
v is a local

parameter near this point. Therefore in a neighborhood of the point at infinity in Γ̂ we
have that

pz,wq Ñ
1
?

z

is a local homeomorphism.
Example 1.34. Γ “ tw2 “ z2 ´ a2u. The branch points are pz “ ˘a,w “ 0q and the
corresponding local parameters are τ˘ “

?
z˘ a. The compactification has the form

Γ̂ “ tY2 “ X2 ´ a2Z2u. The point at infinity is given by solving the equation (1.31), that
gives P8

˘
“ r1 : ˘1 : 0s. Making the substitution (1.32) we get the form of the curve Γ̂ in a

neighborhood of the ideal line: u2 “ 1´ a2v2. For v “ 0 we get that u “ ˘1. We can take
v “ 1{z as a local parameter in a neighborhood of each of these points. The form of the
surface Γ̂ in a neighborhood of these points P˘ is as follows:

z “
1
v
, w “ ˘

1
v

a

1´ a2v2, v Ñ 0 (1.33)

where
a

1´ a2v2 is, for small v, a single-valued holomorphic function, and the branch of
the square root is chosen to have value 1 at v “ 0.
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Example 1.35. Let us consider the class of hyperelliptic Riemann surfaces

Γ “ tpz,wq P C2 | Fpz,wq “ w2 ´ PNpzq “ 0u, (1.34)

where PNpzq “
śN

j“1pz´ a jq, and ai , a j for i , j.
If we consider the projective curve defined by the zeros of homogeneous polynomial

QpX,Y,Zq “ Y2ZN´2 ´ ZNPNpX{Zq “ 0

one can check that the curve is singular at the point r0 : 1 : 0s if N ě 4. Therefore, for
N ě 4, the embedding of Γ in P2 is not a good compactification. For N “ 3 the projective
curve

Y2Z “ pX ´ a1ZqpX ´ a2ZqpX ´ a3Zq

is a compact smooth elliptic curve. By a projective transformation such curve can be
reduced to the form

Y2Z “ XpX ´ ZqpX ´ λZq, λ P Czt0, 1u.

The point at infinity is given by P8 “ r0 : 1 : 0s. For Y , 0 the substitution u “ X{Y and
v “ Z{Y gives the curve

Qpu, 1, vq “ v´ upu´ vqpu´ λvq “ 0

The point p0, 0q is a branch point for the above curve. Indeed for pu, vq , 0 the projection
π : pu, vq Ñ v is a local coordinate. The preimage π´1pvq consists of three points. At the
point p0, 0q one has Qup0, 1, 0q “ 0 and Quup0, 1, 0q “ 0 so that the preimage of π´1p0q
consists of a single point. A local coordinate near the point p0, 0q takes the form

u “ τp1` opτqq, v “ τ3p1` opτqq.

We look for the holomorphic tail in the form

u “ τgpτq, v “ τ3gpτq

with gpτq analytic and invertible in a neighbourhood of τ “ 0. Plugging the above ansatz
in the equation Qpu, 1, vq “ v´ upu´ vqpu´ λvq “ 0 one obtains that

gpτq “
1

a

p1´ τ2qp1´ λτ2q
.

Since

z “
X
Z
“

u
v
, w “

Y
Z
“

1
v

one has that a local coordinate near the point at infinity for the curve Γ is given by

z “
1
τ2 , w “

1
τ3

b

p1´ τ2qp1´ λτ2q.
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The above example shows that not all the affine plane curves can be compactified in a
smooth way by embedding them in P2. Below we are going to illustrate another way of
compactifying affine plane curves.

Definition 1.36. Let Γ be a Riemann surface such Γ “ Γ Y 81 Y . . .8N is a compact surface.
Suppose that there exist open subsets

U81 YU82 Y ¨ ¨ ¨ YU8N “ U8 Ă Γ

such that U8n , n “ 1, . . . ,N, are homeomorphic to puncture disks

φn : U8n Ñ Dzt0u “ tz P C | 0 ă |z| ă c, c P R`u,

and the homeomorphism φn are holomorphically compatible with the complex structure of Γ. Then
Γ is called a compact Riemann surface with punctures.

The goal is to make the compact surface Γ a Riemann surface. Let us extend the
homeomorphism φn to the whole neighbourhood U8n “ U8n Y8n by defining

φnp8
nq “ 0, n “ 1, . . . ,N.

In order to make Γ a compact Riemann surface one needs to define a complex atlas on it
as the union of the compatible coordinates charts on U8n and Γ. The result is a compact
Riemann surface Γ̂.
Example 1.37. We recall first how to compactify the complex z-plane C. It is necessary to
add to C a single ”point at infinity”8. In this case U8 “ C and the map φ : U8 Ñ Dzt0u

is defined by φpzq “
1
z

with z , 0 and φp8q “ 0 A complex atlas on C̄ “ C Y 8

is then defined as in example 1.5. We get a surface C̄ with the topology of a sphere
(the ”Riemann sphere”). Topological equivalence to the standard sphere is given by
stereographic projection, with one of the poles of the sphere passing into the point 8.
Another description of C̄ is the complex projective line P1 :“ tpz1, z2q | |z1|

2 ` |z2|
2 ,

0, pz1 : z2q » pλz1 : λz2q, λ P C, λ , 0u. The equivalence P1 Ñ C̄ is established as

follows: pz1 : z2q Ñ z “
z1

z2
. The affine part tz2 , 0u of P1 passes into C and the point

p1 : 0q into8.
Example 1.38. Let us consider the class of hyperelliptic Riemann surfaces

Γ “ tpz,wq P C2 | Fpz,wq “ w2 ´ PNpzq “ 0u, (1.35)

where PNpzq “
śN

j“1pz ´ a jq, N ě 4 and ai , a j for i , j. We need to consider separately
the case of N odd or even. Let us rewrite the curve in the form

ˆ

w
zn`1

˙2

´
1
z

N
ź

j“1

p1´
a j

z
q “ 0, N “ 2n` 1,
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ˆ

w
zn`1

˙2

´

N
ź

j“1

p1´
a j

z
q “ 0, N “ 2n` 2.

For N odd the map

ψ : pz,wq Ñ
ˆ

1
z
,

w
zn`1

˙

(1.36)

describes a biholomorphic map from a punctured neighbourhood of infinity

U8 “ tpz,wq P Γ | |z| ą c ą |a j|, j “ 1, . . . , 2n` 1u

where c ą 0, to the punctured neighbourhood

V “ tpx, yq P Γ̃ | |0 ă |x| ă 1{cu

of the point px, yq “ p0, 0q of the curve Γ̃ defined by the equation

Γ̃ “ tpx, yq P C2 | y2 ´ x
N
ź

j“1

p1´ xa jq “ 0u, N “ 2n` 1. (1.37)

For N “ 2n ` 2 even, the map (1.36) describes a biholomorphic map from punctured
neighbourhoods of infinity8˘

U˘8 “ tpz,wq P Γ | |z| ą c ą |a j|, j “ 1, . . . , 2n` 2, lim
w

zn`1
“ ˘1u

to the punctured neighbourhoods

V˘ “ tpx, yq P Γ̃ | 0 ă |x| ă 1{cu

of the points p0,˘1q of the curve

Γ̃ “ tpx, yq P C2 | y2 ´

N
ź

j“1

p1´ xa jq “ 0u, N “ 2n` 2. (1.38)

The local coordinate near p0, 0q of the curve Γ̃ in (1.37) is defined by the homeomorphism
px, yq Ñ

?
x, while the local coordinate near the point p0,˘1q of the curve (1.38) is given

by px, yq Ñ x. Therefore for N “ 2n` 1 the curve (1.35) has one puncture at infinity and
the local parameter in its neighbourhood is given by

φpz,wq “
1
?

z
, φp8q “ 0
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while for N “ 2n` 2, the curve (1.35) has two punctures8˘ “ p8,˘8q distinguished by
the conditions

pz,wq Ñ 8˘ Ø
w

zn`1
Ñ ˘1

and the local parameter near these points is given by the homeomorphism

φ˘pz,wq Ñ
1
z
, φ˘p8

˘q “ 0.

Proposition 1.39. The local parameters

pz,wq Ñ z near an ordinary point
pz,wq Ñ

a

z´ z j near a branch point pz j, 0q

pz,wq Ñ
"

1{
?

z near the point at infinity, N odd
1{z near the point at infinity, N even

describe a compact Riemann surface Γ̂ “ Γ Y 8 of the hyperelliptic curve (1.35) for N odd and
Γ̂ “ ΓY8˘ for N even.

Quotients under Group action

Complex Tori. Let ω1 and ω2 be two complex numbers which are linearly independent
over the real numbers. Define the lattice

Lω1,ω2 “ Zω1 `Zω2 “ tmω1 ` nω2 | m,n P Zu. (1.39)

Two complex numbers z and z̃ are equivalent mod Lω1,ω2 if z ´ z̃ P Lω1,ω2 . The set of all
equivalence classes is denoted by C{Lω1,ω2 and an element in C{Lω1,ω2 is denoted by rzs.

Proposition 1.40. The quotient Γ “ C{Lω1,ω2 is a compact Riemann surface that is topologically
a torus.

Proof. To prove the statement one needs to construct a complex structure on Γ. Let
π : CÑ Γ be the projection map. Let us endowed Γ with the quotient topology namely a
set U Ă Γ is open if π´1pUq is open in C. This definition makes π continuous and since C
is connected so is Γ. Furthermore, it is easy to check that π is an open mapping. Indeed
let U be an open set in C, then πpUq is open if π´1pπpUqq. But this is certainly the case
since π´1pπpUqq “

Ť

ωPLpω`Uq is open. In order to define a complex structure on Γ, let
Dα “ Dzα,ε be a disk centered at zα P C and of radius εwhere ε is chosen in such a way that
|ω| ą ε for every non zero ω P L. Then the map π|Dα : Dα Ñ πpDαq is a homeomorphism.
Let φα : πpDαq Ñ Dα be the inverse of the map π|Dα . The pairs pπpDαqq, φαqαPA defines
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a complex chart. We now must check that the charts are compatible. Chose two distinct
points z1 and z2 and consider two charts φ1 : πpD1q Ñ D1 and φ2 : πpD2q Ñ D2 with
U :“ πpD1qXπpD2q ,H. We need to check that the transition function Tpzq “ φ2pφ

´1
1 pzqq

is holomorphic for z P φ1pUq. Observe that πpTpzqq “ πpzq for all z P φ1pUq. Therefore
Tpzq ´ z “ ωpzq P L. Since Tpzq is continuos and L is discrete, ωpzq is constant. Therefore
Tpzq “ z ` ω for some ω P L, namely the transition function Tpzq is holomorphic. The
collection of charts tpDα, φαq | zα P Cu is a complex atlas on Γ. We conclude that Γ is a
compact Riemann surface. �

Remark 1.41. Let A P SLp2,Zq namely A is 2ˆ 2 matrix with integer entries and det A “ 1.
Suppose that

ˆ

ω11
ω12

˙

“ A
ˆ

ω1
ω2

˙

.

Then the Lω1,ω2 “ Lω11,ω12 . Indeed for m,n P Z one has

Lω1,ω2 Q mω1 ` nω2 “ pn,mqA´1
ˆ

ω11
ω12

˙

“ m1ω11 ` n1ω12 P Lω11,ω12 ,

because m1,n1 P Z since the matrix A has integer entries and determinant equal to one.
The above relation shows that Lω1,ω2 Ď Lω11,ω12 . Repeating the same reasoning for a

point in Lω11,ω12 one obtains that Lω11,ω12 Ď Lω1,ω2 which shows that Lω1,ω2 “ Lω11,ω12 .

Remark 1.42. Let us consider an automorphism of the complex plane, namely a map
F : C Ñ C of the form Fpzq :“ αz ` β with α , 0. We choose β “ 0 so that Fp0q “ 0.
A lattice Lω1,ω2 is transformed under F to the lattice Lαω1,αω2 . The corresponding tori
are isomorphic, with the isomorphism given by rzs Ñ rαzs. The map F projects to an
automorphism of the torus if |α| “ 1. In general

• α “ ˘1, for a generic torus;

• α “ i, for the square torus;

• α “ ei π3 , for the rhombi torus.

Let us define τ “
ω1

ω2
with =pτq ą 0. Then the lattice Lω1,ω2 defined in (1.39) and

Lτ,1 “ tn`mτ | m,n P Zu, τ “
ω1

ω2

defined isomorphic tori C{Lω1,ω2 and C{Lτ,1 respectively. Combining the above remarks
one arrives to the following theorem.
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Theorem 1.43. Let Tτ and Tτ1 be two tori defined by the lattices Lτ,1 and Lτ1,1 with=pτq ą 0 and
=pτ1q ą 0. The tori are isomorphic if and only if

τ1 “
aτ` b
cτ` d

,

ˆ

a b
c d

˙

P SLp2,Zq. (1.40)

The proof is left as an exercise.

Exercise 1.44: Consider the group 2πZ under addition and consider the quotient C{2πZ.
This surface is clearly homeomorphic to the cylinder S1 ˆ R. Show that C{2πZ is a
Riemann surface.

Exercise 1.45: Let G be the multiplicative group G :“ tan | n P Zu and a P R`. The
quotient

Γ :“ C˚{G

is defined as the set of equivalence class with respect to the equivalence relation

z » z̃ ÐÑ zz̃´1 P G.

(i) Prove that there exist a unique structure of a Riemann surface on Γ such that the
canonical projection π : C˚ Ñ Γ is locally biholomorphic.

(ii) Show that the Rieamann surface constructed in (i) is isomorphic to a torus

C{pZ` τZq, τ PH :“ tz P C | =pzq ą 0u.

Calculate τ.

The above construction of Riemann surface as quotients can be generalized

Definition 1.46. Let ∆ be a domain of C. A group G : ∆ Ñ ∆ of holomorphic transformations
acts discontinuously and fixed point free on ∆ if for any P P ∆ there exists a neighbourhood V Q P
such that

gV X V “ H, @g P G, g , I

The action of G is called proper if the inverse image of compact subset is compact.

Introducing an equivalent relation between points of ∆, namely P » P1 if Dg P G so
that P1 “ gP, one can define the quotient space ∆{G of equivalent classes.

Theorem 1.47. If a group G acts on a domain ∆ of the complex plane properly discontinuously
and the action is fixed point free, then the quotient space ∆{G has the structure of a Riemann
surface.

The proof of the above theorem is very similar to the proof given above for obtaining
a complex structure on the complex one-dimensional tori. In the frame of the uniformiza-
tion theory, it is proven that all compact Riemann surfaces can be described as quotients
∆{G.
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Chapter 2

Topological properties of Riemann
surfaces

2.1 The genus of a a compact Riemann surface

An arbitrary Riemann surface is a two-dimensional manifold. What can be said about
the topology of this surface? We have showed in the previous chapter that a Riemann
surface is orientable manifold.

The following result can be found in [18].

Theorem 2.1. Any compact connected and orientable two dimensional surface is topologically
equivalent to a sphere with g ě handles.

Figure 2.1: A sphere with five handles

The number g is called the genus of the sur-
face.

Each surface of genus g can be obtained from
a genus g ´ 1 surface by removing a disc and
attaching a torus.

Let us compute the genus of the surfaces in
the examples 1.33-1.35. We begin with Exam-
ple 1.34 namely the curve w2 “ z2 ´ a2. Delete
the segment r´a, aswith endpoints at the branch
points from the z-plane C̄. Off this segment
it is possible to distinguish the two branches
w˘ “ ˘

a

z2 ´ a2 of the two-values function
wpzq “

a

z2 ´ a2, that do not get mixed up with
each other. In other words, the complete image
π´1pC̄zr´a, asq on Γ splits into two pieces, with

27



28 CHAPTER 2. TOPOLOGICAL PROPERTIES OF RIEMANN SURFACES

the mappingπ an isomorphism on each of them.
The branches w`pzq and w´pzq are interchanged in passing from one edge of the cut r´a, as
to the other. Therefore, the surface is glued together from two identical copies of spheres
with cuts according to the rule indicated in the figure 2.2

Figure 2.2: The cuts of the algebraic function
a

z2 ´ a2

After the gluing we again obtain a sphere, i.e., the genus g is equal to zero. Exam-
ple 1.33 is analogous to Example 1.34, but the cut must be made between the points 0 and
8, i.e. the point at infinity must be regarded as a branch point. Again the genus is equal
to zero.

In Example 1.35 it is necessary to split up the branch points arbitrarily into pairs and
make cuts (arcs) in C̄ joining the paired branch points n cuts for n even. The surface Γ is
glued together from two identical copies of a sphere with such cuts, with the edges of the
corresponding cuts glued together in ”cross-wise” fashion (see the figure for n “ 4).

It is not hard to see that a sphere with n{2 handles is obtained after the gluing, i.e., the
genus g is n{2, see figure 2.4 for n “ 4. For n odd the situation is analogous, except that
in making the cuts it is necessary to take 8 as one of the branch points. The genus g is
equal to pn` 1q{2.

Exercise 2.2: Suppose that all the zeros z1 ă ¨ ¨ ¨ ă z2n`1 of the polynomial P2n`1pzq are
real. We choose the segments rz1, z2s, rz3, z4s, . . . , rz2n`1,8s of the real axis as the cuts for
the surface Γ “ tw2 “ P2n`1pzqu. The function wpzq “

a

P2n`1pzq which is single-valued
on each sheet of Γ formed after removal of the cycles π´1prz1, z2sq, . . . , π´1prz2n`1,8sq is
real on the edges of these cuts on each of the sheets. Show that on each sheet the sign of
the square root

a

P2n`1pzq on the upper edge of the cut alternates.
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Figure 2.3: Opening of the cuts of the two branches of the function
a

pz´ z1qpz´ z2qpz´ z3qpz´ z4q

2.1.1 Triangulation of a Riemann surface and Riemann-Hurwitz formula

We derive a formula for the computation of the genus of a compact connected Riemann
surface.

A triangulation of a two-dimensional surface Γ is a decomposition of Γ into closed
subsets homeomorphic to triangles such that each couple of them is

• disjoint

• meet at a vertex

• meet at an edge.

Theorem 2.3. [18] Every compact connected orientable 2-dimensional manifold can be triangu-
lated.

Given a 2-dimensional compact manifold M (possibly with boundary) and a triangulation
of the manifold with

• e “ # of edges;

• v “ # of vertices;

• t “ # of triangles;

the number

EpMq “ v´ e` t (2.1)

is called the Euler number of the manifold M with respect to the given triangulation.
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Figure 2.4: The Riemann surface of w2 “ pz ´ a1qpz ´ a2qpz ´ a3qpz ´ a4q is glued from
two copies of the extended complex plane cut along the intervals rz1, z2s and rz3, z4s. The
resulting surface is topological a torus.

Proposition 2.4. The Euler number is independent from the choice of the triangulation. For a
compact Riemann surface Γ of topological genus g the Euler number is

EpΓq “ 2´ 2g. (2.2)

Proof. We give a sketch of the proof. We consider compact surfaces with no boundaries.
Given a triangulation, one can refine the triangulation by adding a vertex inside a triangle
and three edges. This operation replaces one triangle with three triangles an it is easy to
check that the Euler number remains unchanged. Another way to refine the triangulation
is to add a point on an edge, so that two triangles are replaced by four triangles. Also
in this case the Euler number remains unchanged. These operations define elementary
refinements. A general refinement is obtained by making a sequence of elementary
refinements. Therefore a given triangulation and any of its refinement have the same
Euler number. Now the main point is to show that two triangulations have a common
refinement. It is sufficient to superimpose two triangulations and add the necessary
number for points to make the union of these two triangulations a triangulation. Then
the triangulation obtained in this way is a refinement of both the triangulations. This is
enough to show that the Euler number does not depend on the triangulation. Now let us
make the computation of the Euler characteristic for a compact Riemann surface of genus
g. We use an inductive argument. For the sphere the Euler number is equal to 2. For the
disc D̄ “ tz P C | |z| ď 1u , the Euler number is equal to EpD̄q “ 1 and for the cylinder
Cylinder of finite length the Euler number EpCylinderq “ 0, see figure 2.5

The torus can be obtained from the sphere by removing two discs and connecting
them with a cylinder. It is simple to check that the Euler number of the torus Γ1 can be
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Figure 2.5: Triangulation of the sphere with 4 vertices, 6 edges and 4 triangles. Triangu-
lation of the disc with 3 vertices, 3 edges and one triangle.Triangulation of the cylinder
with 6 vertices, 12 edges and 6 triangles.

obtained as

EpΓ1q “ EpΓ0q ´ 2EpD̄q ` EpCylinderq “ 2´ 2` 0 “ 0. (2.3)

Indeed removing two disks from a genus zero surface, the Euler number decreases by
two, because it is just sufficient to subtract from the Euler formula the two discs that are
homeomorphic to two triangles. Next we add a cylinder to connect the two discs. In
order to compute the Euler number of the resulting surface, it is sufficient to add the
contribution of the cylinder. The resulting Euler characteristics then can be written as in
(2.3).

This procedure can be iterate. Indeed the surface Γg of genus g can be obtained from
the surface of genus Γg´1 by removing two discs and connecting them with a cylinder.
Therefore one has

EpΓgq “ EpΓg´1q ´ 2EpD̄q ` EpCylinderq

which implies

EpΓgq “ 2´ 2g.

�

We apply this result to calculate the genus of an affine plane curve.

Proposition 2.5. Let Γ “ tpz,wq P C2 | Fpz,wq “ wn ` a1pzqwn´1 ` . . . anpzq “ 0u an
irreducible non singular affine plane curve and let Γ̄ be the compactification of Γ. Let z1, . . . , zM
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be the branch point for Γ̄ with respect to the projection πpz,wq Ñ z with multiplicity b1, . . . , bm
respectively. Then the genus of Γ̄ is equal to

g “
1
2

m
ÿ

j“1

b j ´ n` 1. (2.4)

Proof. Consider a triangulation of C̄ so that the set of vertices of the triangulation contains
the points z1, . . . , zM. Suppose that for each triangle T in C̄, the projection π restricted to
the interior of each preimage π´1pTq is homeomorphic to the interior of T. In this way
the triangulation on C̄ can be lifted to a triangulation on Γ̄. Suppose the triangulation of
C has v vertices, t triangles and e edges. Then the triangulation of Γ̄ has

• t̃ “ nt triangles

• ẽ “ ne edges

• ṽ “ nv´ b vertices,

where b “
řm

j“1 b j. The Euler characteristic of the surface Γ̄ gives

2´ 2g “ nv´ b´ ne` nt “ npv´ e` tq ´ b

so that one obtains the statement. �

The relation (2.4) is a particular case of a more general formula known as Riemann-
Hurwitz formula. As an application of the proposition 2.5 we calculate the genus of a
smooth projective curve

Γ “ trX : Y : Zs P P2 |QpX,Y,Zq “ 0u

where Q is a homogeneous polynomial of degree n. Suppose that r0 : 0 : 1s < Γ so that
Qp0, 0,Zq “ c Zn , 0 with c , 0. Then the map

φ : Γ Ñ P1, φpX,Y,Zq “ rX : Ys

realised Γ as a n-sheeted covering of P1. Let us calculate the total branching number of
this map. The branch points are obtained by solving the equations

QpX,Y,Zq “ 0, QZpX,Y,Zq “ 0

The solution of the above two equations are given by the zeros of the resultant RpQ,QZq

with respect to Z. Since RpQ,QZq is a homogeneous polynomial of degree npn ´ 1q in X
and Y, the total number of branch points counting their multiplicity is npn´ 1q.
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Recall that the branching number of a branch point P0 “ rX0 : Y0 : Z0s indicated as
bφpP0q is the order of the zero of QpX0,Y0,Zq at Z “ Z0 minus one. We can write

QpX0,Y0,Zq “
ź

0ď jďs

pZ´ Z jq
m j

where
ř

j m j “ n and Z0, . . . ,Zs are distinct complex numbers, Z j “ Z jpX0,Z0q. Here
we assume that Qp0, 0,Zq “ Zn. With the above notation the branching number of each
branch point P j “ rX0 : Y0 : Z js is bφpP jq “ m j ´ 1. So a regular point is simple zero of
QpX0,Y0,Zq a branch point with branching number one is a double zero, and a branch
point with branching number m´ 1 is a zero of order m of QpX0,Y0,Zq. So if the number
of distinct roots of the discriminant is npn ´ 1q it means that the curve has npn ´ 1q
branch points with multiplicity one, so that the total branching number is npn ´ 1q. If
the discriminant has for example npn´ 1q ´ k distinct roots, k ą 0, it means that some of
the branch points have branching number bigger then one. However the total branching
number remains equal to npn´ 1q. Then we can apply formula 2.4 to obtain

g “
1
2
pn´ 1qn´ n` 1

which gives g “
1
2
pn´ 2qpn´ 1q.

Lemma 2.6. The genus of a smooth projective curve of degree n is given by the relation

g “
1
2
pn´ 2qpn´ 1q. (2.5)

Exercise 2.7: Calculate the genus of the following surfaces

w3 “ pz´ 1qpz´ 2qpz´ 3qpz´ 4q,

wn “ zn ` an, a , 0.

Theorem 2.8. [14] Any compact connected orientable two-dimensional surface of genus g that
admits a triangulation, can be made into a Riemann surface.

Any surface of genus zero is topologically equivalent to the sphere P1. The surfaces
of genus one are one-dimensional tori. The complex structure is unique only for g “ 0
(see [14] 16.13). The set of complex structures has one complex parameter for g “ 1 and
3g´ 3 complex parameters for g ě 2. The space of these parameters is called Teichmuller
space. We observe that the number 3g ´ 3 coincides with the dimension of the moduli
space of Riemann surfaces of genus g ě 2.
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2.2 Monodromy of a surface

In order to define the monodromy of a surface we recall the definition of fundamental
group. Let M be a topological space and P, Q two points on M. A curve u : I Ñ M
starting in P and ending in Q is a continuous map from Ir0, 1s to M such up0q “ P and
up1q “ Q. If two curves can be deformed continuously one into the other, the curves are
called homotopic.

Definition 2.9. Two curves u and w are homotopic if there is a continuos map A : I ˆ I Ñ M
such

• Apt, 0q “ uptq,

• Apt, 1q “ wptq,

• Ap0, sq “ P and Ap1, sq “ Q, for all s P r0, 1s.

The notion of homotopic is an equivalence relation. It is easy to construct homotopic
curves. For example given a smooth map f : I Ñ I, the curves u and u ˝ f are homotopic.
In the space of curves we can define a group structure.

Definition 2.10. Given two curves u : I Ñ M and w : I Ñ M, I “ r0, 1s, such that up0q “ P
and up1q “ Q and wp0q “ Q and wp1q “ R the product curve is

pu ˝ wqptq :“
"

up2tq for 0 ď t ď 1
2

wp2t´ 1q for 1
2 ď t ď 1 ,

the inverse of a curve is

u´1ptq :“ up1´ tq, t P I,

the constant curve is

Id : I Ñ M, Idptq “ P.

Clearly u ˝ u´1 is homotopic to Id. Now let us consider curves starting and ending in
P, namely close loops.

Definition 2.11. Let M be a topological space. The set of homotopic classes of loops starting and
ending in P P M is denoted by π1pM,Pq.

The set π1pM,Pq forms a group under the operation induced by the product of curves.
We denote its elements by rγs. It is easy to check that for arc-wise connected spaces M,
the group π1pM,Pq is independent from the base point P. Indeed let π1pM,Qq be the
fundamental group with base point Q, and let w be a path from P to Q. Then for any
element rγs P π1pM,Pq the loop rw´1 ˝ γ ˝ws P π1pM,Qq and this map is an isomorphism.
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Definition 2.12. An arc-wise topological space M is called simply connected if π1pMq “ 0.

Remark 2.13. We remind that the only Riemann surfaces with trivial fundamental group
are the sphere the complex plane and the disk. The only Riemann surface M with
π1pMq “ Z is the punctured disk or the punctured complex plane. The only compact
Riemann surface M with π1pMq “ ZˆZ is the torus.

Although the trivial element of the group is the identity, it has become standard
notation to write π1pMq “ 0 for the fundamental group that contains only the identity. In
a simply connected space all loops are homotopic to the identity loop. The sphere P1 is a
simply connected space.

Now we are ready to define the monodromy group of a surface. Consider a compact
Riemann surface Γ̄ realised as the compactification of a smooth affine plane curve

Γ “ tpz,wq P C2|Fpz,wq “ z2 ` a1pzqwn´1 ` ¨ ¨ ¨ ` anpzq “ 0u

and consider the projection π : Γ̄ Ñ C̄, πpz,wq “ z and denote by z1, . . . , zM the branch
point of such map. Let delete from C̄ the branch points z1, . . . , zM and delete from Γ
the complete inverse images π´1pz1q, . . . , π´1pzMq of these points. We get a surface Γ0
that is a n-sheeted covering of the punctured sphere C̄zpz1 Y ¨ ¨ ¨ Y zMq. The monodromy
group of the Riemann surface is the monodromy group of this covering. We recall the
general definition of the monodromy group of a covering in connection with this case
(see [9] for more details). Fix a point z0 P C̄zpz1 Y ¨ ¨ ¨ Y zMq and number the points
P1, . . . ,Pn in the fiber π´1pz0q arbitrarily (these points are all distinct). Any closed contour
in C̄zpz1 Y ¨ ¨ ¨ Y zMq beginning and ending at z0 gives rise to a permutation of the points
P1, . . . ,Pn of the fiber after being lifted to Γ0. We get a representation of the fundamental
group π1pC̄zpz1Y¨ ¨ ¨YzMq, z0q in the group Sn of permutations of n elements; this is called
the monodromy representation. Let γk, k “ 1, . . . ,M be a loop starting and ending in z0
and encircling the point zk, k “ 1, . . . ,M. We denote by rγks the homotopy class of this
loop. The loops rγ1s, . . . , rγMs are generators ofπ1pC̄zpz1Y¨ ¨ ¨YzMq, z0qwith the constraint

rγ1s ˝ rγ2s ˝ ¨ ¨ ¨ ˝ rγns “ Id (2.6)

namely the trivial loop. The mondromy representation

ρ : π1pC̄zpz1 Y ¨ ¨ ¨ Y zMq, z0q Ñ Sn, ρprγksq “ σk

is a group homomorphism namely

ρprγks ˝ rγ jsq “ σkσ j, (2.7)

for any set of generators. The homotopy relation (2.6) implies

σ1σ2 . . . σM “ Id

the identity in Sn.
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Definition 2.14. The image of the map ρ defined in (2.7) in Sn is called the monodromy group of
the surface Γ.

Remark 2.15. For connected surfaces, the image of the monodromy group is a transitive
subgroup in Sn. Indeed a transitive subgroup G P Sn has the property that for every
number i, j P t1, . . . ,nu there exists a permutation τ P G such that j “ τpiq. If the Riemann
surface is connected, for any points Pi and P j in the fiber π´1pzq, z P C it is possible to find
a path connecting these points.

For hyperelliptic Riemann surfaces the monodromy group coincides S2 “ Z2.

Exercise 2.16: For curves of the form

wn “

N
ź

j“1

pz´ ziq

show that the monodromy group coincides with Zn.

In the general case the action of the generators of the monodromy group that corre-
spond to circuits about branch points is determined by the branching indices.

Exercise 2.17: Let z be a branch point, and let the complete inverse image π´1pzq on Γ
consist of the ramification points P1, . . . ,Pk of multiplicity b1, ..., bk, respectively (if some
point Pi is not a branch point, then we set bi “ 0). Prove that to a cycle in C̄ encircling z0
once there corresponds an element in the monodromy group splitting into cycles of length
b1 ` 1, ..., bk ` 1. This assertion gives a purely topological definition of the multiplicities
(indices) of branch points.

Remark 2.18. Suppose that one of the branch points, let say zM “ 8. Then the mon-
odromy corresponding to circuits about the point z “ 8 is uniquely determined by the
monodromy corresponding to circuits about the images of the finite branch points. In-
deed, a contour encircling only the point z “ 8 splits into a product of contours encircling
all the finite branch points, and we get the monodromy at infinity by multiplying the cor-
responding elements of the monodromy groups at the finite points. For example, for the
surface w2 “ P2n`2pzq the monodromy at infinity is trivial (the corresponding contour in
the z-plane encircles an even number of branch points), i.e., this surface has no branch
points at infinity. But for the surface w2 “ P2n`1pzq the monodromy at infinity is nontriv-
ial, because here a contour encircling z “ 8 encircles an odd number of branch points.
We thus see once more that the point at infinity of the surface w2 “ P2n`1pzq is a branch
point.

Exercise 2.19: Prove that for a general surface of the form (1.26)) the monodromy group
coincides with the complete symmetric group Sn . Hint. Show that the branch points of such
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a surface can be labeled by pairs of distinct numbers i , j, pi, j “ 1, ...,nq in such a way that a
circuit about the images of the points Pi j and P ji gives rise to a transposition of the ith and jth
points of the fiber ( when these points are suitably numbered).

2.3 Singular curves

Let us consider an affine plane curve

Γ “ tpz,wq P C2|Fpz,wq “ z2 ` a1pzqwn´1 ` ¨ ¨ ¨ ` anpzq “ 0u.

A point P0 “ pz0,w0q P Γ is called singular if

Fpz0,w0q “ Fzpz0,w0q “ Fwpz0,w0q “ 0.

If the polynomial F is irreducible then the set of singular points is finite.

Nodes of an affine plane curve. The singular point P0 “ pz0,w0q P Γ is called a node
if the Hessian

det
ˆ

Fzzpz0,w0q Fzwpz0,w0q

Fzwpz0,w0q Fwwpz0,w0q

˙

, 0.

We can expand in Taylor series the equation of the curve near the node P0 “ pz0,w0q to
obtain

Fpz,wq “ α1pz´ z0q
2 ` α2pz´ z0qpw´ w0q ` α3pw´ w0q

2 ` higher order tems

where α1 “ Fzzpz0,w0q{2, α2 “ Fzwpz0,w0q and α3 “ Fwwpz0,w0q. The quadratic term is a
homogenous polynomial that can be factor in the product of two first order homogeneous
polynomials namely

Fpz,wq “ pc1pz´ z0q ` c2pw´ w0qqpb1pz´ z0q ` b2pw´ w0qq ` higher order tems,

Defining x “ c1pz´ z0q ` c2pw´ w0q and y “ b1pz´ z0q ` b2pw´ w0q one has

Fpz,wq “ xy`
ÿ

jě2

f jpx, yq

where f j are homogenous polynomials of degree j in x and y. Applying Hensel’s Lemma,
which say that if the lower order term of a power series factor, then the entire power
series can factor compatibly, we can write the above expansion in the form

Fpz,wq “ rpx, yqspx, yq
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with

rpx, yq “ x`
ÿ

jě2

r jpx, yq, spx, yq “ y`
ÿ

jě2

s jpx, yq

where each r jpx, yq and s jpx, yq is a homogeneous polynomial of degree j that can be
obtained uniquely from the polynomials fk. Since Fpz,wq is a polynomial the power series
for the function rpx, yq and spx, yq are clearly convergent.

Near the node pz0,w0q the curve is the locus of zeros of rpx, yqspx, yqwhich is the union
of the locus of zeros of the functions rpx, yq and the locus of zeros of spx, yq. Each locus
corresponds to a curve Γr and Γs respectively. These curves are nonsingular in P0. Now we
call Γ̂ the curve obtained from the singular curve Γ by removing the point P0. The curve
Γ̂ looks locally as the union ΓrztP0u and ΓsztP0u. Let us consider open sets Ur and Us on Γ̂
which are equal to open set on ΓrztP0u and ΓsztP0u. Such open sets are homeomorphic to
puncture disks. According to definition 1.36, the surface Γ̂ is a Riemann surface with two
punctures. Compactifying the curve Γ̂ according to section 1.1.3, one obtains a smooth
compact Riemann surface S. The whole process is called resolving the nodes of Γ. The
smooth compact Riemann surface obtained in this way is called also the normalisation of
Γ.

Genus of a projective curve with nodes. Let us consider a projective curve with k
nodes defined by the zeros FpX,Y,Zq “ 0 of the homogeneous polynomial F of degree n.
In order to compute the genus of the smooth curve Γ̃,obtained from Γ by resolving the
nodes, it is necessary to observe that for each node the total branching number of the curve
decreases by two, indeed perturbing slightly the polynomial equation near the node, two
branch points with multiplicity one are obtained. Then using Riemann-Hurwitz formula
(2.4) one obtains the genus of a projective curve with nodes, namely Plücker’s formula.

Proposition 2.20. Let Γ be a projective curve of degree n with k nodes and no other singularities.
Then the genus of Γ̃ the curve obtained by resolving the nodes of Γ is

g “
1
2
pn´ 1qpn´ 2q ´ k.

Monomial singularities

A curve Γ defined by the zero of the polynomial Fpz,wq “ 0 has a singular point in p0, 0q
called a monomial singularity if locally the polynomial Fpz,wq is of the form

Fpz,wq “ wn ´ zm,

with m and n integers. If m “ n “ 2 the singular point is a node, and for n “ 2 and m “ 2k
it is a higher order node. In the case n “ 2 and m “ 3 the singularity is a cusp and for
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m “ 2k ` 1 it is called a higher order cusp. In general when n and m are co-prime the
singularity is called a monomial singularity of type pm,nq. If m{n “ kp{kq with k, p and q
integers and p and q relatively prime, then the monomial singularity can be factored as

Fpz,wq “
k
ź

j“1

pwq ´ ξ jzpq, ξ “ e
2πi
k .

Let us consider a monomial singularity with pm,nq co-prime. Then near such singularity
the curve has a parametrisation t Ñ ptn, tmq. Let us consider the puncture neighbourhood
of p0, 0q in Γ, namely the set

U “ tpz,wq P C2 : 0 ă |z| ă ρ, and Fpz,wq “ 0u

and the disc

D “ tt P C : |t| ă ρ
1
n u.

The map

Ψ : Dzt0u Ñ U, Φptq “ ptn, tmq

is a biholomorphic map from Dzt0u to U. The inverse map is given by

Φpz,wq Ñ zawb “ t, an`mb “ 1

with a and b integers. The map Φ is compatible with the complex structure of Γ. So the
curve Γztp0, 0u is a Riemann surface with punctures according to definition 1.36. We can
extend the map Φ : U Y tp0, 0qu Ñ D by defining Φp0, 0q “ 0. The Riemann surface that
we obtain is a smooth compact Riemann surface S.

Resolution of singularities of general curves and Puiseux expansion

Resolution of singularities of curves was essentially first proved by Newton (1676), who
showed the existence of Puiseux series for a curve from which the resolution of singulari-
ties follows easily. Puiseux series are a generalisation of powers series and they were first
introduced by Newton and then they were rediscovered by Puiseux in 1850. A Puiseux
series in the variable z is a power series of the form

ř8
j“k a jz j{n where k is an integer and

n is a positive integer.
Let us consider the polynomial equation Fpz,wq “ 0. When

gradF “ pFzpz0,w0q,Fwpz0,w0qq , p0, 0q
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the implicit function theorem gives a local parametrisation of the curve

z Ñ pz, ψpzqq

in the case Fwpz0,w0q , 0, and ψpzq is an analytic function of z in the neighbourhood of
z “ z0. Therefore the curve looks locally like the graph of a function which is locally like
its tangent line. For singular curves such parametrisation does not exist, like for example
for the curve Fpz,wq “ w2 ´ z3. However there is a parametrisation of the form

t Ñ pt2, t3q, or z Ñ pz, z
3
2 q.

Locally any singular branch of a curve has a parametrisation of the form

t Ñ ptn, ψptqq, or pz, ψpz
1
n qq, k ą 1,

for some power series ψ. Such series is called Puiseux series. The next theorem, called
Puiseux’s theorem, asserts that, given a polynomial equation Fpz,wq “ 0, its solutions in
w, viewed as functions of z, may be expanded as convergent Puiseux series. Suppose the
the point pz0,w0q is a singular point of the curve defined by Fpz,wq “ 0. Furthermore
we assume for simplicity that the pre-image of the point z0 with respect to the projection
πpz,wq Ñ z consists only of one point, namely π´1pz0q “ w0.

Theorem 2.21. Let Fpz,wq be a polynomial such that Fp0,wq , 0 and deg Fp0,wq “ n. For
each point near z0, there are homolorphic functions ψ1ptq, . . . , ψlptq defined near t “ 0, such that
ψ jp0q “ w0 and positive integers m1, . . . ,ml with m1 ` ¨ ¨ ¨ `ml “ n such that

Fpz0 ` tm j , ψ jptqq “ 0, j “ 1, . . . , l.

In other words for every z sufficiently close to z0 the polynomial Fpz,wq can be factored in the form

Fpz,wq “ c
l

ź

j“1

m j
ź

s“1

ˆ

w´ ψ jpe2πis{m jpz´ z0q
1

mj q

˙

.

Two Puiseux expansions with indices j , j̃ are essentially different. Newton gave
an algorithm to construct such parametrisations that it is know as Newton polygon
technique. We are not going to enter the details of this technique. We give only some
examples.
Example 2.22. Suppose that Fpz,wq is a polynomials with deg Fp0,wq “ k, such that there
are integers numbers p and q such that

Fpz,wq “
ÿ

qi`pj“kp

ai jziw j.
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Then we can look for a parametrisation of the form Fptq, λtpq “ 0, namely

Fpz,wq “ Fptq, λtpq “ tkp
ÿ

iq`pj“kp

ai jλ
j :“ tkphpλq

We can always find λ0 P C such that hpλ0q “ 0.
In general for a polynomial

Fpz,wq “
ÿ

i j

ai jziw j

the carrier C of F is defined as

CpFq “ tpi, jq P Z2 | ai j , 0u.

The Newton polygon is the convex hull of the points in the carrier. We can assume
without loss of generality that the Newton polygon touches both axis. Suppose that there
are rational number µ and ν such that

Fpz,wq “
ÿ

i`µ jěν

ai jziw j.

Then the the line

z` µw “ ν

lies below the carrier CpFq. Now substituting w “ tzµ into F we get

Fpz, tzµq “ zν
ÿ

i`µ j“ν

ai jt j `
ÿ

i`µ jąν

ai jzi`µ j “ zν
ÿ

i`µ j“ν

ai jt j ` opzνq.

Let t0 be a solution of the equation
ř

i`µ j“ν ai jt j “ 0. Note that this equation has a solution
if there are at least two points of the carrier CpFq on the line z ` µw “ ν. Then we can
consider pz, t0zµq as an approximate solution of the equation Fpz,wq “ 0 near the singular

point p0, 0q. The next step is to improve the above approximation. Assuming µ “
p
q

with

p and q integers that do not have a common factor, one can look for an expansion of the
form

z1 “ zq, w “ zp
1pt0 ` w1q.

Then plugging the above ansatz into Fpz,wq one obtains

Fpzq
1, z

t
1pt0 ` w1qq “ zqν

1 F1pz1,w1q.

The next step is to study the singularity structure of the polynomial F1pz1,w1q. By iterating
this procedure, one obtains the Puiseux expansion near the point p0, 0q.
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Example 2.23. Let Fpz,wq “ w5 ´ zw2 ` 4z5 ` z4 ´ 3w3z3. By considering the Newton
polygon (see figure 2.6), one can see that there are two lines that lie below it

z`
1
3

w “
5
3
, z`

3
2

w “ 4.

We first analyse the the first line, namely w “ tz
1
3 , which gives

Fpz, tz
1
3 q “ z

5
3 pt5 ´ t2q ` opz

5
3 q,

so that t3 “ 1, namely t is one of the three roots of unity. For simplicity let us consider
t “ 1. Next we consider the parametrisation

z “ z3
1, w “ z1p1` w1q

so that

Fpz3
1, z1p1` w1qq “ z5

1F1pz1,w1q,

F1pz1,w1q “ w5
1 ` 5w4

1 ` pz
7
1 ` 10qw3

1 ` p3z7
1 ` 9qw2

1 ` p3z7
1 ` 3qw1 ´ z10

1 . (2.8)

Figure 2.6: The Newton polygon for Fpz,wq on the left and F1pz1,w1q on the right.

The Newton polygon of the polynomial F1pz1,w1q is show in figure 2.6 and one can
see that the line z1` 10w1 “ 10 is at the boundary of the Newton polygon. So we look for
w1 “ t1z10

1

F1pz1, t1z10
1 q “ z10

1 p3t1 ´ 1q ` opz10
1 q,
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which gives t1 “
1
3 . We conclude that the first two terms of the Puiseux expansion are

w “ z
1
3 `

1
3

z
11
3 ` . . . .

Repeating the same procedure for the coefficient µ “
3
2

one obtains

w “ p´zq
3
2 ´

1
2
p´zq

5
2 ` . . . .

Summarizing we have obtained two essentially different Puiseux expansions near the
point p0, 0q.

Once the Puiseux series for a curve near a singular point has been found the resolution
of the singularity follows easily.

Theorem 2.24. For every irreducible algebraic curve Γ P P2 there exists a compact Riemann
surface S and a holomorphic map

φ : S Ñ Γ

with the properties

• let Γ̂ :“ ΓzSing Γ be the smooth part of Γ and let Ŝ :“ φ´1pΓ̂q. Then

φ̂ :“ φ|Ŝ : Ŝ Ñ Γ̂

is bi-holomorphic

• φ : S Ñ Γ is surjective.

For a singular point P P Sing Γ, the number of points in the preimage of φ´1pPq is
given the by the number of essentially different Puiseux expansions of Γ near P. In the
example 2.23 the number of pre-images of the singular point p0, 0q consists of two points.

Exercise 2.25: Calculate the genus of the singular curves

w3 “ pz´ a1q
2pz´ a2qpz´ a3q

2pz´ a4q

and

w3 “ z3pz´ a3q
2pz´ a4q.

For each singular point calculate the number of points in the preimage of the map φ
defined in theorem 2.24.
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Exercise 2.26: For which value of λ the following curves are non singular?

X3 ` Y3 ` Z3 ` 3λXYZ “ 0

and

X3 ` Y3 ` Z3 ` λpX ` Y` Zq3 “ 0.

Describe the singularities when they exist and calculate the genus of the corresponding
Riemann surface.

2.4 Homology

In this section we define the homology of a Riemann surface.
Given a triangulation of a Rieamnn surface we define the vertex as 0-simplex, the edges

as 1-simplex and the triangles as 2-simplex. The orientation on the manifold induces an
orientation on the triangles that can be used to orient the edges bounding each triangle.

Definition 2.27. Given a triangulation of a Riemann surface, a simplicial 0, 1 and 2 chain is a
formal sum of vertices, P j, edges e j or triangles t j

c0 “
ÿ

j

n jP j, c1 “
ÿ

j

m je j, c2 “
ÿ

j

k jt j.

The set of n-chain Cn has a natural structure of additive abelian group.

The element ´c1 is the edge with opposite orientation and ´t is the triangle with op-
posite orientation. The vertices P1, P2, P3, . . . can be used to identify edges and triangles.
For example xP1P2y is the oriented edge from P1 to P2 and xP1,P2,P3y is the oriented
triangle with sides the oriented edges xP1P2y, xP2P3y and xP3P1y. With this notation we
define the boundary operator δ

Definition 2.28. The boundary operator δ : Cn Ñ Cn´1 with n “ 0, 1, 2 is defined as follows:

δc0 “ 0, c0 P C0

δxP1P2y “ P2 ´ P1

δxP1,P2,P3y “ xP1P2y ` xP2P3y ` xP3P1y.

The above relation defines δ on 1 and 2-simplex and it can be extend to 1 and 2-chain by linearity.
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With the above definition it is immediate to observe that δ2 “ 0. Furthermore, δ is a
group homomorphism from Cn to Cn´1. We define

Zn “ tcn P Cn | δcn “ 0u, Bn “ tcn P Cn | Dcn`1 P Cn`1, cn “ δcn`1u.

From the above definition it is clear that

Bn Ď Zn Ď Cn

Since all the groups are abelian, Bn is a normal subgroup. We are interested in the
following quotient groups.

Definition 2.29. The n-homology group of Γ is defined as

HnpΓ,Zq “
Zn

Bn
, n “ 0, 1, 2.

We remark that the homology groups are independent from the triangulation. A basis
for HnpΓ,Zq is the set of elements of HnpΓ,Zq such that any other element can be written
as a linear integer combination of elements of the basis. It is clear from the definition
that dimH0pΓ,Zq “ 1. Regarding H2pΓ,Zq, with a little thought it is easy to see that for
a compact Riemann surface dimH2pΓ,Zq “ 1. The only nontrivial group is H1pΓ,Zq. We
have the following result.

Theorem 2.30. The first homology group H1pΓ,Zq is isomorphic to the abelianization of the first
homotopy group πpΓq. The group H1pΓ,Zq is a free abelian group with 2g generators. Any cycle
can be written as a sum of of generators.

The theorem above gives the following. Let Γ be a compact Riemann surface of genus
g and let rγ1s, . . . , rγ2gs be the set of generators of π1pΓq. Then any element rγs P π1pΓq can
be uniquely written as

rγsπ1 “ rγk1s
j1
π1
˝ rγk2s

j2
π1
˝ . . . rγkns

jn
π1
, k1, . . . kn P t1, 2, . . . , 2gu

with j1, . . . , jn P Z and where we put an under script of π1 to denote an element of the
fundamental group. Then the corresponding element rγsH1 in the homology is obtained
as

rγsH1 “ j1rγk1sH1 ` j2rγk2sH1 ` ¨ ¨ ¨ ` jnrγknsH1 , k1, . . . kn P t1, 2, . . . , 2gu.

In the rest of this section we simply denote as γ an element in the homology basis.
Let a1, . . . , ag, b1, . . . , bg be a basis in H1pΓ,Zq. Then any cycle γ is homologous to a linear
combination of the basis with integer coefficients:

γ »
g
ÿ

i“1

miai `

g
ÿ

i“1

nibi, mi, ni P Z.
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+1
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+1

−1

γ1 γ2

Figure 2.7: Intersection of γ1 and γ2.

The intersection number γ1 ˝ γ2 is defined for any two cycles γ1 and γ2 on Γ. By a small
deformations of the cycle it is possible to reduce the intersection of two cycles in such a
way that

• the intersection is finite;

• the intersection occurs transversally, namely the tangent lines of the two cycle in
the point of intersection are not parallel.

At each intersection point there is an ordered reference frame consisting of the tangent
vectors to the respective cycles γ1 and γ2 with the direction of the tangent vectors chosen
to correspond to the orientation of the cycles. The intersection points are assigned the
number νpPq which is equal to `1 if the orientation of this frame coincides with that of
the surface, and ´1 otherwise (see the figure). The sum of these numbers ˘1, taken over
all points of intersection of γ1 and γ2 is the intersection number γ1 ˝ γ2:

γ1 ˝ γ2 “
ÿ

PPγ1Xγ2

νpPq.

Properties of the intersection number are:

1) γ1 ˝ γ2 depends only on the homology classes of γ1 and γ2;

2) the map

˝ : H1pΓ,Zq ˆH1pΓ,Zq Ñ Z

is bilinear, skew-symmetric, and nondegenerate.



2.4. HOMOLOGY 47

oozz zz z

β
α

βα
5

1 2
3

4

1

1

2

2

Figure 2.8: Homology basis.

Nondegenerate means that if γ1˝γ2 “ 0 for every cycle γ2, then the cycle γ1 is homologous
to zero. A basis of cycles α1, . . . αg, β1, . . . , βg on a surface Γ of genus g can be chosen so
that the pairwise intersection numbers have the form

αi ˝ α j “ βi ˝ β j “ 0, αi ˝ β j “ δi j, i, j “ 1 . . . , g. (2.9)

Such a basis will be called canonical. Note that if for a cycle γ and a canonical basis
α1, . . . αg, β1, . . . , βg the intersection numbers are γ ˝αi “ ni, γ ˝ β j “ m j, i, j “ 1 . . . , g, then
the decomposition of γ in the basis has the form

γ “
g
ÿ

i“1

miαi ´

g
ÿ

i“1

niβi.

This simple consideration is useful in practical computations with cycles on Riemann
surfaces.
Example 2.31. Let us construct a canonical basis of cycles on the hyperelliptic surface
w2 “

ś2g`1
i“1 pz ´ ziq, g ě 1. We represent this surface in the form of two copies of C

(sheets) with cuts along the segments rz1, z2s, rz3, z4s, . . . , rz2g`1,8s. A canonical basis of
cycles can be chosen as indicated on the figure for g “ 2 (the dashed lines represent the
parts of a1 and a2 lying on the lower sheet).

Let α “ pα1, . . . , αgq
t and β “ pβ1, . . . , βgq

t, then the condition (2.9) can be written in
the form

ˆ

α
β

˙

˝
`

αt βt
˘

“ J, J “
ˆ

0 1
´1 0

˙

P SLp2g,Zq. (2.10)

Let us consider a change of the homology basis of the form
ˆ

α̃
β̃

˙

“

ˆ

a b
c d

˙ˆ

α
β

˙

, S :“
ˆ

a b
c d

˙

P SLp2g,Zq.
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The matrix S is in SLp2g,Zq so that the inverse transformation has integer entries. The
new basis α̃ and β̃ is canonical if

ˆ

α̃
β̃

˙

˝
`

α̃t β̃t
˘

“ J

with J defined in (2.10). This implies that the matrix S :“
ˆ

a b
c d

˙

satisfies the relation

SJSt “ J

or in other words the matrix S is in the symplectic group Spp2g,Zq. So we have shown
that canonical homology basis are related by symplectic transformations.

Poincaré polygon

A canonical basis of cycles on a Riemann surface Γ of genus g has another remarkable
property. Let us construct the cycles ai and b j so that they all begin and end at a particular
point ˚ of Γ and otherwise do not have common points, and let us make cuts along these
cycles. As a result the surface Γ becomes a p4gq-gon Γ̃ – a so-called Poincarè polygon of Γ.
Indeed, the domain Γ̃ obtained as a result of the cutting is bounded by a closed contour
BΓ̃ made up of 4g segments, and any cycle in Γ̃ is homologous to zero by property 2 of
intersection number. Therefore, Γ̃ is a simply connected planar domain. Conversely, it
is possible to glue the surface Γ together from the p4gq-gon Γ̃ by identifying its sides of
the same name in the way indicated in the figure. In the figure, we write a´1

i and b´1
i the

α

β

α

1

−1

1β
−1

β

β

1

1

1

1

2

2

−1
2

2
−1

1

1

α

α

αβ

β2
−1

−1α

Figure 2.9: Poincaré polygon for surfaces of genus one and two.
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edges of the cut along the cycles ai and bi, respectively, if these edges occur in the oriented
boundary BΓ̃ with a minus sign. The segment ai is glued together with the segment a´1

i
and bi with the segment b´1

i in the direction indicated by the arrows.
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Chapter 3

Meromorphic functions on a
Riemann surface.

3.1 Holomorphic mappings of Riemann surfaces

Definition 3.1. Let Γ be a Riemann surface. A function f : Γ Ñ C is said to be holomorphic, if
for each local chart the function

f ˝ φ´1
α : φαpUαq Ñ Vα Ă C

zα Ñ fαpzαq :“ f pφ´1
α pzαqq,

is holomorphic on the open subset φαpUαq.

The following theorem is inherited from complex analysis.

Theorem 3.2. If Γ is a connected compact Riemann surface, then the only holomorphic functions
are constants.

Proof. Since f is holomorphic, | f | is continuos on Γ compact. Therefore | f | achieves its
maximum value at some point of Γ. By the maximum modulus Theorem, f must be
constant on Γ since Γ is connected. �

In the same way one can define meromorphic functions.

Definition 3.3. A function f is a meromorphic function on a Riemann surface Γ if it is holomorphic
in a neighborhood of any point of Γ except for finitely many points Q1, . . . ,Qm. At the points
Q1, . . . ,Qm the function f has poles of respective multiplicities q1, . . . , qm i.e., in a neighborhood
of the point Q j, j “ 1, . . . ,m, it can be represented in the form

f “ τ´qi
j f̃ jpτ jq, (3.1)

51



52 CHAPTER 3. MEROMORPHIC FUNCTIONS ON A RIEMANN SURFACE.

where τ j is a local parameter centred at the point Q j, and f̃ jpτ jq is a holomorphic function for small
τ j and f̃ jpτ jq|τ j“0 , 0. The order of f in Q j denoted as ordQ jp f q is the first nonzero exponent in
the Laurent series of f in Q j, namely

ordQ jp f q “ ´q j.

It is easy to verify that Definition 3.4 is unambiguous. i.e., is independent from the
choice of the local parameter, and also that the definition of the multiplicity of a pole is
unambiguous.

Definition 3.4. Let Γ be a compact Riemann surface defined as Γ “ tpz,wq P C2 | Fpz,wq “ 0u
, Fpz,wq polynomial. A function f “ f pz,wq is meromorphic on Γ if it is a rational function of z
and w, i.e., it has the form

f pz,wq “
Ppz,wq
Qpz,wq

, (3.2)

where Ppz,wq and Qpz,wq are polynomials, and Qpz,wq is not identically zero on Γ.

The meromorphic functions on the surface Γ form a field whose algebraic structure
actually bears in itself all the information about the geometry of the Riemann surface.

A similar definition of meromorphic functions can be given for a projective curve
Γ :“ trX : Y : Zs P P2|QpX,Y,Zq “ 0uwhere now QpX,Y,Zq is a homogeneous polynomial.
Meromorphic functions on the projective curve Γ take the form

RpX,Y,Zq “
GpX,Y,Zq
HpX,Y,Zq

where G and H are homogeneous polynomials of the same degree and Q does not divide
H.

It is not hard to verify that the conditions of Definition 3.3 follow from the conditions
of Definition 3.4. The following result turns out to be true.

Theorem 3.5. Definitions 3.4 and 3.3 are equivalent.

We do not give a proof of this theorem; see, for example, [?] or [6].
Holomorphic mappings of Riemann surfaces are defined by analogy with meromor-

phic functions on Riemann surfaces.

Definition 3.6. Let Γ and rΓ be Riemann surfaces. A map f : Γ Ñ Γ̃ is called holomorphic at a
point P P Γ if and only if there is exists charts from a neighbourhood U of P and a neighbourhood
rU of f pPq, namely φ : U Ñ V Ă C and rφ : rU Ñ rV Ă C such that the composition

rφ ˝ f ˝ φ´1

is holomorphic. The map f is holomorphic, if it is holomorphic everywhere on Γ.
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In other words, if τ is a local parameter on Γ and rτ a local parameter in a neighborhood
of the point f pPq, then f must be written locally in the form rτ “ ψpτq, where ψ is a
holomorphic function of τ.

If Γ “ tpz,wq P C2 | Fpz,wq “ 0u, rΓ “ tprz, rwq P C2 | rFprz, rwq “ 0u, then a holomorphic
mapping f : Γ Ñ rΓ is defined by a pair of meromorphic functionsrz “ f1pz,wq, rw “ f2pz,wq.
It follows from Theorem 3.5 that this definition is equivalent to (3.6).

Remark 3.7. Let f : Γ Ñ C be a meromorphic function on Γ. Then f can be extended to an
holomorphic function from Γ to sC in the following way:

FpPq “
"

f pPq, if P is not a pole for f
8 if P is a pole for f .

Let us verify that the map F is holomorphic. This is obvious in a neighborhood of
regular points. Let z be a local coordinate in the finite part of C, and ζ “ 1{z the local
coordinate at 8 P sC. Assume that the function has a pole of order k at the point P0 P Γ,
i.e., it can be written in terms of a local coordinate τ centred in P0 in the form

z “ f pPq “
c
τk
`Opτ´k`1q, c , 0,

Then ζ “
1

f pPq
“ c´1τk `Opτk`1q, i.e., the mapping has a zero of multiplicity k at P0.

Example 3.8. A meromorphic function f from P1 to C is of the form

f pX,Yq “
PpX,Yq
QpX,Yq

where P and Q are homogeneous polynomials of the same degree. One can extend f to a
holomorphic function F : P1 Ñ P1 in the form

FpX,Yq :“ rPpX,Yq : QpX,Yqs.

Theorem 3.9. Let Γ and Γ̃ be connected Riemann surfaces and Γ be compact. Let f : Γ Ñ Γ̃ be a
non constant holomorphic map. Then Γ̃ is compact and f is onto.

Proof. Since f is holomorphic, it is also an open mapping. Therefore, f pΓq is open in Γ̃.
Since Γ is compact, f pΓq is compact in Γ̃. Since Γ̃ is Hausdorff and connected, f pΓq is open
and close in Γ̃, therefore f pΓq “ Γ̃ and Γ̃ is compact. �

The following lemma characterizes the local behaviour of a holomorphic mapping.



54 CHAPTER 3. MEROMORPHIC FUNCTIONS ON A RIEMANN SURFACE.

Lemma 3.10. let f : Γ Ñ rΓ be a non constant holomorphic function between compact Riemann
surfaces. Then there exists local parameters τ and rτ centered in P P Γ and Q “ f pPq P rΓ
respectively, such that the map f takes the form

rτ “ τk, k PN. (3.3)

Proof. Let s and s̃ be local coordinates centered at P P Γ and f pPq P rΓ. Then in local
coordinates the holomorphic non constant function f : Γ Ñ rΓ takes the form

rs “ ψpsq

with ψ holomorphic and ψp0q “ 0. The function ψ can be written in the form

ψpsq “ skhpsq (3.4)

with h holomorphic, hp0q , 0 and k non negative integer. The number k does not depend
on the choice of the local parameters s and rs. Let us define the new local coordinate τ as

τ “ sgpsq, gspsq “ hpsq.

Such map is biholomorphic. In terms of the local coordinate τ, the map f takes the form
(3.3). �

Definition 3.11. The number k defined (3.4) is called the multiplicity of f in P, and denoted
by multPp f q. A point P P Γ is called ramification point for f if multPp f q ě 2. The point
f pPq “ Q P Γ̃ is called branch point. The number

b f pPq “ multPp f q ´ 1

is called the branch number of f in P. The map f : Γ Ñ Γ̃ is called a holomorphic unramified
(ramified) covering if f does not (does ) have branch points.

Lemma 3.12. Non constant holomorphic mappings f : Γ Ñ rΓ are discrete. Namely the pre-image
of a point Q P rΓ is a discrete set f´1pQq in Γ. In particular, if Γ and rΓ are compact, f´1pQq is
finite.

Proof. Let Q P rΓ and P P f´1pQq. Let τ and rτ local coordinates centered at P and Q
respectively. In these coordinates the function f takes the form rτ “ hpτq with hp0q “ 0
and h holomorphic. Since the set of zeros of a non constant holomorphic function is
discrete, it follows that P is the only pre-image of Q. Therefore f´1pQq forms a discrete
subset. The second statement follows from the fact that discrete subsets of compact space
are finite. �
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Lemma 3.13. Let f : Γ Ñ rΓ be a non constant holomorphic map. Then the set of branch points

B “ tP P Γ | b f pPq ą 0u

is discrete and it is finite if Γ is compact.

The proof of the Lemma is similar to the proof of Lemma 3.12
Example 3.14. A hyperelliptic nonsingular Riemann surface w2 “ P2n`1pzq, P2n`1pzq “
ś2n`1

i“1 pz ´ ziq. Here the coordinates z and w are single-valued functions on Γ and holo-
morphic in the finite part of Γ. These functions have poles at the point of Γ at infinity: z
has a double pole, and w has a pole of multiplicity 2n` 1. This follows immediately from
the proposition (1.39). The function 1{pz´ ziq has for each i a unique second order pole on
Γ at the branch points. This follows from (1.25). We mention also that the function z has
on Γ two simple zeros at the points z “ 0, w “ ˘

a

P2n`1p0q which merges into a single
double zero if P2n`1p0q “ 0. The function w has 2n ` 1 simple zeros on Γ at the branch
points. (The multiplicity of a zero of a meromorphic function is defined by analogy with
the multiplicity of a pole.)
Example 3.15. A hyperelliptic Riemann surface w2 “ P2n`2pzq. Here again the functions
z and w are holomorphic in the finite part of Γ. But these functions have two poles at
infinity (in the infinite part of the surface Γ): z has two simple poles, and w has two poles
of multiplicity n` 1. This follows from proposition (1.39).

Exercise 3.16: Prove Theorem 3.5 for P1.

Exercise 3.17: Prove Theorem 3.5 for hyperelliptic Riemann surfaces. Hint. Let f “ f pz,wq
be a meromorphic (in the sense of Definition 3.3) function on the hyperelliptic Riemann
surface Γ defined by the equation w2 “ Ppzq. Show that the functions f` “ f pz,wq `

f pz,´wq and f´ “
f pz,wq ´ f pz,´wq

w
are rational functions of z, so that any meromorphic

function on on Γ is of the form f pz,wq “ r1pzq ` r2pzqw where r1 and r2 are rational
functions.

To prove the simplest properties of meromorphic functions on Riemann surfaces it is
useful to employ arguments connected with the concept of the degree of a mapping.

Proposition 3.18. Let f : Γ Ñ Γ̃ be a nonconstant holomorphic mapping between compact
Riemann surfaces. For each Q P Γ̃ let us define degQp f q to be the sum of the multiplicities of f at
the point of Γ mapping to Q:

degQp f q “
ÿ

PP f´1pQq

multPp f q.

Then degQp f q is constant independent from Q.
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Proof. We show that the function Q Ñ degQp f q is locally constant. Let P1, . . .P j be the
number of pre-images of Q under f . Let τi be local coordinates centered at Pi and τ̃ local
coordinate centered in Q so that locally near Pi the function f takes the form

τ̃ “ τmi
i , i “ 1, . . . , j.

The above map has constant degree in a small neighbourhood of τi “ 0 for i “ 1, . . . , j.
What is left to prove is that near Q there are no other pre-images of Q left unaccounted
which are not in a neighbourhood of P1, . . .P j. Suppose by contradiction that arbitrary
close to Q there are pre-images which are not contained in any of the neighbourhood of
the Pi. Since Γ is compact we may extract a convergent sub-sequence of points in Γ, say P1n
which are not contained in any of the neighbourhood of the Pi. This subsequence has the
property that f pP1nq Ñ Q because f is holomorphic, therefore, the limit point of P1n must
be one of the Pi, i “ 1, . . . j. We obtained a contradiction since we assumed that none of
the Pn’s lie in a neighbourhood of the Pi, i “ 1, . . . , j. �

Exercise 3.19: Prove that for any meromorphic function on a Riemann surface Γ the
number of zeros is equal to the number of poles (zeros and poles are taken with multiplicity
counted).

Remark 3.20. A single non constant meromorphic function on a Riemann surface Γ com-
pletely determines the complex structure of Γ. Indeed let P P Γ and n “ b f pPq ` 1. Then
a local coordinate vanishing at P is given by

p f ´ f pPqq1{n if f pPq , 8

f pPq´1{n if f pPq “ 8.
(3.5)

Exercise 3.21 (Riemann-Hurwitz formula): Let f : Γ Ñ Γ̃ be a nonconstant holomorphic
map between compact Riemann surfaces. Prove the following generalization of the
Riemann-Hurwitz formula (see Lecture 2)

2´ 2gpΓq “ deg f p2´ 2gpΓ̃q ´
ÿ

PPΓ

pmultP f ´ 1q (3.6)

where gpΓq and gpΓ̃q is the genus of the Riemann surface Γ and rΓ respectively and deg is
the degree of the function f .

Exercise 3.22: Let Γ be a nonsingular projective curve defined as Γ :“ trX : Y : Zs P
P2 |QpX,Y,Zq “ 0u where Q is an irreducible homogenueos polynomial of degree n.
Show that the map

rX : Y : Zs Ñ rQX : QY : QZs

from P2 to P2 is well defined. The image of such map is called the dual curve Γ̂ to Γ.
Show that the map is holomorphic but it does not have a holomorphic inverse if n ě 3.
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Definition 3.23. A map f : Γ Ñ rΓ is called a biholomorphic isomorphism if it is a bijective
holomorphic map with holomorphic inverse. If rΓ “ Γ, then the map is called an automorphism.

It is not hard to derive from Theorem 3.5 that the class of biholomorphic isomorphisms
of Riemann surfaces coincides with the class of birational isomorphisms (the mapping it-
self and its inverse are given by rational functions. Namely let Γ :“ tpz,wq P C2 |Fpz,wq “
0u and rΓ :“ tprz, rwq P C2 | rFprz, rwq “ 0u, then a birational isomorphism is of the form
rz “ r1pz,wq, rw “ s1pz,wq and z “ r2prz, rwq, w “ s2prz, rwq, with r1pz,wq, r2prz, rwq, s1pz,wq and
s2prz, rwq rational functions. In what follows we use the terms bi-holomorphic isomorphism
and birational isomorphism interchangeably.

The following is obvious but important.

Lemma 3.24. If the surfaces Γ and Γ̃ are biholomorphically (birationally) isomorphic, then they
have the same genus.

Proof. A biholomorphic isomorphism is clearly a homeomorphism. But the genus is
invariant under homeomorphisms [10]. The assertion is proved. �

Definition 3.25. A Riemann surface Γ is said to be rational if it is biholomorphically isomorphic
to P1.

The genus of a rational surface is equal to zero. It turns out that this condition is also
sufficient for rationality.

Exercise 3.26: Let Γ be a Riemann surface of genus g ą 1. Prove that there is no mero-
morphic function on Γ with a single simple pole.

Example 3.27. The surface w2 “ z. This surface is rational. A birational isomorphism
onto P1 is given by the projection pz,wq Ñ w.

Exercise 3.28: Consider the Riemann surface Γ :“ tpz,wq P C2 |wn “ Pmpzqu where Pmpzq
is a polynomial of degree m in z with distinct roots. Consider the automorphism

J : pz,wq Ñ pz, e2π j{nwq, j “ 1, . . . ,n

and define the equivalence relation pz1,w1q » pz2,w2q if z1 “ z2 and w1 “ e2π j{nw2 for
some j. Show that the quotient surface Γ{J is well defined and it is rational. Determine
the branch points of the projection map

π : Γ Ñ Γ{J.
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Example 3.29. A surface with w2 “ P2g`2pzqwith g ą 1 is nonrational. We show that any
such surface is birationally isomorphic to some surface of the form rw2 “ rP2g`1przq. Let z0
be one of the zeros of the polynomial P2g`2pzq, and let

rz “
1

z´ z0
, rw “

w
pz´ z0q

g`1
.

The inverse mapping has the form

z “ z0 `
1
z̃
, w “

rw
rzg`1

.

If P2g`2pzq “ pz ´ z0q
ś2g`1

i“1 pz ´ ziq, then rP2g`1przq “
ś2g`1

i“1 p1 ` pz0 ´ ziqrzq. Thus, both
”types” of hyperelliptic Riemann surfaces considered in Lecture 1 give the same class of
surfaces.



Chapter 4

Differentials on a Riemann surface.

4.1 Holomorphic differentials

We consider a complex-one dimensional manifold M with with an atlas of charts tUα, φαu
with

φα : Uα Ñ Vα Ă C

and φαpPq “ zα P Vα and P P Uα. Here we are identifying C with R2 by writing
zα “ xα ` iyα with xα and yα standard coordinates on R2.

A smooth 0-form on M is a smooth function on M.

Definition 4.1. A smooth one 1-form (also called differential) ω on M is an assignment of a
collection of two smooth functions hαpzα, z̄αq and gαpzα, z̄αq to each local coordinate zα in Uα such
that

ω “ hαpzα, z̄αq dzα ` gαpzα, z̄αq dz̄α, (4.1)

is invariant under coordinate change. Namely if zβ “ zβpzα, z̄αq and z̄β “ z̄βpzα, z̄αq are another
local coordinates such that Uα XUβ ,H then

ω “

ˆ

hαpzα, z̄αq
Bzα
Bzβ

` gαpzα, z̄αq
Bz̄α
Bzβ

˙

dzβ `
ˆ

hαpzα, z̄αq
Bzα
Bz̄β

` gαpzα, z̄αq
Bz̄α
Bz̄β

˙

dz̄β.

The two parts hpzα, z̄αq dzα and gpzα, z̄αq dz̄α of the expression (4.1) will be called p1, 0q-
and p0, 1q-forms respectively. The above expression shows that the decomposition of ω
in p1, 0q and p0, 1q form is invariant under local change of coordinates, if and only if the
change of coordinates is holomorphic, namely

Bz̄α
Bzβ

“ 0,
Bzα
Bz̄β

.

59
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The above conditions in real coordinates are equivalent to the Cauchy-Riemann equation.
For a one-complex dimensional manifold M that has a complex structure ( namely a
Riemann surface), the decomposition of a one form in p1, 0q and p0, 1q form is invariant
under local change of coordinates. From now on we will consider only holomorphic
change of coordinates.

Definition 4.2. A one form ω is called holomorphic is the functions hαpzα, z̄αq in (4.1) are all
holomorphic functions and gα ” 0, namely

ω “ hpzαqdzα.

A one form ω is called antiholomorphic if

ω “ gpz̄αqdz̄α.

In a similar way to one form we can define two-forms.

Definition 4.3. A smooth two form η on M is an assignment of a smooth function fαpzα, z̄αq such
that

η “ fαpzα, z̄αqdzα ^ dz̄α

is invariant under coordinate change.

The exterior multiplication satisfies the conditions

dzα ^ dzα “ 0, dz̄α ^ dz̄α “ 0, dzα ^ dz̄α “ ´dz̄α ^ dzα.

Under holomorphic change of coordinates zβ “ zβpzαq, z̄β “ z̄βpz̄αq one has

η “ fβpzβ, z̄βqdzβ ^ dz̄β “ fαpzα, z̄αqdzα ^ dz̄α

where

fβpzβ, z̄βq “ fαpzα, z̄αq
ˇ

ˇ

ˇ

ˇ

dzα
dzβ

ˇ

ˇ

ˇ

ˇ

2

.

We define Ωk for k “ 0, 1, 2 as the set of smooth functions, smooth one forms and smooth
two-forms on M respectively. We define the exterior derivative

d : Ωk Ñ Ωk`1, k “ 0, 1, 2

as follows. For f P Ω0,

d f pz, z̄q “ fzdz` fz̄dz̄,
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For one forms ω P Ω1, with ω “ hpz, z̄qdz ` gpz, z̄qdz̄ in a given coordinate chart, the
exterior derivative takes the form

dω “ dh^ dz` dg^ dz̄

and for two forms, η P Ω2pMq

dη “ 0.

Clearly the fundamental property of the exterior differentiation is

d2 “ 0.

We can decompose the exterior derivative operator d according to the decomposition of
1-form in p0, 1q and p1, 0q forms

d “ B ` B̄

so that for h P Ω0,0 :“ Ω0 in a local chart

B : Ω0 Ñ Ω1,0, Bhpz, z̄q “ hzdz,

and

B̄ : Ω0 Ñ Ω0,1, B̄hpz, z̄q “ hz̄dz̄.

In general we get the diagram

Ω0,1 B // Ω2

Ω0

B̄

OO

B

// Ω1,0

B̄

OO

where Ω2 “ Ω1,1. Also in this case B2 “ 0 and B̄2 “ 0.

Definition 4.4. A one form ω is called exact if there is a function f P Ω0 such that d f “ ω. A
one form ω P Ω1 is called closed if dω “ 0.

Lemma 4.5. A p1, 0q-formω “ hpz, z̄q dz is closed if and only if the function hpz, z̄q is holomorphic.

It follows that all the holomorphic differentials, locally can be written in the form
ω “ hpzqdz where hpzq is a holomorphic function. Holomorphic differentials are closed
differentials.
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Definition 4.6. The first de Rham cohomology group is defined as

H1
deRhampΓq “

Closed 1-forms
Exact 1-forms

“
kerpd : Ω1 Ñ Ω2q

Impd : Ω0 Ñ Ω1q
.

A similar definition can be obtained for the Dolbeault cohomology groups H1,0pΓq and
H0,1pΓqwith respect to the operator B̄:

H1,0pΓq :“
kerpB̄ : Ω1,0 Ñ Ω2q

pB̄ : Ω0 Ñ Ω1,0q
“ kerpB̄ : Ω1,0 Ñ Ω2q,

H0,1pΓq :“
kerpB̄ : Ω0,1 Ñ Ω2q

pB̄ : Ω0 Ñ Ω0,1q
“

Ω0,1

ImagepB̄ : Ω0 Ñ Ω0,1q
.

A non trivial result shows that there are isomorphisms among the above three groups [17].
By denoting H0,1pΓq the complex conjugate of the group H0,1pΓq, one has the following
theorem.

Theorem 4.7. The Dolbeault cohomology groups H1,0pΓq and H0,1pΓq are isomorphic

H1,0pΓq » H0,1pΓq (4.2)

and the first de-Rham cohomology group is isomorphic to

H1
deRhampΓq » H1,0pΓq ‘H0,1pΓq. (4.3)

The relation (4.2) shows that the complex vector spaces H1,0pΓq and H0,1pΓq have the
same dimension. The relation (4.3) shows that the dimension of the complex vector space
H1,0pΓq and H0,1pΓq is half the dimension of the complex vector space H1

deRhampΓq.

4.1.1 Integration

We can integrate one forms on curves of the Rieamnn surface Γ, two-forms on domains
of Γ and 0-forms on zero dimensional domains of Γ, namely points. Let c0 be a 0-chain,

c0 “
ÿ

i

niPi, Pi P Γ

then for f P Ω0pΓq the integral of f over a 0-chain c0 is
ż

c0

f “
ÿ

i

ni f pPiq
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A one form ω can be integrated over a one-chain c. If the piece-wise differentiable path
c : r0, 1s Ñ Γ is contained in a single coordinate disc with coordinates z “ x` iy, then the
integral of ω over the one-chain c takes the form

ż

c
ω “

ż 1

0
hpzptq, z̄ptqq

dz
dt

dt`
ż 1

0
gpzptq, z̄ptqq

dz̄ptq
dt

dt

By the transition formula for ω the above integral is independent from the choice of the
coordinate chart z. In a similar way a two-form η can be integrated over two chains D.
Again restricting to a single coordinate chart one has

ż ż

D
η “

ż ż

D
f pz, z̄qdzdz̄.

The integral is well defined and extends in a obvious way to an arbitrary two-chain.

Theorem 4.8 (Stokes theorem). Let D be a domain of Γ with a piece-wise smooth boundary BD
and let ω be a smooth one-form. Then

ż

D
dω “

ż

BD
ω. (4.4)

As a consequence of Stokes theorem, the integral of closed forms ω on any closed
oriented contour (cycle) γ on Γ does not depend on the homology class of γ. Recall that
two cycles γ1 and γ2 are said to be homologous if their difference γ1 ´ γ2 “ γ1 Y p´γ2q

(where (´γ2) is the cycle with the opposite orientation) is the oriented boundary of some
domain D on Γ with BD “ γ1´γ2. Then for a close differentialω and from Stokes theorem
we obtain

0 “
ż

D
dω “

ż

BD
ω “

ż

γ1´γ2

ω “

ż

γ1

ω´

ż

γ2

ω.

In addition, the integral of a close differential ω on a close cycle γ is independent from
the cohomology class. Let ω1 “ ω` d f for some smooth function f , then

ż

γ
ω “

ż

γ
pω1 ´ d f q “

ż

γ
ω1.

We summarise the above discussion with the following proposition.

Proposition 4.9. The integration is a paring between the first homology group H1pΓ,Zq and the
first cohomology group H1

deRhampΓ,Cq
ż

: H1pΓ,Zq ˆH1
deRhampΓ,Cq Ñ C

The pairing is non-degenerate.
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Proof. We need to prove that the pairing is non-degenerate. Consider a smooth one-form
ω such that

ż

γ
ω “ 0

for all γ P H1pΓ,Zq. It follows that the function

f pPq “
ż P

P0

ω

is well defined and it does not depend on the path of integration between P0 and P.
Therefore d f “ ω, namely the equivalent class of ω in the de-Rham cohomology is zero,
rωs “ 0 in H1

deRhampΓ,Cq. �

As a consequence of the above proposition we have the following lemma.

Lemma 4.10. The dimension of the space H1
deRhampΓ,Cq is less then or equal to 2g where g is the

genus of the compact Riemann surface Γ.

Proof. Suppose by contradiction, that there are ω1, . . . , ωs, s ą 2g independent closed
differentials in H1

deRhampΓ,Cq. Then let us consider a basis of the homology γ j, j “ 1 . . . , 2g
and construct the matrix with entries

c jk “

ż

γ j

ωk, j “ 1, . . . 2g, k “ 1, . . . s.

Such matrix has rank at most equal to 2g, and therefore one can find nonzero constants
a1, . . . , as such that the differential ω “

řs
k“1 akωs has all its periods equal to zero, namely

ż

γ j

ω, j “ 1, . . . 2g.

By proposition 4.9 it follows that rωs “ 0 and we arrive to a contradiction. �

As a consequence of the above lemma we have the following corollary for the dimen-
sion of the space of holomorphic differentials.

Corollary 4.11. The space of holomorphic differentials on a Riemann surface of genus g is no
more than g-dimensional.

Actually the number of independent holomorphic differentials is indeed equal to g.

Theorem 4.12. The space of holomorphic differentials on a Riemann surface Γ of genus g has
dimension g.
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We do not give a proof of the above theorem that is constructive (see [18] or [17]).
However for a Riemann surface given as the zeros of a polynomial equation one can
determine explicitly the holomorphic differentials.
Example 4.13. Let us consider holomorphic differentials on a hyperelliptic Riemann sur-
face

Γ “ tw2 “ P2g`1pzqu, P2g`1pzq “
2g`1
ź

k“1

pz´ zkq

of genus g ě 1. Let us check that the differentials

ηk “
zk´1dz

w
“

zk´1dz
b

P2g`1pzq
, k “ 1, . . . , g (4.5)

are holomorphic. Indeed, holomorphicity at any finite point but branch point is obvious
as the denominator does not vanish. We verify holomorphicity in a neighborhood of the i-
th branch point Pi “ tz “ zi, w “ 0u. Choosing the local parameter τ in a neighborhood
of Pi in the form τ “

?
z´ zi, we get from (1.25) that ηk “ ψkpτqdτ, where the function

ψkpτq “
2pzi ` τ2qk´1

b

ś

j,ipτ
2 ` zi ´ z jq

is holomorphic for small τ.
At the point at infinity the differentials ηk can be written in terms of the local parameter

τ “ z´
1
2 in the form ηk “ φkpτqdτ, where the functions

φkpτq “ ´2τ2pg´kq

»

–

2g`1
ź

i“1

p1´ ziτq

fi

fl

´ 1
2

, k “ 1, . . . , g

are holomorphic for small τ.
In the same way it can be verified that the differentials ηk “ zk´1dz{w, k “ 1, . . . , g are

holomorphic on the Riemann surface w2 “ P2g`2pzq with P2g`2pzq an even polynomial
with 2g` 2 distinct roots.

In general for a nonsingular Riemann surface Γ :“ tpz,wq P C2, |Fpz,wq “ 0u, where
Fpz,wq is a polynomial in z and w, the differential

ω “
ziw jdz

Fwpz,wq
, i, j ě 0, (4.6)

is holomorphic for all finite values of z and w. Indeed the only possible points where such
differential might have poles are the zeros of Fw, namely the branch points with respect
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to the projection π : Γ Ñ C such that πpz,wq “ z. At the branch points with respect to the
projection π one needs to take w as local coordinate. Since Fzdz` Fwdw “ 0 one has

dz
Fw
“ ´

dw
Fz
.

Therefore at the branch points where Fw “ 0 one can write the differential ω in the form

ω “ ´
z jwkdw

Fz
. Since we assume that the surface Γ is nonsingular, Fz , 0 at the branch

points.
In order to determine for which coefficients pi, jq the differential ω in (4.6) remains

holomorphic also at infinity, we explain the following rule, that is true for nonsingular
Riemann surfaces. Consider the carrier of the polynomial Fpz,wq “

ř

i, j ai jziw j, namely
the set of all integral points in Z2 such that

CpFq “ tpi, jq P Z2|ai j , 0u.

The Newton polygon NpFq of Fpz,wq is defined as the convex hull of the carrier CpFq. Then
the holomorphic differentials associated to the curve given by the equation Fpz,wq “ 0
are

zi´1w j´1dz
Fwpz,wq

, pi, jq P NpFq

where pi, jq are the points strictly inside the Newton polygon NpFq.
This fact can be easily verified for hyperelliptic Riemann surfaces. Now let us check

it for a smooth projective curves.
Consider the smooth compact Riemann surface

Γ :“ trX : Y : Zs P P2, |QpX,Y,Zq “
ÿ

0ďi` jďn

ai jXiY jZn´i´ j “ 0u.

Let us consider the affine part of Γ given by the equation Fpz,wq “
ř

i` jďn ai jziw j.
The point(s) at infinity of the affine curve are determined by the equation QpX,Y, 0q “
ř

ďi` j“n ai jXiY j “ 0. For simplicity we assume that there are no branch points at infinity
so that the homogeneous equation QpX,Y, 0q “ 0 has n distinct roots. From this it follows
that deg QpX, 0, 0q “ deg Qp0,Y, 0q “ n.

Then the holomorphic differentials are

ηi j “
zi´1w j´1dz
BFpz,wq{Bw

, i` j ď n´ 1. (4.7)
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Indeed the above expression is holomorphic for finite values of z and w. The only points
we need to consider are the points at infinity 81, . . . ,8n. By the above assumptions we
have that a local coordinate at infinity is

z “
1
ξ
, w “

c j

ξ
j “ 1, . . . ,n

where c j are the solutions of the homogeneous equation Qpc j, 1, 0q “ 0. In these coordi-
nates ω takes the form

ω “ ´c
dξ
ξi` j

1

Fw

´

1
ξ ,

c j

ξ

¯ “ ´c
ξn´1p1`Opξqqdξ

ξi` j

where c is a nonzero constant. The above differential is holomorphic if i ` j ď n ´ 1. If
Fp0, 0q , 0 then the Newton polygon associated the F is the triangle with vertices p0, 0q,
p0,nq and pn, 0q. Then all the integral points strictly inside the triangle satisfy the rule
0 ă i ` j ď n ´ 1. Therefore the integral points inside the triangle are in one to one
correspondence with the holomorphic differentials (4.7).

Exercise 4.14: Show that the differentials obtained using the Newton polygon formula
for the polynomiil Fpz,wq are holomorphic without assuming that Fp0, 0q “ 0 and that at
infinity there are no branch points. (Study the conditions on the shape of the Newton
polygon so that the curve Γ is non singular in p0, 0q or at infinity.)

4.1.2 Riemann bilinear relations

In this section we prove several technical assertions regarding the periods of close dif-
ferential and holomorphic differentials. Such relations are known as Riemann bilinear
relations

Lemma 4.15. Let ω1 and ω2 be two closed differentials on a surface Γ of genus g ě 1. Denote
their periods with respect to a canonical basis of cycles α1, . . . , αg, β1, . . . , βg, by Ai, Bi and A1i, B1i:

Ai “

ż

αi

ω, Bi “

ż

βi

ω, A1i “
ż

αi

ω1, B1i “
ż

βi

ω1. (4.8)

Denote by f “
ş

ω the primitive of ω, which is single-valued on the surface Γ̃ cut along ai, b j, then

ż ż

Γ
ω^ ω1 “

¿

BΓ̃

fω1 “
g
ÿ

i“1

pAiB1i ´ A1iBiq. (4.9)
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Proof. The first of the equalities in (4.9) follows from Stokes’ formula, since dp fω1q “ ω^ω1.
Let us prove the second. We have that

¿

BΓ̃

fω1 “
g
ÿ

i“1

˜

ż

αi

`

ż

α´1
i

¸

fω1 `
g
ÿ

i“1

˜

ż

βi

`

ż

β´1
i

¸

fω1.

To compute the i-th term in the first sum we use the fact that f pPq “
şP

P0
ω where P0 is a

point in the interior of Γ̃:

f pPiq ´ f pP1iq “

Pi
ż

P0

ω´

P1i
ż

P0

ω “

Pi
ż

P1i

ω “ ´Bi (4.10)

since the cycle P1iPi, which is closed on Γ, is homologous to the cycle βi (see the figure; a
fragment of the boundary BΓ̃ is pictured). Similarly, the jump of the function f in crossing
the cut βi has the form

f pQiq ´ f pQ1iq “

Qi
ż

Q1i

ω “ Ai (4.11)

since the cycle Q1iQi on Γ is homologous to the cycle ai. Moreover, ω1pP1iq “ ω1pPiq and
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ω1pQ1iq “ ω
1pQiq because the differential ω1 is single-valued on Γ. We have that

ż

αi

f pPiqω
1pPiq `

ż

α´1
i

f pP1iqω
1pP1iq “

ż

αi

f pPiqω
1pPiq ´

ż

αi

p f pPiq ` Biqω
1pPiq

“ ´Bi

ż

αi

ω1pPiq “ ´BiA1i

where the minus sign appears because the edge a´1
i occurs in BΓ̃ with a minus sign.

Similarly,
˜

ż

βi

`

ż

β´1
i

¸

fω1 “ AiB1i.

Summing these equalities, we get (4.9). The lemma is proved. �

We derive some important consequences for periods of holomorphic differentials
from the lemma 4.15. Everywhere we denote by α1, . . . , αg, β1, . . . , βg the canonical basis
of cycles on Γ.

Corollary 4.16. . Letω be a nonzero holomorphic differential on Γ, and A1, . . . ,Ag, B1, . . . ,Bg its
corresponding periods with respect to the canonical homology basis α1 . . . , αg and β1 . . . , βg, then

=

˜ g
ÿ

i“1

AkB̄k

¸

ă 0. (4.12)

Proof. Take ω1 “ ω̄ in the lemma 4.15. Then A1i “ Āi and B1i “ B̄i for i “ 1, . . . , g. We have
that

i
2

ż ż

Γ
ω^ ω1 “

i
2

ż ż

| f |2dz^ dz̄ “
ż ż

Γ
| f |2dx^ dy ą 0.

Here z “ x` iy is a local parameter, and ω “ f pzqdz. In view of (4.9) this integral is equal
to

i
2

g
ÿ

k“1

AkB̄k ´ ĀkBk “ ´=

˜ g
ÿ

k“1

AkB̄k

¸

.

The corollary is proved. �

Corollary 4.17. If all the α-periods of a holomorphic differential are zero, then ω “ 0.

This follows immediately from Corollary 4.16.
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Corollary 4.18. On a surface Γ of genus g there exists a basis ω1, . . . , ωg of holomorphic differ-
entials such that

¿

α j

ωk “ δ jk, j, k “ 1, . . . , g. (4.13)

Proof. Let η1, . . . , ηg be an arbitrary basis of holomorphic differentials on Γ. The matrix

A jk “

¿

α j

ηk (4.14)

is nonsingular. Indeed, otherwise there are constants cl, . . . , cg such that
ř

k A jkck “ 0.
But then

ř

k ckηk “ 0, since this differential has zero a-periods. This contradicts the
independence of the differentials ηi, . . . , ηk.

ω j “

g
ÿ

k“1

Ãkjηk, j “ 1, . . . , g, (4.15)

where the matrix pÃkjq is the inverse of the matrix pA jkq,
ř

k ÃikAkj “ δi j, we get the desired
basis. The corollary is proved. �

A basis ω1, . . . , ωg satisfying the conditions (4.13) will be called a normal basis of
holomorphic differentials (with respect to a canonical basis of cycles α1, . . . , αg, β1, . . . , βgq

.

Corollary 4.19. Let ω1, . . . ωg be a normalized basis of holomorphic differentials, and let

B jk “

¿

β j

ωk, j, k “ 1, . . . , g. (4.16)

Then the matrix pB jkq is symmetric and has positive-definite imaginary part.

Proof. Let us apply the lemma 4.15 to the pair ω “ ω j and ω1 “ ωk. Then ω^ω1, Ai “ δi j,
Bi “ Bi j, A1i “ δik, B1i “ Bik. By (4.9) we have that

0 “
ÿ

i

pδi jBik ´ δikBi jq “ pB jk ´ Bkjq.

The symmetry is proved. Next, we apply Corollary 4.16 to the differential
řg

j“1 x jω j

where all the coefficients x1, . . . , xg are real. We have that Ak “ xk, Bk “
ř

j x jBkj which
implies

=p
ÿ

k

xk

ÿ

j

x jB̄kjq “
ÿ

k, j

=pB̄kjqxkx j ă 0.

The lemma is proved. �
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Figure 4.1: Homology basis.

Definition 4.20. The matrix pB jkq is called a period matrix of the Riemann surface Γ.

Example 4.21. We consider a surface Γ of the form w2 “ P3pzq of genus g “ 1 (an elliptic
Riemann surface). Let P3pzq “ pz ´ z1qpz ´ z2qpz ´ z3q and choose a basis of cycles as
shown in the figure 2.7. We have that

ω1 “ ω “
adz

a

P3pzq
, a “

¨

˝

¿

α1

dz
a

P3pzq

˛

‚

´1

.

Note that
¿

α1

dz
a

P3pzq
“ 2

ż z2

z1

dz
a

P3pzq
.

The period matrix is the single number

B “
¿

β1

adz
a

P3pzq
“

şz3
z2

dz
a

P3pzq
şz2

z1

dz
a

P3pzq

, =pBq ą 0. (4.17)

Example 4.22. . Consider a hyperelliptic Riemann surface w2 “ P2g`1pzq “
ś2g`1

i“1 pz´ ziq

for genus g ě 2, and choose a basis of cycles as indicated in the figure 4.2 (there g “ 2). A
normal basis of holomorphic differentials has the form

ω j “

śg
k“1 c jkzk´ldz
b

P2g`1pzq
, j “ 1, . . . , g. (4.18)



72 CHAPTER 4. DIFFERENTIALS ON A RIEMANN SURFACE.

oozz zz z

β
α

βα
5

1 2
3

4

1

1

2

2

Figure 4.2: Homology basis.

Here pc jkq is the matrix inverse to the matrix pA jkqwhere

A jk “ 2
ż z2 j

z2 j´1

zk´1dz
b

P2g`1pzq
, j, k “ 1, . . . , g. (4.19)

4.1.3 Meromorphic differentials, their residues and periods

Meromorphic (Abelian) differentials on a Riemann surface differ from holomorphic dif-
ferentials by the possible presence of singularities of pole type. If a surface is given in the
form Fpz,wq “ 0, then the Abelian differentials have the form ω “ Rpz,wqdz or, equiva-
lently, ω “ R1pz,wqdw, where Rpz,wq and R1pz,wq are rational functions. For example,
on a hyperelliptic Riemann surface w2 “ P2g`1pzq the differential w´1zk´1dz has for k ą g
a unique pole at infinity of multiplicity 2pk ´ gq (see Example 4.13). Suppose that the
differential ω has a pole of multiplicity k at the point P0 i.e., can be written in terms of a
local parameter z, zpP0q “ 0, in the form

ω “

ˆ

c´k

zk
` ¨ ¨ ¨ `

c´1

z
`Op1q

˙

dz (4.20)

(the multiplicity of the pole does not depend on the choice of the local parameter z).

Definition 4.23. The residue ResP“P0 ωpPq of the differential ω at a point P0 is defined to be the
coefficient c´1.

Lemma 4.24. The residue ResP“P0 ωpPq does not depend on the choice of the local parameter z.

Proof. This residue is equal to

c´1 “
1

2πi

¿

C

ω
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where C is an arbitrary small contour encircling P0. The independence of this integral on
the choice of the local parameter is obvious. The lemma is proved. �

Theorem 4.25 (The Residue Theorem). . The sum of the residues of a meromorphic differential
ω on a Riemann surface, taken over all poles of this differential, is equal to zero.

Proof. Let P1, . . . ,PN be the poles of ω. We encircle them by small contours C1, ...,CN such
that

Resω “
1

2πi

¿

Ci

ω, i “ 1, . . . ,N,

(the contours Ci run in the positive direction), and cut out the domains bounded by
C1, . . . ,CN from the surface Γ. This gives a domain Γ1 with oriented boundary of the
form BΓ1 “ ´C1 ´ ¨ ¨ ¨ ´ CN (the sign means reversal of orientation). The differential ω is
holomorphic on Γ1. By Stokes’ formula,

N
ÿ

j“1

Res
P j
ω “

1
2πi

N
ÿ

j“1

¿

C j

ω “ ´
1

2πi

¿

BΓ1

ω “ ´
1

2πi

ż ż

Γ1
dω “ 0,

since dω “ 0. The theorem is proved. �

We present the simplest example of the use of the residue theorem: we prove that
the number of zeros of a meromorphic function is equal to its number of poles (counting
multiplicity). Let P1, . . . ,Pk, be the zeros of the meromorphic function f , with multiplicities
m1, . . . ,mk a nd let Q1, ...,Ql be the poles of this function, with multiplicities n1, . . . ,nk.
Consider the logarithmic differential dpln f q. This is a meromorphic differential on Γ
with simple poles at P1, . . . ,Pk with residues m1, . . . ,mk and at the points Q1, . . . ,Ql with
residues ´n1, . . . ,´nl. By the residue theorem: m1 ` ¨ ¨ ¨ `mk ´ n1 ´ ¨ ¨ ¨ ´ nk “ 0 , which
means that the assertion to be proved is valid. One more example. For any elliptic function
f pzq on the torus T2 “ C{t2mω` 2nω1u the residues at the poles are defined with respect
to the complex coordinate z (in C). These are the residues of the meromorphic differential
f pzqdz, since dz is holomorphic everywhere. Conclusion: the sum of the residues of any
elliptic function (over all poles in a lattice parallelogram) is equal to zero. We formulate
an existence theorem for meromorphic differentials on a Riemann surface Γ (see [?] for a
proof).

Theorem 4.26. Suppose that P1, . . . ,PN are points of a Riemann surface Γ and z1, . . . , zN are
local parameters centered at these points, zipPiq “ 0, and the collection of principal parts is

¨

˝

cpiq
´ki

zki
i

` ¨ ¨ ¨ `
cpiq
´1

zi

˛

‚dzi, i “ 1, . . . ,N. (4.21)
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Assume the condition

N
ÿ

i“1

ci
´1 “ 0. (4.22)

Then there exists on Γ a meromorphic differential with poles at the points P1, . . . ,PN, and principal
parts (4.21).

Any meromorphic differential can be represented as the sum of a holomorphic differ-
ential and the following elementary meromorphic differentials.

1. Abelian differential of the second kind Ωn
P has a unique pole of multiplicity n` 1 at

P and a principal part of the form

Ωn
P “

ˆ

1
zn`1

`Op1q
˙

dz (4.23)

with respect to some local parameter z, zpPq “ 0, n “ 1, 2, . . . .

2. An Abelian differential of the third kind ΩPQ has a pair of simple poles at the points
P and Q with residues `1 and ´1 respectively.

Example 4.27. We construct elementary Abelian differentials on a hyperelliptic Riemann
surface w2 “ P2g`1pzq. Suppose that a point P which is not a branch point takes the form

P “ pa,wa “
b

P2g`1paqq. An Abelian differential of the second kind Ω
p1q
P has the form

Ω
p1q
P “

˜

w` wa

pz´ aq2
´

P12g`1paq

2wapz´ aq

¸

dz
2w

(4.24)

(with respect to the local parameter z-a). The differentials Ω
pnq
P can be obtained as follows:

Ωn
P “

1
n!

dn´1

dan´1
Ω1

P. (4.25)

If P “ pzi, 0q is one of the branch points, then

Ωn
P “

dz
2pz´ ziqk`1

for n “ 2k, Ωn
P “

dz
2pz´ ziqk`1w

for n “ 2k` 1. (4.26)

Finally, if P “ 8, then

Ω
pnq
P “ ´

1
2

zk´1dz for n “ 2k, Ωn
P “ ´

1
2

zg`k´1 dz
w

for n “ 2k` 1. (4.27)



4.1. HOLOMORPHIC DIFFERENTIALS 75

We now construct differentials of the third kind. Suppose that the point P and Q have the

form P “ pa,wa “
b

P2g`1paqq and Q “ pb,wb “
b

P2g`1pbqq. Then

ΩPQ “

ˆ

w` wa

z´ a
´

w` wb

z´ b

˙

dz
2w

(4.28)

If Q “ `8 then

ΩPQ “
w` wa

z´ a
dz
2w
. (4.29)

Accordingly, we see that for a hyperelliptic Riemann surface it is possible to represent all
the Abelian differentials without appealing to Theorem 4.26.

Exercise 4.28: Deduce from Theorem 4.26 that a Riemann surface Γ of genus 0 is rational.
Hint. Show that for any points P, Q P Γ the function f “ exp

ş

ΩPQ is single valued and
meromorphic on Γ and gives a biholomorphic isomorphism f : Γ Ñ CP1.

The period of a meromorphic differential ω along the cycle γ is defined if the cycle
does not pass through poles of this differential. The period

ş

γω depends only on the
homology class of γ on the surface Γ, with the poles of ω with nonzero residue deleted.
For example, the periods of the differential ΩPQ of the third kind along a cycle not passing
through the points P and Q are determined to within integer multiples of 2πi. In speaking
of the periods of meromorphic differentials we shall assume that the cycles do not pass
through the poles of the differential, and we also recall that the dependence of the period
on the homology class of Γ is not single-valued (for differentials of the third kind).

Lemma 4.29. Suppose that the differentials Ω1 and Ω2 on a Riemann surface Γ have the same
poles and principal parts, and the same periods with respect to the cycles α1, . . . , αg, β1, . . . , βg.
Then these differentials coincide.

Proof. The differenceω1´ω2 is a holomorphic differential that has zero α-periods. There-
fore, it is identically zero (see Lecture 4.1.2). The lemma is proved. �

Definition 4.30. A meromorphic differential ω is said to be normalized with respect to a basis of
cycles α1, . . . , αg, β1, . . . , βg if it has zero α-periods.

Any meromorphic differentialω can be turned into a normalized differential by adding
a holomorphic differential

řg
k“1 ckωk. Indeed the condition that Ω “ ω `

ř

ckωk is
normalised, namely

ż

α j

ω`
g
ÿ

k“1

ck

ż

α j

ωk “ 0, j “ 1, . . . , g,
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defines the constants c1, . . . , cg uniquely.
By Lemma 4.29, a normalized meromorphic differential is uniquely determined by its

poles and by the principal parts at the poles. In what follows we assume that meromorphic
differentials are normalized. We obtain formulas that will be useful for the β-periods of
such differentials by arguments like those in the proof of Lemma 4.15.

Lemma 4.31. The following formulas hold for the β-periods of normalized differentials Ω
pnq
P and

ΩPQ

¿

βk

Ω
pnq
P “ 2πi

1
n!

dn´1

dzn´1
ψipzq|z“0, k “ 1, . . . , g, n “ 1, 2, . . . , (4.30)

where z is a particular local parameter in a neighborhood of P, zpPq “ 0, and the functions ψkpzq
are determined by the equality ωk “ ψkpzqdz and ω1, . . . , ωg is a normalized basis of holomorphic
differentials with respect to the canonical homology basis α1, . . . , αg, β1, . . . , βg,

¿

βk

ΩPQ “ 2πi
ż P

Q
ωk, i “ 1, . . . , g, (4.31)

where the integration from Q to P in the last integral does not intersect the cycles α1, . . . , αg,
β1, . . . , βg.

Proof. We encircle the point P with a small circle C oriented anti-clockwise; deleting the
interior of this circle from the surface Γ, we get a domain Γ1 with BΓ1 “ ´C. Let us apply
the arguments of Lemma 4.15 to the pair of differentials ω “ ωk, ω1 “ Ω

pnq
P . Denote by ui

the primitive

ukpQq “
ż Q

P0

ωk (4.32)

which is single-valued on the Poincare’ polygon Γ̃ of the surface Γ. We have that

0 “
ż ż

Γ1
ω^ ω1 “

ż

BΓ̃1
ukΩ

pnq
P “

g
ÿ

j“1

pA jB1j ´ A1jB jq ´

¿

C

ukΩ
pnq
P (4.33)

(the boundary BΓ̃1 differs from the boundary BΓ̃ by p´Cqq. Here the α and β-periods of ωk
and ΩN

P have the form

A j “ δkj, B j “ Bkj, A1j “ 0, B1j “
¿

β j

Ω
pnq
P .
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From this,

¿

βk

Ω
pnq
P “

¿

C

ukΩ
pnq
P “ 2πi Res

P
pukΩ

pnq
P q “ 2πi Res

z“0

„ˆ
ż P

P0

`

ż z

0
ψkpτqdτ

˙

dz
zn`1



(4.34)

Computation of the residue on the right-hand side of this equality leads to (4.30).
We now prove (4.31). Let C and C1 small circles around P and Q respectively. Deleting the
interior of this circles from the surface Γ, we get a domain Γ1 with BΓ1 “ ´C´ C1. Let us
apply the arguments of Lemma 4.15 to the pair of differentials ω “ ωk, ω1 “ ΩPQ. Denote
by ui the primitive of ωi. By analogy with (4.33) and (4.34) we have that

¿

βk

ΩPQ “ 2πi
¿

C

ukΩPQ ` 2πi
¿

C1

ukΩPQ

Since the differential ΩPQ has a simple pole in P and Q with residue ˘1 respectively, the
above integrals are equal to

¿

βk

ΩPQ “ ukpPq ´ ukpQq “
ż P

P0

ωk ´

ż Q

P0

ωk “

ż P

Q
ωk

where we assume that the point P0 lies in the interior of Γ1. The lemma is proved. �

Exercise 4.32: Prove the following equality, which is valid for any quadruple of distinct
points P1, . . . ,P4 on a Riemann surface:

ż P1

P2

ΩP3P4 “

ż P3

P4

ΩP1P2 . (4.35)

Exercise 4.33: Consider the series expansion of the differentials Ω
pnq
P in a neighborhood

of the point P

Ω
pnq
P “

¨

˝

1
zn`1

`

8
ÿ

j“0

cpnqj z j

˛

‚dz. (4.36)

Prove the following symmetry relations for the coefficients cpkqj :

kcpkqj´1 “ jcp jqk´1, k, j “ 1, 2 . . . . (4.37)
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Exercise 4.34: Prove that a meromorphic differential of the second kind ω is uniquely
determined by its poles, principal parts, and the real normalization condition

=

¿

γ

ω “ 0 (4.38)

for any cycle γ. Formulate and prove an analogous assertion for differentials of the third
kind (with purely imaginary residues).

Elliptic curve and elliptic functions

Let’s come back to the example 4.21 and consider the function (”elliptic integral”)

upPq “
ż P

P0

ω1, (4.39)

which is single-valued and holomorphic on the surface Γ̃ which is obtained by cutting
Γ along the cycles α1 and β1. This function is not single-valued on Γ. When the path
of integration in the integral (4.39) is changed, the integral changes according to the law
upPq Ñ upPq `

ş

γωi where γ is a closed contour (cycle). Decomposing it with respect to
the basis of cycles, γ “ mα1 ` nβ1, m and n integers we rewrite the last formula in the
form

upPq Ñ upPq `m` Bn, =pBq ą 0. (4.40)

We define the two-dimensional torus T2 as the quotient of the complex plane C “ R2 by
the integer lattice generated by the vectors 1 and B,

T2 “ C{t2πim` Bn | m,n P Zu (4.41)

(the vectors 1 and B are independent over R because =pBq ą 0). The torus T2 is a
one-dimensional compact complex manifold. By (4.40) the function upPq unambiguously
defines a mapping Γ Ñ T2. It is holomorphic everywhere on Γ: du “ ω and du vanishes
nowhere (verify!). It is easy to see that this is an isomorphism. The meromorphic functions
on the Riemann surface Γ are thereby identified with the so-called elliptic functions – the
meromorphic functions on the torus T2. The latter functions can be regarded as doubly
periodic meromorphic functions of a complex variable. The absence of nonconstant
holomorphic functions on Γ (see Lecture 3) leads to the well-known assertion that there
are no nonconstant doubly periodic holomorphic functions. For comparison with the
standard notation of the theory of elliptic functions we note that usually B is denoted
with the letter τ and =τ ą 0. We give the construction of the mapping T2 Ñ Γ inverse to
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(4.39). Letω1 andω2 be two complex numbers linearly independent over the real numbers
and consider the torus T2 defined as

T2 “ C{L, L “ t2mω1 ` 2nω2 | m,n P Zu. (4.42)

The Weierstrass elliptic function, ℘puq, u P C is defined by

℘puq “
1
u2 `

ÿ

ωPLzt0u

„

1
pu´ ωq2

´
1
ω2



(4.43)

It is not hard to verify that the function ℘puq converges absolutely and uniformly on com-
pact sets not containing nodes of the period lattice. Therefore, it defines a meromorphic
function of u having double poles at the lattice nodes. Its derivative ℘1puq can be obtained
by differentiating the series term by term ( check!)

℘1puq “ ´2
ÿ

ωPL

1
pu´ ωq3

.

The function ℘puq is obviously doubly periodic: ℘pu ` 2mω1 ` 2nω2q “ ℘puq, m,n P Z.
The Laurent expansions of the functions℘puq and℘1puq have the following forms as u Ñ 0

℘puq “
1
u2 `

g2u2

20
`

g3u4

28
` . . . , (4.44)

℘1puq “ ´
2
u3 `

g2u
10

`
g3u3

7
` . . . , (4.45)

where

g2 “ 60
ÿ

ωPLzt0u

ω´4

g2 “ 140
ÿ

ωPLzt0u

ω´6,
(4.46)

(verify!). This gives us that the Laurent expansion of the function p℘1q2 ´ 4℘3 ` g2℘` g3
has the form Opuq as z Ñ 0. Hence, this doubly periodic function is constant, and thus
equal to zero. Conclusion: the Weierstrass function ℘puq satisfies the differential equation

p℘1q2 “ 4℘3 ´ g2℘´ g3. (4.47)

Proposition 4.35. The function ℘ : CzL Ñ C is surjective. If

℘puq “ ℘pu0q, then u P L˘ u0. (4.48)
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Proof. For any c P C consider the function f puq “ ℘puq ´ c. This function is meromorphic
with a double pole on the lattice points. Consider the parallelogram

Π :“ tξ` 2sω1 ` 2tω2, s, t P r0, 1su.

Since the function f has only a double pole in Π, it has two zeros counting multiplicity.
Let u0 be one of the two zeros, f pu0q “ ℘pu0q ´ c “ 0. Since ℘p´uq “ ℘puq, it follows
that 0 “ f p´u0q “ ℘p´u0q ´ c and this shows that the function ℘puq is surjective. From
the above argument and the periodicity of ℘, it follows that for any u P L ˘ u0, one has
℘puq “ ℘pu0q. �

Let us now consider the curve

ΓL :“ trX : Y : Zs P P2 |ZY2 “ 4X3 ´ g2XZ2 ´ g3Z3u (4.49)

Lemma 4.36. The curve ΓL is non singular.

Proof. Consider the affine curve (4.47). By the periodicity properties of ℘puq one has

℘1pu` 2ω1q “ ℘1puq

which is true in particular for u “ ´ω1 so that ℘1pω1q “ ℘1p´ω1q. Since ℘1puq is odd it
follows that

℘1pω1q “ 0.

Repeating the same reasoning for ω2 one has

℘1pω2q “ 0, ℘1pω2 ` ω1q “ 0.

Using (4.47) the zeros of the polynomial 4℘3puq´ g2℘puq´ g3 are given by u “ ω1, u “ ω2

and u “ ω1 ` ω2 so that one has

4℘3puq ´ g2℘puq ´ g3 “ 4p℘puq ´ ℘pω1qqp℘puq ´ ℘pω2qqp℘puq ´ ℘pω1 ` ω2qq.

By proposition 4.35 the values ℘pω1q, ℘pω2q and ℘pω1 ` ω2q are distinct so that the curve
(4.47) is non singular. �

The following theorem can be proved as an exercise

Theorem 4.37. The map

φ : T2 Ñ ΓL

defined by

φpu` Lq “
"

r℘puq : ℘1puq : 1s u P CzL
r0 : 1 : 0s u P L, (4.50)

is biholomorphic.
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In particular the map (4.50) is the inverse of the map (4.39). We observe that from
lemma 4.36 the discriminant ∆pω1, ω2q of the curve (4.47) is different from zero, namely

∆pω1, ω2q “ g3
2pω

1, ω2q ´ 27g2
3pω

1, ω2q , 0

furthermore under the dilatation ω1 Ñ λω1 and ω2 Ñ λω2 the discriminant scales as

∆pλω1, λω2q “
1
λ12

∆pω1, ω2q.

In particular, choosing λ “ 1
2ω1 and defining τ “

2ω2

2ω1
, with =pω2{ω1q ą 0, we obtain that

g2 “ g2pτq, and g3 “ g3pτq, ∆ “ ∆pτq with τ P H, H :“ tτ P C, =τ ą 0u. Regarding the
Weierstrasse ℘ function it is easy to check that

℘pλu;λω1, λω2q “
1
λ2℘pu, ;ω

1, ω2q

so that choosing λ “ 1
2ω1 one can consider the Weierstrasse function normalised as

℘pũ; τq “
1
ũ2 `

ÿ

m,nPZ,pm,nq,p0,0q

„

1
pũ´m´ nτq2

´
1

pm` nτq2



, ũ “
u

2ω1
.

Exercise 4.38: Show that

℘p
ũ

cτ` d
;

aτ` b
cτ` d

q “ pcτ` dq2℘pũ; τq,
ˆ

a b
c d

˙

P SLp2,Zq. (4.51)

Definition 4.39. The Klein J function J :HÑ C is defined as

Jpτq “ 1728
g2pτq3

∆pτq
. (4.52)

The Klein J function is an an analytic function fromH to C. The choice of the number
1728 is due to the fact that defining q “ e2πiτ the expansion of J as q Ñ 0 takes the form

Jpqq “
1
q
` 744` 196884q` 21493760q2 ` . . .

namely all the coefficients of the expansion are integers. We consider the action of the
modular group

PSLp2,Zq “ SLp2,Zq{tI,´Iu
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namely the set of 2ˆ 2 matrices with integer entries and determinant equal to one where
the matrices A and ´A are identified. Such group has two generators

τÑ τ` 1, τÑ ´
1
τ
.

In order to determine isomorphism classes of elliptic curves given by 4.49), the following
lemma and theorem will be usefull.

Lemma 4.40. Let τ and τ1 PH. Then

Jpτ1q “ Jpτq.

if and only if

τ1 “
aτ` b
cτ` d

,

ˆ

a b
c d

˙

P PSLp2,Zq. (4.53)

Proof. From the definition one has

g2pτ
1q “ 60

ÿ

m,nPZ,pm,nq,p0,0q

¨

˚

˚

˝

1

m` n
aτ` b
cτ` d

˛

‹

‹

‚

4

“ 60pcτ` dq4
ÿ

m1,n1PZ,pm1,n1q,p0,0q

1
pm1 ` n1τq4

“ pcτ` dq4g2pτq.

In the same way we obtain

g3pτ
1q “ pcτ` dq6g3pτq

so that

Jpτ1q “ 1728
g3

2pτ
1q

g3
2pτ

1q ´ 27g2
3pτ

1q
“ 1728

pcτ` dq12g3
2pτq

pcτ` dq12pg3
2pτq ´ 27g2

3pτq
“ Jpτq.

Viceversa, let us assume that Jpτq “ Jpτ1q “ µ. Suppose µ , 0 and µ , 1728. Then

µ´ 1728 “ 1728
27g2

3pτq

∆pτq
“ 1728

27g2
3pτ

1q

∆pτ1q

so that

µ

µ´ 1728
“

27g2
3pτ

1q

g3
2pτ

1q
“

27g2
3pτq

g3
2pτq
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which shows that
ˆ

g3pτq

g3pτ1q

˙2

“

ˆ

g2pτq

g2pτ1q

˙3

.

Defining σ2 :“
g2pτq

g2pτ1q

g3pτ1q

g3pτq
, it is straightforward to obtain the identity

σ4 “

ˆ

g2pτq

g2pτ1q

g3pτ1q

g3pτq

˙2

“
g2pτ1q

g2pτq

and

σ6 “
g3pτ1q

g3pτq
.

Therefore the curves defined by w2 “ 4z3´ g2pτqz´ g3pτq and y2 “ 4x3´ g2pτ1qx´ g3pτ1q
are isomorphic. Indeed the dilatation

x “ zσ2, y “ wσ3

maps one curve into the other one. Therefore the two tori defined by the above two
curves are isomorphic. By theorem 1.43 it follows that their corresponding periods τ
and τ1 are related by a modular transformation (4.53). In the case µ “ 1728 one has

g3pτq “ g3pτ1q “ 0. In this case defining σ in such a way that σ4 “
g2pτ1q

g2pτq
one can prove

the statement in a similar way. For the case µ “ 0 one has g2pτq “ g2pτ1q “ 0. In this

case defining σ in such a way that σ6 “
g3pτ1q

g3pτq
one can prove the statement in a similar

way. �

The above lemma shows that the Klein J function is a modular function of weight
zero. We recall that an analytic function f :HÑ C is a modular function of weight k with
respect to the modular group PSLp2,Zq if

f
ˆ

aτ` b
cτ` d

˙

“ pcτ` dqk f pτq,
ˆ

a b
c d

˙

P PSLp2,Zq.

Remark 4.41. The upper half space H can be naturally identified with the Teichmüller
space Tp1, 0q of compact surfaces of genus one. The quotientH{PSLp2,Zq is the moduli
space of Riemann surfaces of genus one. Below we will see that this moduli space can be
identified with sCwith three marked points modulo the permutation group S3.
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Combining theorem 1.43 and lemma 4.40 we conclude that

Theorem 4.42. Given two lattices L “ tn ` mτ, m,n P Zu and L1 “ tn ` mτ1, m,n P Zu
with τ, τ1 PH, the tori

C{L, C{L1

are isomorphic if and only if

Jpτq “ Jpτ1q.

Doing some algebra we can express the Klein J invariant using the branch points
℘pτ{2q, ℘p1{2q and ℘p 1`τ

2 q of the elliptic curve (4.47). For simplicity we define

e1 “ ℘pτ{2q, e2 “ ℘p1{2q, e3 “ ℘p
1` τ

2
q. (4.54)

It is easy to check that

∆ “ 16pe2´ e1q
2pe3´ e1q

2pe3´ e2q
2, g2 “

4
3
`

pe2 ´ e1q
2 ´ pe3 ´ e1qpe2 ´ e1q ` pe3 ´ e1q

2˘

so that Jpτq can be written in the form

Jpτq “ 256

ˆ

1´
e3 ´ e1

e2 ´ e1
`
pe3 ´ e1q

2

pe2 ´ e1q
2

˙3

pe3 ´ e1q
2

pe2 ´ e1q
2

pe3 ´ e2q
2

pe2 ´ e1q
2

. (4.55)

Introducing the function λ :HÑ Czt0, 1u

λ “
e3 ´ e1

e2 ´ e1
“
℘p 1`τ

2 q ´ ℘pτ{2q
℘p1{2q ´ ℘pτ{2q

(4.56)

and the function j : Czt0, 1u Ñ C defined as

jpλq “ 256
p1´ λ` λ2q3

λ2p1´ λq2
(4.57)

it follows that the Klein J invariant is the composition of the maps

J “ j ˝ λ.
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Remark 4.43. Since the function J as defined in (4.52) is invariant under the action of the
permutation group S3 on e1, e2 and e3, such invariance must be preserved for the function
jpλq. Indeed one has the following relations between the action of S3 on e1, e2 and e3 and
transformations of λ:

123 Ñ 213 then λÑ 1´ λ, 123 Ñ 321 then λÑ
λ

1´ λ
, 123 Ñ 132 then λÑ

1
λ

123 Ñ 231 then λÑ
1

1´ λ
, 123 Ñ 312 then λÑ 1´

1
λ

and the function jpλq is invariant under the above five transformations of λ (six including
the identity).

The curve w2 “ 4pz´ e1qpz´ e2qpz´ e3q is mapped under the linear transformation

x “
z´ e1

e2 ´ e1
, y “

w

2pe2 ´ e1q
3
2

to the curve

y2 “ xpx´ 1qpx´ λq.

So using the j-invariant (4.57), we have the following corollary.

Corollary 4.44. Two curves y2 “ xpx´ 1qpx´ λq and y2 “ xpx´ 1qpx´ λ1q are isomorphic if
and only jpλq “ jpλ1q.

We will see later that any Riemann surface of genus one can be realised as a double
covering of the sphere branched over four points e1, e2, e3 and 8. We can use a linear
transformation to map the points e1, e2 and e3 to 0, 1 and λ respectively. Any other linear
transformation obtained from the permutation of the points e1, e2 and e3 will give an
isomorphic Riemann surface. So we can identify the moduli space of genus one Riemann
surface as the quotient pCzt0, 1uq{S3. In remark (4.41) we identify the moduli space of
Riemann surfaces of genus one with H{PSLp2,Zq. Below we are going to sketch an
argument which shows that the spaces

pCzt0, 1uq{S3 and H{PSLp2,Zq

are isomorphic.

Lemma 4.45. The map λ : H Ñ Czt0, 1u is a universal covering of Czt0, 1u. This map is
invariant under the action of the subgroup Γ2 Ă PSLp2,Zq

Γ2 “

"ˆ

a b
c d

˙

P PSLp2,Zq | a ” d ” 1 pmod 2q, b ” c ” 0 pmod 2q
*

.
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Proof. Let us consider λpτ1q and use the relation (4.51)

λpτ1q “
℘pτ

1`1
2 ; τ1q ´ ℘pτ

1

2 ; τ1q

℘p 1
2 ; τ1q ´ ℘pτ12 ; τ1q

“
℘p 1

2pb` d` pa` cqτq; τq ´ ℘p 1
2paτ` bq; τq

℘p d`cτ
2 ; τq ´ ℘p1

2paτ` bq; τq
.

It is straightforward to check that λpτ1q “ λpτq if and only if the modular transformation
belongs to Γ2. �

Remark 4.46. The group Γ2 is the group of deck transformations of the covering λ : HÑ

Czt0, 1u, namely the set of homeomorphism f : H Ñ H preserving the fibers of the
covering. Such group is isomorphic to the fundamental group of Czt0, 1u and therefore
[14]

H{Γ2 » Czt0, 1u.

Furthermore, the following identity is satisfied [12] PSLp2,Zq{Γ2 » S3. Namely the
quotient of the modular group under the group Γ2 is isomorphic to the group of permu-
tation S3. The above identity and the lemma 4.45 explain the identification of the spaces
pCzt0, 1uq{S3 and H{PSLp2,Zq .

Exercise 4.47: Prove that any elliptic function with period lattice t2mω2 ` 2nω1u can be
represented as a rational function of ℘pzq and ℘1pzq.

Exercise 4.48: Show that if τ is pure imaginary then the branch points e1, e2 and e3 are
real.

Exercise 4.49: Consider the curve

Γ :“ tpz,wq P P2 | w2 “ zpz´ 1qpz´ λqu

with 0 ď λ ď 1 and consider the lattice L “ t2mω1 ` 2nω2, m,n P Zuwhere

ż 0

8

dz
w
“ L` ω2,

ż 1

8

dz
w
“ L` ω1 ` ω2,

ż λ

8

dz
w
“ L` ω1.

Show that the curve Γ is isomorphic to the curve w2 “ 4z3 ´ g2z´ g3 where g2 and g3 are
defined in (4.46).

Exercise 4.50: Consider the Korteweg-de Vries (KdV) equation

ut “ 6uux ´ uxxx (4.58)
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(here u “ upx, tq, and ut stands for the derivative with respect to t, and ux for derivative
with respect to x. Show that any (complex) periodic solution of it with the form of a
traveling wave has the form

upx, tq “ upx´ ctq “ 2℘px´ ct´ x0q ´
c
6
, (4.59)

where the Weierstrass function℘ corresponds to some elliptic curve (4.49), and the velocity
c and the phase x0 are arbitrary.

Exercise 4.51: (see [8]). Look for a solution of the KdV equation in the form

upx, tq “ 2℘px´ x1ptqq ` 2℘px´ x2ptqq ` 2℘px´ x3ptqq. (4.60)

Derive for the functions x jptq the system of differential equations

:x j “ 12
ÿ

k, j

℘px j ´ xkq, j “ 1, 2, 3, (4.61)

and its integrals
ÿ

k, j

℘1px j ´ xkq “ 0, j “ 1, 2, 3. (4.62)

Integrate this system in quadratures.

We define the Weierstrass ζ and σ functions (which are useful in the theory of elliptic
functions) from the conditions

ζ1pzq “ ´℘pzq,
σ1pzq
σpzq

“ ζpzq. (4.63)

The series expansion of ζpzq has the form

ζpzq “
1
z
`

ÿ

ωPLzt0u

„

1
z´ ω

`
1
ω
`

z
ω2



. (4.64)

This function has simple poles at the nodes of the period lattice. The function σpzq is
entire. It has simple zeros at the nodes of the period lattice and can be expanded in the
infinite product

σpzq “ z
ź

ωPLzt0u

"

´

1´
z
ω

¯

exp
„

z
ω
`

z2

2ω2

*

(4.65)



88 CHAPTER 4. DIFFERENTIALS ON A RIEMANN SURFACE.

The functions ζpzq and σpzq are not elliptic; under a translation of the argument by a vector
of the period lattice they transform according to the law

ζpz` 2mω1 ` 2nω2q “ ζpzq ` 2mη` 2nη1, η “ ζpω1q, η1 “ ζpω2q, (4.66)
σpz` 2ω1q “ σpzq expr2ηpz` ω1qs, σpz` 2ω2q “ ´σpzq expr2η1pz` ω2qs (4.67)

where η and η1 are constants depending on the period lattice.

Exercise 4.52: Prove the following identity:

σpu` vqσpu´ vq
σ2puqσ2pvq

“ ℘puq ´ ℘pvq. (4.68)

Other properties of the functions,℘, ζ and σ and of other elliptic functions as well, can
be found, for example, in the texts [2] and [7], or in the handbook [3].

4.1.4 The Jacobi variety, Abel’s theorem

Let e1, . . . , eg be the standard basis in the space Cg, e j “ p0, . . . , 1, . . . , 0q, with one on the
j-entry. Given 2g row vectors λk P C

g, k “ 1, . . . , 2g, with λk “
řg

j“1 λkje j, we construct
the 2gˆ g matrix Λ having in the k-row the vector λk

Λkj “ pλkq j. (4.69)

The matrix Λ generates a lattice in Cg of maximal rank, if its row vectors are linearly
independent over the real numbers.

Consider in Cg the integer period lattice L generated by the vectors (4.69). The vectors
in this lattice can be written in the form

L “ tv P Cg | v “
2g
ÿ

k“1

mkλk, pm1, . . . ,m2gq P Z
2gu (4.70)

We assume that L generates a lattice of maximal rank in Cg. Then the quotient of Cg by
this lattice is the 2g-dimensional torus

T2g “ Cg{L (4.71)

namely a g-dimensional complex manifold. Changing the basis in Cg, namely ek Ñ ekM,
with M P GLpg,Cq, the matrix Λ Ñ ΛM. Furthermore, the same lattice is given by vectors
pλ̃1, . . . , λ̃2gqwith

λ̃k “

2g
ÿ

k“1

nkjλ j
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with N “ tnkju
2g
k, j“1 P SLp2g,Zq. Therefore Λ Ñ NΛ. Summarizing, two matrices Λ and

Λ̃ represent the same torus if

Λ̃ “ NΛM, M P GLpg,Cq, N P SLp2g,Zq. (4.72)

If we assume that the lattice generated by Λ has maximal rank, we can always choose
Λ in such a way that Λ “ p2πiΛ1,Λ2q with Λ1 P GLpg,Cq. Therefore, by (4.72) the two
matrices Λ and ΛΛ´1

1 “ p2πiIg,Λ2Λ´1
1 q with Ig the g-dimensional identity, represent the

same torus.

Lemma 4.53. The matrices

Λ “ pIg,Λ2q, Λ̃ “ pIg, Λ̃2q

represent the same torus if

Λ̃2 “ pcIg ` dΛ2qpaIg ` bΛ2q
´1,

ˆ

a b
c d

˙

P SLp2g,Zq

with a, b, c, d gˆ g matrices.

The proof of the lemma follows immediately from (4.72).
Let B “ pB jkq be an arbitrary symmetric g ˆ g matrix with positive-definite imagi-

nary part (as shown in Lecture 4.1.2, the period matrices of Riemann surfaces have this
property). We consider the vectors

e1, . . . , eg, e1B, . . . , egB. (4.73)

Lemma 4.54. The vectors (4.73) are linearly independent over R.

Proof. Assume that these vectors are dependent over R:

pρ1e1 ` ¨ ¨ ¨ ` ρgegq ` pµ1e1 ` ¨ ¨ ¨ ` µgegqB “ 0, ρi, µ j P R.

Separating out the real part of this equality we get that =ppµ1e1 ` ¨ ¨ ¨ ` µgegqBq “ 0.
But the matrix =pBq is nonsingular, which implies µ1 “ ¨ ¨ ¨ “ µg “ 0. Hence also
ρ1 “ ¨ ¨ ¨ “ ρg “ 0. The lemma is proved. �

Consider in Cg the integer period lattice generated by the vectors (4.73). The vectors
in this lattice can be written in the form

m` nB, m,n P Zg. (4.74)

By Lemma 4.54 the quotient of Cg by this lattice is a torus of maximal rank:

T2g “ T2gpBq “ Cg{tm` nBu. (4.75)
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Definition 4.55. Suppose that B “ pB jkq is a period matrix of a Riemann surface Γ of genus g.
The torus T2gpBq in (4.75), constructed from this period matrix is called the Jacobi variety (or
Jacobian) of the surface Γ and denoted by JpΓq.

Remark 4.56. What happens with the torus JpΓq when the canonical basis of cycles on Γ
changes? Let α “ pα1, . . . , αgq

t and β “ pβ1, . . . , βgq
t be the column vectors of the canonical

homology basis. Let α1 and β1 be a new canonical homology basis related to α and β by
the symplectic transformation

ˆ

α1

β1

˙

“

ˆ

a b
c d

˙ˆ

α
β

˙ ˆ

a b
c d

˙

P Spp2g,Zq.

Let ω “ pω1, . . . , ωgq be the canonical homology basis of holomorphic differentials with
respect to the basis α and β, namely

ż

α
ω “ Ig,

ż

β
ω “ B

where Ig is the g dimensional identity matrix. Then
ż

α1
ω “

ż

aα`bβ
ω “ aIg ` bB,

ż

β1
ω “

ż

cα`dβ
ω “ cIg ` dB.

So the canonical basis of holomorphic differentials ω1 “ pω11, . . . , ω
1
gq with respect to the

basis α1 and β1 is given by

ω1 “ ωpaIg ` bBq´1

This implies that the corresponding period matrix

B1 “
ż

β1
ω1 “ pcIg ` dBqpaIg ` bBq´1. (4.76)

From lemma 4.53 it follows that the tori T2gpBq and T2gpB1q are isomorphic. Accordingly,
the Jacobian JpΓq changes up to isomorphism when the canonical basis changes.

We consider the primitives (”Abelian integrals”) of the basis of holomorphic differen-
tials:

ukpPq “
ż P

P0

ωk, k “ 1, . . . , g, (4.77)
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where P0 is a fixed point of the Riemann surface. The vector-valued function

ApPq “ pu1pPq, . . . ,ugpPqq (4.78)

is called the Abel mapping (the path of integration is chosen to be the same in all the
integrals u1pPq, . . . ,ugpPqq.

Lemma 4.57. The Abel mapping is a well-defined holomorphic mapping

Γ Ñ JpΓq. (4.79)

Proof. (cf. Example 4.27). A change of the path of integration in the integrals (4.77) leads
to a change in the values of these integrals according to the law

ukpPq Ñ ukpPq `
¿

γ

ωk, k “ 1, . . . , g,

where γ is some cycle on Γ. Decomposing it with respect to the basis of cycles, γ »
ř

m ja j `
ř

n jb j we get that

ukpPq Ñ ukpPq `mk `
ÿ

j

Bkjn j, k “ 1, . . . , g.

The increment on the right-hand side is the kth coordinate of the period lattice vector
2πiM`NB where M “ pm1, . . . ,mgq, N “ pn1, . . . ,ngq. The lemma is proved. �

The Jacobi variety together with the Abel mapping (4.79) is used for solving the
following problem: what points of a Riemann surface can be the zeros and poles of
meromorphic functions? We have the Abel’s theorem.

Theorem 4.58 (Abel’s Theorem). The points P1, . . . ,Pn and Q1, . . . ,Qn (some of the points can
repeat) on a Riemann surface Γ are the respective zeros and poles of some function meromorphic
on Γ if and only if the following relation holds on the Jacobian:

ApP1q ` ¨ ¨ ¨ `ApPnq ” ApQ1q ` ¨ ¨ ¨ `ApQnq. (4.80)

Here and below, the sign ” will mean equality on the Jacobi variety (congruence
modulo the period lattice (4.74)). We remark that the relation (4.80) does not depend on
the choice of the initial point P0 of the Abel map (4.77).

Proof. 1) Necessity. Suppose that a meromorphic function f has the respective points
P1, . . . ,Pn and Q1, . . . ,Qn as zeros and poles, where each zero and pole is written the
number of times corresponding to its multiplicity. Consider the logarithmic differential



92 CHAPTER 4. DIFFERENTIALS ON A RIEMANN SURFACE.

Ω “ dplog f q. Since f “ const exp
şP

P0
Ω, is a meromorphic function, the integral in the

exponent does not depend on the path of integratio. It follows that all the periods of this
differential Ω are integer multiples of 2πi. On the other hand, we represent it in the form

Ω “

n
ÿ

j“1

ΩP jQ j `

g
ÿ

s“1

csωs, (4.81)

where ΩP jQ j are normalized differentials of the third kind (see Lecture 4.1.3) and c1, . . . , cg
are constant coefficients. Let us use the information about the periods of the differential.
We have that

2πink “

¿

ak

Ω “ ck, nk P Z,

which gives us ck “ 2πink. Further,

2πimk “

¿

bk

Ω “ 2πi
n
ÿ

j“1

P j
ż

Q j

ωk ` 2πi
g
ÿ

s“1

nsBsk

(we used the formula (4.31)). From this,

ukpP1q ` ¨ ¨ ¨ ` ukpPnq ´ ukpQ1q ´ ¨ ¨ ¨ ´ ukpQnq “

n
ÿ

j“1

P j
ż

Q j

ωk “ mk ´

g
ÿ

s“1

nsBsk. (4.82)

The right-hand side is the kth coordinate of the vector m` nB of the period lattice (4.74),
where m “ pm1, . . . ,mgq, n “ pn1, . . . ,ngq. The necessity of the condition (4.80) is proved.

2) Sufficiency. Suppose that

ukpP1q ` ¨ ¨ ¨ ` ukpPnq ´ ukpQ1q ´ ¨ ¨ ¨ ´ ukpQnq “ mk ´

g
ÿ

s“1

nsBsk. (4.83)

Consider the function

f pPq “ exp

»

–

g
ÿ

j“1

ż P

P0

ΩP jQ j `

g
ÿ

j“1

c j

ż P

P0

ω j

fi

fl

where ΩP jQ j are the normalised third kind differentials with poles in P j and Q j and c j are
constants. The function is a single valued meromorphic function if the integrals in the
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exponent do not depend on the path of integration. Let us study the behaviour of f when
P Ñ P` αk:

f pPq Ñ f pPq exp

»

–

g
ÿ

j“1

c j

ż

αk

ω j

fi

fl .

In order to have a single valued function the constant ck “ 2πnk, nk P N. Next let us
consider the behaviour of f when P Ñ P` βk:

f pPq Ñ f pPq exp

»

–

g
ÿ

j“1

ż

βk

ΩP jQ j `

g
ÿ

j“1

n j

ż

βk

ω j

fi

fl “ f pPq exp

»

–

g
ÿ

j“1

ż P j

Q j

ωk ` 2πi
g
ÿ

j“1

n j

ż

βk

ω j

fi

fl

Using the relation (4.83) one obtains that f pPq Ñ f pPq expr2πimks “ f pPq which shows
that f pPq is a meromorphic function on Γ. �

Example 4.59. We consider the elliptic curve

w2 “ 4z3 ´ g2z´ g3. (4.84)

For this curve the Jacobi variety JpΓq is a two-dimensional torus, and the Abel mapping
(which coincides with (4.39)) is an isomorphism (see Example 4.21). Abel’s theorem
becomes the following assertion from the theory of elliptic functions: the sum of all the
zeros of an elliptic function is equal to the sum of all its poles to within a vector of the
period lattice.

Example 4.60. (also from the theory of elliptic functions). Consider an the elliptic function
of the form f pz,wq “ az`bw`c, where a, b, and c are constants. It has a pole of third order
at infinity (for b , 0). Consequently, it has three zeros P1,P2, and P3. In other words,
the line az` bw` c “ 0 intersects the elliptic curve (4.84) in three points (see the figure).
We choose 8 as the initial point for the Abel mapping, i.e., up8q “ 0. Let ui “ upPiq,
i “ 1, 2, 3. In other words,

Pi “ p℘puiq, ℘
1puiqq, i “ 1, 2, 3,

where℘puq is the Weierstrass function corresponding to the curve (4.84). Applying Abel’s
theorem to the zeros and poles of f , we get that

u1 ` u2 ` u3 “ 0.
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Conversely, according to the same theorem, if u1 ` u2 ` u3 “ 0, i.e. u3 “ ´u2 ´ u1 then
the points P1,P2 and P3 lie on a single line. Writing the condition of collinearity of these
points and taking into account the evenness of ℘ and oddness of ℘1, we get the addition
theorem for Weierstrass functions:

det

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ℘pu1q ℘1pu1q

1 ℘pu2q ℘1pu2q

1 ℘pu1 ` u2q ´℘1pu1 ` u2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0. (4.85)

4.1.5 Divisors on a Riemann surface. The canonical class. The Riemann-Roch
theorem

Definition 4.61. A divisor D on a Riemann surface is defined to be a (formal) integral linear
combination of points on it:

D “

n
ÿ

i“1

niPi, Pi P Γ, ni P Z. (4.86)

For example, for any meromorphic function f the divisor p f q of its zeros P1, . . . ,Pk and
poles Q1, . . . ,Ql of multiplicities m1, . . . ,mk, and n1, . . . ,nl, respectively is defined

p f q “ m1P1 ` ¨ ¨ ¨ `mkPk ´ n1Q1 ´ ¨ ¨ ¨ ´ nlQl. (4.87)

Observe that given f and g two meromorphic functions

p f gq “ p f q ` pgq, p f {gq “ p f q ´ pgq.

Definition 4.62. Divisors of meromorphic functions are also called principal divisors.

Another useful notation for the divisor of a meromoprhic function is given by

p f q “
ÿ

P

ordPp f q ¨ P

where we recall that the order of f in P is the minimum coefficient present in the Laurent
expansion in a neighbourhood of the point P namely ordP f “ minnPZtn, |αn , 0u where
the Laurent expansion of f in P is

ř

n αnzn. Such definition does not depend on the choice
of the local coordinates. The set of all divisors on Γ, DivpΓq, obviously form an Abelian
group (the zero is the empty divisor).

Definition 4.63. The degree deg D of a divisor of the form (4.86) is defined to be the number

deg D “

N
ÿ

i“1

ni. (4.88)
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The degree is a linear function on the group of divisors. For instance,

degp f q “ 0. (4.89)

Two divisors D and D1 are said to be linearly equivalent, D » D1 if their difference is
a principal divisor. Linearly equivalent divisors have the same degree in view of (4.89).
For example, on CP1 any divisor of zero degree is principal, and two divisors of the same
degree are always linearly equivalent.
Example 4.64. The divisor pωq of any Abelian differential ω on a Riemann surface Γ is
well-defined by analogy with (4.87). If ω1 is another Abelian differential, then pωq »
pω1q. Indeed, their ratio f “ ω{ω1 is a meromorphic function on Γ, and pωq ´ pω1q “ p f q.
We remark that any differential in a coordinate chart φα : Uα Ñ Vα, with φαpPq “ zα take
the form

ω “ hαpzαqdzα, ω1 “ h1αpzαqdzα

where hα and h1α are meromorphic functions. The ratio gα “ hα{h1α is a meromorphic
function of Vα. Now define f :“ gα ˝ φα which is a meromorphic function on Uα. It is
easy to check that f is well defined and independent from the coordinate chart.

Definition 4.65. The linear equivalence class of divisors of Abelian differentials is called the
canonical class of the Riemann surface. We denote it by KΓ.

For example, the divisor ´28 “ pdzq can be taken as a representative of the canonical
class KCP1 .

We reformulate Abel’s theorem in the language of divisors. Note that the Abel map
extends linearly to the whole group of divisors. Abel’s theorem obviously means that a
divisor D is principal if and only if the following two conditions hold:

1. deg D “ 0;

2. ApDq ” 0 on JpΓq,

where

ApDq “
M
ÿ

j“1

pApP jq ´ApQ jqq, D “

M
ÿ

j“1

pP j ´Q jq,

withA the Abel map defined in (4.78).
Let us return to the canonical class. We compute it for a hyperelliptic surface w2 “

P2g`2pzq. Let P1, . . . ,P2g`2 be the branch points of the Riemann surface, and P8` and P8´
its point at infinity. We have that

pdzq “ P1 ` ¨ ¨ ¨ ` P2g`2 ´ 2P8` ´ 2P8´ .
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Thus the degree of the canonical class on this surface is equal to 2g ´ 2. We prove an
analogous assertion for an arbitrary Riemann surface.

Lemma 4.66. Let f : Γ Ñ X a holomorphic map between Riemann surfaces Γ and X and ω a
meromorphic one form on X, then for any fixed point P P Γ

ordP f ˚ω “ p1` ord f pPqpωqqmultPp f q ´ 1 (4.90)

where f ˚ω denotes the pull back of ω via f . We recall that the multiplicity of f in P is the unique
integer m such that there is local coordinatea near P P Γ and f pPq P X such that f takes the form
z Ñ zm.

Proof. Suppose that the map f can be represented near the point P and f pPq with local
coordinates τ and τ1 as τ Ñ τ1 “ τm. Suppose that near the point f pPq the one form ω
takes the form ω “ gpτ1qdτ1 with gpτ1q “

ř

kěn αkτ
1k. Then, the one form f ˚ω, near the

point P, takes the form

f ˚ω “ gpτmqmτm´1dτ “
ÿ

kěn

αkτ
mk`m´1dτ.

Looking at the coefficient in the exponent, one has the claim of the lemma. �

Definition 4.67. Let f : Γ Ñ X a holomorphic map between Riemann surfaces. The branch point
divisor W f is the divisor on Γ defined by

W f “
ÿ

PPΓ

rmultPp f q ´ 1sP. (4.91)

Definition 4.68. Let f : Γ Ñ X be a holomoprhic map between Riemann surfaces and let Q P X.
The inverse image of the divisor Q denoted f ˚pQq is defined as

f ˚pQq “
ÿ

PP f´1pQq

multpp f q ¨ P.

Applying (4.90) and (4.91) we arrive to the relation between divisors

p f ˚ωq “ W f ` f ˚pωq, (4.92)

where f ˚pωq is the inverse image of the divisor pωq of the one form ω.
Suppose that the Riemann surface Γ is given by the equation Fpz,wq “ 0. Further,

let P1, . . . ,PN be the branch points of this surface with respective multiplicities f1, . . . , fN
with respect to the meromorphic function z : Γ Ñ CP1. (see Lecture 1). The branch point
divisor Wz “ f1P1 ` . . . fNPN.
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Lemma 4.69. The canonical class of the surface Γ has the form

KΓ “ Wz ` z˚pKCP1q. (4.93)

Here z˚ denotes the inverse image of a divisor in the class KCP1 with respect to the meromorphic
function z : Γ Ñ CP1.

Proof. This follows immediately from (4.92). �

Corollary 4.70. The degree of the canonical class KΓ of a Riemann surface Γ of genus g is equal
to 2g´ 2.

Proof. We have from (4.93) that deg KΓ “ deg Wz ´ 2 deg z, where deg Wz is the total
multiplicity of the branch points of the map z. By the Riemann-Hurwitz formula (2.4),
deg Wz “ f “ 2g` 2 deg z´ 2. The corollary is proved. �

The divisor (4.86) is positive if all multiplicities n are positive. An effective divisor is a
divisor linearly equivalent to a positive divisor. Divisors D and D1 are connected by the
inequality D ą D1 if their difference D´D1 is a positive divisor.

With each divisor D we associate the linear space of meromorphic functions

LpDq “ t f | p f q ě ´Du. (4.94)

If D is a positive divisor, then this space consists of functions f having poles only at
points of D, with multiplicities not greater than the multiplicities of these points in D. If
D “ D`´D´, where D` and D´ are positive divisors, then the space LpDq consists of the
meromorphic functions with poles possible only at points of D`, with multiplicities not
greater than the multiplicities of these points in D , and with zeros at all points of D´ (at
least), with multiplicities not less than the multiplicities of these points in D.

Lemma 4.71. If the divisors D and D1 are linearly equivalent, then the spaces LpDq and LpD1q
are isomorphic.

Proof. Let D ´ D1 “ pgq, where g is a meromorphic function. If f P LpDq, then f 1 “ f g P
LpD1q. Indeed,

p f 1q `D1 “ p f q ` pgq `D1 “ p f q `D ą 0.

Conversely, if f 1 P LpD1q, then f “ g´1 f 1 P LpDq. The lemma is proved. �

We denote the dimension of the space LpDq by

lpDq “ dim LpDq. (4.95)

By Lemma 4.71, the function lpDq (as well as the degree deg D) is constant on linear
equivalence classes of divisors. We make some simple remarks about the properties of
this important function.
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Remark 4.72. A divisor D is effective if and only if lpDq ą 0. Indeed, replacing D by
a positive divisor D1 linearly equivalent to it, we see that the space LpD1q contains the
constants. Conversely, if lpDq ą 0, then D is effective. Indeed, if the meromorphic
function f is such that D1 “ p f q `D ą 0, then the divisor D1, which is linearly equivalent
to D is positive.
Remark 4.73. For the zero (empty) divisor, lp0q “ 1. If deg D ă 0, then lpDq “ 0.
Remark 4.74. The number lpDq´1 is often denoted by |D|. According to Remark 4.72 |D| ě
0 for effective divisors. The number |D| admits the following intuitive interpretation. We
show that |D| ě k if and only if for any points P1, . . . ,Pk there is a divisor D1 » D
containing the points P1, . . . ,Pk (the presence of coinciding points among P1, . . . ,Pk is
taken into account by their multiple occurrence in D1). If lpDq ě k ` 1, then there are
linearly independent functions f1, . . . , fk P LpDq such that the function f “

řk
i“1 ci fi ´ c0,

where ci, i “ 1, . . . , k are arbitrary constants, has zeros in P1, . . . ,Pk, namely

f pP jq “ 0, j “ 1, . . . , k.

This is a system of inhomogeneous linear equation for the constants c1, . . . , ck which has a
solution for any choice of the points P1, . . . ,Pk. So it follows that the divisor D1 of zeros of
f contains the point P1, . . . ,Pk, which implies that D ` p f q “ D1, or equivalently D1 » D
and D1 contains the points P1, . . . ,Pk.

Viceversa suppose that there is a positive divisor D1 containing the arbitrary points
P1, . . . ,Pk and such that D1 » D. Then there is a meromorphic function f such that
p f q “ D1 ´ D, or p f q ` D “ D1 ą 0. It follows that f P LpDq and f has zeros in arbitrary
points P1, . . . ,Pk. We write f is the form f “

řk
j“1 ck fk´ c0 where f j P LpDq. If the function

f has zeros in arbitrary points P1, . . . ,Pk it follows that the system of equations

f pP jq “ 0, j “ 1, . . . , k,

must be solvable for any set of points P1, . . . ,Pk, but this is possible only if the functions
f1, . . . , fk are linearly independent and different from the constant, which means that
lpDq ě k` 1. One therefore says that |D| is the number of mobile points in the divisor D.

Remark 4.75. Let K “ KΓ, be the canonical class of a Riemann surface. We mention an
interpretation that will be important later for the space LpK´Dq for an arbitrary divisor D.
First, if D “ 0, then the space LpKq is isomorphic to the space of holomorphic differentials
on Γ. Indeed, choose a representative K0 ą 0 in the canonical class, taking K0 to be the zero
divisor of some holomorphic differential ω0, K0 “ pω0q. If f P LpK0q, i.e. p f q ` pω0q ě 0,
then the divisor p fω0q is positive, i.e., the differential fω0 is holomorphic. Conversely, if
ω is any holomorphic differential, then the meromorphic function f “ ω{ω0 lies in LpK0q.

It follows from the foregoing and Theorem 4.12 that

lpKq “ g.
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Lemma 4.76. For a positive divisor D the space LpK ´Dq is isomorphic to the space

ΩpDq “ tω P H1pΓq | pωq ´D ě 0u

Proof. We choose a representative K0 ą 0 in the canonical class, taking K0 to be the
zero divisor of some holomorphic differential ω0, K0 “ pω0q. If f P LpK0 ´ Dq, then
the differential fω0 is holomorphic and has zeros at the points of D, i.e., fω0 P ΩpDq.
Conversely, if ω P ΩpDq, then f “ ω{ω0 P LpK0 ´Dq. The assertion is proved. �

The main way of getting information about the numbers lpDq is the Riemann-Roch
Theorem.

Theorem 4.77 (Riemann Roch Theorem). For any divisor D

lpDq “ 1` deg D´ g` lpK ´Dq. (4.96)

Proof. For surfaces Γ of genus 0 (which are isomorphic to CP1 in view of Problem 6.1)
the Riemann-Roch theorem is a simple assertion about rational functions (verify!). By
Remarks 4.73 and 4.75 (above) the Riemann-Roch theorem is valid for D “ H.

We first prove (4.96) for positive divisors D ą 0. Let D “
řm

k“1 nkPk where all the
nk ą 0. We first verify the arguments when all the nk are“ 1, i.e., m “ deg D. Let f P LpDq
be a nonconstant function.

We consider the Abelian differential ω “ d f . It has double poles and zero residues at
the points P1, . . . ,Pm and does not have other singularities. Therefore, it is representable
in the form

Ω “ d f “
m
ÿ

k`1

ckΩ
p1q
Pk
` ψ

where Ω
p1q
Pk

are normalized differentials of the second kind (see Lecture 4.1.3), c1, . . . , cm

are constants, and the differential ψ is holomorphic. Since the function f pPq “
şP

P0
Ω is

single-valued on Γ, the integral
şP

P0
Ωis independent from the path of integration. This

implies that
¿

αi

Ω “ 0,
¿

bi

Ω “ 0, i “ 1, . . . , g. (4.97)

From the vanishing of the α-periods of the meromorphic differentials Ω
p1q
Pk

we get that
ψ “ 0 (see Corollary 4.17). From the vanishing of the β-period we get, by (4.30) with
n “ 1, that

0 “
¿

βi

Ω “

m
ÿ

k“1

ckψikpzkq|zk“0, i “ 1, . . . , g, (4.98)



100 CHAPTER 4. DIFFERENTIALS ON A RIEMANN SURFACE.

where zk is a local parameter in a neighborhood of Pk, zkpPkq “ 0, k “ 1, . . . ,m, and
the basis of holomorphic differentials are written in a neighborhood of Pk in the form
ωi “ ψikpzqdzk. Defining ωipPkq :“ ψikp0q, we write the system (4.98) in the form

¨

˚

˚

˝

ω1pP1q ω1pP2q . . . ω1pPmq

ω2pP1q ω2pP2q . . . ω2pPmq

. . . . . . . . . . . .
ωgpP1q ωgpP2q . . . ωgpPmq

˛

‹

‹

‚

¨

˚

˚

˝

c1
c2
. . .
cm

˛

‹

‹

‚

“ 0, (4.99)

We have obtained a homogeneous linear system of m “ deg D equations in the coefficients
c1, . . . , cm. The nonzero solutions of this systems are in a one-to-one correspondence with
the nonconstant functions f in LpDq, where f can be reproduced from a solution c1, . . . , cm
of the system (4.98) in the form

f pPq “
m
ÿ

k“1

ck

ż P

P0

Ω
p1q
Pk
.

Thus lpDq “ 1 ` deg D ´ rankA where A is the matrix of holomorphic differentials in
(4.99) (the 1 is added because the constant function belong to the space LpDq). On the
other hand the rank of the matrixA has another interpretation. Consider the holomorphic
differential ω “

řg
j“1 a jω j. Such differential ω belongs to the space ΩpDq if

ωpPkq “ 0, k “ 1, . . . ,m.

The above system of equations can be written in the equivalent form

`

a1 a2 . . . ag
˘

¨

˝

ω1pP1q . . . ω1pPmq

. . . . . . . . .
ωgpP1q . . . ωgpPmq

˛

‚“ 0. (4.100)

The number of solutions of this system is equal to g´ rankA and it is in one to one cor-
respondence with the linearly independent holomorphic differentials in ΩpDq. Therefore
dimΩpDq “ g´ rankA. On the other hand we have obtained that

lpDq “ 1` deg D´ rankA

so that combining the two equations we obtain

lpDq “ 1` deg D´ g` dimΩpDq “ 1` deg D´ g` lpK ´Dq

where the second identity is due to the fact that the space ΩpDq and LpK´Dq are isomorphic
for positive divisors. Accordingly the Riemann-Roch theorem has been proved in this
case.
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We explain what happens when the positive divisor D has multiple points. For
example suppose that D “ n1P1 ` . . . . Then ω “ d f “

řn1
j“1 c j

1Ω
p jq
P1
` . . . and the system

(4.98) can be written in the form

n1
ÿ

j“1

c j
1

1
j!

d j´1ψi1

dz j´1
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

z1“0

` ¨ ¨ ¨ “ 0

If the rank of the coefficient matrix of this system is denoted (as above) by rankA, the
dimension of the space LpDq is equal to lpDq “ 1`deg D´ rankAwhile the dimension of
the space ΩpDq is equal to g´ rankA. We have proved the Riemann-Roch theorem for all
positive divisors and hence for all effective divisors, which (accordingly to Remark 4.72)
are distinguished by the condition lpDq ą 0. Next we note that the relation in this theorem
can be written in the form

lpDq ´
1
2

deg D “ lpK ´Dq ´
1
2

degpK ´Dq, (4.101)

which is symmetric with respect to the substitution D Ñ K ´ D. Therefore the theorem
is proved for all divisors D such that D or K ´ D is equivalent to an integral divisor. If
neither D nor K ´D are equivalent to an integral divisor, then lpDq “ 0 and lpK ´Dq “ 0
and the Riemann-Roch theorem reduces in this case to the equality

deg D “ g´ 1. (4.102)

Let us prove this equality. We represent D in the form D “ D` ´D´, where D` and D´
are positive divisors and deg D´ ą 0. It follows from the validity of the Riemann-Roch
theorem for D` that lpD`q ě deg D` ´ g ` 1 “ deg D ` deg D´ ´ g ` 1. Therefore if
deg D ě g, then lpD`q ě 1` deg D´. Then the space LpD`q contains a nonzero function
vanishing on D´, i.e. belonging to the space LpD` ´ D´q “ LpDq. This contradicts the
condition lpDq “ 0. Similarly, the assumption degpK ´ Dq ď g leads to a contradiction.
This implies (4.102). The theorem is proved. �

4.1.6 Some consequences of the Riemann-Roch theorem. The structure of
surfaces of genus 1. Weierstrass points. The canonical embedding

Corollary 4.78. If deg D ě g, then the divisor D is effective.

Corollary 4.79. The Riemann inequality

lpDq ě 1` deg D´ g, (4.103)

holds for deg D ě g.
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Definition 4.80. A positive divisor D is called special if

dimΩpDq ą 0.

We remark that any effective divisor of degree less then g is special since lpDq ą 0 and
by Riemann-Roch theorem this implies dimΩpDq ą 0.

Corollary 4.81. If deg D ą 2g´ 2, then D is nonspecial.

Proof. For deg D ą 2g ´ 2 we have that degpK ´ Dq ă 0, hence lpK ´ Dq “ 0 (see
Remark 4.73). The corollary is proved. �

Exercise 4.82: Suppose that k ě g; let the Abel mapping A : Γ Ñ JpΓq (see Lecture 4.1.4)
be extended to the kth-power mapping

Ak : Γˆ ¨ ¨ ¨ ˆ Γ
looooomooooon

k times

Ñ JpΓq

by setting AkpP1, . . . ,Pkq “ ApP1q`¨ ¨ ¨`ApPkq (it can actually be assumed that Ak maps into
JpΓq the kth symmetric power SkΓ, whose points are the unordered collections pP1, . . . ,Pkq

of points of Γ). Prove that the special divisors of degree k are precisely the critical points
of the Abel mapping Ak. Deduce from this that a divisor D with deg D ě g in general
position is nonspecial.

Remark 4.83. Let deg D “ 0, then if D is equivalent to a divisor of a meromorphic function,
then LpDq “ 1 otherwise LpDq “ 0. Let deg D “ 2g ´ 2, then if D is equivalent to the
canonical divisor, then lpDq “ g otherwise lpDq “ g ´ 1. Furthermore if deg D ą 2g ´ 2,
then by Riemann Roch theorem one has lpDq “ 1 ` deg D ´ g. If 0 ď deg D ď g ´ 1 the
minimum value of lpDq is zero while for g ď deg D ď 2g´ 2, minplpDqq “ 1´ g` deg D.

The values of lpDq for 0 ď deg D ď 2g´ 2 are estimated by the Clifford theorem.

Theorem 4.84. If 0 ď deg D ď 2g´ 2, then

lpDq ď 1`
1
2

deg D. (4.104)

Proof. If lpDq “ 0 or lpK ´ Dq “ 0, the proof of the theorem is straightforward. Let us
assume that lpDq ą 0 and lpK ´ Dq ą 0 and consider the map LppDq ˆ LpK ´ Dq Ñ LpKq
given by p f , hq Ñ f h where p f , hq P LppDqˆLpK´Dq. Let V be the subspace in LpKqwhich
is the image of this map. Then one has

g “ lpKq ě dim V “ lpDqlpK ´Dq ě lpDq ` lpK ´Dq ´ 1
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where in the last equality we use the identity which holds for real numbers a and b bigger
then one: pa´ 1qpb´ 1q ě 0 and so ab ě a` b´ 1.

Therefore

g ě lpDq ` lpK ´Dq ´ 1 “ 2lpDq ` g´ 2´ deg D,

which implies (4.104). �

Let us make a plot of the possible values of lpDq using Clifford theorem and the above
observations.

g−1 2g−2

g−1

1

g

deg(D)

l(D)

1+deg(D)/2

non special 

divisors

Figure 4.3: The values of lpDq as a function of deg D. One can see that the value of lpDq of
a special divisors is located between the two lines.

We now present examples of the use of the Riemann-Roch theorem in the study of
Riemann surfaces.
Example 4.85. Let us show that any Riemann surface Γ of genus g “ 1 is isomorphic
to an elliptic surface w2 “ P3pzq. Let P0 be an arbitrary point of Γ. Here 2g ´ 2 “ 0,
therefore, any positive divisor is nonspecial. We have that Ap2P0q “ 2, hence there is
a nonconstant function z in lp2P0q, i.e., a function having a double pole at P0. Further
lp3P0q “ 3, hence there is a function w P lp3P0q that cannot be represented in the form
w “ az ` b. This function has a pole of order three at P0. Finally, since lp6P0q “ 6, the
functions 1, z, z2, z3,w,w2,wz which lie in lp6P0q are linearly independent. We have that

a1w2 ` a2wz` a3w` a4z3 ` a5z2 ` a6z` a7 “ 0. (4.105)

The coefficient a1 is nonzero (verify). Making the substitution

w Ñ w´
ˆ

a2

2a1
z`

a3

2a1

˙
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we get the equation of an elliptic curve from (4.105).

Example 4.86 (Riemann count of the moduli space of Riemann surface). Consider a
Riemann surface Γ of genus g and a meromorphic function of degree n ą g. Such
function represents Γ as a n-sheeted covering of the complex plane, branched over a
number of points with total branching number b f equal to

b f “ 2n` 2g´ 2

where the Riemann-Hurwitz formula has been used. Generically the branch points
have branching number equal to one so that b f is also equal to the branch points of the
Riemann surface. From the Riemann existence theorem, given the branch points and a
permutation associated to each branch point such that the corresponding monodromy
group is a transitive sub-group of Sn, then one can construct a Riemann surface Γ. Let
f : Γ Ñ P1 be the obvious projection map. Such map To any set of branch points it
correspond a finite number of Riemann surface of genus g together with a meromorphic
function of degree n. Riemann surface is determined uniquely up to isomorphism.

Any meromorphic function of degree n on Γ will represent Γ as a n-sheeted covering
of the complex plane. Let D8 be the divisor of poles of f . Since the degree of f is equal
to n then deg D8 “ n. Furthermore from Riemann-Roch theorem

lpD8q “ n` 1´ g.

So the freedom of choosing the function f is given by the position of the poles, and this
gives n parameters, and the number of functions having poles in D8, which is equal to
n`1´g. The total number of parameters in choosing the meromorphic function of degree
n is 2n´ 1´ g. So the total number of parameters for describing a curve of genus g is

2n` 2g´ 2´ p2n´ 1´ gq “ 3g´ 3.

Definition 4.87 (Weierstrass points). A point P0 of a Riemann surface Γ of genus g is called a
Weierstrass point if lpkP0q ą 1 for some k ď g.

It is clear that in the definition of a Weierstrass point it suffices to require that lpgP0q ą 1
when g ě 2. There are no Weierstrass points on a surface of genus g “ 1. On hyperelliptic
Riemann surfaces of genus g ą 1 all branch points are Weierstrass points, since there exist
functions with second-order poles at the branch points (see Lecture 3).

Definition 4.88. A Riemann surface is called hyperelliptic if and only if it admits a non constant
meromorphic function of degree 2.

The use of Weierstrass points can be illustrated in the next exercise.
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Exercise 4.89: Let Γ be a Riemann surface of genus g ą 1, and P0 a Weierstrass point of it,
with lp2P0q ą 1. Prove that Γ is hyperelliptic. Prove that the surface is also hyperelliptic
if lpP`Qq ą 1 for two points P and Q.

Exercise 4.90: Let Γ be a hyperellitpic Rieamnn surface and z a function of degree two.
Prove that any other function f of degree two is a Moebius transformation of z.

We show that there exist Weierstrass points on any Riemann surface Γ of genus g ą 1.

Lemma 4.91. Suppose that z is a local parameter in a neighborhood P0, zpP0q “ 0; assume that
locally the basis of holomorphic differentials has the form ωi “ ψipzqdz, i “ 1, . . . , g. Consider the
determinant

Wpzq “ det

¨

˚

˝

ψ1pzq ψ11pzq . . . ψ
pg´1q
1 pzq

. . . . . . . . .

ψgpzq ψ1gpzq . . . ψ
pg´1q
g pzq

˛

‹

‚
. (4.106)

The point P0 is a Weierstrass point if and only if Wp0q “ 0.

Proof. If P0 is a Weierstrass point, i.e., lpgP0q ą 1, then lpK´gP0q ą 0 by the Riemann-Roch
theorem. Hence, there is a holomorphic differential with a g-fold zero at P0 on Γ. The
condition that there be such a differential can be written in the form Wp0q “ 0 (cf. the
proof of the Riemann-Roch theorem). The lemma is proved. �

Lemma 4.92. Under a local change of parameter z “ zpwq the quantity W transforms according

to the rule W̃pwq “
ˆ

dz
dw

˙
1
2 gpg`1q

Wpzq.

Proof. Suppose that ωi “ ψipzqdz “ ψ̃ipwqdw. Then each ψ̃i “ ψi
dz
dw

, i “ 1, . . . , g. This

implies that the derivatives dkψ̃i{dwk can be expressed for each i in terms of the derivatives
dlψi{dzl by means of a triangular transformation of the form

dkψ̃i

dwk
“

ˆ

dz
dw

˙k`1 dkψi

dzk
`

k´1
ÿ

j“1

c j
d jψi

dz j , i “ 1, . . . g

(the coefficients cs in this formula are certain differential polynomials in zpwq). The
statement of the Lemma readily follows from the transformation rule. �

Let us define the weight of a Weierstrass point P0 as the multiplicity of zero of Wpzq at
this point. According to the previous Lemma the definition of weight does not depend
on the choice of the local parameter.

The proof of existence of Weierstrass points for g ą 1 can be easily obtained from the
following statement.
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Lemma 4.93. The total weight of all Weierstrass points on the Riemann surface Γ of genus g is
equal to pg´ 1q g pg` 1q.

Proof. Let us consider the ratio
Wpzq{ψN

1 pzq.

Here N “ 1
2 gpg` 1q. According to lemma (4.92), the above ratio does not depend on the

choice of the local parameter and, hence, it is a meromorphic function on Γ. This function
has poles of multiplicity N at the zeroes of the differentialω1 (the total number of all poles
is equal to 2g´ 2). Therefore this function must have N p2g´ 2q “ pg´ 1q g pg` 1q zeroes
(as usual, counted with their multiplicities). These zeroes are the Weierstrass points. �

Let us do few more remarks about the Weierstrass points. Given a point P0 P Γ, let us
consider the dimension lpk P0q as a function of the integer argument k. This function has
the following properties. According to figure (4.3) we have

1 ď lpk P0q ď g, 1 ď k ď 2g´ 1.

In particular l pp2g´ 1qP0q “ g. It follows that while k increases 2g´ 2 times the function
lpk P0q increases only g ´ 1 times. The next lemma shows that the function lpk P0q is a
piece-wise constant function where each step has size equal to one.

Lemma 4.94.

lpk P0q “

"

l ppk´ 1qP0q ` 1, if there exists a function with a pole of order k at P0
l ppk´ 1qP0q , if such a function does not exist

Proof. The space Lpk P0q is larger then the space Lppk´1qP0q therefore lpk P0q ě lppk´1qP0q.
On the other hand, dimΩpkP0q ď dimΩppk´ 1qP0q. From the Riemann Roch theorem one
has

lpk P0q ´ lppk´ 1qP0q “ 1` dimΩpkP0q ´ dimΩppk´ 1qP0q

which, when combined with the above two inequalities, gives the statement. �

When lpk P0q “ lppk´1qP0qwe will say that the number k is a gap at the point P0. From
the previous remarks it follows the following Weierstrass gap theorem:

Theorem 4.95. There are exactly g gaps 1 “ a1 ă ... ă ag ă 2g at any point P0 of a Riemann
surface of genus g.

The gaps have the form ai “ i, i “ 1, . . . , g, for a point P0 in general position (which
is not a Weierstrass point). Namely for a non Weierstrass point the function lpkP0q is non
zero only for k ą g and one has lpkP0q “ 1 ` k ´ g for k ą g. A Weierstrass point P0 is
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called normal if the Weierstrass gap sequence takes the form 1, 2, . . . , g´ 1, g` 1 where g
is the genus of the surface. Namely a meromorphic function with only a pole in P0 has
order at least equal to g. Normal Weierstrass points are generic. A Weierstrass point P0 is
called hyperelliptical is the Weierstrass gap sequence takes the form 1, 3, 5, . . . , 2g´ 1. In
this case a meromorphic function with only a pole in P0 has order equal to two.

Exercise 4.96: Show that every compact Riemann surface of genus g is conformally
equivalent to a pg` 1q´sheeted covering surface of the complex plane.

Exercise 4.97: Prove that for branch points of a hyperelliptic Riemann surface of genus g
the gaps have the form ai “ 2i´ 1, i “ 1, . . . , g. Prove that a hyperelliptic surface does not
have other Weierstrass points. Next suppose that the hyperelliptic Riemann surface has
genus 2 and let P0 be a Weierstrass point. Show that there exist meromorphic functions z
and w with only a pole in P0 and such that

w2 ` a1wz` a2wz2 ` a3z5 ` a4z4 ` a5z3 ` a6z2 ` a7z` a8 “ 0.

Exercise 4.98: Prove that any Riemann surface of genus 2 is hyperelliptic.

Exercise 4.99: Let Γ be a hyperelliptic Riemann surface of the form w2 “ P2g`lpzq.
Prove that any birational (biholomorphic) automorphism Γ Ñ Γ has the form pz,wq Ñ

p
az` b
cz` d

,˘wq, where the linear fractional transformation leaves the collection of zeros of

P2g`2pzq invariant.

Example 4.100 (The canonical embedding). . Let Γ be an arbitrary Riemann surface of
genus g ě 2. We fix on Γ a canonical basis of cycles a1, . . . , ag, b1, . . . , bg; let ω1, . . . , ωg be
the corresponding normal basis of holomorphic differentials. This basis gives a canonical
mapping Γ Ñ CPg´1 according to the rule

P Ñ pω1pPq : ω2pPq : ¨ ¨ ¨ : ωgpPqq. (4.107)

Indeed, it suffices to see that all the differentials ω1, . . . , ωg cannot simultaneously vanish
at some point of the surface. If P were a point at which any holomorphic differential
vanished, i.e., lpK ´ Pq “ g, (see Remark 4.75), then lpPq would be “ 2 in view of the
Riemann-Roch theorem, and this means that the surface Γ is rational (verify!). Accordingly
(4.107) really is a mapping Γ Ñ CPg´1; it is obviously well-defined.

Lemma 4.101. If Γ is a nonhyperelliptic surface of genus g ě 3, then the canonical mapping
(4.107) is a smooth embedding. If Γ is a hyperelliptic surface of genus g ě 2, then the image of the
canonical embedding is a rational curve, and the mapping itself is a two-sheeted covering.
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Proof. We prove that the mapping (4.107) is an embedding. Assume not: assume that the
points P1 and P2 are merged into a single point by this mapping. This means that the
rank of the matrix

¨

˝

ω1pP1q ω1pP2q

. . . . . .
ωgpP1q ωgpP2q

˛

‚

is equal to 1. But then lpP1`P2q ą 1 (see the proof of the Riemann-Roch theorem). Hence,
there exists on Γ a nonconstant function with two simple poles at P1 and P2 i.e., the surface
Γ is hyperelliptic. The smoothness is proved similarly: if it fails to hold at a point P, then
the rank of the matrix

¨

˝

ω1pPq ω11pPq
. . . . . .
ωgpPq ω1gpPq

˛

‚

is equal to 1. Then lp2Pq ą 1, and the surface is hyperelliptic. Finally, suppose that Γ is
hyperelliptic. Then it can be assumed of the form w2 “ P2g`1pzq. Its canonical mapping
is determined by the differentials (5.42). Performing a projective transformation of the
space CPg´1 with the matrix pc jkq (see the formula (5.42)), we get the following form for
the canonical mapping:

P “ pz,wq Ñ p1 : z : ¨ ¨ ¨ : zg´1q (4.108)

Its properties are just as indicated in the statement of the lemma. The lemma is proved. �

We remark that the canonical mapping smoothly embeds a nonhyperelliptic Riemann
surface of genus g in Pg´1. It is proved in [16] that the image of such embedding can
be smoothly project to P3. Namely every smooth Riemann surface has an holomorphic
embedding in P3.

Exercise 4.102: Suppose that the Riemann surface Γ is given in CP2 by the equation
ÿ

i` j“4

ai jξ
iη jζ4´i´ j “ 0, (4.109)

and this curve is nonsingular in CP2 (construct an example of such a nonsingular curve).
Prove that the genus of this surface is equal to 3 and the canonical mapping is the identity
up to a projective transformation of CP2. Prove that Γ is a non hyperelliptic surface.
Prove that any non hyperelliptic surface of genus 3 can be obtained in this way.

The range Γ1 Ă CPg´1 of the canonical mapping is called the canonical curve.

Exercise 4.103: Prove that any hyperplane in CPg´1 intersects the canonical curve Γ1 in
2g´ 2 points (counting multiplicity).



Chapter 5

Jacobi inversion problem and
theta-functions

5.1 Statement of the Jacobi inversion problem. Definition and
simplest properties of general theta functions

In Lecture 4.1.2 we saw that inversion of an elliptic integral leads to elliptic functions. For
a surface of genus g ą 1 the Inversion of integrals of Abelian differentials is not possible
since any such differential has zeros (at least 2g ´ 2zeros). Instead of the problem of
inverting a single Abelian integral, Jacobi proposed for hyperelliptic surfaces w2 “ P5pzq
the problem of solving the system

P1
ż

P0

dz
a

P5pzq
`

P2
ż

P0

dz
a

P5pzq
“ η1

P1
ż

P0

zdz
a

P5pzq
`

P2
ż

P0

zdz
a

P5pzq
“ η2

(5.1)

where η1, η2 are given numbers from which the location of the points P1 “ pz1,w1q,
P2 “ pz2,w2q is to be determined. It is clear, moreover, that P1 and P2 are determined from
(5.1) only up to permutation. Jacobi’s idea was to express the symmetric functions of P1
and P2 as functions of η1 and η2. He noted also that this will give meromorphic functions
of η1 and η2 whose period lattice is generated by the periods of the basis of holomorphic
differentials dz{

a

P5pzq and zdz{
a

P5pzq. This Jacobi inversion problem was solved by
Göepel and Rosenhain by means of the apparatus of theta functions of two variables.
The generalization of the Jacobi inversion problem to arbitrary Riemann surfaces and

109
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its solution are due to Riemann. We give a precise statement of the Jacobi inversion
problem. Let Γ be an arbitrary Riemann surface of genus g, and fix a canonical basis of
cycles α1, . . . , αg, β1, . . . , βg on Γ; as above let ω1, . . . , ωg be be the corresponding basis of
normalized holomorphic differentials. Recall (see Lecture 4.1.4) that the Abel mapping
has the form

A : Γ Ñ JpΓq, ApPq “ pu1pPq, . . . ,ugpPqq, (5.2)

where JpΓq is the Jacobi variety,

uipPq “

P
ż

P0

ωi, (5.3)

P0 is a particular point of Γ, and the path of integration from P0 to P is the same for
all i “ 1, . . . , g. Consider the gth symmetric power SgΓ of Γ. The unordered collections
pP1, . . . ,Pgq of g points of Γ are the points of the manifold SgΓ. The meromorphic functions
on SgΓ are the meromorphic symmetric functions of g variables P1, . . . ,Pg, P j P Γ. The
Abel mapping (5.2) determines a mapping

Apgq : SgΓ Ñ JpΓq, AgpP1, . . . ,Pgq “ ApP1q ` ¨ ¨ ¨ ` ApPgq, (5.4)

which we also call the Abel mapping.

Lemma 5.1. If the divisor D “ P1 ` ¨ ¨ ¨ ` Pg is nonspecial, then in a neighborhood of a point
ApgqpP1, ...,Pgq P JpΓq the mapping Apgq has a single-valued inverse.

Proof. Suppose that all the points are distinct; let z1, . . . , zg be local parameters in neigh-
borhoods of the respective points P1, . . . ,Pg with zkpPkq “ 0 and ωi “ ψikpzkqdzk the
normalized holomorphic differentials in a neighborhood of Pk. The Jacobi matrix of the
mapping (5.4) has the following form at the points pP1, . . . ,Pgq

¨

˝

ψ11pz1 “ 0q . . . ψ1gpzg “ 0q
. . . . . . . . .

ψg1pz1 “ 0q . . . ψggpzg “ 0q

˛

‚.

If the rank of this matrix is less than g, then lpK ´ Dq ą 0, i.e., the divisor D is special
by the Riemann-Roch theorem. The case when not all the points P1, . . . ,Pg are distinct is
treated similarly. We now prove that the inverse mapping is single-valued. Assume that
the collection of points pP11, . . . ,P

1
gq is also carried into ApgqpP1, . . . ,Pgq. Then the divisor

D1 “ P11 ` ¨ ¨ ¨ ` P1g is linearly equivalent to D by Abel’s theorem. If D1 , D, then there
would be a meromorphic function with poles at points of D and with zeros at points of
D1. This would contradict the fact that D is nonspecial. Hence, D1 “ D, and the points
P11, . . . ,P

1
g differ from P1, . . . ,Pg only in order. The lemma is proved. �
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Since a divisor P1 ` ... ` Pg in general position is nonspecial (see Problem 4.82), the
Abel mapping (5.4) is invertible almost everywhere. The problem of inversion of this
mapping in the large is the Jacobi inversion problem. Thus, the Jacobi inversion problem
can be written in coordinate notation in the form

$

&

%

u1pP1q ` ¨ ¨ ¨ ` u1pPgq “ η1
. . . . . . . . .
ugpP1q ` ¨ ¨ ¨ ` ugpPgq “ ηg

(5.5)

which generalizes (5.1). To solve this problem we need the apparatus of multi-dimensional
theta functions.

5.2 Theta-functions

The g-dimensional theta-functions are defined by their Fourier serie. Let B “ pB jkq

be a symmetric g ˆ g matrix with negative-definite real part and let z “ pz1, . . . , zgq and
N “ pN1, . . . ,ngq be g-dimensional column vectors. The Riemann theta function is defined
by its multiple Fourier series,

θpzq “ θpz; Bq “
g
ÿ

NPZ

exp pπixNB,Ny ` xN, zyq , (5.6)

where the angle brackets denote the Euclidean inner product:

xN, zy “
g
ÿ

k“1

Nkzk, xNB,Ny “
g
ÿ

j,k“1

BkjN jNk.

The summation in (5.6) is over the lattice of integer vectors N “ pN1, . . . ,Ngq. The obvious
estimate <pixNB,Nyq ď ´bxN,Ny, where b ą 0 is the smallest eigenvalue of the matrix
=pBq, implies that the series (5.6) defines an entire function of the variables z1, . . . , zg.

Proposition 5.2. The theta-function has the following properties.

1. θp´z ; Bq “ θpz ; Bq.

2. For any integer vectors M,K P Zg,

θpz` K `MB; Bq “ exp p´πixMB,My ´ 2πixM, zyqθpz; Bq. (5.7)

3. It satisfies the heat equation

B

BBi j
θpz ; Bq “

1
2πi

B2

Bziz j
θpz ; Bq, i , j

B

BBii
θpz ; Bq “

1
4πi

B2

Bz2
i

θpz ; Bq.
(5.8)
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Proof. The proof of properties 1. and 3. is straightforward. Let us prove property 2. In
the series for θpz` K `MBq we make the change of summation index N Ñ N ´M. The
relation (5.7) is obtained after this transformation. �

The integer lattice tN `MBu is called the period lattice.

Remark 5.3. It is possible to define the function θpzq as an entire function of z1, . . . , zg
satisfying the transformation law (5.7) (this condition determines θpzq uniquely to within
a factor).

The theta-function is an analytic multivalued function on the g-dimensional torus
Tg “ Cg{tN ` MBu. In order to construct single valued functions, i.e. meromorphic
functions on the torus, one can take for example, for any two vectors e1, e2 P Cg the
product

θpz` e1qθpz´ e1q

θpz` e2qθpz´ e2q
.

Indeed the above expression is by (5.7) a single valued function on the g-dimensional
torus. In general for any two sets of g vectors e1, . . . eg P Cg, v1, . . . vg P Cg satisfying the
constraint

e1 ` . . . eg “ 0, v1 ` . . . vg “ 0

the product

g
ź

j“1

θpz` e jq

θpz` v jq
,

is a meromorphic function on the torus (verify this!).
Let p and q be arbitrary real g-dimensional row vectors. We define the theta function

with characteristics p and q:

θrp, qspzq “ exp pπixpB, py ` 2πixz` q, pyqθpz` q` pBq

“
ÿ

NPZg

exp pπixpN ` pqB,N ` py ` 2πixz` q,N ` pyq . (5.9)

For p “ 0 and q “ 0 we get the function θpzq. The analogue of the law (5.7) for the
functions θrp, qspzq has the form

θrp, qspz`K`MBq “ θrp, qspzqexp r´πixMB,My ´ 2πixM, z` qy ` 2πixK, pys. (5.10)

Observe that all the coordinates of the characteristics p and q are determined modulo 1.
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Definition 5.4. The characteristics p and q with all coordinates equal to 0 or 1{2 are called half
periods. A half period rp, qs is said to be even if 4xp, qy ” 0 p mod 2q and odd if 4xp, qy ” 1 p
mod 2q.

Exercise 5.5: Prove that the function θrp, qspzq is even if rp, qs is an even half period and
odd if rp, qs is an odd half period.

In particular the function θpzq is even and for e “ q ` Bp with 4xp, qy ” 1 p mod 2q
one has

θpeq “ 0.

Example 5.6. For g “ 1 the theta-function reduces to the Jacobi theta-function. Let τ be
an arbitrary number with =τ ą 0. The Jacobi theta function is defined by the series

θpz; τq “
ÿ

´8ănă8
exp

`

πiτn2 ` 2πinz
˘

. (5.11)

Since
ˇ

ˇexp
`

πiτn2 ` 2πinz
˘ˇ

ˇ “ exp
`

´π=τn2 ´ 2πn=zq
˘

the series (5.11) converges absolutely and uniformly in the strips |=pzq| ď const and
defines an entire function of z.

The series (5.11) can be rewritten in the form common in the theory of Fourier series:

θpzq “
ÿ

´8ănă8
exppπiτn2qe2πizn (5.12)

(the function ϑ3pz ; τq) in the standard notation; see [[3]). The function θpzq has the
following periodicity properties:

θpz` 1q “ θpzq (5.13)
θpz` τq “ expp´πiτ´ 2πizqθpzq (5.14)

The integer lattice with basis 1 and τ is called the period lattice of the theta function. The
remaining Jacobi theta-functions are defined with respect to the lattice 1, τ “ b{2πi as

ϑ1pz ; τq :“ θr
1
2
,

1
2
spzq “

ÿ

´8ănă8
exp

«

πiτ
ˆ

n`
1
2

˙2

` 2πi
ˆ

z`
1
2

˙ˆ

n`
1
2

˙

ff

ϑ2pz ; τq :“ θr
1
2
, 0spzq “

ÿ

´8ănă8
exp

«

πiτ
ˆ

n`
1
2

˙2

` 2πiz
ˆ

n`
1
2

˙

ff
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ϑ4pz ; τq :“ θr0,
1
2
spzq “

ÿ

´8ănă8
exp

„

πiτn2 ` 2πi
ˆ

z`
1
2

˙

n


.

The functions ϑ2pz ; τq, ϑ3pz ; τq and ϑ4pz ; τq are even functions of z while ϑ1pz ; τq is odd.

So for g “ 1, the theta-function θpz ; τq “ ϑ3pz ; τq “ 0 for z “
1` τ

2
.

Exercise 5.7: Prove that the zeros of the function θpzq form an integer lattice with the

same basis 1, τ and with origin at the point z0 “
1` τ

2
.

By multiplying theta function (5.9) we obtain higher order theta functions. The func-
tion f pzq is said to be a nth order theta function with characteristics p and q if it is an entire
function of z1, . . . , zg and transforms according to the following law under translation of
the argument by a vector of the period lattice

f pz`N `MBq “ exp r´πinxMB,My ´ 2πinxM, z` qy ` 2πixp,Nys f pzq. (5.15)

Exercise 5.8: Prove that the nth order theta functions with given characteristics q, p form
a linear space of dimension ng. Prove that a basis in this space is formed by the functions

θr
p` γ

n
, qspnz ; nBq, (5.16)

where the coordinates of the vector γ run independently through all values from 0 to
n´ 1.

Under a change of the homology basis α1, . . . , αg and β1, . . . , βg under a symplectic
transformation

ˆ

α1

β1

˙

“

ˆ

a b
c d

˙ˆ

α
β

˙

,

ˆ

a b
c d

˙

P Spp2g,Zq.

The period matrix transforms as (see 4.76)

B1 “
ż

β1
ω1 “ pcIg ` dBqpaIg ` bBq´1.

Denote by R the matrix

R “ aIg ` bB (5.17)

The transformed values of the argument of the theta-function and of the characteristics
are determined by

z “ z1R
ˆ

p1

q1

˙

“

ˆ

d ´c
´b a

˙ˆ

p
q

˙

`
1
2

diag
ˆ

cdt

abt

˙

.
(5.18)
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Here the symbol diag means the vectors of diagonal elements of the matrices abt and cdt.
We have the equality

θrp1, q1spz1 ; B1q “ χ
?

det R exp

$

&

%

1
2

ÿ

iď j

ziz j
B log det R
BBi j

,

.

-

θrp, qspz ; Bq, (5.19)

where χ is a constant independent from z and B. See [19] for a proof.

Exercise 5.9: Prove the formula (5.19) for g “ 1. Hint. Use the Poisson summation
formula (see [20],[19]: if

f̂ pξq “
1

2π

8
ż

´8

f pxqe´iξxdx

is the Fourier transform of a sufficiently nice function f pxq, then

8
ÿ

n“´8
f p2πnq “

8
ÿ

n“´8
f̂ pnq

Theta function are connected by a complicated system of algebraic relations, which
are called addition theorems. These are basically relations between formal Fourier series
(see [19]). We present one of these relations. Let

θ̂rnspz; Bq “ θr
n
2
, 0sp2z ; 2Bq,

according to (5.16) this is a basis of second order theta functions.

Lemma 5.10. The following identity holds:

θpz` wqθpz´ wq “
ÿ

nPpZ2q
g

θ̂rnspzqθ̂rnspwq. (5.20)

The expression n P pZ2q
g means that the summation is over the g-dimensional vectors

n whose coordinates all take values in 0 or 1.

Proof. Let us first analyze the case g “ 1. The formula (5.20) can be written as

θpz` wqθpz´ wq “ θ̂pzqθ̂pwq ` θ̂r1spzqθ̂r1spwq (5.21)

where

θpzq “
ÿ

k

exppπibk2 ` 2πikzq, θ̂pzq “
ÿ

k

expp2πibk2 ` 4πikzq,
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θ̂r1spzq “
ÿ

k

expp
„

2πibp
1
2
` kq2 ` 4πipk` 1{2qz



, =pbq ą 0.

The left-hand side of (5.21) has then the form

ÿ

k,l

exp
“

πibpk2 ` l2q ` 2πikpz` wq ` 2πilpz´ wq
‰

. (5.22)

We introduce new summation indices m and n by setting m “ pk` lq{2 and n “ pk´ lq{2.
The numbers m and n simultaneously are integers or half integers. In these variables the
sum (5.22) takes the form

ÿ

expr2πibm2 ` 4πimz` 2πibn2 ` 4πinws. (5.23)

We break up this sum into two parts. The first part will contain the terms with integers
m and n, while in the second part m and n are both half-integers. In the second part we
change the notation from m to m` 1

2 and from n to n` 1
2 . Then m and n are integers, and

the expression (5.19) can be written in the form

ÿ

m,nPZ

expr2πibm2 ` 4πimzs expr2πibn2 ` 4πinws`

ÿ

m,nPZ

expr2πibpm`
1
2
q2 ` 4πipm`

1
2
qzs expr2πibpn`

1
2
q2 ` 4πipn`

1
2
qws “

θ̂pzqθ̂pwq ` θ̂r1spzqθ̂r1spwq.

The lemma is proved for g “ 1. In the general case g ą 1 it is necessary to repeat the
arguments given for each coordinate separately. The lemma is proved. �

Exercise 5.11: Suppose that the Riemann matrix B has a block-diagonal form B “
ˆ

B1 0
0 B2

˙

, where B1 and B2 are k ˆ k and l ˆ l Riemann matrices, respectively with

k ` l “ g. Prove that the corresponding theta function factors into the product of two
theta function

θpz ; Bq “ θpz1 ; B1qθpz2 ; B2q,
z “ pz1, . . . , zgq, z1 “ pz1, . . . , zkq, z2 “ pzk`1, . . . , zgq.

(5.24)

Notte that the period matrix of a Riemann surface never has a block diagonal structure.
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5.2.1 The Riemann theorem on zeros of theta functions and its applications

To solve the Jacobi inversion problem we use the Riemann θ-function θpzq “ θpz ; Bq on
the Riemann surface Γ. As usual we assume that α1, . . . αg and β1, . . . , βg is a canonical
homology basis. The basis of holomorphic differentials ω1, . . . , ωg is normalized

ż

α j

ωk “ δ jk,

ż

β j

ωk “ B jk.

Even though θpz |Bq is not single-valued on JpΓq, the set of zeros is well defined because
of (5.7). The set of zeros of θpz |Bq is an analytic set of codimension one in JpΓq. Let
e “ pe1, . . . , egq P Cg be a given vector. We consider the function F : Γ Ñ C defined as

FpPq “ θpApPq ´ eq, (5.25)

where the Abel map A

ApPq “
ˆ
ż P

P0

ω1, . . . ,

ż P

P0

ωg

˙

,

is a holomorphic map of maximal rank of Γ into JpΓq. Because of the periodicity properties
of the theta-function (5.7), the function FpPq transforms in the following way:

‚ FpP` α jq “ FpPq (5.26)

‚ FpP` β jq “ FpPq exp
„

´πiB j j ´ 2πi
ż P

P0

ω j ` 2πie j



. (5.27)

The study of the zeros of FpPq is thus the study of the intersection of ApΓq Ă JpΓq with
the set of zeros of θpz ; Bq which form a well defined compact analytic sub-variety of the
torus JpΓq. Since Γ is compact, there are only two possibilities. Either FpPq is identically
zero on Γ or else FpPq has only a finite number of zeros. The function FpPq is single-valued
and analytic on the cut surface Γ̃ (the Poincaré polygon). Assume that it is not identically
zero. This will be the case if, for example θpeq , 0.

Lemma 5.12. If FpPq . 0, then the function FpPq has g zeros on Γ̃ (counting multiplicity).

Proof. To compute the number of zeros it is necessary to compute the logarithmic residue

1
2πi

¿

BΓ̃

d log FpPq (5.28)

(assume that the zeros of FpPq do not lie on the boundary of BΓ̃). We sketch a fragment
of BΓ̃ (cf. the proof of lemma 4.15). The following notation is introduced for brevity and
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−1

α

α

−1

F(P)
−

F(P)  
+

k

βk

k

β
k

Figure 5.1: A fragment of Γ̃.

used below: F` denotes the value taken by F at a point on BΓ̃ lying on the segment αk or
βk and F´ the value of F at the corresponding point α´1

k or β´1
k (see the figure 5.1).

The notation u` and u´ has an analogous meaning. In this notation the integral (5.28)
can be written in the form

1
2πi

¿

BΓ̃

d log FpPq “
1

2πi

g
ÿ

k“1

˜

ż

αk

`

ż

βk

¸

rd log F` ´ d log F´s. (5.29)

Note that if P is a point on αk then

u´j pPq “ u`j pPq `
ż

βk

ω j “ u`j pPq ` B jk, j “ 1, . . . , g, (5.30)

(cf. (4.10)), while if P lies on βk, then

u`j pPq “ u´j pPq `
ż

αk

ω j “ u´j pPq ` δ jk, j “ 1, . . . , g, (5.31)

(cfr. (4.11)). We get from the law of transformation (5.7) of the theta function or from
(5.27), that for P on the cycle αk one has

log F´pPq “ ´πiBkk ´ 2πiu`k pPq ` 2πiek ` log F`pPq; (5.32)

while on the cycle βk from (5.26) one has

log F` “ log F´. (5.33)
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From this on αk

d log F´pPq “ d log F`pPq ´ f rm´eπiomegakpPq, (5.34)

and on βk

d log F´pPq “ d log F`pPq. (5.35)

Accordingly, from (5.34) and (5.34) the sum (5.29) can be written in the form

1
2πi

¿

BΓ̃

d log F “
ÿ

k

¿

αk

ωk “ g,

where we have used the normalization condition
ű

αk
ωk “ 2πi. The lemma is proved �

Note that although the function FpPq is not a single-valued function on Γ, its zeros
P1, . . . ,Pg do not depend on the location of the cuts along the canonical basis of cycles.
Indeed, if this basis cycles is deformed then the path of integration from P0 to P can change
in the formulas for the Abel map. A vector of the form p

ű

γω1, . . . ,
ű

γωgq is added to the
argument of the theta-function θpzq in (5.25). This is a vector of period lattice tN `MBu.
As a result of this the function FpPq can only be multiplied by a non zero factor in view of
(5.7).

Now we will show now that the g zeros of FpPq give a solution of the Jacobi inversion
problem for a suitable choice of the vector e.

Theorem 5.13. Let e P Cg, suppose that FpPq “ θpAppq ´ eq ı 0 and P1, . . . ,Pg are its zeros on
Γ. Then on the Jacobi variety JpΓq

AgpP1, . . . ,Pgq “ e`K , (5.36)

whereK “ pK1, . . . ,Kgq is the vector of Riemann constants,

K j “ ´
1` B j j

2
`
ÿ

l, j

¨

˝

¿

αl

ωlpPq
ż P

P0

ω j

˛

‚, j “ 1, . . . , g. (5.37)

Proof. Consider the integral

ζ j “
1

2πi

¿

BΓ̃

u jpPqd log FpPq. (5.38)

This integral is equal to the sum of the residues of the integrands i.e.,

ζ j “ u jpP1q ` ¨ ¨ ¨ ` u jpPgq, (5.39)
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where P1, . . . ,Pg are the zeros of FpPq of interest to us. On the other hand, this integral
can be represented by analogy with the proof of Lemma 5.12 in the form

ζ j “
1

2πi

g
ÿ

k“1

˜

ż

αk

`

ż

βk

¸

´

u`j d log F` ´ u´j d log F´q
¯

“
1

2πi

g
ÿ

k“1

ż

αk

ru`j d log F` ´ pu`j ` B jkqpd log F` ´ 2πiωkqs

`
1

2πi

g
ÿ

k“1

ż

βk

u`j d log F` ´ pu`j ´ δ jkqd log F`s

“
1

2πi

g
ÿ

k“1

„
ż

αk

2πiu`j ωk ´ B jk

ż

ak

d log F` ` 2πiB jk



`
1

2πi

ż

b j

d log F`,

in the course of computation we used formula (5.30)-(5.35). The function F takes the same
values at the endpoints of αk, therefore

ż

αk

d log F` “ 2πink,

where nk is an integer. Further let Q j and Q̃ j be the initial and terminal point of β j. Then

ż

β j

d log F` “ log F`pQ̃ jq ´ log F`pQ jq “

“ logθpApQ jq ` f j ´ eq ´ logθpApQ jq ´ eq “ ´πiB j j ` 2πie j ´ 2πiu jpQ jq,

where f j “ pB1 j, . . . ,Bgjq is a vector of the period lattice. The expression for ζ j can now be
written in the form

ζ j “ u jpP1q ` ¨ ¨ ¨ ` u jpP jq “

“ e j ´
1
2

B j j ´ u jpQ jq `
ÿ

k

ż

a k
u jωk `

ÿ

k

B jkp´nk ` 1q. (5.40)

The last two terms can be thrown out, they correspond to the j-coordinate of some vector
of the period lattice. Thus the relation (5.40) coincides with the desired relation (5.36) if it
is proved that the constant in this equality reduces to (5.37), i.e.

´
1
2

B j j ´ u jpQ jq `
ÿ

k

ż

αk

u jωk “ K j, j “ 1, . . . , g.



5.2. THETA-FUNCTIONS 121
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Figure 5.2: Homology basis.

To get rid of the term u jpQ jqwe transform the integral
¿

α j

u jω j “
1
2
ru2

j pQ jq ´ u2
j pR jqs,

where R j is the beginning of α j and Q j is its end (which is also the beginning of b j). Further
u jpQ jq “ u jpR jq ` 1. We obtain

¿

α j

u jω j “
1
2
r2u jpQ jq ´ 1s,

hence

´u jpQ jq `

g
ÿ

k“1

ż

αk

u jωk “ ´
1
2
`

g
ÿ

k, j,k“1

ż

αk

u jωk.

The theorem is proved. �

Remark 5.14. We observe that the vector of Riemann constant depends on the choice of
the base point P0 of the Abel map. Indeed let KP0 be the vector of Riemann constants
with base point P0. ThenKQ0 is related toKP0 by

KQ0 “ KP0 ` pg´ 1q
ż P0

Q0

ω. (5.41)

Example 5.15. The vector of Riemann constants can be easily calculated for hyperelliptic
Riemann surfaces. In particular let us consider the curve w2 “

ś5
i“1pz´ziq of genus g “ 2,

and choose a basis of cycles as indicated in the figure 5.2. A normal basis of holomorphic
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differentials has the form

ω j “

ś2
k“1 c jkzk´ldz

w
, j “ 1, 2, (5.42)

where the constants c jk are uniquely determined by
ż

αk

ω j “ δ jk .

We chose as base point of the Abel map the point P0 “ p8,8q. We need to compute
¨

˝

¿

α2

ω2pPq
ż P

P0

ω1

˛

‚,

¨

˝

¿

α1

ω1pPq
ż P

P0

ω2

˛

‚.

Using the fact that
¿

α2

ω2pPq
ż P

P0

ω1 “

¿

α2

ω2pPq
ż z4

P0

ω1 `

ż z4

z3

ω2pz,wq
ż pz,wq

z4

ω1 ´

ż z4

z3

ω2pz,´wq
ż pz,´wq

z4

ω1

“

¿

α2

ω2pPq
ż z4

P0

ω1 “

ż z4

P0

ω1 “ p´
1
2
´

B12

2
q

one obtains

K1 “ ´
1` B11

2
´

1
2
´

B12

2
“ ´1´

B11 ` B12

2

In the same way calculating
¿

α1

ω1pPq
ż P

P0

ω2 “

¿

α1

ω1pPq
ż z2

P0

ω2 `

ż z2

z1

ω1pz,wq
ż pz,wq

z2

ω2 ´

ż z2

z1

ω1pz,´wq
ż pz,´wq

z2

ω2

“

¿

α1

ω1pPq
ż z2

P0

ω2 “ ´B21{2

one obtains that

K2 “ ´
1` B22 ` B21

2

Observe that the vectorK can be written in the form

K “

ˆ

0,
1
2

˙

`

ˆ

1
2
,

1
2

˙

B
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Namely, given the odd characteristic

p “
ˆ

1
2
,

1
2

˙

, q “
ˆ

0,
1
2

˙

,

one has thatK “ q` pB. From this expression it follows that

θpKq “ 0.

It is a general result not restricted to this particular example that θpzq|z“K “ 0.

Corollary 5.16. Let D a positive divisor of degree g. If the function

θpApPq ´ ApDq `Kq

does not vanish identically on Γ then its divisor of zeros coincides with D.

Accordingly, if the function θpApPq ´ eq is not identically equal to zero on Γ, then its
zeros give a solution of the Jacobi inversion problem (5.5) for the vector η “ e`K .We have
shown that the map (5.4) Ag : SgΓ Ñ JpΓq is a local homeomorphism in a neighborhood
of a non special positive divisor D of degree g. Since θpzq ı 0 for z P JpΓq, then θpAgpDqq
does not vanish identically on open subsets of SgΓ. In the next subsection, we characterize
the zero set of the θ-function. The zeros of the theta-function form an analytic subvariety
of JpΓq. The collection of these zeros forms the theta divisor in JpΓq.

5.3 The Theta Divisor

In this section we study the set of zeros of the theta functions and in particular the
Riemann vanishing theorem which prescribes in a rather detail manner the set of zeros
of the theta-function on Cg.

Theorem 5.17. Let e P Cg, then θpeq “ 0 if and only if e “ ApDg´1q ´ K where Dg´1 is a
positive divisor of degree g´ 1 andK is the vector of Riemann constants (5.37).

Remark 5.18. For D P Spg´1qΓ the expression ApDq ´K does not depend on the base point
of the Abel map. The theorem 5.17 says that the theta-function vanishes on a g ´ 1-
dimensional variety parametrized by g ´ 1 points of Γ. Defining ApSg´1Γq “ Wg´1 the
theta function vanishes on Wg´1 ´K .

Proof. We first prove sufficiency. Let P1 ` ¨ ¨ ¨ ` Pg be a non special divisor and v “
ApP1 ` ¨ ¨ ¨ ` Pgq ´K . Let us consider FpPq “ θpApPq ´ vq. Either F is identically zero or
not. In the former case for each k “ 1, . . . g

FpPkq “ θpApP1 ` ¨ ¨ ¨ ` P̂k ` ¨ ¨ ¨ ` Pgq ´Kq “ 0,
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where we use the symbol P̂k to mean that Pk does not appear in the divisor. So for
e “ ApP1 ` ¨ ¨ ¨ ` P̂k ` ¨ ¨ ¨ ` Pgq ´K we have θpeq “ 0.

In the latter case FpPq . 0, we have that F has precisely g zeros on Γ due to lemma 5.12.
Let Q1, . . .Qg be the zeros of F, then according to theorem 5.13 one has

ApQ1 ` ¨ ¨ ¨ `Qgq “ v`K “ ApP1 ` ¨ ¨ ¨ ` Pgq.

Since P1`¨ ¨ ¨`Pg is not special, it follows from the Riemann-Roch and the Abel theorems
that Q1` ¨ ¨ ¨ `Qg “ P1` ¨ ¨ ¨ `Pg. Therefore also in this case FpPkq “ θpApP1` ¨ ¨ ¨ ` P̂k`

¨ ¨ ¨`Pgq´Kq “ 0 for k “ 1, . . . , g. Since the set of non-special divisor of degree g is dense
in SpgqΓ, the divisors of the form P1 ` ¨ ¨ ¨ ` P̂k ` ¨ ¨ ¨ ` Pg form a dense subset of Spg´1qΓ.
Since the function θpzq is continuous, it follows that θpzq is identically zero on Wg´1´K ,
where in general Wn Ă JpΓq, is the Abel image of SpnqΓ for n ě 1.

Conversely, let θpeq “ 0. Then by Jacobi inversion theorem, since θ is not identically
zero on JpΓq. Then there exists an integer s, 1 ď s ď g, so that

θpApD̃1 ´ D̃2q ´ eq “ 0, @D̃1, D̃2 P Sps´1qΓ

but

θpApD1 ´D2q ´ eq , 0, D1,D2 P SpsqΓ.

Let D1 “ P1 ` ¨ ¨ ¨ ` Ps and D2 “ Q1 ` ¨ ¨ ¨ ` Qs where we assume that the points of the
divisors are mutually distinct. Now let us consider the function

FpPq “ θpApPq ` ApP2 ` ¨ ¨ ¨ ` Psq ´ ApQ1 ` ¨ ¨ ¨ `Qsq ´ eq

Since FpP1q , 0, this function is not identically zero on Γ. Therefore, by theorem 5.13 it
has g zeros on Γ. These zeros are by construction Q1, . . . ,Qs plus some other g´ s points
Ts`1, . . . ,Tg. By theorem 5.13 one has

ApQ1 ` ¨ ¨ ¨ `Qs ` Ts`1,` ¨ ¨ ¨ ` Tgq ´K “ ApQ1 ` ¨ ¨ ¨ `Qsq ´ ApP2 ` ¨ ¨ ¨ ` Psq ` e

or equivalently

e “ ApP2 ` ¨ ¨ ¨ ` Ps ` Ts`1,` ¨ ¨ ¨ ` Tgq ´K

which is a point in Wg´1 ´K . �

Regarding the zeros of the theta-function it is possible to prove a little bit more then
stated in the previous theorems. Let D P Spg´1qΓ and let e “ ApDq ´K . Then

multz“eθpzq “ lpDq.

where lpDq is the dimension of the space LpDq. The proof of this identity can be found in
[20].
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Remark 5.19. The vector of Riemann constants has a characterisation in terms of divisors.
Indeed there is a non positive divisor ∆ of degree g´ 1 such that its Abel image coincides
with K , namely Ap∆q “ K . Furthermore let D be a positive divisor of degree g´ 1, then
the vector

e “ ApDq ´K

is a zero of the theta-function, namely θpeq “ 0. By the parity of the theta-function one
has θp´eq “ 0. It follows by theorem 5.17 that

´e “ ApD1q ´K

where D1 is a positive divisor of degree g ´ 1. Then summing up the two relations we
obtain

2K “ ApD`D1q

where D`D1 is a positive divisor of degree 2g´2. It can be proved that the divisor D`D
is the divisor of a holomorphic differential, namely the vector 2K is the Abel image of the
divisor of a differential. More precisely a divisor D is canonical if and only if ApDq “ 2K
(see [19] for a proof of these results).

Using the characterization of the theta-divisor one can complete the description of the
function FpPq.

Lemma 5.20. Let FpPq “ θpApPq ´ eq where e “ ApDq ´ K , D P SpgqΓ and K the vector of
Riemann constants defined in (5.37). Then

1. FpPq ” 0 iff the divisor D is special;

2. FpPq ı 0 iff dimΩpDq “ 0, i.e. the divisort D is not special. In this last case D is the divisor
of zeros of FpPq.

Proof. Let’s prove part 1. of the lemma. Let FpPq ” 0, then by theorem 5.17 there is a
positive divisor D̃ of degree g´ 1 so that

ApDq ´K ´ ApPq “ ApD̃q ´K .

By Abel theorem, the identity holds if and only if D and D̃`P are linearly equivalent, that
is there is a meromorphic function in LpDqwith a zero in an arbitrary point P P Γ. This is
possible only if lpDq ą 1 or equivalently dimΩpDq ą 0, namely D is special. Conversely,
if D P SgΓ is special then lpDq ą 1 and therefore there is a function f P LpDq with an
arbitrary zero in a point P P Γ so that p f q “ P ` D̃ ´ D. where D̃ P Spg´1qΓ. It follows
by Abel theorem that ApPq ´ ApDq ` K “ ´ApD̃q ` K , then by theorem 5.17, one has
θpApD̃q ´Kq “ 0.

Now let us prove part 2. of the lemma. Suppose now that D is not special, then
FpPq ı 0 and by theorem 5.13, the divisors of zeros of FpPq coincides with D. �
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Corollary 5.21. Let e “ ApDq ´K with D P Sg´1Γ. Them the function FpPq “ θpApPq ´ eq
vanishes identically if and only if dimΩpD` P0q ě 1 (Check!!) where P0 is the base point of the
Abel map.

Proof. Let P0 be the base point of the Abel map, then ApP´P0q “ ApPq. Suppose FpPq ” 0,
then by theorem 5.17 there exists a positive divisor D̃ of degree g´ 1 such that

ApP´ P0q ´ ApDq `K “ ´ApD̃q `K

which implies that ApD ` P0q “ ApD̃ ` Pq. By Abel theorem, there is a nontrivial
meromorphic function h with divisor

phq “ D̃` P´D´ P0

for all P P Γ. This implies that lpD ` P0q ě 2 or equivalently, D ` P0 is a special divisor.
Viceversa suppose that dimΩpD`P0q ě 1, then lpD`P0q ą 1 so that LpD`P0q is generated
by t1, huwhere h is a meromorphic function. So there is a nontrivial meromorphic function
with poles in D`P0 and having zero in an arbitrary point P ( take for example the function
h´ hpPq) and some other g´ 1 points given by the divisor D̃. It follows that

ApD` P0q “ ApD̃` Pq

or equivalently

ApP´ P0q ´ ApDq `K “ ´ApD̃q ´K

which implies by theorem 5.17 that 0 “ θp´ApD̃q ´ Kq “ θpApP ´ P0q ´ ApDq ´ Kq “
θpApPq ´ ApDq ´Kqwhere we recall that P0 is the base point of the Abel map. �

The zeros of the theta function (the points of the theta divisor) form a variety of
dimension 2g ´ 2 (for g ě 3). If we delete from JpΓq, the theta divisor, then we get a
connected 2g-dimensional domain. We get that the Jacobi inversion problem is solvable
for all points of the Jacobian JpΓq and uniquely solvable for almost all points. Thus
the collection pP1, . . . ,Pgq “ pApgqq´1pηq of points of the Riemann surface Γ (without
consideration of order) is a single valued function of a point η “ pη1, . . . ηgq P JpΓq (which
has singularities at points of the theta divisor.) To find an analytic expression for this
function we take an arbitrary meromorphic function f pPq on Γ. Then the specification of
the quantities η1, . . . , ηg uniquely determines the collection of values

f pP1q, . . . , f pPgq, ApgqpP1, . . . ,Pgq “ η. (5.3.43)

Therefore, any symmetric function of f pP1q, . . . , f pPgq is a single-valued meromorphic
function of the g variables η “ pη1, . . . , ηgq, that is 2g-fold periodic with period lattice
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t2πiM` BNu. All these functions can be expressed in terms of a Riemann theta function.
The following elementary symmetric functions has an especially simple expression:

σ f pηq “
g
ÿ

j“1

f pP jq. (5.3.44)

From Theorem 5.36 and the residue formula we get for this function the representation

σ f pηq “
1

2πi

¿

BΓ̃

f pPqd logθpApPq ´ η`Kq

´
ÿ

f pQkq“8

Res
P“Qk

f pPqd logθpApPq ´ η`Kq,
(5.3.45)

the second term in the right hand side is the sum of the residue of the integrand over all
poles if f pPq. As in the proof of Lemma 5.12 and Lemma 5.13, it is possible to transform
the first term in (5.3.45) by using the formulas (5.34) and (5.35). The equality (5.3.45) can
be written in the form

σ f pηq “
1

2πi

ÿ

k

ż

ak

f pPqωk ´
ÿ

f pakq“8

Res
P“Qk

f pPqd logθpApPq ´ η`Kq. (5.3.46)

Here the first term is a constant independent of η. We analyze the computation of the
second term (the sum of residue) using an example.

Example 5.22. Γ is an hyperelliptic Riemann surface of genus g given by the equation
w2 “ P2g`1pzq, and the function f has the form f pz,wq “ z, the projection on the z-plane.
This function on Γ has a unique two-fold pole at8. We get an analytic expression for the
function σ f constructed according to the formula (5.3.44). In other words if P1 “ pz1,w1q,
. . . ,Pg “ pzg,wgq is a solution of the inversion problem ApP1q ` ¨ ¨ ¨ ` ApPgq “ η, then

σ f pηq “ z1 ` ¨ ¨ ¨ ` zg. (5.3.47)

We take 8 as the base point P0 (the lower limit in the Abel mapping). According to
(5.3.46) the function σ f pηq has the form

σ f pηq “ c´ Res
8
rzd logθpApPq ´ η`Kqs .

Let us compute the residue. Take τ “ z´
1
2 as a local parameter in a neighborhood

of 8. Suppose that the holomorphic differentials ωi have the form ωi “ ψipτqdτ in a
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neighborhood of8. Then

d logθpApPq ´ η`Kq “
g
ÿ

i“1

rlogθpApPq ´ η`KsiωipPq “

“

g
ÿ

i“1

rlogθpApPq ´ η`Kqsiψipτqdτ

where r. . . si denotes the partial derivative with respect to the ith variable. By the choice
of the base point point P0 “ 8, the decomposition of the vector-valued function ApPq in
a neighborhood of8 has the form

ApPq “ τU `Opτ2q,

where the vector U “ pU1, . . . ,Ugq has the form

U j “ ψ jp0q, j “ 1, . . . , g.

From these formulas we finally get

σ f pηq “ ´plogθpη´Kqqi, jUiU j ` c “ ´B2
x logθpxU ` η´Kq|x“0 ` c, (5.3.48)

where plogθpη´Kqqi, j denotes derivative with respect to the i´ th and j´ th argument
of the theta-function and c is a constant.

We shall show in the next Section that the function

upx, tq “
B2

Bx2 logθpUx`Wt´ η`Kq ` c

where Wk “
1
3
ψ2p0q solves the Korteweg de Vries equation

ut “
1
4
p6uux ` uxxxq.

Exercise 5.23: Suppose that a hyperelliptic Riemann surface of genus g is given by the
equation w2 “ P2g`2pzq. Denotes its points at infinity by P´ and P`. Chose P´ as the base
point P0 of the Abel mapping. Take f pz,wq “ z as the function f . Prove that the function
σ f pηq has the form

σ f pηq “

ˆ

log
θpη´K ´ ApP`qq

θpη´Kq

˙

j
U j ` c (5.3.49)



5.3. THE THETA DIVISOR 129

where the vector U “ pU1, . . . ,Ugq has the form

U j “ ψ jp0q, j “ 1, . . . , g, (5.3.50)

where the basis of holomorphic differentials have the form

ω jpPq “ ψ jpτqdτ, τ “ z´1, P Ñ8.

Exercise 5.24: Let Γ be a Riemann surface w2 “ P5pzq of genus 2. Consider the two
systems of differential equations:

dz1

dx
“

a

P5pz1q

z1 ´ z2
,

dz2

dx
“

a

P5pz2q

z2 ´ z1
(5.3.51)

dz1

dt
“

z2
a

P5pz1q

z1 ´ z2
,

dz2

dt
“

z1
a

P5pz2q

z2 ´ z1
. (5.3.52)

Each of these systems determined a law of motion of the pair of points

P1 “ pz1,
b

P5pz1qq, P2 “ pz2,
b

P5pz2qq

on the Riemann surface Γ. Prove that under the Abel mapping (5.1) these systems pass
into the systems with constant coefficients

dη1

dx
“ 0,

dη2

dt
“ 1

dη1

dt
“ ´1,

dη2

dt
“ 0.

In other words, the Abel mapping (5.1) is simply a substitution integrating the equations
(5.3.51) and (5.3.52).
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