Chapter 1

Riemann surfaces

1.1 Definition of a Riemann surface and basic examples

In its broadest sense a Riemann surface is a one dimensional complex manifold that
locally looks like an open set of the complex plane, while its global topology can be quite
different from the complex plane. The main reason why Riemann surfaces are interesting
is that one can speak of complex functions on a Riemann surface as much as the complex
function on the complex plane that one encounters in complex analysis.

Elementary example of Riemann surfaces are the complex plane C, the disk

D={z€eC, |z] <1}
or the upper half space
H={zeC, J(z) > 0}.

B. Riemann introduced the concept of Riemann surface to make sense of multivalued
functions like the square root or the logarithm. For the geometric representation of multi-
valued functions of a complex variable w = w(z) it is not convenient to regard z as a
point of the complex plane. For example, take w = +/z. On the positive real semiaxis
z € R, z > 0 the two branches w; = ++/z and wy, = —+/z of this function are well
defined by the condition w; > 0. This is no longer possible on the complex plane. Indeed,
the two values wy , of the square root of z = re'V

P L4271

Wy = Ve, wy = —reT = i T, (1.1)

interchange when passing along a path

z(t) = ret W+, te0,2n]
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encircling the point z = 0. It is possible to select a branch of the square root as a function
of z by restricting the domain of this function for example, by making a cut from zero to
infinity. Namely the function /z is single-valued in the cut plane C\[0, +0). Riemann’s
idea was to combine the two branches of the function /z in a geometric space in such a
way that the function is well defined and single-valued. The rules are as follows: one has
to take two copies of the complex plane cut along the positive real axis and join the two
copies of the complex plane along the cuts. The different sheets have to be glue together
in such a way that the branch of the function on one sheet joins continuously with the
branch defined on the other sheet. The result of this operation is the surface in figure 1.1.

Figure 1.1: The two branches of the function /z

Note that such surface can be given for (w, z) € C? as the zero locus

F(z,w) = w* —z = 0.
A similar procedure of cutting and glueing can be repeated for any other analytic function.
For example the logarithm logz is a single valued function on C\[0, +-00) with infinite
branches. Each adjacent branch differs by an additive factor 27i. The infinite branches
attached along the positive real line are shown in the figure 1.2.

Next we will give a more abstract definition of a Riemann surface and we will show
how the surface defined by the graph of a multivalued function fits in this definition. Let
us recall that a Hausdorff topological space is such that distinct points have distinct open
neighbourhoods.

Definition 1.1. A Riemann surface I is defined by the following data:

o a connected Hausdorff topological space T’;
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Figure 1.2: The infinite branches of the function log z

o an open cover {Uy}aea of T;
e for each a € A, a homeomorphism ¢,
Oo 1 Uy — Vy

to an open subset Vo < C in such a way that for each o, € A, if Uy n Up # &, the
transition functions

$po (/5071 t a(Ua N uﬁ) - ﬁbﬁ(ua N uﬁ)r

is bi-holomorphic, namely, holomorphic with inverse holomorphic.

Remark 1.2. Let us observe that the sets ¢, (Uy N Up) and ¢p(U, N Up), are subsets of the
complex plane, and therefore the request of having holomorphic maps between these two
subsets makes sense.

The pair {U,, ¢o} is called complex chart. Complex charts are also called local pa-
rameters or local coordinates. Two charts (Ua, ¢o) and (Ug, ) are compatible if either
U, n Up = I or the transition function ¢g o ¢ " is bi-holomorphic. If all the complex
charts {Uy, P }aca are compatible, they form a complex atlas A of I. Two complex atlas
A and A are compatible if their union A U A is a complex atlas. The equivalence class of
complex atlas is called a complex structure or also a conformal structure. With the definition
of complex structure we can define a Riemann surface in the equivalent way:.

Definition 1.3. A Riemann surface is a connected one-complex dimensional analytic manifold,
or a two real dimensional connected manifold with a complex structure on it.
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Let ¢ and ¢ be two local homeomorphism from two open sets U and U of T’ with
UnU# & Let Pand Py two points in U n U and denote by z = ¢(P) and w = ¢ (P) the

two local coordinates with zg = ¢(Pp) and wy = ¢(Pp). Then the holomorphic transition
function T = ¢ o ¢! must be of the form

z=T(w) = T(wp) + Z ar(w —wo)k, a1 #0 (1.2)
k>0

with holomorphic inverse

w=T"(z) =T '(z0) + ). iz — 20)", b1 #0,
k>0

namely the linear coefficient of the above Taylor expansions near the point wy or zp is
necessarily nonzero.

Remark 1.4. We recall that that a manifold is called orientable if it has an atlas whose
transition functions have positive Jacobian determinant. If I' is a Riemann surface, then
the manifold I is orientable. Indeed let z = x + iy be a local coordinate in some open
neighbourhood of zp in I'. Another local coordinate w = u + iv is connected with the first
by a holomorphic change of variable w = T(z) with wy = T(zp) which thus determines a
smooth change of real coordinates. We want to show that the determinant

ou
det giﬁ gg = UyVy — UyUy
ox dy
calculated in (xo, yo) is positive. We observe that w = w(z) is a holomorphic function of z
and d_zZU‘Z:ZO # 0. We can use Cauchy Riemann equations u, = v, and u, = —v, to write
dw . dw .
el Uy — iuy and e uy + iuy to conclude that
u o 2
ox dy 2 o dw
d t - x=xg — |~ O
el o o (y + ”y)ly:yoo .. >
ox o/l

Example 1.5. Elementary examples of Riemann surfaces

(@) The complex plane C. The complex atlas is define by one chart that is C itself with
the identity map.
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(b) The extended complex plane C = C U o0, namely the complex plane C with one
extra point o0. We make C into a Riemann surface with an atlas with two charts:

u, =C
U, = C\{0},

with ¢ the identity map and

1/z, forze C\{0}
P2(z) = { 0, forz= oo.

1.1.1 Affine plane curves

Let us consider a polynomial F(z,w) = Y./ a;(z)w' of two complex variables z and w.
The zero set F(z,w) defines a n-valued function w = w(z). The basic idea of Riemann
surface theory is to replace the domain of the function w(z) by its graph

I:={(z,w)eC?®|F(z,w) = anai(z)w”_i =0} (1.3)
i=0

and to study the function w as a single-valued function on I' rather then a multivalued
function of z. As in the example of /z, the multivalued function w = w(z) = /z becomes
a single-valued function w = w(P) of a point P of the algebraic surfaceI': if P = (z,w) €T,
then w(P) = w (the projection of the graph on the the w-axis). From the real point of
view the algebraic curve (1.3) is a two-dimensional surface in C> = R* given by the two
equations

RF(z,w) =0

JF(z,w) =0 }

In the theory of functions of a complex variable one encounters also more complicated
(nonalgebraic) curves, where F(z,w) is not a polynomial. For example, the equation
e” —z = 0 determines the surface of the logarithm or sinw — z = 0 determines the surface
of the arcsin. Such surfaces will not be considered here.

Definition 1.6. An affine plane curve T is a subset in C? defined by the equation (1.3 ) where
F(z,w) is polynomial in z and w. The curve I is nonsingular if for any point Py = (zo,wo) € T
the complex gradient vector

0F(z,w) 0F(z,w)
gdeF]pO=< = 7w

does not vanish. If the polynomial F(z,w) is irreducible, the curve I is called irreducible affine
plane curve.

(z=20,0=1wy)
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Remark 1.7. A non trivial theorem states that an irreducible affine plane curve is connected
(see Theorem 8.9 in O. Forster, Lectures on Riemann surfaces, Springer Verlag 1981).

In order to define a complex structure on I we need the following complex version of
the implicit function theorem.

Lemma 1.8. [Complex implicit function theorem] Let F(z,w) be an analytic function of the
variables z and w in a neighborhood of the point Py = (zo,wo) such that F(zo,wp) = 0 and
OwF(z0,wo) # 0. Then there exists a unique function ¢(z) such that F(z,$(z)) = 0 and
¢(z0) = wo. This function is analytic in z in some neighborhood of zy.

Proof. Letz = x + iy and w = u + iv, F = f + ig. Then the equation F(z,w) = 0 can be
written as the system

f(x/y/u/v) = 0
{8(x,y,u,v) =0 (1.4)

The condition of the real implicit function theorem are satisfied for this system: the matrix

of of
ou 0v
g 0g

ou 0v (zo0,0)

is nonsingular because

of of

ou ov 2
det = 6_13 >0,

ag ag aw

ou ov

(we use only the analyticity in w of the function F(z, w)). Thus, in some neighbourhood of
(zo, wo) there exista smooth function ¢(z,z) = ¢1(x, y)+ip2(x, y) such that F(z, ¢(z,z)) = 0,
with ¢(zo,Z9) = wy. Differentiating with respect to z

0= diZF(Z’¢(Z’Z)) = Fw%qb(z,z).

Since F,, # 0, the above relation implies that ;—Z¢(z,2) = 0 which shows that ¢(z) is an

analytic function of z. m]



1.1. DEFINITION OF A RIEMANN SURFACE AND BASIC EXAMPLES 7

Remark 1.9. A constructive way of obtaining the function ¢(z) is to apply the Residue
Theorem. Indeed let us consider the function F(z, w) where z is treated as a parameter.
Let Dy be a small disk around wy where F(zo, wp) = 0 and Fy (20, W)|w=w, # 0. Then the
number of solutions of the equation F(zp, w) = 0 counted with multiplicity is given by the
integral

1 F(zo, w)

— dw,
2mi Jop, F(zo, w) @

where 0Dy is the boundary of Dy. We assume D sufficiently small so that the equation
F(zo, w) = 0 has only the solution wy in the closure of Dy. Then the above integral is equal
to one. Furthermore by the residue theorem one has

1 Fu(zo, w)

— w dw = wy.
2ni Jop,  F(zo,w) 0

By continuity, for z sufficiently close to zp there is a disk D centred at w such that the
equation F(z, w) = 0 has only one solution w = ¢(z) in the closure of D and

1 Fy(z,w)
% ng P(Z,ZU) w= QD(Z),

where ¢(z9) = zo and F(z, ¢(z)) = 0. Clearly the function ¢(z) is an analytic function of z.

Theorem 1.10. Let I be an irreducible affine plane curve defined in (1.3). If I is non singular,
then T is a Riemann surface.

Proof. T is connected since F(z, w) is irreducible. Let us define a complex structure on I'.
Let Py = (zo, wo) be a nonsingular point of the surface I. Suppose, for example, that the

OF
derivative — is nonzero at this point. Then by the lemma 1.8, in a neighborhood Uj of

the point Py, the surface I' admits a parametric representation of the form
(zw(z)) eUp =T, w(z) = wo, (1.5)

where the function w(z) is holomorphic. Therefore, in this case z is a complex local
coordinate also called local parameter on I in a neighborhood Uy of Py = (zp, wop) € I'. For
this kind of local coordinate, the transition function is the identity.

OF
Similarly, if the derivative — is nonzero at the point Py = (zp,wp), then we can

0z

take w as a local parameter (an obvious variant of the lemma), and the surface I' can be
represented in a neighborhood Uy of the point Py in the parametric form

(z(w),w) eI, z(wo) = zo, (1.6)
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where the function z(w) is, of course, holomorphic. For a local parameter of this second
kind the transition function is the identity map. For a nonsingular surface it is possible to
use both ways for representing the surface on the intersection of domains of the first and

F
second types, i.e., at points of I' where — # 0 and ok # 0 simultaneously. The resulting
transition functions w = w(z) and, z = z(w) are holomorphic and invertible. ]

The preceding arguments show that such Riemann surfaces are complex manifolds
(with complex dimension 1).

Let us consider a Riemann surface I defined in C? by a monic polynomial
F(z,w) = w" + a1(2)w" ' + --- 4+ a,(z) = 0. (1.7)

Here the a1(z),...,a,(z) are polynomials in z. This Riemann surface is realized as an
n-sheeted covering of the z-plane. The precise meaning of this is as follows: let 7t : I' — C
be the projection of the Riemann surface onto the z-plane given by the formula

n(z, w) = z. (1.8)
Then for almost all z the preimage 71 ~!(z) consists of 1 distinct points

(z,w1(2)), (z,wa(2)), ,...(z,wn(z)), (1.9)

of the surface I' where w;(z), ..., wy,(z) are the n roots of (1.7) for given value of z. For
certain values of z, some of the points of the preimage can merge. This happens at the
branch points (zo, wo) of the Riemann surface where the partial derivative F,(z, w) vanishes
(recall that we consider only nonsingular curves so far).

If zg is a branch point then the polynomial F(zo, w) has multiple roots. The multiple
roots can be determined from the system

F(zp,w) =0
Fu(zo,w) =0 } ) (1.10)

The ramification points on the z-plane can be determined, therefore, as the zeros of the
resultant of F(z, w) and F,(z, w) and denoted by R(F, F,)(z). Such quantity is also called
the discriminant of F(z, w) with respect to w.

Definition 1.11. Let f(z) = ag + a1z + - -+ + a,2" and g(z) = bo + biz + - - - + b2 be two
polynomials of degree n and m respectively with a;, b; € C with a, # 0 and by, # 0. The resultant
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R(f, g) is given by the determinant of the (n + m) x (n + m) matrix

a a; ... dy 0 0 0

0 a m ... ay 0 0 0

10 o ... ... ap a a, ay
RED=1 by b . ... bya by O 0 (1.11)

0 by b ... ... by by O 0

0 ... by b ... by—1 by

Lemma 1.12. R(f,g) = 0 if and only if f and g have a common zero.

Proof. The polynomials f and g have a non constant common root 7(z) if and only if there

exists polynomials ¢(z) and ¢(z) such that f(z) = r(z)i(z) and g(z) = r(z)¢p(z). Here ¢
and ¢ are polynomials of degree n — 1 and m — 1 respectively. This implies that

f(2)(z) = g(2)Y(2) (1.12)
where

¢(z) = ap + a1z + eyt

and

W(z) = Po+ 1z + -+ Pz L.

Then (1.12) can be considered a system of equations for the coefficients ay, ..., ay,—1
and By, ..., Pn—1. The solvability of such a system is equivalent to the vanishing of the
determinant (1.11). ]

Lemma 1.13.
R(f,8) = a,'by, H — )
where i and vy are the roots of the polynomials f and g respectively.

For a proof of this lemma see [15].

The solutions of the system (1.10) are obtained by calculating the resultant of F(z, w)
and F(z, w) with respect to z, which is also called the discriminant of F with respect to w.
It can be computed as the determinant of a (2n — 1) x (2n — 1) matrix constructed from
the coefficients of the polynomials

n—1

F=u"+aw" " + - +a,_1w+ay,
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and
Fo=nw"t+ n—Daw" 2+ +a,_4
1 am ap a1 a, O 0
0 1 aq Ay_1 an 0
B 0 0 . ap_1 ay
R(F Fo)(z) = det n (n—1)a; (n—2)a a,—1 0 0
0 n (n—1)m 2a,_ > ay,_1 O 0
0 0 20, 7 Ay
(1.13)
From lemma 1.13, the discriminant is also equal to
n(n—1) n n—l1
R(EFo)(z) = (-1)"7 | [] [(wiz) —@(z)) (1.14)
i=1 j=1

where w;(z),i = 1,...,n, are the roots of the polynomials F(z, w) and @;(z),j = 1,...,n—1
are the roots of the polynomials F,,(z, w) where z is considered as a parameter. Note that
the total number of branch points is finite since R(F, F;,) is a polynomial of finite degree.

The choice of the variables z or w as a local parameter is not always most convenient.
We shall also encounter other ways of choosing a local parameter 7 so that the point (z, w)
of I' can be represented locally in the form

z=12z(1), w=uw(T) (1.15)

where z(7) and w(7) are holomorphic functions of 7, and

dz dw
(E,E) +0, (116)

We study the structure of the mapping 7 in (1.9) in a neighborhood of a branch point
Py = (zo,wp) of I defined in (1.3). Let 7 be a local parameter on I in a neighborhood of
Py. It will be assumed that z(t = 0) = zp, w(t = 0) = wy. Then

z =20+ ;7 + O(T"), a4 #0

117
w = wy + byt! + O(xT), by £0, (117)
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where a; and b, are nonzero coefficients. Since w can be taken as the local parameter
in a neighborhood of Py it follows that g = 1. We get the form of the surface I in a
neighborhood of a branch point:

z = 29 + qT* + O(7FY),

1.18
w = wy + by + O(7?), (1.18)

where k > 1.

Definition 1.14. The number b,(P) = k — 1 is called the multiplicity of the branch point, or the
branching index of this point with respect to the projection (z, w) — z.

Exercise 1.15: Let Py = (2o, wp) be a branch point for the curve (1.7) with respect to the
projection (z,w) — z. Suppose that the local parameter in the neighbourhood of Py is of
the form (1.18) with k > 1. Show that

dIF(z, w)

]
duw (zo,wo)

Lemma 1.16. Let (zo, wp) be a branch point of a Riemann surface I defined in (1.3) with respect

to the projection (z,w) — z. Then there exists a positive integer k > 1 and k functions w1 (z), .. .,
wy(z) analytic on a sector S, ¢ of the punctured disc

0<|z—2z0| <p, arg(z—z0) <o
for sufficiently small p and any positive ¢ < 27t such that
F(z,wj(z)) =0 for ze€S,y, j=1,...,k
The functions wy(z), ..., w(z) are continuous in the closure S, 4 and

w1(zo) = -+ = wi(zo) = wo.

Proof. By the nonsingularity assumption F;(zg, wg) # 0. So the complex curve F(z,w) = 0
can be locally parametrized in the form z = z(w) where the analytic function z(w) is
uniquely determined by the condition z(wp) = zg. Consider the first nontrivial term of
the Taylor expansion of this function

k+1

z(w) = 2o + ap(w — wo)* + apir (W —wo) 1 + ..., k>1, ap#0.

Introduce an auxiliary function

) = B = 00) [ 1+ L @ ) +.0 (@0 - wr) |

(75

= B(w — wp) {1 + %(w— wo) + O ((w — wO)Z)}
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where the complex number f is chosen in such a way that ¥ = a;. The function f(w)
is analytic for sufficiently small |w — wp|. Observe that f'(wy) = p # 0. Therefore the
analytic inverse function f~! locally exists. The needed k functions w(z), ..., w(z) can
be constructed as follows

2mi (j—1)

wj(z) = 1 (e o (z —zo)l/k> , j=1..k (1.19)

where we choose an arbitrary branch of the k-th root of (z — zp) for z € S, 4. O

Example 1.17. Elliptic and hyperelliptic Riemann surfaces have the form

I = {(z,w) e C* |[w* = Py(z)}, (1.20)

where P, (z) is a polynomial of degree n. These surfaces are two-sheeted coverings of the
z-plane. Here F(z,w) = w? — P,(z). The gradient vector gradF = (—P;,(z),2w). A point
(zo,wo) € T is singular if

wo =0, Pl(z)=0. (1.21)
Together with the condition (1.20) for a point (zg, wp) to belong to I we get that
Py(z0) =0, Pj(z0) =0, (1.22)

i.e. zg is a multiple root of the polynomial P,(z). Accordingly, the surface (1.20) is
nonsingular if and only if the polynomial P,(z) does not have multiple roots:

P,(z) = H(z —2zi), zi#zj fori#j. (1.23)
i=1

The curve I' is called an elliptic curve for n = 3,4 and it is called hyperelliptic for n > 4.
We find the branch points of the surface (1.20). To determine them we have the system

which gives us n branch points P; = (z = z;,w = 0),7 = 1,...,n. All the branch points
have multiplicity one. In a neighborhood of any point of I' that is not a branch point it is
natural to take z as a local parameter, and w = +/P,(z) is a holomorphic function. In a
neighborhood of a branch point P; it is convenient to take

T=+z—z, (1.24)
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as a local parameter. Then for points of the Riemann surface (1.20) we get the local
parametric representation

z=zi41, w=r1 H(T2 +z; — Zj) (1.25)
j#i

where the radical is a single-valued holomorphic function for sufficiently small 7;(the
expression under the root sign does not vanish), and dw/dt # 0 for 7 = 0.

Exercise 1.18: Prove that the total multiplicity of all the branch points on I" over z = z is
equal to the multiplicity of z = z¢ as a root of the discriminant.

Exercise 1.19: Consider the collection of n-sheeted Riemann surfaces of the form

F(z,w) = Z aijziwj (1.26)

i+j<n

for all possible values of the coefficients 4;; (so-called planar curves of degree n). Prove
that for a general surface of the form (1.26) there are n(n — 1) branch points and they
all have multiplicity 1. In other words, conditions for the appearance of branch points
of multiplicity greater than one are written as a collection of algebraic relations on the
coefficients a;;.

1.1.2 Smooth projective plane curves

We recall the the projective space IP" is the quotient of C" 1\ {0} by the equivalence relation
that identifies vectors v and av in C**1\{0} with & € C*. Namely IP" = C"*1\{0}/C*. The
space IP? is a singly point, P! can be thought as the complex plane C plus a single point co
and it can be identified with the Riemann sphere. P? can be thought as C? together with
a line at infinity, namely a copy of IP! and so on.

The projective line is the simplest example of a compact Riemann surface. The example
of compact Riemann surfaces that we are going to considered are embedded in IP2.

Definition 1.20. The projective plane P? is the set of one-dimensional subspaces in C> or equiv-
alently P? = C3\{0}/C*. Let (X,Y,Z) be a nonzero vector in C3. A point in P? is denoted by
[X:Y:Z]and

[X:Y:Z]=[AX:AY:AZ], A#0,AeC

As a quotient space, P? is endowed with the quotient topology. Indeed let the projec-
tion map 7 : C3\{0} — IP? be defined as

(X, Y,Z)=[X:Y:Z].
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Then we can give to IP? the quotient topology induced from C?\{0}, namely a subset U
of P? is open if and only if 7=1(U) is open in C>\{0}. As a topological space, IP? is a
Hausdorff space, namely two distinct points have disjoint open neighbourhoods.

Proposition 1.21. The space IP? is compact.
Proof. Let
S = {(X,%,2) e C| [XP + [YP + [Z = 1},

Then S° is a sphere of real dimension 5. It is a closed and bounded subset of C* and by
the Heine-Borel theorem is compact. The restriction of 7tgs : S° — IP? is continuos. The
image of a compact set under a continuous mapping is compact. Next let us show that
Ttgs is also surjective. Let [X : Y : Z] € IP?, then

IX|2+|Y* +|Z> = A, forsome A > 0.
Then we also have

[X:Y:Z]=[A2X:A"2Y: A"27].
Combining the above two relations one has that

ATIXPE + AT IYR 4 A 2Z)E =1

sothat [X : Y : Z] € 7(S®). Namely the map 7 : S°> — IP? is surjective and continuos which
implies that IP? is compact. o

Remark 1.22. The spaces IP", n > 0 are all compact. The proof of this statement is a simple
generalisation of the proof of proposition 1.21.

The space IP? can be covered with three open sets homeomorphic to C? :
Up={[X:Y:Z]elP?>| X # 0}
U ={[X:Y:Z]eP*|Y #0}
U ={[X:Y:Z]eP* | Z#0}.

The homeomorphism on Uy is given by the map [X : Y : Z] — (Y/X,Z/X) € C? and
similarly for the other open sets U; and Us.

Definition 1.23. Let Q(X, Y, Z) be a homogeneous non constant polynomial of degree d, in the
complex variables X, Y and Z with complex coefficients. The locus

Ir={[X:Y:Z]eP?|Q(XY,Z) =0} (1.27)

is the projective curve defined by the polynomial Q.
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Remark 1.24. Observe that the curve I is well defined since the condition Q(X, Y, Z) =
0 is independent from the choice of homogeneous coordinates since Q(AX,AY,AZ) =
A Q(X,Y,Z). Furthermore I’ is a closed subset of P2 and therefore it is compact.

The intersection of I' with any of the U, is an affine plane curve. For example
To=TnU = {(u,v) e C*| Q(1,u,v) = 0}.
Now we show that under non singularity assumptions, I' is a Riemann surface.

Definition 1.25. The curve (1.27) defined by the zeros of the homogeneous polynomial Q(X,Y, Z)
is nonsingular if there are no non zero solutions to the equations

_0Q _0Q _ 2Q _
C=x~wv-az= "
Exercise 1.26: Show that the projective curve I' defined in (1.27) is non singular if and
only if each of the affine components I'; = I' n U;, i = 1,2,3 is non singular. Hint: use
Euler equation that is obtained differentiating the identity Q(AX, AY,AZ) = AYQ(X, Y, Z)

with respect to A and setting A = 1, namely

XQx +YQy + ZQz = Qd. (1.28)

Suppose that I' is a smooth projective curve. In order to give a complex structure on I
let us recall that each I'; is a smooth irreducible affine plane curve and hence a Riemann
surface. The coordinate charts are given by the projections. For example for the curve
I’y the coordinate charts are y/x or z/x and the transition functions are as the same as the
one obtained for smooth affine plane curves. We have then to check that the complex
structures given on each I'; are compatible. Let P € I0nI'y where P = [X : Y : Z]and X # 0
and Y # 0. Since each affine plane curve is non singular (see exercise 1.26), we assume
without loss of generality that Fx and Fz are non zero. Let ¢ : I'g — C with ¢o(P) = Y/X

and with inverse ¢ Yy/X) = [1:Y/X : h(Y/X)] where & is a holomorphic function. Let
¢1:T1 — C with ¢1(P) = Z/Y with inverse ¢; ' = [¢(%),1, £] where g(%) is holomorphic
for Y # 0 and non zero since we assume X # 0. Then ¢; o cj)o’l(Y/X) = Xh(Y/X)/Y
which is holomorphic because Y # 0, X # 0 and h(Y/X) is holomorphic. In the same way
$o o Py Yzyy) = m which is holomorphic because Y # 0 and g is nonzero. Similar
checks can be done with the other coordinate charts.

We summarise the above description in the following proposition.

Proposition 1.27. Let Q(X, Y, Z) be a homogeneous polynomial such that the projective plane
curve T that is the zero locus of Q in P? is a smooth compact Riemann surface. At every point of
I" one can take as a local coordinate a ratio of the homogeneous coordinates.
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Lemma 1.28. Let Q(X,Y, Z) and F(X, Y, Z) be two homogeneous polynomials of degree d and m
respectively. Suppose that Q(0,0,Z) # 0 and F(0,0, Z) # 0. Then the resultant

R(Qz Fz)(XY)
is a homogeneous polynomial in X and Y of degree dm.

Proof. According to the assumptions, Q(X,Y, Z) = qOZd+q1 (x,Y)Z41+.. +g4(X,Y) where
7;(X,Y) are homogeneous polynomials of degree jin Xand Y, j = 0,...,dand F(X,Y, Z) =
foZ"+ f1(X, Y)Z" 1+ 4 £,(X, Y) where f;(X, Y) are homogeneous polynomials of degree
j,]=0,...,m.

Then according to the definition of resultant in (1.11)

g0 g1 ... 4qa4 0 0 ... 0

0 q0 q1 qa 0 0 0
R(Q,F)(X,Y) = det 0 0 e 0 @ 2 e (1.09)

fo A oo i fu1 fu O .0

0 fo fAi i oo fu1 fu O ... 0

0 ... o A ... i fuet

We multiply the second row by A # 0, the third row by A? and so on till the m — th row
that is multiplied by A”~. Then we multiply the (m + 2) — th row by A, the (m + 3) — th
by A2 and so on till the (m + d) — th that is multiply by A%~ one has

1
R(Q/ F) (/\X, /\Y) = A%(d—l)dA%m(m—l)
g Ap ... Mgy 0 0 0
0 Ago A’q1 ... 0 0 0
0 0 .. .. Am=lgy AMgy . . Ad+m=lg,
<detl o Af . AMTL L AmEL 0 0
0 Af Af ... A" g AL, 0
0 ... A¥lfy Adf AmHd=2£ o AmEd-le

— A"™R(Q,F)(X,Y),

where we use the fact that and q;(AX, AY) = Ag;(X,Y) and f;(AX,AY) = A/fj(X,Y). The
above relation shows that the resultant R(Q, F)(X, Y) is a homogeneous polynomial in X
and Y of degree md. m]
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Theorem 1.29 (Bezout’s theorem). Let I' and M be two projective curves defined by the ho-
mogenous polynomials Q(X,Y, Z) and F(X, Y, Z) of degree d and m respectively. Then if I and M
do not have a common component, then they intersect in dm points counting multiplicity.

Proof. By Lemma 1.13, I" and X have a common component if and only if their resultant
is identically zero. Next we consider the case in which I' and X do not have a common
component. We assume that [0 : 0 : 1] does not belong to both curves. With this
assumption Q(X,Y,Z) = qo(X,Y)Z% + q1(x, Y)Z4 1 + -+ + q4(X,Y) where q;(X,Y) are
homogeneous polynomials of degree jin Xand Y, j = 0,...,dand qo # 0. In the same way
FX,Y,Z) = fo(X,Y)Z" + A(X,Y)Z" 1 + - + fu(X,Y) where fj(X,Y) are homogeneous
polynomials of degree j, j = 0,...,mand fy # 0. Therefore the resultant is a homogeneous
polynomial of degree md by lemma 1.28 and it has md zeros counting their multiplicity. O

Lemma 1.30. If the projective curve I" defined in (1.27) is non singular, then the polynomial
Q(X,Y, Z) is irreducible. If T is irreducible, then it has at most a finite number of singular points.

Proof. Let us suppose that the polynomial is reducible, namely Q = Q1Q, where Q; and
Q> are homogeneous polynomials in X, Y and Z of degree d; and d — d;. The condition of
I' being singular takes the form

Q201 =0, Q0xQ1+ Q10xQ2 =0, Q20yQ1 +Q10yQ2 =0, Q20201 + Q10zQ2 = 0.

Such system of equations has always a solution as long as there is a point P in the
intersections of the curves defined by Q; = 0 and Q, = 0. But this is always the case.
Indeed let us consider the resultant R(Q1,Q2)(X,Y) of the polynomials Q;(X,Y,Z) and
Q2(X, Y, Z) with respect to Z. Assuming that Q;(0,0,1) # 0 and Q»(0,0,1) # O the
resultant R(Q1, Q2)(X,Y) is a homogeneous polynomial of degree d;(d — dy). Therefore
the curves defined by the equations Q;(X,Y,Z) = 0 and Q»(X,Y,Z) = 0 intersects by
Bezout’s theorem in d; (d — dq) points counted with multiplicity. We conclude that if Q is
reducible, then Q is singular. Suppose that I is irreducible and defined by the polynomial
Q of degree n. Then Q and Qz do not have a common component so that the resultant
R(Q, Qz)(X,Y) is ahomogeneous polynomial of degree n(n — 1) not identically zero. Since
the singular points of I' are contained in the zeros of the resultant, the number is finite. O

The simplest example of projective curve is the projective line
aX+pY +yZ=0

where (a,,7) # (0,0,0). The tangent line to a projective curve I' defined by a homoge-
neous polynomial Q(X, Y, Z) at a non singular point (Xp, Yo, Zo) has the form

(X — Xo0)Qx(Xo, Yo, Zo) + (Y — Y0)Qy(Xo, Yo, Zo) + (Z — Z9)Qz(Xo, Yo, Zo) = 0.
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Exercise 1.31: Let Q(X,Y,Z) be an irreducible homogeneous polynomial of degree d
defining a smooth projective curve I'. Suppose that the equation Q(X,Y,1) = 0 locally
defines Y as a holomorphic function of X. Show that

2Y(X) 1 Qxx Qxy Qx
Xz —det | Qyx Qvy Qv |-
Qy Qx Qv 0
. o . . . . d?Y(X)
Observe that a point [ X : Yy : 1] is an inflection point for the curve I if and only if e
vanishes at Xj.
1.1.3 Compactification of affine plane curve
Complex affine plane curves ' := {(z,w € C? |F(z,w) = 0} where F is a nonsingular

polynomial, are non compact Riemann surfaces. To compactify them one needs to add
point(s) o', 02, ... ooV at infinity and introducing proper local parameters at these points
in such a way that

[=Tuwu?u- Ul

is a compact Riemann surface.
The plane curveT’, defined by the polynomial equation F(z, w) = 0, can be compactified
by embedding it in CP?. The mappings

X Y
and the inverse mapping
(z,w) > (z:w: 1)

establish an isomorphism between an affine part of CIP> and C2. The whole projective
plane is obtained from the affine part C> by adding the line at infinity of the form
(X:Y:0) ~ CP' ~ S2. An embedding of T in CIP? is defined as follows. Suppose
that

F(z,w) = Fx(z,w) + Fx_1(z,w) + - - - + Fo(z, w),

where each Fj(z,w) is a homogeneous polynomial of degree j. Then we define the
homogeneous polynomial

_ap (XY
Q(X,Y,Z) —ZF<Z,Z) (1.30)
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of degree k. A complex compact curve [ is given in CIP? by the homogeneous equation
[:={[X:Y:Z]eP?* | QX Y,Z) =0}. (1.31)

The affine part of the curve [' (where Z # 0) coincides with I'. The associated points at
infinity have the form

Q(X,Y,0) = 0.

The surface [ is compact and is thus the desired compactification of the surface I

Remark 1.32. Even if the curve T is non singular, the curve ' might be singular. If this
is the case, the compactification of the smooth affine plane curve as a singular projective
curve is not a good compactification.

Example 1.33. T = {(z,w) € C* | w?* = z}. A local parameter at the branch point
(z=0,w=0)isgivenby 7 = 1/z,i.e. z = w2, w = 1. The compactification [ has the form
['={[X:Y:Z] e P?|Y? = XZ}. The point at infinity is given by solving the equation
(1.31), that gives P* = [1: 0: 0]. For X # 0 we introduce the coordinates u, v

, (1.32)

U=—=—, 0=

Z
X z X

N | =

N

which define the affine curve u* = v. The point at infinity is given by (v = 0,u = 0) which
is clearly a branch point for the curve defined by the equation u?> = v and /v is a local
parameter near this point. Therefore in a neighborhood of the point at infinity in I we
have that

(2,w0) > ——=

vz

is a local homeomorphism.

Example 1.34. T = {w? = z2 — 4?}. The branch points are (z = +a,w = 0) and the
corresponding local parameters are 7+ = +/z 4. The compactification has the form
[' = {Y? = X? — a?Z?}. The point at infinity is given by solving the equation (1.31), that
gives PY = [1: £1: 0]. Making the substitution (1.32) we get the form of the curve [ina
neighborhood of the ideal line: u?> = 1 — a?v?. For v = 0 we get that u = +1. We can take
v = 1/z as a local parameter in a neighborhood of each of these points. The form of the
surface [" in a neighborhood of these points Py is as follows:

1 1
z==, w=+-+1—-a20%2, v—-0 (1.33)

0 0

where /1 — 4?02 is, for small v, a single-valued holomorphic function, and the branch of
the square root is chosen to have value 1 at v = 0.
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Example 1.35. Let us consider the class of hyperelliptic Riemann surfaces
I = {(z,w) € C*| F(z,w) = w* — Pn(z) = 0}, (1.34)
where Py(z) = 1—[?]:1(2 —aj),and a; # a; for i # j.
If we consider the projective curve defined by the zeros of homogeneous polynomial
QX Y,Z) = Y?ZN=2 _ ZNPN(X/Z) = 0

one can check that the curve is singular at the point [0 : 1 : 0] if N > 4. Therefore, for
N > 4, the embedding of T in IP? is not a good compactification. For N = 3 the projective
curve

Y?Z = (X —mZ)(X — 13Z) (X — a3Z)

is a compact smooth elliptic curve. By a projective transformation such curve can be
reduced to the form

Y?Z = X(X - Z)(X - AZ), AeC\{0,1}.
The point at infinity is given by P* = [0 : 1 : 0]. For Y # 0 the substitution u = X/Y and
v = Z/Y gives the curve

Qu,1,v)=v—u(u—v)(u—Av) =0

The point (0,0) is a branch point for the above curve. Indeed for (u,v) # 0 the projection

7 : (4,0) — vis a local coordinate. The preimage 7~!(v) consists of three points. At the

point (0,0) one has Q,(0,1,0) = 0 and Q,,(0,1,0) = 0 so that the preimage of 7~1(0)

consists of a single point. A local coordinate near the point (0, 0) takes the form
u=11+o0(1)), v=r11+o(1)).

We look for the holomorphic tail in the form

u=1g(x), v="1)
with g(7) analytic and invertible in a neighbourhood of 7 = 0. Plugging the above ansatz
in the equation Q(u,1,v) = v — u(u — v)(u — Av) = 0 one obtains that

1

I )
Since
X u Y 1
TZ7v YTZ7%
one has that a local coordinate near the point at infinity for the curve I' is given by
z= l, w 1 (1—12)(1— A72).

T2 RS
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The above example shows that not all the affine plane curves can be compactified in a
smooth way by embedding them in IP?. Below we are going to illustrate another way of
compactifying affine plane curves.

1 N

Definition 1.36. Let T be a Riemann surface suchT =T U o' U ... 0

Suppose that there exist open subsets

is a compact surface.

UguvlUpu---ulnwn=UyccT
such that Uyn, n = 1, ..., N, are homeomorphic to puncture disks
¢On: Ugn > D\{0} ={z€eC|0<|z| <¢, ceRYY},

and the homeomorphism ¢, are holomorphically compatible with the complex structure of I'. Then
I is called a compact Riemann surface with punctures.

The goal is to make the compact surface I' a Riemann surface. Let us extend the
homeomorphism ¢, to the whole neighbourhood Uy = Uy U 00" by defining

Gu(0") =0, n=1,...,N.

In order to make T a compact Riemann surface one needs to define a complex atlas on it
as the union of the compatible coordinates charts on Uy and I'. The result is a compact
Riemann surface .

Example 1.37. We recall first how to compactify the complex z-plane C. It is necessary to
add to C a single "point at infinity” co. In this case Uy, = C and the map ¢ : Uy, — D\{0}
is defined by ¢(z) = % with z # 0 and ¢(0) = 0 A complex atlas on C = C U ®

is then defined as in example 1.5. We get a surface C with the topology of a sphere
(the "Riemann sphere”). Topological equivalence to the standard sphere is given by
stereographic projection, with one of the poles of the sphere passing into the point cc.

Another description of C is the complex projective line P! := {(z1,22) | |z1]*> + |z2|* #
0, (z1:22) ~ (Az1 : Azp), A € C, A # 0}. The equivalence P! — C is established as
follows: (z1 : zp) — z = z—l The affine part {z, # 0} of P! passes into C and the point
(1:0) into oo. ’
Example 1.38. Let us consider the class of hyperelliptic Riemann surfaces

I = {(z,w) € C*| F(z,w) = w* — Pn(z) = 0}, (1.35)

where Py(z) = Hlj\lzl(z —aj), N > 4and a; # a; for i # j. We need to consider separately
the case of N odd or even. Let us rewrite the curve in the form

2
w 1 aj
<Z”+l> —Ell(l—;)zo, N=27’l+1,
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w \2 N a;
(zn+1> —q(l --)=0, N=2n+2.
j=
For N odd the map
1 w
view) — (120 (1.36)

describes a biholomorphic map from a punctured neighbourhood of infinity
Uy ={(zw)eT | |z| >c>aj], j=1,...,2n + 1}
where ¢ > 0, to the punctured neighbourhood
V={xyel||0<|xl <1/}
of the point (x,y) = (0,0) of the curve I defined by the equation
N
I={(xy)eC|y le—xa] )=0}, N=2n+1. (1.37)
j=1

For N = 2n + 2 even, the map (1.36) describes a biholomorphic map from punctured
neighbourhoods of infinity co®

. w
Uoigz{(z,w)ef||z|>c>|aj\,]=1, 2n+2hmZT=i1}

to the punctured neighbourhoods
VE={(x,y)eT |0 < |x| <1/c}
of the points (0, +1) of the curve

N
I={xyeC|P-][0-x1) =0}, N=2n+2. (1.38)
j=1

The local coordinate near (0,0) of the curve I' in (1.37) is defined by the homeomorphism
(x,¥) — +/x, while the local coordinate near the point (0, +1) of the curve (1.38) is given
by (x,y) — x. Therefore for N = 2n + 1 the curve (1.35) has one puncture at infinity and
the local parameter in its neighbourhood is given by

d(z,w) = if $(o0) = 0

z
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while for N = 2n + 2, the curve (1.35) has two punctures ot = (00, £00) distinguished by
the conditions

w
(Z,ZU) — OOi o — - +1
Zn+1
and the local parameter near these points is given by the homeomorphism

Gs(zw) >, dulen®) =0,

Proposition 1.39. The local parameters

—~

z,w) — z near an ordinary point
(z,w) — \/z —zj near a branch point (z;,0)

(2, w) — 1/+/z near the point at infinity, N odd
W 1/z near the point at infinity, N even

describe a compact Riemann surface T = T U oo of the hyperelliptic curve (1.35) for N odd and
['=T U ot for N even.

Quotients under Group action

Complex Tori. Let w; and w; be two complex numbers which are linearly independent
over the real numbers. Define the lattice

Loy w, = Zw1 + Zwy = {mw1 + nwy | m,n € Z}. (1.39)

Two complex numbers z and Z are equivalent mod L, «, if z — Z € Ly, ,»,. The set of all
equivalence classes is denoted by C/L,, », and an element in C/L, «, is denoted by |[z].

Proposition 1.40. The quotient I’ = C/L,, «, is a compact Riemann surface that is topologically
a torus.

Proof. To prove the statement one needs to construct a complex structure on I'. Let
1t : C — I be the projection map. Let us endowed I' with the quotient topology namely a
set U c T'is open if n~1(U) is open in C. This definition makes 7t continuous and since C
is connected so is I'. Furthermore, it is easy to check that 7t is an open mapping. Indeed
let U be an open set in C, then 7t(U) is open if 7~!(n(U)). But this is certainly the case
since 71 (rt(U)) = e, (@ + U) is open. In order to define a complex structure on T, let
D, = D, be adisk centered at z, € C and of radius € where € is chosen in such a way that
|w| > € for every non zero w € L. Then the map n|p, : Dy — m(D,) is a homeomorphism.
Let o : m(Da) — Dq be the inverse of the map 7t|p,. The pairs (11(Dy)), Pa)aca defines
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a complex chart. We now must check that the charts are compatible. Chose two distinct
points z; and z; and consider two charts ¢ : m(D1) — D; and ¢, : n(D2) — D; with
U := n(D1) nnt(Dy) # . We need to check that the transition function T'(z) = ¢2(qb1_1 (2))
is holomorphic for z € ¢1(U). Observe that n(T(z)) = 7(z) for all z € ¢1(U). Therefore
T(z) — z = w(z) € L. Since T(z) is continuos and L is discrete, w(z) is constant. Therefore
T(z) = z + w for some w € L, namely the transition function T(z) is holomorphic. The
collection of charts {(D,, ¢n) | zo € C} is a complex atlas on I'. We conclude that I' is a
compact Riemann surface. ]

Remark 1.41. Let A € SL(2,Z) namely A is 2 x 2 matrix with integer entries and det A = 1.
Suppose that

Then the Ly, 0, = L

' Indeed for m,n € Z one has

/
(W /N [
Loy, @, 3 Mw1 + nwy = (n,m)A (a)’l) =mw; +nw, e Lw;,w
2

v

because m’, n’ € Z since the matrix A has integer entries and determinant equal to one.
The above relation shows that Ly, w, S Lo «y- Repeating the same reasoning for a

pointin Ly ., one obtains that L./ .y < La, o, Which shows that Lo, ,w, = L,

Remark 1.42. Let us consider an automorphism of the complex plane, namely a map
F: C — C of the form F(z) := az +  with a # 0. We choose = 0 so that F(0) = 0.
A lattice L, , is transformed under F to the lattice Lyw,,a0,- The corresponding tori
are isomorphic, with the isomorphism given by [z] — [az]. The map F projects to an

automorphism of the torus if |a| = 1. In general
e a = +1, for a generic torus;
e a = i, for the square torus;
e a = ¢'3, for the rhombi torus.

Let us define T = % with 3(7) > 0. Then the lattice Ly, o, defined in (1.39) and
2

w1

Lin={n+mt|mmneZ}, 1=
)

defined isomorphic tori C/Ly, o, and C/L,; respectively. Combining the above remarks
one arrives to the following theorem.
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Theorem 1.43. Let T and T be two tori defined by the lattices L, and Ly 1 with 3(t) > 0and
I(7") > 0. The tori are isomorphic if and only if

T,_aT+b a b
et +d’ d

The proof is left as an exercise.

) e SL(2,Z). (1.40)

Exercise 1.44: Consider the group 2ntZ under addition and consider the quotient C/2nZ.
This surface is clearly homeomorphic to the cylinder S' x R. Show that C/2rZ is a
Riemann surface.

Exercise 1.45: Let G be the multiplicative group G := {a" | n € Z} and a € R*. The
quotient

I:=C*/G
is defined as the set of equivalence class with respect to the equivalence relation
22325 1eG.

(i) Prove that there exist a unique structure of a Riemann surface on I' such that the
canonical projection 7 : C* — T is locally biholomorphic.

(ii) Show that the Rieamann surface constructed in (i) is isomorphic to a torus
C/(Z+1Z), teH:={zeC]|I(z)>0}.
Calculate 7.
The above construction of Riemann surface as quotients can be generalized

Definition 1.46. Let A be a domain of C. A group G : A — A of holomorphic transformations
acts discontinuously and fixed point free on A if for any P € A there exists a neighbourhood V 5 P
such that

§VnV =y, VgeG, g#I
The action of G is called proper if the inverse image of compact subset is compact.

Introducing an equivalent relation between points of A, namely P ~ P’ if 3¢ € G so
that P’ = gP, one can define the quotient space A/G of equivalent classes.

Theorem 1.47. If a group G acts on a domain A of the complex plane properly discontinuously
and the action is fixed point free, then the quotient space A/G has the structure of a Riemann
surface.

The proof of the above theorem is very similar to the proof given above for obtaining
a complex structure on the complex one-dimensional tori. In the frame of the uniformiza-
tion theory, it is proven that all compact Riemann surfaces can be described as quotients
A/G.
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Chapter 2

Topological properties of Riemann
surfaces

2.1 The genus of a a compact Riemann surface

An arbitrary Riemann surface is a two-dimensional manifold. What can be said about
the topology of this surface? We have showed in the previous chapter that a Riemann
surface is orientable manifold.

The following result can be found in [18].

Theorem 2.1. Any compact connected and orientable two dimensional surface is topologically
equivalent to a sphere with ¢ = handles.

The number g is called the genus of the sur-
face.

Each surface of genus g can be obtained from
a genus ¢ — 1 surface by removing a disc and
attaching a torus.

Let us compute the genus of the surfaces in
the examples 1.33-1.35. We begin with Exam-
ple 1.34 namely the curve w? = z2 — a%. Delete
the segment [—a, 2] with endpoints at the branch
points from the z-plane C. Off this segment
it is possible to distinguish the two branches
wy = ++/z%2 —a? of the two-values function
w(z) = /2% — a2, that do not get mixed up with
each other. In other words, the complete image o
7=1(€\[~a,a]) on T splits into two pieces, with Figure 2.1: A sphere with five handles

27
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the mapping 7t an isomorphism on each of them.

The branches w ., (z) and w_ (z) are interchanged in passing from one edge of the cut [—a, a]
to the other. Therefore, the surface is glued together from two identical copies of spheres
with cuts according to the rule indicated in the figure 2.2

E O o0
' s

Figure 2.2: The cuts of the algebraic function +/z2 — 42

After the gluing we again obtain a sphere, i.e., the genus g is equal to zero. Exam-
ple 1.33 is analogous to Example 1.34, but the cut must be made between the points 0 and
%0, i.e. the point at infinity must be regarded as a branch point. Again the genus is equal
to zero.

In Example 1.35 it is necessary to split up the branch points arbitrarily into pairs and
make cuts (arcs) in € joining the paired branch points n cuts for n even. The surface I' is
glued together from two identical copies of a sphere with such cuts, with the edges of the
corresponding cuts glued together in “cross-wise” fashion (see the figure for n = 4).

It is not hard to see that a sphere with 1/2 handles is obtained after the gluing, i.e., the
genus g is 1/2, see figure 2.4 for n = 4. For n odd the situation is analogous, except that
in making the cuts it is necessary to take oo as one of the branch points. The genus g is
equal to (n + 1)/2.

Exercise 2.2: Suppose that all the zeros z; < --- < zp,41 of the polynomial P5,1(z) are
real. We choose the segments [z1,22], [23,24], . .., [z2n+1, 0] of the real axis as the cuts for
the surface I' = {w? = Py,;1(z)}. The function w(z) = /Pa,41(z) which is single-valued
on each sheet of I' formed after removal of the cycles 7=1([z1,22]), ..., 7 ([z2141,0]) is
real on the edges of these cuts on each of the sheets. Show that on each sheet the sign of
the square root +/P2,11(z) on the upper edge of the cut alternates.
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Figure 23: Opening of the cuts of the two branches of the function

V(z—21)(z—2)(z—23)(z — z4)

2.1.1 Triangulation of a Riemann surface and Riemann-Hurwitz formula

We derive a formula for the computation of the genus of a compact connected Riemann
surface.

A triangulation of a two-dimensional surface I' is a decomposition of I" into closed
subsets homeomorphic to triangles such that each couple of them is

e disjoint
e meet at a vertex

e meet at an edge.

Theorem 2.3. [18] Every compact connected orientable 2-dimensional manifold can be triangu-
lated.

Given a 2-dimensional compact manifold M (possibly with boundary) and a triangulation
of the manifold with

e ¢ = #of edges;
o v = # of vertices;
o t = # of triangles;
the number
EM)=v—e+t (2.1)

is called the Euler number of the manifold M with respect to the given triangulation.
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Figure 2.4: The Riemann surface of w? = (z — a1)(z — a2)(z — a3)(z — a4) is glued from
two copies of the extended complex plane cut along the intervals [z1,z2] and [z3,z4]. The
resulting surface is topological a torus.

Proposition 2.4. The Euler number is independent from the choice of the triangulation. For a
compact Riemann surface I of topological genus g the Euler number is

E(T) =2 —2g. (2.2)

Proof. We give a sketch of the proof. We consider compact surfaces with no boundaries.
Given a triangulation, one can refine the triangulation by adding a vertex inside a triangle
and three edges. This operation replaces one triangle with three triangles an it is easy to
check that the Euler number remains unchanged. Another way to refine the triangulation
is to add a point on an edge, so that two triangles are replaced by four triangles. Also
in this case the Euler number remains unchanged. These operations define elementary
refinements. A general refinement is obtained by making a sequence of elementary
refinements. Therefore a given triangulation and any of its refinement have the same
Euler number. Now the main point is to show that two triangulations have a common
refinement. It is sufficient to superimpose two triangulations and add the necessary
number for points to make the union of these two triangulations a triangulation. Then
the triangulation obtained in this way is a refinement of both the triangulations. This is
enough to show that the Euler number does not depend on the triangulation. Now let us
make the computation of the Euler characteristic for a compact Riemann surface of genus
g. We use an inductive argument. For the sphere the Euler number is equal to 2. For the
disc D = {z € C||z| < 1}, the Euler number is equal to E(D) = 1 and for the cylinder
Cylinder of finite length the Euler number E(Cyjinger) = 0, see figure 2.5

The torus can be obtained from the sphere by removing two discs and connecting
them with a cylinder. It is simple to check that the Euler number of the torus I'; can be
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V2

Vg T)2

U5

Figure 2.5: Triangulation of the sphere with 4 vertices, 6 edges and 4 triangles. Triangu-
lation of the disc with 3 vertices, 3 edges and one triangle.Triangulation of the cylinder
with 6 vertices, 12 edges and 6 triangles.

obtained as
E(rl) = E(I'o) — ZE(D) + E(Cylinder) =2-2+0=0. (2.3)

Indeed removing two disks from a genus zero surface, the Euler number decreases by
two, because it is just sufficient to subtract from the Euler formula the two discs that are
homeomorphic to two triangles. Next we add a cylinder to connect the two discs. In
order to compute the Euler number of the resulting surface, it is sufficient to add the
contribution of the cylinder. The resulting Euler characteristics then can be written as in
(2.3).

This procedure can be iterate. Indeed the surface I'; of genus g can be obtained from
the surface of genus I';_1 by removing two discs and connecting them with a cylinder.
Therefore one has

E(Tg) = E(Tg-1) — 2E(D) + E(Cyinder)
which implies

E(Tg) =2 —2g.

We apply this result to calculate the genus of an affine plane curve.

Proposition 2.5. Let T = {(z,w) € C? | F(z,w) = w" + a1(z2)w" "' + ...a,(z) = 0} an
irreducible non singular affine plane curve and let T be the compactification of T'. Let z1,...,2m
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be the branch point for T with respect to the projection 7(z,w) — z with multiplicity by, ..., by,
respectively. Then the genus of T is equal to

1 m
g=52bj—n+1. (2.4)
j=1

Proof. Consider a triangulation of C so that the set of vertices of the triangulation contains
the points z1, . ..,zm. Suppose that for each triangle T in C, the projection 7 restricted to
the interior of each preimage 71~(T) is homeomorphic to the interior of T. In this way
the triangulation on C can be lifted to a triangulation on I'. Suppose the triangulation of
C has v vertices, t triangles and e edges. Then the triangulation of T has

e [ = nt triangles

¢

ne edges

e U = nv — b vertices,

where b = Z}”:l b;. The Euler characteristic of the surface I gives
2—-2¢9=nv—b—ne+nt=n(v—e+t)—>b
so that one obtains the statement. m]

The relation (2.4) is a particular case of a more general formula known as Riemann-
Hurwitz formula. As an application of the proposition 2.5 we calculate the genus of a
smooth projective curve

I={[X:Y:Z]eP?’|Q(XY,Z) =0}

where Q is a homogeneous polynomial of degree n. Suppose that [0: 0 : 1] ¢ T so that
Q(0,0,Z) = cZ" # 0 with ¢ # 0. Then the map

¢:T-P, &XY2Z)=[X:Y]

realised T as a n-sheeted covering of P'. Let us calculate the total branching number of
this map. The branch points are obtained by solving the equations

QX,Y,2) =0, Qz(XY,Z)=0

The solution of the above two equations are given by the zeros of the resultant R(Q, Qz)
with respect to Z. Since R(Q, Qz) is a homogeneous polynomial of degree n(n — 1) in X
and Y, the total number of branch points counting their multiplicity is n(n — 1).
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Recall that the branching number of a branch point Py = [Xp : Yo : Zp] indicated as
by (Po) is the order of the zero of Q(Xo, Yo, Z) at Z = Zp minus one. We can write

Q(Xo, Y0, Z) = H (Z—2Zj)™

0<j<s

where Zj mj = n and Zy,...,Zs are distinct complex numbers, Z; = Z;(Xo,Zo). Here
we assume that Q(0,0,Z) = Z". With the above notation the branching number of each
branch point P; = [Xo : Yo : Z;] is by(Pj) = m;j — 1. So a regular point is simple zero of
Q(Xo, Yo, Z) a branch point with branching number one is a double zero, and a branch
point with branching number m — 1 is a zero of order m of Q(Xo, Yo, Z). So if the number
of distinct roots of the discriminant is n(n — 1) it means that the curve has n(n — 1)
branch points with multiplicity one, so that the total branching number is n(n — 1). If
the discriminant has for example n(n — 1) — k distinct roots, k > 0, it means that some of
the branch points have branching number bigger then one. However the total branching
number remains equal to n(n — 1). Then we can apply formula 2.4 to obtain

g:%(n—l)n—nJrl

which gives ¢ = %(n —2)(n—1).

Lemma 2.6. The genus of a smooth projective curve of degree n is given by the relation

g= %(n—Z)(n—l). (2.5)
Exercise 2.7: Calculate the genus of the following surfaces

w = (z—1)(z—2)(z—3)(z—4),

w'=2z"+4d", a#0.

Theorem 2.8. [14] Any compact connected orientable two-dimensional surface of genus g that
admits a triangulation, can be made into a Riemann surface.

Any surface of genus zero is topologically equivalent to the sphere P!. The surfaces
of genus one are one-dimensional tori. The complex structure is unique only for ¢ = 0
(see [14] 16.13). The set of complex structures has one complex parameter for ¢ = 1 and
3¢ — 3 complex parameters for ¢ > 2. The space of these parameters is called Teichmuller
space. We observe that the number 3¢ — 3 coincides with the dimension of the moduli
space of Riemann surfaces of genus g > 2.
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2.2 Monodromy of a surface

In order to define the monodromy of a surface we recall the definition of fundamental
group. Let M be a topological space and P, Q two points on M. A curveu : [ - M
starting in P and ending in Q is a continuous map from I[0,1] to M such u(0) = P and
u(1l) = Q. If two curves can be deformed continuously one into the other, the curves are
called homotopic.

Definition 2.9. Two curves u and w are homotopic if there is a continuos map A : I x I — M
such

o A(t,0) = u(t),
o A(t,1) =w(t),
e A(0,s) =Pand A(1,s) = Q, forall s € [0,1].

The notion of homotopic is an equivalence relation. It is easy to construct homotopic
curves. For example given a smooth map f : I — I, the curves u and u o f are homotopic.
In the space of curves we can define a group structure.

Definition 2.10. Given two curves u : I — Mand w : I — M, I = [0,1], such that u(0) = P
and u(1) = Q and w(0) = Q and w(1) = R the product curve is

_fou(2t) for 0
(wow)(t) := { w2t —1) fori

the inverse of a curve is

<t<i
<t<1

ut(t):=u(l—t), tel,
the constant curve is
Id:1—-M, Id(t) =P

Clearly u o u~! is homotopic to Id. Now let us consider curves starting and ending in
P, namely close loops.

Definition 2.11. Let M be a topological space. The set of homotopic classes of loops starting and
ending in P € M is denoted by 111(M, P).

The set 711 (M, P) forms a group under the operation induced by the product of curves.
We denote its elements by [y]. It is easy to check that for arc-wise connected spaces M,
the group 71(M, P) is independent from the base point P. Indeed let m1(M, Q) be the
fundamental group with base point Q, and let w be a path from P to Q. Then for any
element [y] € 11 (M, P) the loop [w™! oy cw] € 711(M, Q) and this map is an isomorphism.
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Definition 2.12. An arc-wise topological space M is called simply connected if 1 (M) = 0.

Remark 2.13. We remind that the only Riemann surfaces with trivial fundamental group
are the sphere the complex plane and the disk. The only Riemann surface M with
n1(M) = Z is the punctured disk or the punctured complex plane. The only compact
Riemann surface M with 711 (M) = Z x Z.is the torus.

Although the trivial element of the group is the identity, it has become standard
notation to write 711 (M) = 0 for the fundamental group that contains only the identity. In
a simply connected space all loops are homotopic to the identity loop. The sphere P! is a
simply connected space.

Now we are ready to define the monodromy group of a surface. Consider a compact
Riemann surface I' realised as the compactification of a smooth affine plane curve

T ={(z,w) e C}F(z,w) = 2% + a(2)w" ' + - +a,(z) = 0}

and consider the projection 7w : T — C, nt(z,w) = z and denote by z,...,zy the branch
point of such map. Let delete from C the branch points zj,...,zy and delete from T
the complete inverse images t=1(z;),..., w1 (zm) of these points. We get a surface Ty
that is a n-sheeted covering of the punctured sphere C\(z1 U - - - U zp1). The monodromy
group of the Riemann surface is the monodromy group of this covering. We recall the
general definition of the monodromy group of a covering in connection with this case
(see [9] for more details). Fix a point zg € C\(z; U -+ U z)) and number the points
Py,...,P,in the fiber 7! (zo) arbitrarily (these points are all distinct). Any closed contour
in C\(z1 U - - - U zm) beginning and ending at zy gives rise to a permutation of the points
Py,..., P, of the fiber after being lifted to I'). We get a representation of the fundamental
group 711 (C\(z1 U - - Uzpm), 20) in the group S, of permutations of 1 elements; this is called
the monodromy representation. Let y, k = 1,..., M be a loop starting and ending in zo
and encircling the point z, k = 1,..., M. We denote by [yx] the homotopy class of this
loop. Theloops [y1], ..., [ym] are generators of 711 (C\(z1 U+ - - Uzpm), zo) with the constraint

rilely2lo--olys] =1d (2.6)
namely the trivial loop. The mondromy representation

p:m(C\(z1 v vzm),z0) = Su, p([]) = ok
is a group homomorphism namely

p([yk] e lyi]) = oxoj, 2.7)
for any set of generators. The homotopy relation (2.6) implies

0102 ...0pm = Id

the identity in S,,.
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Definition 2.14. The image of the map p defined in (2.7) in Sy, is called the monodromy group of
the surfaceT'.

Remark 2.15. For connected surfaces, the image of the monodromy group is a transitive
subgroup in S,. Indeed a transitive subgroup G € S, has the property that for every
number i, j € {1,...,n} there exists a permutation 7 € G such that j = 7(i). If the Riemann
surface is connected, for any points P; and P; in the fiber n~(z), z € C it is possible to find
a path connecting these points.

For hyperelliptic Riemann surfaces the monodromy group coincides S; = Z5.

Exercise 2.16: For curves of the form

show that the monodromy group coincides with Z,,.

In the general case the action of the generators of the monodromy group that corre-
spond to circuits about branch points is determined by the branching indices.

Exercise 2.17: Let z be a branch point, and let the complete inverse image 7 ~!(z) on T
consist of the ramification points Py, ..., Py of multiplicity by, ..., by, respectively (if some
point P; is not a branch point, then we set b; = 0). Prove that to a cycle in C encircling zo
once there corresponds an element in the monodromy group splitting into cycles of length
b1 +1,..., b + 1. This assertion gives a purely topological definition of the multiplicities
(indices) of branch points.

Remark 2.18. Suppose that one of the branch points, let say zyy = o0. Then the mon-
odromy corresponding to circuits about the point z = o0 is uniquely determined by the
monodromy corresponding to circuits about the images of the finite branch points. In-
deed, a contour encircling only the point z = o0 splits into a product of contours encircling
all the finite branch points, and we get the monodromy at infinity by multiplying the cor-
responding elements of the monodromy groups at the finite points. For example, for the
surface w? = P,12(z) the monodromy at infinity is trivial (the corresponding contour in
the z-plane encircles an even number of branch points), i.e., this surface has no branch
points at infinity. But for the surface w? = Py, 1(z) the monodromy at infinity is nontriv-
ial, because here a contour encircling z = o encircles an odd number of branch points.
We thus see once more that the point at infinity of the surface w? = Py,41(2) is a branch
point.

Exercise 2.19: Prove that for a general surface of the form (1.26)) the monodromy group
coincides with the complete symmetric group S, . Hint. Show that the branch points of such



2.3. SINGULAR CURVES 37

a surface can be labeled by pairs of distinct numbers i # j,(i,j = 1,...,n) in such a way that a
circuit about the images of the points P;j and Pj; gives rise to a transposition of the ith and jth
points of the fiber ( when these points are suitably numbered).

2.3 Singular curves

Let us consider an affine plane curve

T ={(z,w) e C}|F(z,w) = 2% + a1 (2)w" ' + - - +a,(z) = 0}.
A point Py = (z9,wp) € I' is called singular if

F(zp,wo) = F;(zo,wo) = Fy(zo, wp) = 0.

If the polynomial F is irreducible then the set of singular points is finite.

Nodes of an affine plane curve. The singular point Py = (z9, wp) € I' is called a node
if the Hessian

F.2 (2o, wo) sz(z(),wo)>
det [ .** #0
¢ (sz(ZO,wo) Fuw(zo, wo)

We can expand in Taylor series the equation of the curve near the node Py = (zo, wp) to
obtain

F(z,w) = a1(z — z0)* + a2(z — 20)(w — wp) + a3(w — wp)? + higher order tems

where a1 = F;(z0,wo)/2, @y = Fr(20, wo) and a3z = Fyw(zo, wo). The quadratic term is a
homogenous polynomial that can be factor in the product of two first order homogeneous
polynomials namely

F(z,w) = (c1(z — z0) + c2(w — wy) ) (b1(z — 2z0) + ba(w — wyp)) + higher order tems,

Defining x = c1(z — z9) + c2(w — wp) and y = by (z — zo) + ba(w — wp) one has

F(z,w) = xy + ), fi(x,y)

j=2

where f; are homogenous polynomials of degree j in x and y. Applying Hensel’s Lemma,
which say that if the lower order term of a power series factor, then the entire power
series can factor compatibly, we can write the above expansion in the form

F(z,w) = r(x, y)s(x, y)
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with

r(xy) =x+ Y i y), s(xy)=y+ ) sixy)

j=2 j=2

where each 7j(x,y) and s;(x,y) is a homogeneous polynomial of degree j that can be
obtained uniquely from the polynomials f;. Since F(z, w) is a polynomial the power series
for the function r(x, y) and s(x, y) are clearly convergent.

Near the node (zg, wp) the curve is the locus of zeros of 7(x, y)s(x, y) which is the union
of the locus of zeros of the functions r(x, y) and the locus of zeros of s(x, y). Each locus
corresponds to a curveI', and I's respectively. These curves are nonsingular in Py. Now we
call T the curve obtained from the singular curve T by removing the point Py. The curve
[ looks locally as the union I';\{Po} and Ts\{Py}. Let us consider open sets U, and U, on T’
which are equal to open set on I',\{Pp} and I';\{Po}. Such open sets are homeomorphic to
puncture disks. According to definition 1.36, the surface I" is a Riemann surface with two
punctures. Compactifying the curve [" according to section 1.1.3, one obtains a smooth
compact Riemann surface S. The whole process is called resolving the nodes of I. The

smooth compact Riemann surface obtained in this way is called also the normalisation of
I.

Genus of a projective curve with nodes. Let us consider a projective curve with k
nodes defined by the zeros F(X, Y, Z) = 0 of the homogeneous polynomial F of degree n.
In order to compute the genus of the smooth curve I',obtained from I by resolving the
nodes, itis necessary to observe that for each node the total branching number of the curve
decreases by two, indeed perturbing slightly the polynomial equation near the node, two
branch points with multiplicity one are obtained. Then using Riemann-Hurwitz formula
(2.4) one obtains the genus of a projective curve with nodes, namely Pliicker’s formula.

Proposition 2.20. Let I be a projective curve of degree n with k nodes and no other singularities.
Then the genus of T the curve obtained by resolving the nodes of T is

g=%(n—1)(n—2)—k.

Monomial singularities

A curve I' defined by the zero of the polynomial F(z, w) = 0 has a singular point in (0, 0)
called a monomial singularity if locally the polynomial F(z, w) is of the form

F(z,w) = w" — 2",

with m and n integers. If m = n = 2 the singular point is anode, and forn = 2 and m = 2k
it is a higher order node. In the case n = 2 and m = 3 the singularity is a cusp and for
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m = 2k + 1 it is called a higher order cusp. In general when n and m are co-prime the
singularity is called a monomial singularity of type (m,n). If m/n = kp/kq with k,p and g
integers and p and g relatively prime, then the monomial singularity can be factored as

k

2mi
H Wl — &F), E=eF,
j=1

Let us consider a monomial singularity with (m, n) co-prime. Then near such singularity
the curve has a parametrisation t — (",#"). Let us consider the puncture neighbourhood
of (0,0) in T, namely the set

U={(zw)eC?: 0<lz| <p, and F(z,w) = 0}
and the disc
D={teC: |t| <pi}.
The map
WiD\(0} - U, () = (¢",¢7)
is a biholomorphic map from D\{0} to U. The inverse map is given by
D(z,w) — Zwb =t an+mb=1

with 2 and b integers. The map @ is compatible with the complex structure of I'. So the
curve I'\{(0, 0} is a Riemann surface with punctures according to definition 1.36. We can
extend the map @ : U u {(0,0)} — D by defining ®(0,0) = 0. The Riemann surface that
we obtain is a smooth compact Riemann surface S.

Resolution of singularities of general curves and Puiseux expansion

Resolution of singularities of curves was essentially first proved by Newton (1676), who
showed the existence of Puiseux series for a curve from which the resolution of singulari-
ties follows easily. Puiseux series are a generalisation of powers series and they were first
introduced by Newton and then they were rediscovered by Puiseux in 1850. A Puiseux
series in the variable z is a power series of the form Z;’;k a ]-zj/ " where k is an integer and
n is a positive integer.

Let us consider the polynomial equation F(z, w) = 0. When

gradF = (F:(zo, wo), Fw(zo0,wo)) # (0,0)
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the implicit function theorem gives a local parametrisation of the curve

z— (2,9(2))

in the case Fy(zo, wo) # 0, and (z) is an analytic function of z in the neighbourhood of
z = zp. Therefore the curve looks locally like the graph of a function which is locally like
its tangent line. For singular curves such parametrisation does not exist, like for example
for the curve F(z,w) = w? — z>. However there is a parametrisation of the form

t—»(tz,t3), or z—»(z,z%).

Locally any singular branch of a curve has a parametrisation of the form

E— (1, 9(1), or (zy(z), k>1,

for some power series {. Such series is called Puiseux series. The next theorem, called
Puiseux’s theorem, asserts that, given a polynomial equation F(z, w) = 0, its solutions in
w, viewed as functions of z, may be expanded as convergent Puiseux series. Suppose the
the point (zg, wp) is a singular point of the curve defined by F(z,w) = 0. Furthermore
we assume for simplicity that the pre-image of the point zy with respect to the projection
nt(z,w) — z consists only of one point, namely 7w~!(z) = wo.

Theorem 2.21. Let F(z, w) be a polynomial such that F(0,w) # 0 and degF(0,w) = n. For
each point near zo, there are homolorphic functions 1(t), ..., y;(t) defined near t = 0, such that
¥;i(0) = wo and positive integers my, ..., m; with my + - - - + my = n such that

F(Zo+tm7,¢j(t))=0, j=1,...,l.

In other words for every z sufficiently close to z the polynomial F(z, w) can be factored in the form

I mj )
F(z,w) = CHH (w — (XM (7 — Zoﬂ)) '

j=1s=1

Two Puiseux expansions with indices j # j are essentially different. Newton gave
an algorithm to construct such parametrisations that it is know as Newton polygon
technique. We are not going to enter the details of this technique. We give only some
examples.

Example 2.22. Suppose that F(z, w) is a polynomials with deg F(0, w) = k, such that there
are integers numbers p and g such that

F(z,w) = Z ai]-z"wj.
qi+pj=kp
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Then we can look for a parametrisation of the form F(t7, At) = 0, namely
F(z,w) = F#,A#) =% ' gy i= #Ph(A)
iq+pj=kp
We can always find A € C such that h(Ag) = 0.

In general for a polynomial
F(z,w) = Zai]-ziwf
ij

the carrier C of F is defined as
C(F) = {(i,j) € Z* | a;; # O}.

The Newton polygon is the convex hull of the points in the carrier. We can assume
without loss of generality that the Newton polygon touches both axis. Suppose that there
are rational number i and v such that

+uj=zv
Then the the line
Z4 pw =v

lies below the carrier C(F). Now substituting w = tz* into F we get

F(z,tz!') = 2" Z aijt) + Z a;jz =z Z aijt) + o(z").
i+uj=v i+uj>v i+uj=v

Let ty be a solution of the equation ) ;, pj=v i it/ = 0. Note that this equation has a solution
if there are at least two points of the carrier C(F) on the line z + pw = v. Then we can
consider (z, foz") as an approximate solution of the equation F(z, w) = 0 near the singular

point (0,0). The next step is to improve the above approximation. Assuming y = P with

p and g integers that do not have a common factor, one can look for an expansion of the
form

z1=21, w= z’;(to + wy).
Then plugging the above ansatz into F(z, w) one obtains
F(z’i,zi(to +w)) = z?VFl (z1,w1).

The next step is to study the singularity structure of the polynomial F; (z1, w ). By iterating
this procedure, one obtains the Puiseux expansion near the point (0, 0).
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Example 2.23. Let F(z,w) = w’ — zw? + 42° + z* — 3w’z%. By considering the Newton
polygon (see figure 2.6), one can see that there are two lines that lie below it

z—k—w—§ z+§w—4
373 277

We first analyse the the first line, namely w = tz3, which gives
F(z, tz%) = zg(t5 — %) + o(zg),

so that £ = 1, namely f is one of the three roots of unity. For simplicity let us consider
t = 1. Next we consider the parametrisation

z= z?, w = z1(1 +wy)
so that
F(zi, z1(1+w)) = Z?Fl(zl,wl),

Fi(z1,w1) = wy + 5wy + (2] + 10)w’ + (3z] + 9)w] + (3z] + 3)wy — z;°. (2.8)

T T T T T s

ta

3 Sy
i \
—

0 2 4 6 8 10

Figure 2.6: The Newton polygon for F(z, w) on the left and Fy(z1,w;) on the right.

The Newton polygon of the polynomial F;(z,w;) is show in figure 2.6 and one can
see that the line z; + 10w, = 10 is at the boundary of the Newton polygon. So we look for
w1 = t1Z%O

Fi(z1,t121°) = z1°(3; — 1) + 0(z1°),
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which gives t; = % We conclude that the first two terms of the Puiseux expansion are

T
w=2z+ -z e
3
Repeating the same procedure for the coefficient 4 = = one obtains
1
w=(-2)1 - 5(-2)} +

Summarizing we have obtained two essentially different Puiseux expansions near the
point (0, 0).

Once the Puiseux series for a curve near a singular point has been found the resolution
of the singularity follows easily.

Theorem 2.24. For every irreducible algebraic curve T' € P? there exists a compact Riemann
surface S and a holomorphic map

$:5 T
with the properties
o let T := T'\Sing T be the smooth part of T and let 5 := ¢~ (I). Then

A

b=

is bi-holomorphic

g: S—T

e ¢ : S — I'is surjective.

For a singular point P € Sing T, the number of points in the preimage of ¢p~!(P) is
given the by the number of essentially different Puiseux expansions of I' near P. In the
example 2.23 the number of pre-images of the singular point (0, 0) consists of two points.

Exercise 2.25: Calculate the genus of the singular curves

w® = (z — a1)2(z —a)(z — a3)2(z —ayg)

and
w = 2°(z — a3)%(z — ag).

For each singular point calculate the number of points in the preimage of the map ¢
defined in theorem 2.24.
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Exercise 2.26: For which value of A the following curves are non singular?
X2+ Y+ 27 +3AXYZ = 0

and
X+ 4+ Z2 4+ AX+Y+2)P=0.

Describe the singularities when they exist and calculate the genus of the corresponding
Riemann surface.

2.4 Homology

In this section we define the homology of a Riemann surface.

Given a triangulation of a Rieamnn surface we define the vertex as 0-simplex, the edges
as 1-simplex and the triangles as 2-simplex. The orientation on the manifold induces an
orientation on the triangles that can be used to orient the edges bounding each triangle.

Definition 2.27. Given a triangulation of a Riemann surface, a simplicial 0, 1 and 2 chain is a
formal sum of vertices, P, edges e; or triangles t;

co = anp]‘, 1 = Zm]-e]-, Cy = Zk]t]
j j j

The set of n-chain C,, has a natural structure of additive abelian group.

The element —c; is the edge with opposite orientation and —¢ is the triangle with op-
posite orientation. The vertices Py, Py, P3, ... can be used to identify edges and triangles.
For example (P1P,) is the oriented edge from P; to P, and (Pj, P, P3) is the oriented
triangle with sides the oriented edges (P1P,), (P,P3) and (P3P1). With this notation we
define the boundary operator 6

Definition 2.28. The boundary operator 6 : C, — Cp—1 with n = 0,1,2 is defined as follows:
5C0 = 0, Co € Co
Oo(P1P;) = P, — Py

5<P1,P2, P3> = <P1P2> + <P2P3> + <P3P1>.

The above relation defines 6 on 1 and 2-simplex and it can be extend to 1 and 2-chain by linearity.
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With the above definition it is immediate to observe that 6> = 0. Furthermore, 0 is a
group homomorphism from C, to C,_;. We define

Zyn={c,€Cy|dcy =0}, By ={cy€Cpn|Icns1€Cni1, cn =01}
From the above definition it is clear that
B, < Z,<Cy

Since all the groups are abelian, B, is a normal subgroup. We are interested in the
following quotient groups.

Definition 2.29. The n-homology group of I is defined as

V4
H,(T,Z) = B—”, n=0,1,2.

n
We remark that the homology groups are independent from the triangulation. A basis
for H,(T', Z) is the set of elements of H,(I', Z) such that any other element can be written
as a linear integer combination of elements of the basis. It is clear from the definition
that dimH(I', Z) = 1. Regarding H,(I', Z), with a little thought it is easy to see that for
a compact Riemann surface dimH,(I', Z) = 1. The only nontrivial group is H; (I', Z). We
have the following result.

Theorem 2.30. The first homology group H1(I', Z) is isomorphic to the abelianization of the first
homotopy group 1(I'). The group Hy(T', Z) is a free abelian group with 2g generators. Any cycle
can be written as a sum of of generators.

The theorem above gives the following. Let I' be a compact Riemann surface of genus
gandlet [y1],...,[y2¢] be the set of generators of 711 (I'). Then any element [y] € 7t1(I') can
be uniquely written as

Dl = ki o iedmy o - iy buene {1,228}

with ji,..., ju € Z and where we put an under script of 71 to denote an element of the
fundamental group. Then the corresponding element [y ]y, in the homology is obtained
as

Wl = inlyelm + ilvels + -+ julve s, k- k€ {1,2,...,2¢}

In the rest of this section we simply denote as y an element in the homology basis.
Letay, ..., aq, by,..., bg be a basis in H;(I', Z). Then any cycle y is homologous to a linear
combination of the basis with integer coefficients:

8 8
Y ~ Z m;a; + Z nib;, m;, n;€”Z.
i=1 i=1
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Figure 2.7: Intersection of y1 and y».

The intersection number y; o y» is defined for any two cycles 1 and > onI'. By a small
deformations of the cycle it is possible to reduce the intersection of two cycles in such a
way that

e the intersection is finite;

e the intersection occurs transversally, namely the tangent lines of the two cycle in
the point of intersection are not parallel.

At each intersection point there is an ordered reference frame consisting of the tangent
vectors to the respective cycles y1 and y, with the direction of the tangent vectors chosen
to correspond to the orientation of the cycles. The intersection points are assigned the
number v(P) which is equal to +1 if the orientation of this frame coincides with that of
the surface, and —1 otherwise (see the figure). The sum of these numbers +1, taken over
all points of intersection of 1 and ) is the intersection number y1 o y5:

yieya= Y. v(P).

Peyrny2
Properties of the intersection number are:
1) y1 oy depends only on the homology classes of y1 and y»;
2) the map
o:Hi(T,Z) x H(I',Z) - Z

is bilinear, skew-symmetric, and nondegenerate.
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Figure 2.8: Homology basis.

Nondegenerate means thatif 1 0y, = 0 for every cycle y;, then the cycle y1 is homologous
to zero. A basis of cycles ay,...aq, f1,...,Bg on a surface I' of genus g can be chosen so
that the pairwise intersection numbers have the form

aioa]'Z‘BiO‘BjZO, aiO‘B]'Z(S,']', i,j=1...,g. (29)

Such a basis will be called canonical. Note that if for a cycle y and a canonical basis
a1, .0, B1,...,Bg the intersection numbers are y o a; = n;, y ofj =mj, i,j=1...,g then
the decomposition of y in the basis has the form

8

8
Y = Z m;o; — Z I’liﬁi.

i=1 i=1
This simple consideration is useful in practical computations with cycles on Riemann
surfaces.
Example 2.31. Let us construct a canonical basis of cycles on the hyperelliptic surface
w? = H?ﬁfl(z —z;), § = 1. We represent this surface in the form of two copies of C
(sheets) with cuts along the segments [z1,22], [23,24], - .., [224+1,0]. A canonical basis of
cycles can be chosen as indicated on the figure for ¢ = 2 (the dashed lines represent the
parts of a; and a; lying on the lower sheet).

Let a = (o, . ..,ag)t and g = (B1,. ..,ﬁg)t, then the condition (2.9) can be written in
the form

(g) ofat p)=] J= <_01 (1)> e SL(2g, Z). 2.10)

Let us consider a change of the homology basis of the form

5)-( () s=( 5)estes,
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The matrix S is in SL(2g, Z) so that the inverse transformation has integer entries. The
new basis @ and § is canonical if

(§) @ #1-1

with | defined in (2.10). This implies that the matrix S := <{Z Z) satisfies the relation

SJst =]

or in other words the matrix S is in the symplectic group Sp(2g, Z). So we have shown
that canonical homology basis are related by symplectic transformations.

Poincaré polygon

A canonical basis of cycles on a Riemann surface I' of genus ¢ has another remarkable
property. Let us construct the cycles a; and b; so that they all begin and end at a particular
point # of I and otherwise do not have common points, and let us make cuts along these
cycles. As a result the surface I' becomes a (4g)-gon I’ - a so-called Poincare polygon of T.
Indeed, the domain T obtained as a result of the cutting is bounded by a closed contour
oI’ made up of 4¢ segments, and any cycle in T is homologous to zero by property 2 of
intersection number. Therefore, T is a simply connected planar domain. Conversely, it
is possible to glue the surface I together from the (4¢)-gon I by identifying its sides of
the same name in the way indicated in the figure. In the figure, we write ai_l and bi_1 the

2

G_ll oy x@

B, o7
[3_11 Bl (X_}\\
e
a, 2

Figure 2.9: Poincaré polygon for surfaces of genus one and two.
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edges of the cut along the cycles a; and b;, respectively, if these edges occur in the oriented
boundary oI" with a minus sign. The segment 4; is glued together with the segment a;l

and b; with the segment b;l in the direction indicated by the arrows.
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Chapter 3

Meromorphic functions on a
Riemann surface.

3.1 Holomorphic mappings of Riemann surfaces

Definition 3.1. Let I' be a Riemann surface. A function f : I — C is said to be holomorphic, if
for each local chart the function

foda':pallla) > VacC
Za = fa(za) = f(¢5" (za),
is holomorphic on the open subset ¢,(Uy).
The following theorem is inherited from complex analysis.

Theorem 3.2. If T is a connected compact Riemann surface, then the only holomorphic functions
are constants.

Proof. Since f is holomorphic, |f| is continuos on I' compact. Therefore |f| achieves its
maximum value at some point of I'. By the maximum modulus Theorem, f must be
constant on I since I is connected. m|

In the same way one can define meromorphic functions.

Definition 3.3. A function f isa meromorphic function on a Riemann surfaceI if it is holomorphic
in a neighborhood of any point of I except for finitely many points Q, ..., Qu. At the points
Q1,...,Qm the function f has poles of respective multiplicities qi,...,qm i.e., in a neighborhood
of the point Q;, j = 1,...,m, it can be represented in the form

f=1"fw), (3.1)

51
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where 7 is a local parameter centred at the point Q;, and f;(t;) is a holomorphic function for small

tj and fi(t)|« =0 # 0. The order of f in Q; denoted as ordq,(f) is the first nonzero exponent in
the Laurent series of f in Q;, namely

OT’de(f) = —qj-

It is easy to verify that Definition 3.4 is unambiguous. i.e., is independent from the
choice of the local parameter, and also that the definition of the multiplicity of a pole is
unambiguous.

Definition 3.4. Let T be a compact Riemann surface defined as T = {(z,w) € C? | F(z,w) = 0}
, F(z, w) polynomial. A function f = f(z,w) is meromorphic on I if it is a rational function of z
and w, i.e., it has the form
P(z,w)

Q(z w)’

where P(z,w) and Q(z, w) are polynomials, and Q(z, w) is not identically zero on T

fzw) = (3.2)

The meromorphic functions on the surface I' form a field whose algebraic structure
actually bears in itself all the information about the geometry of the Riemann surface.

A similar definition of meromorphic functions can be given for a projective curve
[:={[X:Y:Z] e P?|Q(X,Y,Z) = 0} where now Q(X, Y, Z) is a homogeneous polynomial.
Meromorphic functions on the projective curve I take the form

G(X,Y,Z)

where G and H are homogeneous polynomials of the same degree and Q does not divide
H.

It is not hard to verify that the conditions of Definition 3.3 follow from the conditions
of Definition 3.4. The following result turns out to be true.

Theorem 3.5. Definitions 3.4 and 3.3 are equivalent.

We do not give a proof of this theorem; see, for example, [?] or [6].
Holomorphic mappings of Riemann surfaces are defined by analogy with meromor-
phic functions on Riemann surfaces.

Definition 3.6. Let I and T be Riemann surfaces. A map f : T — T is called holomorphic at a
point PeT if and only if there is exists charts from a neighbourhood U of P and a neighbourhood
U of f(P), namely ¢:U—VcCand ¢) U — V < C such that the composition

pofod

is holomorphic. The map f is holomorphic, if it is holomorphic everywhere on I
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In other words, if 7 is a local parameter onI" and 7 a local parameter in a neighborhood
of the point f(P), then f must be written locally in the form T = (1), where ¢ is a
holomorphic function of 7.

IfT = {(z,w) € C? | F(z,w) = 0}, T = {(Z,@) € C? | F(Z,@) = 0}, then a holomorphic
mapping f : T — T is defined by a pair of meromorphic functions 2 = fi(z,w),@ = fo(z,w).
It follows from Theorem 3.5 that this definition is equivalent to (3.6).

Remark 3.7. Let f : I' — C be a meromorphic function onI'. Then f can be extended to an
holomorphic function from I' to C in the following way:

F(P) — f(P), if Pisnota pole for f
(P)= o0 if P is a pole for f.

Let us verify that the map F is holomorphic. This is obvious in a neighborhood of
regular points. Let z be a local coordinate in the finite part of C, and C = 1/z the local
coordinate at co € C. Assume that the function has a pole of order k at the point Py € T,
i.e., it can be written in terms of a local coordinate T centred in Py in the form

z= f(P) = % Ok, e 20,

Then C = BLENS ~17k 4 O(7**1), i.e., the mapping has a zero of multiplicity k at Py.

f(P)

Example 3.8. A meromorphic function f from IP! to C is of the form

P(X,Y)
QX Y)

where P and Q are homogeneous polynomials of the same degree. One can extend f to a
holomorphic function F : P! — P! in the form

fXY) =

FXY):=[P(X,Y): Q(X,Y)].

Theorem 3.9. Let T and T be connected Riemann surfaces and T be compact. Let f : T — T bea
non constant holomorphic map. Then T is compact and f is onto.

Proof. Since f is holomorphic, it is also an open mapping. Therefore, f(I') is open in I
Since T is compact, f(T') is compact in T'. Since I is Hausdorff and connected, f(T') is open
and close in T, therefore f(T') = I'and I is compact. O

The following lemma characterizes the local behaviour of a holomorphic mapping.



54 CHAPTER 3. MEROMORPHIC FUNCTIONS ON A RIEMANN SURFACE.

Lemma 3.10. let f : T — T be a non constant holomorphic function between compact Riemann
surfaces. Then there exists local parameters T and T centered in P € T and Q = f(P) € T
respectively, such that the map f takes the form

T=1 keNlN. (3.3)

Proof. Let s and § be local coordinates centered at P € I and f(P) € I. Then in local
coordinates the holomorphic non constant function f : I' — I' takes the form

S 90s)

with ¢ holomorphic and (0) = 0. The function 1 can be written in the form

(s) = s*h(s) (3.4)

with i holomorphic, /(0) # 0 and k non negative integer. The number k does not depend
on the choice of the local parameters s and s. Let us define the new local coordinate 7 as

T =58(s), &(s) = h(s).

Such map is biholomorphic. In terms of the local coordinate 7, the map f takes the form
(3.3). |

Definition 3.11. The number k defined (3.4) is called the multiplicity of f in P, and denoted
by multp(f). A point P € T is called ramification point for f if multp(f) > 2. The point
f(P) = Q € T is called branch point. The number

bg(P) = multp(f) — 1

is called the branch number of f in P. The map f : T — T is called a holomorphic unramified
(ramified) covering if f does not (does ) have branch points.

Lemma 3.12. Non constant holomorphic mappings f : T — T are discrete. Namely the pre-image
of a point Q € T is a discrete set f~1(Q) in T. In particular, if T and T are compact, f~1(Q) is
finite.

Proof. Let Q € T and P € f~'(Q). Let 7 and 7 local coordinates centered at P and Q
respectively. In these coordinates the function f takes the form 7 = h(7) with #(0) = 0
and h holomorphic. Since the set of zeros of a non constant holomorphic function is
discrete, it follows that P is the only pre-image of Q. Therefore f~!(Q) forms a discrete
subset. The second statement follows from the fact that discrete subsets of compact space
are finite. m]
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Lemma 3.13. Let f : T — I be a non constant holomorphic map. Then the set of branch points
B={Pel|bs(P)>0}
is discrete and it is finite if I is compact.

The proof of the Lemma is similar to the proof of Lemma 3.12

Example 3.14. A hyperelliptic nonsingular Riemann surface w? = Pa,1(z), Poy11(z) =
]—[1221+1 (z — z;). Here the coordinates z and w are single-valued functions on I' and holo-
morphic in the finite part of I. These functions have poles at the point of I' at infinity: z
has a double pole, and w has a pole of multiplicity 2n + 1. This follows immediately from
the proposition (1.39). The function 1/(z — z;) has for each i a unique second order pole on
I' at the branch points. This follows from (1.25). We mention also that the function z has
on I' two simple zeros at the points z = 0, w = + +/P2,+1(0) which merges into a single
double zero if Py,11(0) = 0. The function w has 2n + 1 simple zeros on I' at the branch
points. (The multiplicity of a zero of a meromorphic function is defined by analogy with
the multiplicity of a pole.)

Example 3.15. A hyperelliptic Riemann surface w? = P,,(z). Here again the functions
z and w are holomorphic in the finite part of I'. But these functions have two poles at
infinity (in the infinite part of the surface I'): z has two simple poles, and w has two poles
of multiplicity n 4 1. This follows from proposition (1.39).

Exercise 3.16: Prove Theorem 3.5 for IPL.

Exercise 3.17: Prove Theorem 3.5 for hyperelliptic Riemann surfaces. Hint. Let f = f(z, w)
be a meromorphic (in the sense of Definition 3.3) function on the hyperelliptic Riemann
surface T defined by the equation w? = P(z). Show that the functions f, = f(z,w) +

f(z,—w)and f_ = f(z,w) — f(z, —w)

w
function on on I' is of the form f(z,w) = ri(z) + r2(z)w where r; and r, are rational
functions.

are rational functions of z, so that any meromorphic

To prove the simplest properties of meromorphic functions on Riemann surfaces it is
useful to employ arguments connected with the concept of the degree of a mapping.

Proposition 3.18. Let f : I — T be a nonconstant holomorphic mapping between compact
Riemann surfaces. For each Q € T let us define degq(f) to be the sum of the multiplicities of f at
the point of I mapping to Q:

dego(f) = >, multp(f).
Pef~1(Q)

Then deg(f) is constant independent from Q.
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Proof. We show that the function Q — deg(f) is locally constant. Let Py, ...P; be the
number of pre-images of Q under f. Let 7; be local coordinates centered at P; and % local
coordinate centered in Q so that locally near P; the function f takes the form

~ m; . .
T=r1", i=1,...,]

The above map has constant degree in a small neighbourhood of 7; = 0 fori = 1,...,].
What is left to prove is that near Q there are no other pre-images of Q left unaccounted
which are not in a neighbourhood of Py, ...P;. Suppose by contradiction that arbitrary
close to Q there are pre-images which are not contained in any of the neighbourhood of
the P;. Since I is compact we may extract a convergent sub-sequence of points in T, say P,
which are not contained in any of the neighbourhood of the P;. This subsequence has the
property that f(P;) — Q because f is holomorphic, therefore, the limit point of Pj, must
be one of the P;,i = 1,...j. We obtained a contradiction since we assumed that none of
the P,,’s lie in a neighbourhood of the P;,i = 1,..., . m]

Exercise 3.19: Prove that for any meromorphic function on a Riemann surface I' the
number of zeros is equal to the number of poles (zeros and poles are taken with multiplicity
counted).

Remark 3.20. A single non constant meromorphic function on a Riemann surface I' com-
pletely determines the complex structure of I'. Indeed let P € I'and n = b¢(P) + 1. Then
a local coordinate vanishing at P is given by

(f = FPYY™ if f(P) # 0

3.5
FRYV i £(P) = oo &)

Exercise 3.21 (Riemann-Hurwitz formula): Let f : T — I be a nonconstant holomorphic
map between compact Riemann surfaces. Prove the following generalization of the
Riemann-Hurwitz formula (see Lecture 2)

2 —2g(T) = degf(2 — 2g(T') — ) (multpf — 1) (3.6)
Pel’

where ¢(I') and g(T) is the genus of the Riemann surface I and I respectively and deg is
the degree of the function f.

Exercise 3.22: Let I be a nonsingular projective curve defined as I' := {[X : Y : Z] €
P2 |Q(X,Y,Z) = 0} where Q is an irreducible homogenueos polynomial of degree 7.
Show that the map

[X:Y:Z] - [Ox:Qy:Qz]

from IP? to P2 is well defined. The image of such map is called the dual curve [ to T.
Show that the map is holomorphic but it does not have a holomorphic inverse if n > 3.
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Definition 3.23. A map f : T — T is called a biholomorphic isomorphism if it is a bijective
holomorphic map with holomorphic inverse. If I = T, then the map is called an automorphism.

Itis not hard to derive from Theorem 3.5 that the class of biholomorphic isomorphisms
of Riemann surfaces coincides with the class of birational isomorphisms (the mapping it-
self and its inverse are given by rational functions. Namely let T := {(z, w) € C?| F(z,w) =
0} and T := {(Z, @) € C?|F(z,@) = 0}, then a birational isomorphism is of the form
Z=ri(z,w), W = s1(z,w) and z = (2, W), w = sp(Z, W), with r1(z, w), r2(Z, @), s1(z, w) and
s2(Z, w) rational functions. In what follows we use the terms bi-holomorphic isomorphism
and birational isomorphism interchangeably.

The following is obvious but important.

Lemma 3.24. If the surfaces T and T are biholomorphically (birationally) isomorphic, then they
have the same genus.

Proof. A biholomorphic isomorphism is clearly a homeomorphism. But the genus is
invariant under homeomorphisms [10]. The assertion is proved. m|

Definition 3.25. A Riemann surface I is said to be rational if it is biholomorphically isomorphic
to PL.

The genus of a rational surface is equal to zero. It turns out that this condition is also
sufficient for rationality.

Exercise 3.26: Let I' be a Riemann surface of genus ¢ > 1. Prove that there is no mero-
morphic function on I' with a single simple pole.

Example 3.27. The surface w? = z. This surface is rational. A birational isomorphism

onto P! is given by the projection (z, w) — w.

Exercise 3.28: Consider the Riemann surface I := {(z,w) € C? |w" = P,,(z)} where P,,(z)
is a polynomial of degree m in z with distinct roots. Consider the automorphism

J: (z,w) — (z,eznj/”w), j=1,...,n
and define the equivalence relation (z1,w1) ~ (z2,w7) if z1 = zo and wy = e2mi/My, for
some j. Show that the quotient surface I'/] is well defined and it is rational. Determine

the branch points of the projection map

n:T >T/]
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Example 3.29. A surface with w? = Py4(z) with ¢ > 1is nonrational. We show that any

such surface is birationally isomorphic to some surface of the form @* = 132g+1 (2). Let zo
be one of the zeros of the polynomial Pg2(z), and let

1 & w
z—z (2 —z9)8tV

Z =
The inverse mapping has the form

1 w
zfzo+z, wagH.

If Pogy2(z) = (z — 20) Hfﬁfl(z — z;), then ﬁng(E) = H?grl(l + (20 — z)z). Thus, both

“types” of hyperelliptic Riemann surfaces considered in Lecture 1 give the same class of
surfaces.
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Differentials on a Riemann surface.

4.1 Holomorphic differentials

We consider a complex-one dimensional manifold M with with an atlas of charts {Uy, ¢4}
with

Qo : Uy = VuccC

and ¢,(P) = zo € V, and P € U,. Here we are identifying C with R2 by writing
Zq = Xo + 1Y, With x, and y, standard coordinates on R2.
A smooth 0-form on M is a smooth function on M.

Definition 4.1. A smooth one 1-form (also called differential) w on M is an assignment of a
collection of two smooth functions hy(za, Za) and o (za, Za) to each local coordinate z, in U, such
that

@ = hy(za,Za) 20 + §a(Zas Za) 424, 4.1)

is invariant under coordinate change. Namely if zg = zg(za,Za) and Zg = Zg(Za, Za) are another
local coordinates such that U, n Ug # & then

_ . 0zZg _ . 0Z4 _ . 0Zy _ L 0Za\ .
w= (ha(za,za)a—zﬁ + 9a(2a, Za) é’zﬁ> dzg + <ha(za,za) 725 + 8a(2a, Za) 3Zﬁ> dzg.

The two parts h(zn, Za) dzy and g(zq, Za) dZ, of the expression (4.1) will be called (1, 0)-
and (0, 1)-forms respectively. The above expression shows that the decomposition of w
in (1,0) and (0,1) form is invariant under local change of coordinates, if and only if the
change of coordinates is holomorphic, namely

0Z, 0Z4

a2 =

59
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The above conditions in real coordinates are equivalent to the Cauchy-Riemann equation.
For a one-complex dimensional manifold M that has a complex structure ( namely a
Riemann surface), the decomposition of a one form in (1,0) and (0, 1) form is invariant
under local change of coordinates. From now on we will consider only holomorphic
change of coordinates.

Definition 4.2. A one form w is called holomorphic is the functions hy(za,Zs) in (4.1) are all
holomorphic functions and g, = 0, namely

w = h(zy)dz,.
A one form w is called antiholomorphic if
w = g(Z)dza.
In a similar way to one form we can define two-forms.

Definition 4.3. A smooth two form n on M is an assignment of a smooth function fu(za, Za) such
that

N = fa(za,Za)dza A dZy
is invariant under coordinate change.
The exterior multiplication satisfies the conditions
dzg ANdzy =0, dzg Andz, =0, dzy AdZ, = —dZy A dz,.
Under holomorphic change of coordinates zg = zg(z4), Zg = Zg(Za) one has
N = fp(zp, 2p)dzp A dZg = fu(2a,Za)dza A dZy
where

2
dz,

leg

f8(z8,28) = fa(ZasZa)

We define QF for k = 0,1, 2 as the set of smooth functions, smooth one forms and smooth
two-forms on M respectively. We define the exterior derivative

d: 0 >0, k=012
as follows. For f € Q°,

df(z,2) = fdz + fodz,
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For one forms w € Q!, with w = h(z,z)dz + g(z,Z)dz in a given coordinate chart, the
exterior derivative takes the form

dw =dh Adz +dg A dz

and for two forms, n € Q*(M)
dn = 0.

Clearly the fundamental property of the exterior differentiation is
4> =0.

We can decompose the exterior derivative operator d according to the decomposition of
1-form in (0,1) and (1, 0) forms

d=0+0
so that for h € Q%0 := Q0 in a local chart

0: Q% > QY 0h(z,2) = hodz,
and

0: Q% > Q% On(z,z) = hadz
In general we get the diagram

Qo1 2 02

b

QO 5 Ql,O
0

where Q? = Q1. Also in this case 02 = 0 and 0% = 0.

Definition 4.4. A one form w is called exact if there is a function f € QO such that df = w. A
one form w € Q' is called closed if dw = 0.

Lemma4.5. A (1,0)-form w = h(z,z) dzis closed if and only if the function h(z, Z) is holomorphic.

It follows that all the holomorphic differentials, locally can be written in the form
w = h(z)dz where h(z) is a holomorphic function. Holomorphic differentials are closed
differentials.
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Definition 4.6. The first de Rham cohomology group is defined as

H ) - Closed 1-forms  ker(d : Q' — Q?)
deRham’™ 7 Exact 1-forms — Im(d : Q0 — Q1)

A similar definition can be obtained for the Dolbeault cohomology groups H*(T') and
HY(T) with respect to the operator 0:

ker(d : QY0 — ?) -
10Ty . _ . OL0 2
HY(T) := e ) ker(0: Q" — QF),

HO\(T) - ker(0: Q% - Q%) Qo1
T (0:Q0 - Q0%)  Tmage(d: Q0 — QO1)

A non trivial result shows that there are isomorphisms among the above three groups [17].

By denoting HO!(T') the complex conjugate of the group H%!(T), one has the following
theorem.

Theorem 4.7. The Dolbeault cohomology groups H'?(T) and HO1(T') are isomorphic

HY(I') ~ HOL(T) (4.2)
and the first de-Rham cohomology group is isomorphic to

Hl

deRham (F) = HLO (r) ® HO/l (r) : (43)

The relation (4.2) shows that the complex vector spaces H'?(T') and H%!(T) have the
same dimension. The relation (4.3) shows that the dimension of the complex vector space

HY(T) and H%!(T) is half the dimension of the complex vector space HblieRham(l").

4.1.1 Integration

We can integrate one forms on curves of the Rieamnn surface I', two-forms on domains
of I and 0-forms on zero dimensional domains of I', namely points. Let ¢y be a 0-chain,

o) = Znipi/ Pl' el
i

then for f € Q°(T) the integral of f over a 0-chain cy is

L = S ey
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A one form w can be integrated over a one-chain c. If the piece-wise differentiable path
c:[0,1] — I' is contained in a single coordinate disc with coordinates z = x + iy, then the
integral of w over the one-chain c takes the form

1 1 Z
Lw:fo h(z(t),Z(t))%dtJff g(z(t),Z(t))dil—(:)dt

0

By the transition formula for w the above integral is independent from the choice of the
coordinate chart z. In a similar way a two-form 7 can be integrated over two chains D.
Again restricting to a single coordinate chart one has

JJD n= JJD f(z,2)dzdz.

The integral is well defined and extends in a obvious way to an arbitrary two-chain.

Theorem 4.8 (Stokes theorem). Let D be a domain of I with a piece-wise smooth boundary 0D
and let w be a smooth one-form. Then

JD dow = LD w. (4.4)

As a consequence of Stokes theorem, the integral of closed forms w on any closed
oriented contour (cycle) y on I does not depend on the homology class of . Recall that
two cycles y; and y; are said to be homologous if their difference y1 — y2 = y1 U (—)2)
(where (—)2) is the cycle with the opposite orientation) is the oriented boundary of some
domain D onI' with 0D = y1 —)». Then for a close differential w and from Stokes theorem
we obtain

OZdeZJ wzf wsz—f .
D oD Y1—)2 71 V2

In addition, the integral of a close differential w on a close cycle y is independent from
the cohomology class. Let @’ = w + df for some smooth function f, then

We summarise the above discussion with the following proposition.

Proposition 4.9. The integration is a paring between the first homology group H1(I', Z) and the
first cohomology group H;eRham (I',C)

J:Hl(F,Z) xH . ([,C)—C

deRham

The pairing is non-degenerate.
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Proof. We need to prove that the pairing is non-degenerate. Consider a smooth one-form
w such that

Ja):O
)/

for all y € H1(T', Z). It follows that the function

f<P>=cho

Py

is well defined and it does not depend on the path of integration between Py and P.
Therefore df = w, namely the equivalent class of w in the de-Rham cohomology is zero,
[w] =0in H}leRham(I‘,C). m]

As a consequence of the above proposition we have the following lemma.

Lemma 4.10. The dimension of the space H;eRhﬂm (T, C) is less then or equal to 2g where g is the
genus of the compact Riemann surface I'.

Proof. Suppose by contradiction, that there are wy,...,ws, s > 2¢ independent closed

differentials in H;YeRham (I',C). Then let us consider a basis of the homology y;, j =1...,2¢

and construct the matrix with entries

Cjkzj wr, j=1,...2¢9, k=1,...s.
14

j
Such matrix has rank at most equal to 2g, and therefore one can find nonzero constants
a,...,4as such that the differential w = ZZ:l axws has all its periods equal to zero, namely

J w, j=1,...24.
Vi

By proposition 4.9 it follows that [w] = 0 and we arrive to a contradiction. m]

As a consequence of the above lemma we have the following corollary for the dimen-
sion of the space of holomorphic differentials.

Corollary 4.11. The space of holomorphic differentials on a Riemann surface of genus g is no
more than g-dimensional.

Actually the number of independent holomorphic differentials is indeed equal to g.

Theorem 4.12. The space of holomorphic differentials on a Riemann surface I of genus g has
dimension g.
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We do not give a proof of the above theorem that is constructive (see [18] or [17]).
However for a Riemann surface given as the zeros of a polynomial equation one can
determine explicitly the holomorphic differentials.

Example 4.13. Let us consider holomorphic differentials on a hyperelliptic Riemann sur-
face

2¢+1
[={w =Py1(2)}, Poga(e) = [[(z—20)
k=1
of genus g > 1. Let us check that the differentials
Z1dz Z1dz
nk: w = ’ k:].,...,g (4‘5)
P2g+1 (Z)

are holomorphic. Indeed, holomorphicity at any finite point but branch point is obvious
as the denominator does not vanish. We verify holomorphicity in a neighborhood of the i-
thbranch point P; = {z = z;, w = 0}. Choosing the local parameter 7 in a neighborhood
of P; in the form © = /z — z;, we get from (1.25) that ny = y(7)d7, where the function

2(z; + t2)k1
\/Hj;ti(Tz +2; — zj)

is holomorphic for small 7.
At the point at infinity the differentials 77, can be written in terms of the local parameter

(1) =

T = 277 in the form Nk = ¢k(7)dt, where the functions

NI—=

i=1

2g+1 -
Pr(1) = —27%87H) [ H (1-— zir)] , k=1,...,g

are holomorphic for small 7.

In the same way it can be verified that the differentials n; = zkildz/w, k=1,...,gare
holomorphic on the Riemann surface w? = Pyg(z) with Ppg2(z) an even polynomial
with 2¢ + 2 distinct roots.

In general for a nonsingular Riemann surface T := {(z,w) € C?,|F(z,w) = 0}, where
F(z,w) is a polynomial in z and w, the differential

Zwidz .
== >0, .
©= ) i,j=0 (4.6)
is holomorphic for all finite values of z and w. Indeed the only possible points where such
differential might have poles are the zeros of F,,, namely the branch points with respect
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to the projection 7 : I' — C such that 7t(z, w) = z. At the branch points with respect to the
projection 7t one needs to take w as local coordinate. Since F,dz + F,dw = 0 one has

dz  dw
Fo  F'
Therefore at the branch points where Fy, = 0 one can write the differential w in the form
Ziwkdw
w=— T Since we assume that the surface I' is nonsingular, F, # 0 at the branch
z
points.

In order to determine for which coefficients (i, j) the differential w in (4.6) remains
holomorphic also at infinity, we explain the following rule, that is true for nonsingular
Riemann surfaces. Consider the carrier of the polynomial F(z,w) = ,; ;a;jz'w/, namely

the set of all integral points in Z? such that
C(F) = {(i, j) € Z*|a;; # 0}

The Newton polygon N(F) of F(z, w) is defined as the convex hull of the carrier C(F). Then
the holomorphic differentials associated to the curve given by the equation F(z,w) = 0
are

Zi=lwi—1dz

o) (i,j) € N(F)

where (i, j) are the points strictly inside the Newton polygon N(F).

This fact can be easily verified for hyperelliptic Riemann surfaces. Now let us check
it for a smooth projective curves.

Consider the smooth compact Riemann surface

[={[X:Y:Z]eP*|QX,Y,2) = > XYz =0}

0<i+j<n

Let us consider the affine part of I' given by the equation F(z,w) = >, i<, ajjz'w’.
The point(s) at infinity of the affine curve are determined by the equation Q(X,Y,0) =
Di<itjn a;iX"Y) = 0. For simplicity we assume that there are no branch points at infinity
so that the homogeneous equation Q(X, Y,0) = 0 has n distinct roots. From this it follows
that deg Q(X,0,0) = deg Q(0,Y,0) = n.

Then the holomorphic differentials are

Zi=lwi—1dz

T]l‘jzm, 1+]<n—1. (47)
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Indeed the above expression is holomorphic for finite values of z and w. The only points
we need to consider are the points at infinity 0!, ..., 0", By the above assumptions we
have that a local coordinate at infinity is

1 ¢ .

-, W= —= =1,...,n

G ¢!

where c; are the solutions of the homogeneous equation Q(c;,1,0) = 0. In these coordi-
nates w takes the form

= —C dé
éi—i—j F, (

Z =

&1+ 0(&))dE
=—c —
% &t
’ &

= | =

where c is a nonzero constant. The above differential is holomorphicifi+ j <n —1. If
F(0,0) # 0 then the Newton polygon associated the F is the triangle with vertices (0,0),
(0,n) and (n,0). Then all the integral points strictly inside the triangle satisfy the rule
0 < i+ j < n—1 Therefore the integral points inside the triangle are in one to one
correspondence with the holomorphic differentials (4.7).

Exercise 4.14: Show that the differentials obtained using the Newton polygon formula
for the polynomiil F(z, w) are holomorphic without assuming that F(0,0) = 0 and that at
infinity there are no branch points. (Study the conditions on the shape of the Newton
polygon so that the curve I is non singular in (0,0) or at infinity.)

4.1.2 Riemann bilinear relations

In this section we prove several technical assertions regarding the periods of close dif-
ferential and holomorphic differentials. Such relations are known as Riemann bilinear
relations

Lemma 4.15. Let wy and w; be two closed differentials on a surface I of genus g > 1. Denote
their periods with respect to a canonical basis of cycles ay, ..., aq, p1,...,Bg, by Ai, Biand A;, B;:

Ai—fa), Bi—fa), Aﬁ—fa)', Bi—faﬁ (4.8)
Qi i Qi i

Denote by f = § w the primitive of w, which is single-valued on the surface T cut along a;, bj, then

fjra) Ao = fffa)’ = Zg;(AiBg — AlB;). 4.9)
of =
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Proof. The first of the equalities in (4.9) follows from Stokes’ formula, since d(fw’) = wr@'.

Let us prove the second. We have that
8 g
/ / /
f 1o :z(j 41)@ +2<j 41)@.
e i=1 \Y& Y i=1 \"Fi B

To compute the i-th term in the first sum we use the fact that f(P) = Sgo @ where Py is a
point in the interior of I':

P; P; Db;
f) =) = [0 [w=[w=-5, (4.10)
Py Py P!

since the cycle P;Pi, which is closed on I', is homologous to the cycle f3; (see the figure; a
fragment of the boundary oI is pictured). Similarly, the jump of the function f in crossing
the cut f; has the form

Qi) — f(Q) = Jw = A; (4.11)

since the cycle Q/Q; on T is homologous to the cycle a;. Moreover, o'(P) = «'(P;) and
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@'(Q}) = @'(Q;) because the differential ' is single-valued on I'. We have that

i

Liﬂpz’)w’(l’f) + f L fP)e'(P) = Lifm)w'(zvi) - f (f(P)) + B)a/(P)
= _BiJa‘ w'(P;) = —BjA!

1

where the minus sign appears because the edge a; " occurs in 0T with a minus sign.

Similarly,
(J, [ ) =
i JB
Summing these equalities, we get (4.9). The lemma is proved. m]

We derive some important consequences for periods of holomorphic differentials
from the lemma 4.15. Everywhere we denote by ay, ..., g, B1,---,Bg the canonical basis
of cyclesonT.

Corollary 4.16. . Let w be a nonzero holomorphic differential on ', and Ay, ..., Ag, By, ..., By its
corresponding periods with respect to the canonical homology basis a1 ..., aq and By ..., Bg, then

8
g (ZAkBk> <0. (4.12)
i=1

Proof. Take o’ = @ in the lemma 4.15. Then A; = A;and B; =Bjfori=1,...,¢. We have

that
iffa)Aa)'zifJ]ﬂZdZAdZ:ff]f|2dx/\dy>0.
2)Ur 2 r

Here z = x + iy is a local parameter, and w = f(z)dz. In view of (4.9) this integral is equal
to

The corollary is proved. m]
Corollary 4.17. If all the a-periods of a holomorphic differential are zero, then w = 0.

This follows immediately from Corollary 4.16.
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Corollary 4.18. On a surface I of genus g there exists a basis wy, ..., wgq of holomorphic differ-
entials such that

%a)kzéjk, j,k= 1,...,g. (413)
@

Proof. Let 1, ...,1nq be an arbitrary basis of holomorphic differentials on I'. The matrix

Ajk = %ﬂk (414.)
@j

is nonsingular. Indeed, otherwise there are constants ¢, ...,ce such that Dk Ajcr = 0.
But then )} ¢k = 0, since this differential has zero a-periods. This contradicts the
independence of the differentials n;, ..., 1.

8
cu]- = Z Ak]‘T]k, ] = 1,. e 8 (415)
k=1

where the matrix (A j) is the inverse of the matrix (A ), >k Ay Ay j = 0ij, we get the desired
basis. The corollary is proved. m|

A basis wy, ..., w, satisfying the conditions (4.13) will be called a normal basis of
holomorphic differentials (with respect to a canonical basis of cycles aj, ..., g, 1., ﬁg)

Corollary 4.19. Let wy, ... wq be a normalized basis of holomorphic differentials, and let

Bjk=§a)k, pk=1,...,4 (4.16)
Bj
Then the matrix (Bj) is symmetric and has positive-definite imaginary part.
Proof. Let us apply the lemma 4.15 to the pair = wj and @’ = wy. Then w A @', A; = 6;j,
B; = Bjj, A} = 6y, B = Bj. By (4.9) we have that

0= Z(éz‘jBik — 0iBij) = (Bjx — Byj)-
i

The symmetry is proved. Next, we apply Corollary 4.16 to the differential Z}‘;l Xjw;
where all the coefficients x1,...,x; are real. We have that Ay = x;, By = 2]‘ XBy; which
implies
S(Z ka x]-Bk]-) = Z 3(Bk]~)xkxj < 0.
kg kj

The lemma is proved. m]
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Figure 4.1: Homology basis.

Definition 4.20. The matrix (Bj) is called a period matrix of the Riemann surface T.
Example 4.21. We consider a surface I of the form w? = P3(z) of genus ¢ = 1 (an elliptic

Riemann surface). Let P3(z) = (z — z1)(z — z2)(z — z3) and choose a basis of cycles as
shown in the figure 2.7. We have that

o1 — @ — adz 4 dz -
VR S VPa))

Note that
§ dz _ ZJZZ dz .
P3(z) z1 P3(z)
aq

The period matrix is the single number

(@ dz
adz 2 /P3(z)
S v F e 3(B) > 0. (4.17)
,Bl SZl
P3(z)

Example 4.22. . Consider a hyperelliptic Riemann surface w? = Ppq,1(z) = 1_[125 ;rl (z—z)

for genus ¢ > 2, and choose a basis of cycles as indicated in the figure 4.2 (there ¢ = 2). A
normal basis of holomorphic differentials has the form
g k—1
L cpzt Mz
wj=—L -1, (4.18)
P 2g¢+1 (Z)
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B:

Figure 4.2: Homology basis.

Here (cjx) is the matrix inverse to the matrix (A ;) where

k 14z
Ay =2 f =1, (4.19)
ZZ]

A/ P2gy1(2) ’ e

4.1.3 Meromorphic differentials, their residues and periods

Meromorphic (Abelian) differentials on a Riemann surface differ from holomorphic dif-
ferentials by the possible presence of singularities of pole type. If a surface is given in the
form F(z,w) = 0, then the Abelian differentials have the form w = R(z, w)dz or, equiva-
lently, o = Ri(z, w)dw, where R(z,w) and R;(z,w) are rational functions. For example,
on a hyperelliptic Riemann surface w? = P2¢11(z) the differential w™ 12k=1dz has for k > g
a unique pole at infinity of multiplicity 2(k — g) (see Example 4.13). Suppose that the
differential w has a pole of multiplicity k at the point Py i.e., can be written in terms of a
local parameter z, z(Py) = 0, in the form

w = (c—kk+~--+c—1+0(1)>dz (4.20)
Z Z

(the multiplicity of the pole does not depend on the choice of the local parameter z).

Definition 4.23. The residue Resp—p, w(P) of the differential w at a point Py is defined to be the
coefficient c_.

Lemma 4.24. The residue Resp—p, w(P) does not depend on the choice of the local parameter z.
Proof. This residue is equal to

oo 1
17 oni
C
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where C is an arbitrary small contour encircling Py. The independence of this integral on
the choice of the local parameter is obvious. The lemma is proved. m|

Theorem 4.25 (The Residue Theorem). . The sum of the residues of a meromorphic differential
w on a Riemann surface, taken over all poles of this differential, is equal to zero.

Proof. Let Py, ..., Py be the poles of w. We encircle them by small contours Cjy, ..., Cy such
that

1
Resw = —,%w, i=1,...,N,
27t
Ci

(the contours C; run in the positive direction), and cut out the domains bounded by
Cy,...,Cn from the surface I'. This gives a domain I” with oriented boundary of the
form oI" = —Cy — - - - — Cy (the sign means reversal of orientation). The differential w is
holomorphic on I". By Stokes’ formula,

1 1 1
= -— = - = —r— dw =0,
Z o 2ni2§w i 2nJ L
j=1 e ar
since dw = 0. The theorem is proved. m]

We present the simplest example of the use of the residue theorem: we prove that
the number of zeros of a meromorphic function is equal to its number of poles (counting
multiplicity). Let Py, ..., Pk, be the zeros of the meromorphic function f, with multiplicities
my,...,mp and let Qy, ..., Q; be the poles of this function, with multiplicities ny, ..., n.
Consider the logarithmic differential d(Inf). This is a meromorphic differential on I'
with simple poles at Py, ..., Py with residues my, ..., my and at the points Qy, ..., Q; with
residues —ny, ..., —n;. By the residue theorem: my + --- + my —ny —--- — n = 0, which
means that the assertion to be proved is valid. One more example. For any elliptic function
f(z) on the torus T? = C/{2mw + 2n«'} the residues at the poles are defined with respect
to the complex coordinate z (in C). These are the residues of the meromorphic differential
f(z)dz, since dz is holomorphic everywhere. Conclusion: the sum of the residues of any
elliptic function (over all poles in a lattice parallelogram) is equal to zero. We formulate
an existence theorem for meromorphic differentials on a Riemann surface I (see [?] for a
proof).

Theorem 4.26. Suppose that Py, ...,Pn are points of a Riemann surface I and zy,...,zN are
local parameters centered at these points, z;(P;) = 0, and the collection of principal parts is

o) o0

—k; ~1 .
— t ot = dz;, i=1,...,N. (4.21)
Ziz Zi
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Assume the condition
N .
i, =0. (4.22)
i=1

Then there exists on I a meromorphic differential with poles at the points Py, ..., P, and principal

parts (4.21).

Any meromorphic differential can be represented as the sum of a holomorphic differ-
ential and the following elementary meromorphic differentials.

1. Abelian differential of the second kind Q} has a unique pole of multiplicity n + 1 at
P and a principal part of the form

g$:<;ﬂ+om>@ (4.23)

with respect to some local parameter z, z(P) = 0,n = 1,2,....

2. An Abelian differential of the third kind Qpg has a pair of simple poles at the points
P and Q with residues +1 and —1 respectively.

Example 4.27. We construct elementary Abelian differentials on a hyperelliptic Riemann
surface w? = Pq41(z). Suppose that a point P which is not a branch point takes the form

P=(aw, = \/Im ). An Abelian differential of the second kind QI(}) has the form

<w+w,1 P/2g+1(”) > dz

(z—a)2 2w,(z—a) 2w

ol _

5 (4.24)

(n)

(with respect to the local parameter z-a). The differentials O, can be obtained as follows:

P
1 dn—l 1
P = i g1 (4.25)
If P = (z;,0) is one of the branch points, then
dz dz
Q= ——— for n =2k, Q) =———— for n=2k+1. 4.26
P 2(z — zy)k+1 o P 2(z — z)H 1w o (1.26)

Finally, if P = oo, then

1

(n) 1k k142
Q7 = —52 dz for n =2k, Qf = —Engr - for n =2k + 1. (4.27)
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We now construct differentials of the third kind. Suppose that the point P and Q have the
form P = (a,w, = 4/Pagy1(a)) and Q = (b,wy, = 4/P2gy1(b)). Then

w+w, wHw,)\ dz
Qpp = — — 4.2
PR < z—a z—b >2w (428)
If Q = +o0 then
w+ w, dz
Qpp = —. 4.29
PQ z—a 2w ( )

Accordingly, we see that for a hyperelliptic Riemann surface it is possible to represent all
the Abelian differentials without appealing to Theorem 4.26.

Exercise 4.28: Deduce from Theorem 4.26 that a Riemann surface I of genus 0 is rational.
Hint. Show that for any points P, Q € T the function f = exp { Qpg is single valued and
meromorphic on I and gives a biholomorphic isomorphism f : T — CP'.

The period of a meromorphic differential w along the cycle y is defined if the cycle
does not pass through poles of this differential. The period §, @ depends only on the
homology class of  on the surface I', with the poles of w with nonzero residue deleted.
For example, the periods of the differential Qpg of the third kind along a cycle not passing
through the points P and Q are determined to within integer multiples of 27ti. In speaking
of the periods of meromorphic differentials we shall assume that the cycles do not pass
through the poles of the differential, and we also recall that the dependence of the period
on the homology class of I' is not single-valued (for differentials of the third kind).

Lemma 4.29. Suppose that the differentials (1 and y on a Riemann surface I' have the same
poles and principal parts, and the same periods with respect to the cycles ay, ..., aq, B1,...,Bg-
Then these differentials coincide.

Proof. The difference w1 — w; is a holomorphic differential that has zero a-periods. There-
fore, it is identically zero (see Lecture 4.1.2). The lemma is proved. m]

Definition 4.30. A meromorphic differential w is said to be normalized with respect to a basis of
cycles aq, ..., aq, B1, ..., Bg if it has zero a-periods.

Any meromorphic differential w can be turned into a normalized differential by adding
a holomorphic differential Zle cywy. Indeed the condition that Q = @ + Y crwy is
normalised, namely

J

8
a)-l—ZCkf wr =0, j=1,...,g,
k=1 aj

j
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defines the constants ¢y, ..., cg uniquely.

By Lemma 4.29, a normalized meromorphic differential is uniquely determined by its
poles and by the principal parts at the poles. In what follows we assume that meromorphic
differentials are normalized. We obtain formulas that will be useful for the g-periods of
such differentials by arguments like those in the proof of Lemma 4.15.

Lemma 4.31. The following formulas hold for the p-periods of normalized differentials Ql(jn) and
QPQ

() _ o1 d
QP =2T(ladzn—_ll’bz‘(z>|2:0, k= 1,...,g, n = 1,2,..., (430)
Bk

where z is a particular local parameter in a neighborhood of P, z(P) = 0, and the functions Yy (z)
are determined by the equality wy = Px(z)dz and w1, ..., wq is a normalized basis of holomorphic
differentials with respect to the canonical homology basis o, ..., aq,B1, ..., Be,

P
QPQ S ZRiJ Wi, i= 1,...,g, (4.31)
i Q
k

where the integration from Q to P in the last integral does not intersect the cycles ay,...,ay,
ﬁl, ceey ‘Bg.

Proof. We encircle the point P with a small circle C oriented anti-clockwise; deleting the

interior of this circle from the surface I', we get a domain I with dI” = —C. Let us apply
the arguments of Lemma 4.15 to the pair of differentials w = wy, @' = QI()”). Denote by u;
the primitive
Q
(@ = | o 432
Py

which is single-valued on the Poincare’ polygon I" of the surface I'. We have that

8
0= Jf W AW _J QY = Z AjB) - jﬁukglﬁ”) (4.33)
'’/ al"/ =

C

(the boundary oI” differs from the boundary oI by (—C)). Here the a and -periods of wy
and QIIEI have the form

_ _ _ (n)
Aj=ou, Bi=By, =0, B=fay.
Bj
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From this,

P Z
(n) _ () _ o 0\ _ o dz
fj;QP” = fﬁquP” = 2mi ngs(quP” ) = 2mi 1§:eg [(LO +L l!’k(’()d’() z”ﬁ] (4.34)
B C

Computation of the residue on the right-hand side of this equality leads to (4.30).

We now prove (4.31). Let C and C’ small circles around P and Q respectively. Deleting the
interior of this circles from the surface I', we get a domain I with ¢I" = —C — C'. Let us
apply the arguments of Lemma 4.15 to the pair of differentials w = wy, @’ = Qpg. Denote
by u; the primitive of w;. By analogy with (4.33) and (4.34) we have that

fi;QpQ = 27i fﬁ qupQ + 27 § qupQ
Bi C C

Since the differential Qpg has a simple pole in P and Q with residue +1 respectively, the
above integrals are equal to

Qpg = ug(P) — ur(Q) = Pwk— ka= PCUk
;f o foo ]

Py Py Q

where we assume that the point Py lies in the interior of I”. The lemma is proved. m]

Exercise 4.32: Prove the following equality, which is valid for any quadruple of distinct
points Py, ..., P4 on a Riemann surface:

P, P;
QP3P4 - QPl P2 . (435)
P, Py
Exercise 4.33: Consider the series expansion of the differentials QI()”) in a neighborhood
of the point P
o _ (1,3
n n /
S Z ¢Vl |dz. (4.36)
j=0
Prove the following symmetry relations for the coefficients cgk):
k . .
kcﬁjl = ]01(21, k,j=1,2.... (4.37)
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Exercise 4.34: Prove that a meromorphic differential of the second kind w is uniquely
determined by its poles, principal parts, and the real normalization condition

Fpw=0 (4.38)
;ff

for any cycle y. Formulate and prove an analogous assertion for differentials of the third
kind (with purely imaginary residues).

Elliptic curve and elliptic functions

Let’s come back to the example 4.21 and consider the function (”elliptic integral”)

P
u(P) = J wi, (4.39)

Py

which is single-valued and holomorphic on the surface I' which is obtained by cutting
I' along the cycles a; and ;. This function is not single-valued on I When the path
of integration in the integral (4.39) is changed, the integral changes according to the law
u(P) — u(P) + S), w; where y is a closed contour (cycle). Decomposing it with respect to
the basis of cycles, y = ma; + np;, m and n integers we rewrite the last formula in the
form

u(P) — u(P) + m +Bn, I(B) > 0. (4.40)

We define the two-dimensional torus T? as the quotient of the complex plane C = R? by
the integer lattice generated by the vectors 1 and B,

T? = C/{2nim + Bn | m,n € Z} (4.41)

(the vectors 1 and B are independent over R because J(B) > 0). The torus T? is a
one-dimensional compact complex manifold. By (4.40) the function u(P) unambiguously
defines a mapping I' — T2. It is holomorphic everywhere on I': du = w and du vanishes
nowhere (verify!). Itis easy to see that this is an isomorphism. The meromorphic functions
on the Riemann surface I' are thereby identified with the so-called elliptic functions — the
meromorphic functions on the torus T2. The latter functions can be regarded as doubly
periodic meromorphic functions of a complex variable. The absence of nonconstant
holomorphic functions on I' (see Lecture 3) leads to the well-known assertion that there
are no nonconstant doubly periodic holomorphic functions. For comparison with the
standard notation of the theory of elliptic functions we note that usually B is denoted
with the letter T and J7 > 0. We give the construction of the mapping T?> — T inverse to
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(4.39). Let " and w” be two complex numbers linearly independent over the real numbers
and consider the torus T? defined as

T> =C/L, L= {2ma' +2na"|mmne Z)}. (4.42)
The Weierstrass elliptic function, p(u), u € C is defined by
1 1 1
pu) = —+ [— - —} (4.43)
u? a)eLZ\ELO} (Ll o a))Z @?

It is not hard to verify that the function ¢ (u) converges absolutely and uniformly on com-
pact sets not containing nodes of the period lattice. Therefore, it defines a meromorphic
function of u having double poles at the lattice nodes. Its derivative ¢’(u) can be obtained
by differentiating the series term by term ( check!)

The function ¢ (u) is obviously doubly periodic: p(u + 2ma’ + 2nw”) = o(u), m,n € Z.
The Laurent expansions of the functions ¢(u) and ¢’ (1) have the following formsasu — 0

1 g gt
p(u)—;-ﬁ-w-ﬁ-wﬁ-..., (4.44)

2 gu  gud

QI(M)Z—E—FW—F?-F..., (4.45)
where
=60 >
wel\{0}
(4.46)
©@=140 > o
weL\{0}

(verify!). This gives us that the Laurent expansion of the function ()2 —49% + 290 + $3
has the form O(u) as z — 0. Hence, this doubly periodic function is constant, and thus
equal to zero. Conclusion: the Weierstrass function p(u) satisfies the differential equation

(9')? = 49° — 220 — g5. (4.47)
Proposition 4.35. The function ¢ : C\L — C is surjective. If

o(u) = p(ug), thenuelL + uy. (4.48)
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Proof. For any c € C consider the function f(u) = ¢(u) — c. This function is meromorphic
with a double pole on the lattice points. Consider the parallelogram

IT:= {&+ 2s0 +2tw", s,t€(0,1]}.

Since the function f has only a double pole in IT, it has two zeros counting multiplicity.
Let up be one of the two zeros, f(ug) = 9(ug) —c = 0. Since p(—u) = p(u), it follows
that 0 = f(—up) = ¢(—up) — ¢ and this shows that the function ¢ (u) is surjective. From
the above argument and the periodicity of g, it follows that for any u € L + ug, one has

9 (u) = p(uo). O
Let us now consider the curve
Tp:={[X:Y:Z]eP?|ZY? = 4X° — goX7Z? — ¢375} (4.49)
Lemma 4.36. The curve I'y is non singular.

Proof. Consider the affine curve (4.47). By the periodicity properties of (1) one has
9 (1 +20") = p'(u)

which is true in particular for u = —«’ so that ¢'(@') = ¢/'(—a’). Since ¢'(u) is odd it
follows that
¢’ (') = 0.

Repeating the same reasoning for «” one has
(") =0, ¢'(0"+a')=0.

Using (4.47) the zeros of the polynomial 4¢3(u) — g2 (u) — g3 are givenby u = o', u = "
and u = @’ + @” so that one has

49° (1) — g2 (1) — g3 = 4(p(u) — p(@))(P() — (")) (P(11) — (@’ + @")).

By proposition 4.35 the values p(«’), p(@") and p(«@’ + ") are distinct so that the curve
(4.47) is non singular. O

The following theorem can be proved as an exercise

Theorem 4.37. The map

¢:T> > Ty
defined by
du+L) = { %J(”l) : g‘j/(”) 1 "e E\L (4.50)

is biholomorphic.
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In particular the map (4.50) is the inverse of the map (4.39). We observe that from
lemma 4.36 the discriminant A(w’, @”) of the curve (4.47) is different from zero, namely

A, @") = g3(0', @) — 27¢5(0, ") # 0
furthermore under the dilatation o’ — Aw’ and ©” — Aw” the discriminant scales as

1
AL, A") = ﬁA(a)’, ).

2 /!
In particular, choosing A = 2%), and defining 7 = %, with J(w”/w’) > 0, we obtain that

g = g2(7), and g3 = ¢3(7), A = A(t) with t € H, H := {t € C, 37 > 0}. Regarding the
Weierstrasse g function it is easy to check that

P(Au; Ao, Aa") = %g{)(u, ;")

so that choosing A = 51 one can consider the Weierstrasse function normalised as

T ==+ Y [ 1! } T
’ ﬁz m,neZ,(m,n)#:(0,0) (ﬂ—n/L—n"[)z (ﬂ’l+7’l’[)2 ’ 26()/'

Exercise 4.38: Show that

a b

B 0T Dy ey dPo(n ), (C d) e SL(2,Z). (4.51)

g)(mﬁ—d;m—kd

Definition 4.39. The Klein | function | : H — C is defined as

$2(1)?

J(t) = 1728 Ok

(4.52)

The Klein ] function is an an analytic function from H to C. The choice of the number
1728 is due to the fact that defining g = 2™ the expansion of | as g — 0 takes the form

1
J(q) = 2t 744 4 1968844 + 214937604° + ...

namely all the coefficients of the expansion are integers. We consider the action of the
modular group

PSL(2,Z) = SL(2,Z)/{1, -1}
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namely the set of 2 x 2 matrices with integer entries and determinant equal to one where
the matrices A and —A are identified. Such group has two generators

1
To1+1, 7> ——.
T

In order to determine isomorphism classes of elliptic curves given by 4.49), the following
lemma and theorem will be usefull.

Lemma 4.40. Let T and v’ € H. Then

J(t") = J(7)
if and only if
- %, (Z Z) e PSL(2,Z). (4.53)

Proof. From the definition one has

1 4 1
St)=60 ———— | —60(cT +d) -
mneZ,(mn)#0,0) \ m + HWC +b m' ' eZ,(m’ n')#(0,0) (m/ + n/T)4
ct+d
= (et + d)*ga (7).
In the same way we obtain
83(7") = (et +d)°g3(7)
so that
3t et +d)2g3(t
J(t') = 1728— & )2 — 1728 ( — 3) &) — =J(1).
&(7') = 27g5(7') (et +d)2(g5(7) — 2785(7)
Viceversa, let us assume that J(7) = J(7') = p. Suppose p # 0 and p # 1728. Then
27g3(7) 27g3(7")
so that
I B 27g3(7") _ 27¢3(7)

w=1728  J(t)  &(x)
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which shows that

(50) - (&%)

/
Defining 0% := ggzg?) ‘? (Z)) , it is straightforward to obtain the identity
2 3
ot = <gz<T> gsw'))z _ (1)
82(7') 85(1) 82(7)
and
/
56 — g3(T )
83(7)

Therefore the curves defined by w? = 4z% — ¢»(7)z — ¢3(7) and y? = 4x> — g (7')x — g3(7')
are isomorphic. Indeed the dilatation

x=2z0%, y=wo
maps one curve into the other one. Therefore the two tori defined by the above two
curves are isomorphic. By theorem 1.43 it follows that their corresponding periods 7
and 7’ are related by a modular transformation (4.53). In the case p = 1728 one has
()
82(7)

the statement in a similar way. For the case u = 0 one has g2(7) = g2(7') = 0. In this
/

83(7')
$3(7)

way. m]

¢3(7) = g3(7') = 0. In this case defining ¢ in such a way that ¢* = one can prove

case defining o in such a way that 0® = one can prove the statement in a similar

The above lemma shows that the Klein | function is a modular function of weight
zero. We recall that an analytic function f : H — Cis a modular function of weight k with
respect to the modular group PSL(2, Z) if

ct+d

f (‘” ki b) = (ct + A f(1), (i Z) e PSL(2,Z).

Remark 4.41. The upper half space H can be naturally identified with the Teichmdiiller
space T(1,0) of compact surfaces of genus one. The quotient H/PSL(2, Z) is the moduli
space of Riemann surfaces of genus one. Below we will see that this moduli space can be
identified with C with three marked points modulo the permutation group Ss.
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Combining theorem 1.43 and lemma 4.40 we conclude that

Theorem 4.42. Given two lattices L = {n +mt, m,n € Z}yand L' = {n+ mt', m,n € Z}
with t, " € H, the tori

C/L, C/U

are isomorphic if and only if

Doing some algebra we can express the Klein | invariant using the branch points
9(7/2), (1/2) and 50(1%) of the elliptic curve (4.47). For simplicity we define

1+7
a=9(1/2), e=91/2), e=p(—) (4.54)
It is easy to check that
4
A =16(e2—e1)*(es—e1)*(es—e2)?, g2 = 3 ((e2—e1)* — (e3 —e1)(e2 —e1) + (e3 — €1)?)
so that J(7) can be written in the form
ea—er  (es—er) ’
1_e —e +(e —e1)?
J(z) = 256 e (4.55)
(e3 —e1)” (e3 —e2)
(€2 —e1)? (e2 — e1)?
Introducing the function A : H — C\{0, 1}
147
— =) — 2
e2—e  9(1/2) —p(7/2)
and the function j : C\{0,1} — C defined as
, (1— A+ A2)3
A) =256——"7— 4.57

it follows that the Klein | invariant is the composition of the maps

J=joA
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Remark 4.43. Since the function | as defined in (4.52) is invariant under the action of the
permutation group Sz on ey, e and e3, such invariance must be preserved for the function
j(A). Indeed one has the following relations between the action of S3 on ej, e and e3 and
transformations of A:

123 - 213then A - 1—-A, 123 — 321 then A — %, 123 — 132 then A — %

1 1
123 — 231 then A — T— 123—>312thenA—>1—X

and the function j(A) is invariant under the above five transformations of A (six including
the identity).

The curve w? = 4(z — ¢1)(z — e2)(z — e3) is mapped under the linear transformation

zZ—e w

= , y _—
€2 —e 2(ep —e1)

NI

to the curve
¥ =x(x—1)(x—A).
So using the j-invariant (4.57), we have the following corollary.

Corollary 4.44. Two curves y* = x(x — 1)(x — A) and y* = x(x — 1)(x — A’) are isomorphic if
and only j(A) = j(A).

We will see later that any Riemann surface of genus one can be realised as a double
covering of the sphere branched over four points e, e;,e3 and co. We can use a linear
transformation to map the points e, e; and e3 to 0,1 and A respectively. Any other linear
transformation obtained from the permutation of the points e, e; and e3 will give an
isomorphic Riemann surface. So we can identify the moduli space of genus one Riemann
surface as the quotient (C\{0,1})/S3. In remark (4.41) we identify the moduli space of
Riemann surfaces of genus one with H/PSL(2,7Z). Below we are going to sketch an
argument which shows that the spaces

(C\{0,1})/Ss and H/PSL(2,7Z)
are isomorphic.

Lemma 4.45. The map A : H — C\{0, 1} is a universal covering of C\{0,1}. This map is
invariant under the action of the subgroup I', < PSL(2,Z)

T, — {(Z Z) e PSL(2,Z)|a=d =1 (mod2), bzczO(modZ)}.
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Proof. Let us consider A(7") and use the relation (4.51)

1) —p(57)  9Gb+d+ (a+o)T);T) — 9(3(at +b);7)
0(37) — (5T P(E 1) — o(L(at + b); 1) '

It is straightforward to check that A(7") = A(7) if and only if the modular transformation
belongs to I',. ]

Remark 4.46. The group I'; is the group of deck transformations of the covering A : H —
C\{0,1}, namely the set of homeomorphism f : H — H preserving the fibers of the
covering. Such group is isomorphic to the fundamental group of C\{0, 1} and therefore
[14]

H/T, ~ C\{0,1}.

Furthermore, the following identity is satisfied [12] PSL(2,Z)/T, ~ S3. Namely the
quotient of the modular group under the group I'; is isomorphic to the group of permu-

tation S3. The above identity and the lemma 4.45 explain the identification of the spaces
(C\{0,1})/S3 and H/PSL(2,Z) .

Exercise 4.47: Prove that any elliptic function with period lattice {2m«w” + 2nw’} can be
represented as a rational function of ¢(z) and ¢’(z).

Exercise 4.48: Show that if 7 is pure imaginary then the branch points e, e, and e3 are
real.

Exercise 4.49: Consider the curve
I:={(z,w) e P2 | w? = z(z—=1)(z—=A)}

with 0 < A < 1 and consider the lattice L = {2m«w’ + 2nw”, m,n € Z} where
04 Ld A d
J—Z=L+w”, J—Z=L+w’+w”, f Z_Lyw.
o W o W w W

Show that the curve I is isomorphic to the curve w? = 423 — ¢»z — g3 where ¢» and g3 are
defined in (4.46).

Exercise 4.50: Consider the Korteweg-de Vries (KdV) equation

ut = 6uux - uxxx (4.58)
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(here u = u(x,t), and u; stands for the derivative with respect to t, and u, for derivative
with respect to x. Show that any (complex) periodic solution of it with the form of a
traveling wave has the form

u(x,t) =u(x —ct) = 2¢9(x — ct — xo) — g, (4.59)

where the Weierstrass function g corresponds to some elliptic curve (4.49), and the velocity
c and the phase x( are arbitrary.

Exercise 4.51: (see [8]). Look for a solution of the KdV equation in the form
u(x, t) = 2p(x — x1(t)) + 2p(x — x2(t)) + 2p(x — x3(t)). (4.60)

Derive for the functions x;(t) the system of differential equations

¥ =12) p(xj—x), j=123, (4.61)
k#j

and its integrals

D9 (xj — xi) j=1,23. (4.62)
k#j

Integrate this system in quadratures.

We define the Weierstrass C and ¢ functions (which are useful in the theory of elliptic
functions) from the conditions

¢ = -9, 22 -t 463
The series expansion of ((z) has the form
1 1 1z

Cz) = -+ [— + =+ —] : (4.64)
wel\(o LZ @ @ >

This function has simple poles at the nodes of the period lattice. The function o(z) is
entire. It has simple zeros at the nodes of the period lattice and can be expanded in the
infinite product

2=z [] {(1—g>exp{z+2z—;]} (4.65)

weL\{0}
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The functions ((z) and o(z) are not elliptic; under a translation of the argument by a vector
of the period lattice they transform according to the law

U(z 4+ 2ma’ + 2na") = C(z) + 2mn + 2n1), n={(o'), 1 = ("), (4.66)
0(z 4+ 20') = 0(z) exp[2n(z + )], 0(z + 20") = —0(z) exp[27 (z + @")] (4.67)

where 1 and 1 are constants depending on the period lattice.
Exercise 4.52: Prove the following identity:

o(u+v)o(u—o)
0?(u)o?(v)

= p(u) - p(0). (4.68)

Other properties of the functions,g, C and o and of other elliptic functions as well, can
be found, for example, in the texts [2] and [7], or in the handbook [3].

4.1.4 The Jacobi variety, Abel’s theorem

Let ey, ..., e; be the standard basis in the space C¢, ¢; = 0,...,1,...,0), with one on the
j-entry. Given 2¢ row vectors Ay € €3,k =1,...,2¢, with Ay = Z§:1 Akjej, we construct
the 2¢ x g matrix A having in the k-row the vector A

Ay = (Ag)- (4.69)

The matrix A generates a lattice in C3 of maximal rank, if its row vectors are linearly
independent over the real numbers.

Consider in C¢ the integer period lattice L generated by the vectors (4.69). The vectors
in this lattice can be written in the form

28
L={veCs|v=> md, (m,...,my)eZ%) (4.70)
k=1

We assume that L generates a lattice of maximal rank in C¢. Then the quotient of C$ by
this lattice is the 2¢g-dimensional torus

T2 — C8/L (4.71)

namely a g-dimensional complex manifold. Changing the basis in C&, namely e, — exM,
with M € GL(g, C), the matrix A — AM. Furthermore, the same lattice is given by vectors
(Zl, ceey ;\Zg) with

28
Ak = Z lejA]'
k=1
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with N = {nkj}igjzl € SL(2g,7Z). Therefore A — NA. Summarizing, two matrices A and
A represent the same torus if

A=NAM, MeGL(gC), NeSL(?2g Z). (4.72)

If we assume that the lattice generated by A has maximal rank, we can always choose
A in such a way that A = (2miA, Ap) with A; € GL(g,C). Therefore, by (4.72) the two
matrices A and AA v~ (2nil g MAT 1 with I ¢ the g-dimensional identity, represent the
same torus.

Lemma 4.53. The matrices

A= (I;A), A= A)
represent the same torus if

Ry = (clg + dAs)(alg + bA2) 7Y, (Z Z) € 5L(28,Z)

witha,b,c,d § x g matrices.

The proof of the lemma follows immediately from (4.72).

Let B = (Bj) be an arbitrary symmetric ¢ x ¢ matrix with positive-definite imagi-
nary part (as shown in Lecture 4.1.2, the period matrices of Riemann surfaces have this
property). We consider the vectors

e1,..-,eg, €B,... e.B. (4.73)
Lemma 4.54. The vectors (4.73) are linearly independent over R.
Proof. Assume that these vectors are dependent over IR:

(p1e1 + -+ + pgeg) + (u1er + -+ + ugeg)B =10, pi, pje R

Separating out the real part of this equality we get that J((uie; + --- + pgeq)B) = 0.
But the matrix J(B) is nonsingular, which implies iy = --- = y; = 0. Hence also
p1 =+ = pg = 0. The lemma is proved. m]

Consider in €8 the integer period lattice generated by the vectors (4.73). The vectors
in this lattice can be written in the form

m+nB, m,neZS. (4.74)
By Lemma 4.54 the quotient of C¢ by this lattice is a torus of maximal rank:

T2 = T%(B) = C8/{m + nB}. (4.75)
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Definition 4.55. Suppose that B = (Bjx) is a period matrix of a Riemann surface I of genus g.

The torus T?$(B) in (4.75), constructed from this period matrix is called the Jacobi variety (or
Jacobian) of the surface T and denoted by J(T').

Remark 4.56. What happens with the torus J(I') when the canonical basis of cycles on I
changes? Leta = (ay, ..., ag)t andp = (B1,..., ﬁg)t be the column vectors of the canonical
homology basis. Let @’ and ' be a new canonical homology basis related to a and 8 by
the symplectic transformation

()= () () (€ 2)esesm.

Letw = (wq,..., (ug) be the canonical homology basis of holomorphic differentials with
respect to the basis a and , namely

Ja)zlg, szB
a B

where ¢ is the g dimensional identity matrix. Then

Ja)zf w = alg + bB,
o aa+-bp

szj w = clg +dB.
! ca+dp

So the canonical basis of holomorphic differentials v’ = (@
basis o’ and p’ is given by

/ /

..., wy) with respect to the

@' = w(alg + bB) ™

This implies that the corresponding period matrix
B = J @' = (clg +dB)(aly + bB) L. (4.76)

From lemma 4.53 it follows that the tori T2¢(B) and T?¢(B') are isomorphic. Accordingly,
the Jacobian J(I') changes up to isomorphism when the canonical basis changes.

We consider the primitives (”Abelian integrals”) of the basis of holomorphic differen-
tials:

P
uk(P) = J;J Wi, k= 1,...,g, (477)
0
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where Py is a fixed point of the Riemann surface. The vector-valued function
A(P) = (u1(P), ..., ug(P)) (4.78)

is called the Abel mapping (the path of integration is chosen to be the same in all the
integrals uy(P),..., ug(P)).

Lemma 4.57. The Abel mapping is a well-defined holomorphic mapping
r — J(I). (4.79)

Proof. (cf. Example 4.27). A change of the path of integration in the integrals (4.77) leads
to a change in the values of these integrals according to the law

ur(P) — ux(P) + ffwk, k=1,...,g,
Y

where y is some cycle on I Decomposing it with respect to the basis of cycles, y ~
Y.mja; + > n;b; we get that

uk(P) — uk(P) + my + ZBkjnj, k= 1,...,g.
j

The increment on the right-hand side is the kth coordinate of the period lattice vector
2niM + NB where M = (my, ..., mg), N = (ny,...,ng). The lemma is proved. O

The Jacobi variety together with the Abel mapping (4.79) is used for solving the
following problem: what points of a Riemann surface can be the zeros and poles of
meromorphic functions? We have the Abel’s theorem.

Theorem 4.58 (Abel’s Theorem). The points Py, ...,P,and Qq, ..., Q, (some of the points can
repeat) on a Riemann surface I' are the respective zeros and poles of some function meromorphic
on I if and only if the following relation holds on the Jacobian:

AP) + -+ APn) = AQ1) + - + A(Qn)- (4.80)

Here and below, the sign = will mean equality on the Jacobi variety (congruence
modulo the period lattice (4.74)). We remark that the relation (4.80) does not depend on
the choice of the initial point Py of the Abel map (4.77).

Proof. 1) Necessity. Suppose that a meromorphic function f has the respective points
Py,...,Py, and Qy,...,Qy as zeros and poles, where each zero and pole is written the
number of times corresponding to its multiplicity. Consider the logarithmic differential
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Q = d(log f). Since f = constexp Sgo (), is a meromorphic function, the integral in the
exponent does not depend on the path of integratio. It follows that all the periods of this
differential Q are integer multiples of 2mi. On the other hand, we represent it in the form

n g
Q=) Qpg + ), csas, (4.81)
j=1 s=1

where Qp].Qj are normalized differentials of the third kind (see Lecture 4.1.3) and ¢y, ..., cg
are constant coefficients. Let us use the information about the periods of the differential.
We have that

2ming = ﬁQ =c, nre”,
Ak

which gives us ¢, = 2miny. Further,

p;
n 8
2y = jg Q=2mi) f Wk + 27 Y 1By
by j:1Q] s=1
(we used the formula (4.31)). From this,

n Pj 8
ue(Py) + -+ u(Pu) — ui(Q1) — -+ — we(Qu) = ) ka =m— > nBy.  (4.82)
i=1p, =1

The right-hand side is the kth coordinate of the vector m + nB of the period lattice (4.74),
where m = (my,...,mg), n = (ny,...,ng). The necessity of the condition (4.80) is proved.
2) Sufficiency. Suppose that

8
ug(P1) + - + ug(Pu) — ug(Q1) — -+ — u(Qu) = my — > nsB. (4.83)

s=1

Consider the function

8 P 8 P
f(P) =exp ];JPO QPij + ;cj JPO W

where Qp,q; are the normalised third kind differentials with poles in P; and Q; and ¢; are
constants. The function is a single valued meromorphic function if the integrals in the
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exponent do not depend on the path of integration. Let us study the behaviour of f when
P— P+ a:

8
£() = fP)exp | e [ @i
e

In order to have a single valued function the constant ¢, = 27, n, € IN. Next let us
consider the behaviour of f when P — P + fj:

g g & rP; ' g
f(P) — f(P)exp ];Lk ijQj +j;nj Lk wj| = f(P)exp ];L/ wk+2n12nj Lk wj

=1

Using the relation (4.83) one obtains that f(P) — f(P)exp[2nimy] = f(P) which shows
that f(P) is a meromorphic function on I". o

Example 4.59. We consider the elliptic curve
2 _ 4.3
w* =4z" — g2z — g3. (4.84)

For this curve the Jacobi variety J(I') is a two-dimensional torus, and the Abel mapping
(which coincides with (4.39)) is an isomorphism (see Example 4.21). Abel’s theorem
becomes the following assertion from the theory of elliptic functions: the sum of all the
zeros of an elliptic function is equal to the sum of all its poles to within a vector of the
period lattice.

Example 4.60. (also from the theory of elliptic functions). Consider an the elliptic function
of the form f(z, w) = az+bw+c, where a, b, and c are constants. It has a pole of third order
at infinity (for b # 0). Consequently, it has three zeros Pj, P>, and P3. In other words,
the line az + bw + c = 0 intersects the elliptic curve (4.84) in three points (see the figure).
We choose o as the initial point for the Abel mapping, i.e., u(0) = 0. Let u; = u(P;),
i=1,2,3. In other words,

Pi = (p(ui), ' (i), i=1,2,3,

where (1) is the Weierstrass function corresponding to the curve (4.84). Applying Abel’s
theorem to the zeros and poles of f, we get that

Uy +up +uz = 0.



94 CHAPTER 4. DIFFERENTIALS ON A RIEMANN SURFACE.

Conversely, according to the same theorem, if 11 + 1y + uz = 0, i.e. u3 = —up — uy then
the points P1, P and P3 lie on a single line. Writing the condition of collinearity of these
points and taking into account the evenness of p and oddness of ¢’, we get the addition
theorem for Weierstrass functions:

1 o) ' (u1)
det |1 o (uz) ¢ (u2) =0. (4.85)
1 p(up +uy) —¢'(ug +uz)

4.1.5 Divisors on a Riemann surface. The canonical class. The Riemann-Roch
theorem

Definition 4.61. A divisor D on a Riemann surface is defined to be a (formal) integral linear
combination of points on it:

n
D=)> P, Piel, njeZ (4.86)
i=1

For example, for any meromorphic function f the divisor (f) of its zeros Py, ..., Py and
poles Qq, ..., Q; of multiplicities my, ..., my, and ny, ..., n;, respectively is defined

(f) =mP1+ -+ mPr — Q1 — - - — Q. (4.87)

Observe that given f and g two meromorphic functions

(f8) =) + (). (f/g)= ()~ (8)
Definition 4.62. Divisors of meromorphic functions are also called principal divisors.

Another useful notation for the divisor of a meromoprhic function is given by
(f) = D ordp(f) - P
P

where we recall that the order of f in P is the minimum coefficient present in the Laurent
expansion in a neighbourhood of the point P namely ordpf = min,ez{n, |a, # 0} where
the Laurent expansion of f in Pis ), a,z". Such definition does not depend on the choice
of the local coordinates. The set of all divisors on I, Div(I'), obviously form an Abelian
group (the zero is the empty divisor).

Definition 4.63. The degree deg D of a divisor of the form (4.86) is defined to be the number

N
degD = ) m;. (4.88)
i=1
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The degree is a linear function on the group of divisors. For instance,
deg(f) = 0. (4.89)

Two divisors D and D’ are said to be linearly equivalent, D ~ D’ if their difference is
a principal divisor. Linearly equivalent divisors have the same degree in view of (4.89).
For example, on CIP' any divisor of zero degree is principal, and two divisors of the same
degree are always linearly equivalent.

Example 4.64. The divisor (w) of any Abelian differential w on a Riemann surface I' is
well-defined by analogy with (4.87). If @’ is another Abelian differential, then (w) ~
(w'). Indeed, their ratio f = w/w’ is a meromorphic function on T, and () — (@) = (f).
We remark that any differential in a coordinate chart ¢, : U, — V,, with ¢, (P) = z, take
the form

w = hy(z0)dza, @ =H,(24)dz,

where h, and /), are meromorphic functions. The ratio g, = h,/h), is a meromorphic
function of V,. Now define f := g, o ¢, which is a meromorphic function on U,. It is
easy to check that f is well defined and independent from the coordinate chart.

Definition 4.65. The linear equivalence class of divisors of Abelian differentials is called the
canonical class of the Riemann surface. We denote it by Kr.

For example, the divisor —200 = (dz) can be taken as a representative of the canonical
class Kgpi-

We reformulate Abel’s theorem in the language of divisors. Note that the Abel map
extends linearly to the whole group of divisors. Abel’s theorem obviously means that a
divisor D is principal if and only if the following two conditions hold:

1. degD = 0;
2. A(D)=0on J(T),
where
M M
AD) = Y (AP) —AQ)), D=>(P;—Q)),
=1 ‘

]=

—_

with A the Abel map defined in (4.78).

Let us return to the canonical class. We compute it for a hyperelliptic surface w? =
Pag12(z). Let Py, ..., Pag 2 be the branch points of the Riemann surface, and P+ and P, -
its point at infinity. We have that

(dZ) =P+ + Pzg+2 — 2P+ —2P-.
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Thus the degree of the canonical class on this surface is equal to 2g — 2. We prove an
analogous assertion for an arbitrary Riemann surface.

Lemma 4.66. Let f : I’ — X a holomorphic map between Riemann surfaces I' and X and w a
meromorphic one form on X, then for any fixed point P € T

ordpf*w = (1 + ordpy(w))multp(f) — 1 (4.90)

where f*w denotes the pull back of w via f. We recall that the multiplicity of f in P is the unique
integer m such that there is local coordinatea near P € I and f(P) € X such that f takes the form

z — z™,

Proof. Suppose that the map f can be represented near the point P and f(P) with local
coordinates 7 and 7' as T — 7/ = 1. Suppose that near the point f(P) the one form w
takes the form w = g(t')dt’ with g(7') = Y=, ax7*. Then, the one form f*w, near the
point P, takes the form

fro=g(r™mt" dr = > agr e,

k=n
Looking at the coefficient in the exponent, one has the claim of the lemma. m|

Definition 4.67. Let f : I' — X a holomorphic map between Riemann surfaces. The branch point
divisor Wy is the divisor on T defined by

Wy = [multp(f) — 1]P. (4.91)
Pel’

Definition 4.68. Let f : I’ — X be a holomoprhic map between Riemann surfaces and let Q € X.
The inverse image of the divisor Q denoted f*(Q) is defined as

Q)= > multy(f)-P.
Pef1(Q)

Applying (4.90) and (4.91) we arrive to the relation between divisors
(ffw) = W + f*(w), (4.92)

where f*(w) is the inverse image of the divisor (w) of the one form w.

Suppose that the Riemann surface I' is given by the equation F(z,w) = 0. Further,
let Py, ..., Py be the branch points of this surface with respective multiplicities fi, ..., fn
with respect to the meromorphic functionz : I' — CP!. (see Lecture 1). The branch point
divisor W, = fiP1 + ... fNPn.
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Lemma 4.69. The canonical class of the surface I has the form
Kr = W, + z*(Kgpt). (4.93)

Here z* denotes the inverse image of a divisor in the class K1 with respect to the meromorphic
function z : T — CIP',

Proof. This follows immediately from (4.92). O

Corollary 4.70. The degree of the canonical class Kr of a Riemann surface I of genus g is equal
to2g — 2.

Proof. We have from (4.93) that deg Kr = deg W, — 2degz, where deg W, is the total
multiplicity of the branch points of the map z. By the Riemann-Hurwitz formula (2.4),
degW, = f = 2¢ + 2degz — 2. The corollary is proved. m]

The divisor (4.86) is positive if all multiplicities n are positive. An effective divisor is a
divisor linearly equivalent to a positive divisor. Divisors D and D’ are connected by the
inequality D > D' if their difference D — D' is a positive divisor.

With each divisor D we associate the linear space of meromorphic functions

L) = {f | (f) = =D} (4.94)

If D is a positive divisor, then this space consists of functions f having poles only at
points of D, with multiplicities not greater than the multiplicities of these points in D. If
D =D, —D_,where D, and D_ are positive divisors, then the space L(D) consists of the
meromorphic functions with poles possible only at points of D, with multiplicities not
greater than the multiplicities of these points in D , and with zeros at all points of D_ (at
least), with multiplicities not less than the multiplicities of these points in D.

Lemma 4.71. If the divisors D and D' are linearly equivalent, then the spaces L(D) and L(D')
are isomorphic.

Proof. Let D — D' = (g), where g is a meromorphic function. If f € L(D), then f' = fg €
L(D'). Indeed,

(f)+D' = (f)+(g) + D' = (f) + D> 0.
Conversely, if f' € L(D'), then f = g7’ € L(D). The lemma is proved. m]
We denote the dimension of the space L(D) by
I(D) = &im L(D). (4.95)

By Lemma 4.71, the function /(D) (as well as the degree degD) is constant on linear
equivalence classes of divisors. We make some simple remarks about the properties of
this important function.
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Remark 4.72. A divisor D is effective if and only if /(D) > 0. Indeed, replacing D by
a positive divisor D’ linearly equivalent to it, we see that the space L(D’) contains the
constants. Conversely, if /(D) > 0, then D is effective. Indeed, if the meromorphic
function f is such that D' = (f) + D > 0, then the divisor D', which is linearly equivalent
to D is positive.

Remark 4.73. For the zero (empty) divisor, [(0) = 1. If deg D < 0, then /(D) = 0.

Remark 4.74. The number /(D) —1is often denoted by |D|. According to Remark 4.72 |D| >
0 for effective divisors. The number |D| admits the following intuitive interpretation. We
show that |D| > k if and only if for any points Py,..., Py there is a divisor D’ ~ D
containing the points Py, ..., Py (the presence of coinciding points among Py, ..., Pk is
taken into account by their multiple occurrence in D’). If (D) > k + 1, then there are
linearly independent functions fi, ..., fy € L(D) such that the function f = Zfﬂ cifi — co,
wherec;, i = 1,...,k are arbitrary constants, has zeros in Py, ..., Py, namely

f(P)=0,j=1,...,k

This is a system of inhomogeneous linear equation for the constants cy, ..., ¢y which has a
solution for any choice of the points P, ..., P. So it follows that the divisor D’ of zeros of
f contains the point P, ..., Py, which implies that D + (f) = D', or equivalently D’ ~ D
and D’ contains the points Py, ..., Py.

Viceversa suppose that there is a positive divisor D’ containing the arbitrary points
Pi,..., P and such that D’ ~ D. Then there is a meromorphic function f such that
(f)=D'—=D,or (f)+ D =D"> 0. It follows that f € L(D) and f has zeros in arbitrary
points Py, ..., Pr. We write f is the form f = Zl;:l ckfx —co where f; € L(D). If the function
f has zeros in arbitrary points P, ..., P it follows that the system of equations

fP)=0,j=1,..k

must be solvable for any set of points Py, ..., Py, but this is possible only if the functions
f1,..., fr are linearly independent and different from the constant, which means that
I(D) = k + 1. One therefore says that |D| is the number of mobile points in the divisor D.

Remark 4.75. Let K = Kr, be the canonical class of a Riemann surface. We mention an
interpretation that will be important later for the space L(K — D) for an arbitrary divisor D.
First, if D = 0, then the space L(K) is isomorphic to the space of holomorphic differentials
onI. Indeed, choose a representative Ky > 0 in the canonical class, taking Ky to be the zero
divisor of some holomorphic differential wy, Ko = (wo). If f € L(Kp), i.e. (f) + (wo) =0,
then the divisor (fwy) is positive, i.e., the differential fwy is holomorphic. Conversely, if
w is any holomorphic differential, then the meromorphic function f = w/wy lies in L(Kp).
It follows from the foregoing and Theorem 4.12 that

I(K) =g
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Lemma 4.76. For a positive divisor D the space L(K — D) is isomorphic to the space
Q(D) = {w e H(T) | (w) — D = 0}

Proof. We choose a representative Ko > 0 in the canonical class, taking Ky to be the
zero divisor of some holomorphic differential wo, Ko = (wp). If f € L(Ko — D), then
the differential fwy is holomorphic and has zeros at the points of D, i.e., fwy € Q(D).
Conversely, if w € Q(D), then f = w/wg € L(Ko — D). The assertion is proved. O

The main way of getting information about the numbers /(D) is the Riemann-Roch
Theorem.

Theorem 4.77 (Riemann Roch Theorem). For any divisor D
I(D) =1+ degD — g+ 1(K—D). (4.96)

Proof. For surfaces I' of genus 0 (which are isomorphic to CP! in view of Problem 6.1)
the Riemann-Roch theorem is a simple assertion about rational functions (verify!). By
Remarks 4.73 and 4.75 (above) the Riemann-Roch theorem is valid for D = (.

We first prove (4.96) for positive divisors D > 0. Let D = >}, nPx where all the
ni > 0. We first verify the arguments when all the ;. are = 1,i.e.,m = degD. Let f € L(D)
be a nonconstant function.

We consider the Abelian differential @ = df. It has double poles and zero residues at
the points Py, ..., P;, and does not have other singularities. Therefore, it is representable
in the form

m
Q=df =) Q) +

k+1
where Q(l) are normalized differentials of the second kind (see Lecture 4.1. 3) C1,-+-,Cm
are constants, and the differential ¢ is holomorphic. Since the function f(P) = SP Qis

single-valued on I, the integral SPO Qis independent from the path of 1ntegrat10n. This
implies that

45@:0, j€Q=O, i=1,...,8 (4.97)

From the vanishing of the a-periods of the meromorphic differentials Q( ) we get that

Y = 0 (see Corollary 4.17). From the vanishing of the f-period we get, by (4.30) with
n =1, that

0 - %Q Cklpblk Zk)|Zk =0, l = ]-/ .. ~/g/ (498)
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where z; is a local parameter in a neighborhood of Py, zx(Px) = 0, k = 1,...,m, and
the basis of holomorphic differentials are written in a neighborhood of Py in the form
w; = Yi(z)dzy. Defining w;(Px) := i (0), we write the system (4.98) in the form

a)l(Pl) a)l(Pz) e (Pm) C1
a)Z(Pl) a)z(Pz) ce a)z(Pm) C2 _ O, (499)
0g(P1) wg(Py) .. wg(Pw)) \em

We have obtained a homogeneous linear system of m = deg D equations in the coefficients
c1,...,cn. The nonzero solutions of this systems are in a one-to-one correspondence with
the nonconstant functions f in L(D), where f can be reproduced from a solutioncy, ..., ¢y
of the system (4.98) in the form

m P
fPy=>a| Q.
ko1 9P F

Thus /(D) = 1 + deg D — rankA where A is the matrix of holomorphic differentials in
(4.99) (the 1 is added because the constant function belong to the space L(D)). On the
other hand the rank of the matrix A has another interpretation. Consider the holomorphic
differential w = Z‘]g:l ajwj. Such differential w belongs to the space Q(D) if

wP) =0, k=1,...,m.

The above system of equations can be written in the equivalent form

a)l(Pl) a)l(Pm)
(n ax ... ug)( )0. (4.100)
a)g(P1> (Ug(Pm)

The number of solutions of this system is equal to g — rankA and it is in one to one cor-
respondence with the linearly independent holomorphic differentials in Q3(D). Therefore
dimQ(D) = ¢ — rankA. On the other hand we have obtained that

I(D) =1+ deg D — rankA
so that combining the two equations we obtain
(D) =1+ degD — g+ dimQ(D) =1+ degD — g+ (K- D)

where the second identity is due to the fact that the space (D) and L(K—D) are isomorphic
for positive divisors. Accordingly the Riemann-Roch theorem has been proved in this
case.
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We explain what happens when the positive divisor D has multiple points. For

example suppose that D = n1P; +.... Thenw = df = 271:1 C{le) + ... and the system

(4.98) can be written in the form

moq g1y,

141 j—1
j=1 ) le

21=0

If the rank of the coefficient matrix of this system is denoted (as above) by rankA, the
dimension of the space L(D) is equal to /(D) = 1 + deg D — rankA while the dimension of
the space (D) is equal to g — rankA. We have proved the Riemann-Roch theorem for all
positive divisors and hence for all effective divisors, which (accordingly to Remark 4.72)
are distinguished by the condition /(D) > 0. Next we note that the relation in this theorem
can be written in the form

I(D) — %degD =I(K-D)— %deg(K - D), (4.101)

which is symmetric with respect to the substitution D — K — D. Therefore the theorem
is proved for all divisors D such that D or K — D is equivalent to an integral divisor. If
neither D nor K — D are equivalent to an integral divisor, then /(D) = 0 and /(K — D) =0
and the Riemann-Roch theorem reduces in this case to the equality

degD = g — 1. (4.102)

Let us prove this equality. We represent D in the form D = D, — D_, where D, and D_
are positive divisors and deg D_ > 0. It follows from the validity of the Riemann-Roch
theorem for D that [(D;) > degDy — ¢+ 1 = degD + degD_ — g + 1. Therefore if
degD > g, then (D) > 1 + deg D_. Then the space L(D. ) contains a nonzero function
vanishing on D_, i.e. belonging to the space L(Dy — D_) = L(D). This contradicts the
condition /(D) = 0. Similarly, the assumption deg(K — D) < g leads to a contradiction.
This implies (4.102). The theorem is proved. m|

41.6 Some consequences of the Riemann-Roch theorem. The structure of
surfaces of genus 1. Weierstrass points. The canonical embedding
Corollary 4.78. If deg D > g, then the divisor D is effective.
Corollary 4.79. The Riemann inequality
I(D) >1+degD —g, (4.103)

holds for deg D > g.
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Definition 4.80. A positive divisor D is called special if
dimQ(D) > 0.

We remark that any effective divisor of degree less then g is special since /(D) > 0 and
by Riemann-Roch theorem this implies dimQ(D) > 0.

Corollary 4.81. Ifdeg D > 2g — 2, then D is nonspecial.

Proof. For degD > 2g¢ — 2 we have that deg(K — D) < 0, hence (K — D) = 0 (see
Remark 4.73). The corollary is proved. m|

Exercise 4.82: Suppose that k > g; let the Abel mapping A : I' — J(I') (see Lecture 4.1.4)
be extended to the kth-power mapping

AT x ... xT = J)

k times

by setting A*(Py, ..., Py) = A(P1)+- - -+A(Py) (it can actually be assumed that A¥ maps into
J(I') the kth symmetric power ST, whose points are the unordered collections (P, ..., Px)
of points of I'). Prove that the special divisors of degree k are precisely the critical points
of the Abel mapping A¥. Deduce from this that a divisor D with degD > g in general
position is nonspecial.

Remark 4.83. Letdeg D = 0, then if D is equivalent to a divisor of a meromorphic function,
then L(D) = 1 otherwise L(D) = 0. Let degD = 2g — 2, then if D is equivalent to the
canonical divisor, then /(D) = g otherwise /(D) = g — 1. Furthermore if degD > 2g — 2,
then by Riemann Roch theorem one has [(D) = 1 + degD — ¢g. If 0 < degD < g — 1 the
minimum value of I(D) is zero while for ¢ < degD < 2¢ — 2, min(/(D)) = 1 — g + degD.

The values of [(D) for 0 < deg D < 2g — 2 are estimated by the Clifford theorem.

Theorem 4.84. If 0 < degD < 2g — 2, then
1
(D) <1+ 5 degD. (4.104)

Proof. If I(D) = 0 or [(K — D) = 0, the proof of the theorem is straightforward. Let us
assume that /(D) > 0 and I[(K — D) > 0 and consider the map L((D) x L(K — D) — L(K)
givenby (f,h) — fhwhere (f,h) € L((D) x L(K— D). Let V be the subspace in L(K) which
is the image of this map. Then one has

g=1K)=>dimV =ID)I(K—D)>1(D)+I(K-D) -1
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where in the last equality we use the identity which holds for real numbers a and b bigger
thenone: (a1 —1)(b—1) >0andsoab>a+b—1.
Therefore

g=I1(D)+I(K—D)—1=2l(D)+g—2—degD,
which implies (4.104). |

Let us make a plot of the possible values of /(D) using Clifford theorem and the above
observations.

1(D)

o L I T ‘ g

divisors

g1 2g-2 deg(D)

Figure 4.3: The values of I(D) as a function of deg D. One can see that the value of /(D) of
a special divisors is located between the two lines.

We now present examples of the use of the Riemann-Roch theorem in the study of
Riemann surfaces.

Example 4.85. Let us show that any Riemann surface I' of genus g = 1 is isomorphic
to an elliptic surface w? = P3(z). Let Py be an arbitrary point of . Here 2¢ — 2 = 0,
therefore, any positive divisor is nonspecial. We have that A(2Py) = 2, hence there is
a nonconstant function z in /(2Py), i.e., a function having a double pole at Py. Further
[(3Py) = 3, hence there is a function w € [(3Pp) that cannot be represented in the form
w = az + b. This function has a pole of order three at Py. Finally, since [(6Py) = 6, the
functions 1, z, z2, 23, w, w?, wz which lie in [(6Py) are linearly independent. We have that

MwW? + AWz + asw + asz° + asz* + agz + ay = 0. (4.105)

The coefficient a; is nonzero (verify). Making the substitution

as as
w—>w—\|—z+ —
2{11 2111
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we get the equation of an elliptic curve from (4.105).

Example 4.86 (Riemann count of the moduli space of Riemann surface). Consider a
Riemann surface I' of genus ¢ and a meromorphic function of degree n > g. Such
function represents I' as a n-sheeted covering of the complex plane, branched over a
number of points with total branching number by equal to

bf=2n+2g-2

where the Riemann-Hurwitz formula has been used. Generically the branch points
have branching number equal to one so that by is also equal to the branch points of the
Riemann surface. From the Riemann existence theorem, given the branch points and a
permutation associated to each branch point such that the corresponding monodromy
group is a transitive sub-group of S,, then one can construct a Riemann surface I'. Let
f : T — P! be the obvious projection map. Such map To any set of branch points it
correspond a finite number of Riemann surface of genus g together with a meromorphic
function of degree n. Riemann surface is determined uniquely up to isomorphism.

Any meromorphic function of degree n on I' will represent I' as a n-sheeted covering
of the complex plane. Let D, be the divisor of poles of f. Since the degree of f is equal
to n then deg D, = n. Furthermore from Riemann-Roch theorem

So the freedom of choosing the function f is given by the position of the poles, and this
gives n parameters, and the number of functions having poles in D, which is equal to
n+1—g. The total number of parameters in choosing the meromorphic function of degree
nis2n — 1 — g. So the total number of parameters for describing a curve of genus g is

2n+29—-2—-(2n—-1-g)=3¢g—-3.

Definition 4.87 (Weierstrass points). A point Py of a Riemann surface I of genus g is called a
Weierstrass point if I(kPg) > 1 for some k < g.

Itis clear that in the definition of a Weierstrass point it suffices to require that /(gPo) > 1
when g > 2. There are no Weierstrass points on a surface of genus ¢ = 1. On hyperelliptic
Riemann surfaces of genus ¢ > 1 all branch points are Weierstrass points, since there exist
functions with second-order poles at the branch points (see Lecture 3).

Definition 4.88. A Riemann surface is called hyperelliptic if and only if it admits a non constant
meromorphic function of degree 2.

The use of Weierstrass points can be illustrated in the next exercise.
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Exercise 4.89: Let I' be a Riemann surface of genus g > 1, and Py a Weierstrass point of it,
with [(2Pg) > 1. Prove that I' is hyperelliptic. Prove that the surface is also hyperelliptic
if ([P + Q) > 1 for two points P and Q.

Exercise 4.90: Let I' be a hyperellitpic Rieamnn surface and z a function of degree two.
Prove that any other function f of degree two is a Moebius transformation of z.

We show that there exist Weierstrass points on any Riemann surface I of genus ¢ > 1.

Lemma 4.91. Suppose that z is a local parameter in a neighborhood Py, z(Py) = 0; assume that
locally the basis of holomorphic differentials has the form w; = Y;(z)dz, i = 1,...,g. Consider the
determinant

Pi(z) Y .. PE ()

W(z) = det (4.106)

. -
V@) Y@ - v )
The point Py is a Weierstrass point if and only if W(0) = 0.

Proof. If Py is a Weierstrass point, i.e., [(gPg) > 1, then [(K—gPy) > 0by the Riemann-Roch
theorem. Hence, there is a holomorphic differential with a g-fold zero at Py on I'. The
condition that there be such a differential can be written in the form W(0) = 0 (cf. the
proof of the Riemann-Roch theorem). The lemma is proved. m|

Lemma 4.92. Under a local change of parameter z = z(w) the quantity W transforms according
1
dz > 28(g+1)

to the rule W(w) = (dw

W(z).

Proof. Suppose that w; = ;(z)dz = ;(w)dw. Then each ¢; = gbijTZU,i =1,...,¢. This

implies that the derivatives d“i); /dw* can be expressed for each i in terms of the derivatives
d";/dz' by means of a triangular transformation of the form

ki A2\ dkp, K2 gy,
(Y N
j=1

dw* % dzk dzi’

(the coefficients c; in this formula are certain differential polynomials in z(w)). The
statement of the Lemma readily follows from the transformation rule. m|

Let us define the weight of a Weierstrass point Py as the multiplicity of zero of W(z) at
this point. According to the previous Lemma the definition of weight does not depend
on the choice of the local parameter.

The proof of existence of Weierstrass points for ¢ > 1 can be easily obtained from the
following statement.
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Lemma 4.93. The total weight of all Weierstrass points on the Riemann surface I of genus g is

equal to (g —1) g (g +1).

Proof. Let us consider the ratio
W(2)/97 (2).

Here N = 1 ¢(g + 1). According to lemma (4.92), the above ratio does not depend on the
choice of the local parameter and, hence, it is a meromorphic function on I'. This function
has poles of multiplicity N at the zeroes of the differential w; (the total number of all poles
is equal to 2¢g — 2). Therefore this function must have N (2¢ —2) = (¢ —1) g (g + 1) zeroes
(as usual, counted with their multiplicities). These zeroes are the Weierstrass points. O

Let us do few more remarks about the Weierstrass points. Given a point Py € T, let us
consider the dimension /(k Py) as a function of the integer argument k. This function has
the following properties. According to figure (4.3) we have

1<I(kPy)<g 1<k<2¢-1

In particular [ ((2¢g — 1)Py) = g. It follows that while k increases 2¢ — 2 times the function
I(k Pp) increases only ¢ — 1 times. The next lemma shows that the function I(k Py) is a
piece-wise constant function where each step has size equal to one.

Lemma 4.94.

1(kPy) — I((k—1)Poy) + 1, if there exists a function with a pole of order k at P
7 I((k—1)Py), if such a function does not exist

Proof. The space L(k Py) is larger then the space L((k—1)Py) therefore I[(k Py) = I((k—1)Py).
On the other hand, dimQ(kPy) < dimQ((k — 1)Pp). From the Riemann Roch theorem one
has

I(kPo) — I((k —1)Pg) = 1 + dimQ(kPy) — dimQ((k — 1)Py)
which, when combined with the above two inequalities, gives the statement. m]

When I(k Py) = I((k—1)Pg) we will say that the number k is a gap at the point Py. From
the previous remarks it follows the following Weierstrass gap theorem:

Theorem 4.95. There are exactly ¢ gaps 1 = a1 < ... < ag < 2g at any point Py of a Riemann
surface of genus g.

The gaps have the forma; = 1,i = 1,..., g, for a point Py in general position (which
is not a Weierstrass point). Namely for a non Weierstrass point the function /(kPy) is non
zero only for k > ¢ and one has I[(kPy) = 1 + k — g for k > g. A Weierstrass point Py is
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called normal if the Weierstrass gap sequence takes the form 1,2,...,¢g— 1,9+ 1 where g
is the genus of the surface. Namely a meromorphic function with only a pole in Py has
order at least equal to g. Normal Weierstrass points are generic. A Weierstrass point Py is
called hyperelliptical is the Weierstrass gap sequence takes the form 1,3,5,...,2¢g — 1. In
this case a meromorphic function with only a pole in Py has order equal to two.

Exercise 4.96: Show that every compact Riemann surface of genus g is conformally
equivalent to a (g + 1)—sheeted covering surface of the complex plane.

Exercise 4.97: Prove that for branch points of a hyperelliptic Riemann surface of genus g
the gaps have the forma; = 2i—1,i = 1,..., . Prove that a hyperelliptic surface does not
have other Weierstrass points. Next suppose that the hyperelliptic Riemann surface has
genus 2 and let Py be a Weierstrass point. Show that there exist meromorphic functions z
and w with only a pole in Py and such that

W + mwz + aywz® + a3z’ + ayz* + asz® + agz® + ayz + ag = 0.
Exercise 4.98: Prove that any Riemann surface of genus 2 is hyperelliptic.

Exercise 4.99: Let I' be a hyperelliptic Riemann surface of the form w? = P,g(2).
Prove that any birational (biholomorphic) automorphism I' — I has the form (z,w) —
(az +b

cz+d’
Ps¢12(z) invariant.

+w), where the linear fractional transformation leaves the collection of zeros of

Example 4.100 (The canonical embedding). . Let I' be an arbitrary Riemann surface of
genus ¢ > 2. We fix on I' a canonical basis of cycles ay,...,ag, by, ..., bg; let wy, ..., @, be
the corresponding normal basis of holomorphic differentials. This basis gives a canonical
mapping I' — CIP$~! according to the rule

P — (w1(P) : w2(P) : - : wg(P)). (4.107)

Indeed, it suffices to see that all the differentials w;, ..., ws cannot simultaneously vanish
at some point of the surface. If P were a point at which any holomorphic differential
vanished, i.e., (K — P) = g, (see Remark 4.75), then [(P) would be = 2 in view of the
Riemann-Roch theorem, and this means that the surface I'is rational (verify!). Accordingly
(4.107) really is a mapping I' — CIP$™'; it is obviously well-defined.

Lemma 4.101. If I is a nonhyperelliptic surface of genus g > 3, then the canonical mapping
(4.107) is a smooth embedding. If T is a hyperelliptic surface of genus g > 2, then the image of the
canonical embedding is a rational curve, and the mapping itself is a two-sheeted covering.
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Proof. We prove that the mapping (4.107) is an embedding. Assume not: assume that the
points P; and P, are merged into a single point by this mapping. This means that the
rank of the matrix

(a)l(Pl) (Ul(PZ))
a)g(Pl) a)g(P2)

isequal to 1. But then /(P 4+ P;) > 1 (see the proof of the Riemann-Roch theorem). Hence,
there exists onI" a nonconstant function with two simple poles at P; and P, i.e., the surface
I' is hyperelliptic. The smoothness is proved similarly: if it fails to hold at a point P, then
the rank of the matrix

(a)l(P) a)a(P))
wg(P) @l (P)

is equal to 1. Then [(2P) > 1, and the surface is hyperelliptic. Finally, suppose that I’ is
hyperelliptic. Then it can be assumed of the form w? = Pye1(z). Its canonical mapping
is determined by the differentials (5.42). Performing a projective transformation of the
space CIP¢ ~! with the matrix (cjt) (see the formula (5.42)), we get the following form for
the canonical mapping:

P=(zw)—> (1:z:---:2871) (4.108)

Its properties are just as indicated in the statement of thelemma. Thelemma is proved. O
We remark that the canonical mapping smoothly embeds a nonhyperelliptic Riemann
surface of genus ¢ in P$~L. It is proved in [16] that the image of such embedding can

be smoothly project to IP2. Namely every smooth Riemann surface has an holomorphic
embedding in IP°.

Exercise 4.102: Suppose that the Riemann surface I is given in CIP? by the equation
Z al]ézn]c4_1_] — 0, (4.109)
it+j=4

and this curve is nonsingular in CIP? (construct an example of such a nonsingular curve).
Prove that the genus of this surface is equal to 3 and the canonical mapping is the identity
up to a projective transformation of CIP?>. Prove that T is a non hyperelliptic surface.
Prove that any non hyperelliptic surface of genus 3 can be obtained in this way.

The range I” = CIP$~! of the canonical mapping is called the canonical curve.

Exercise 4.103: Prove that any hyperplane in CIP$ ! intersects the canonical curve I” in
2¢ — 2 points (counting multiplicity).



Chapter 5

Jacobi inversion problem and
theta-functions

5.1 Statement of the Jacobi inversion problem. Definition and
simplest properties of general theta functions

In Lecture 4.1.2 we saw that inversion of an elliptic integral leads to elliptic functions. For
a surface of genus ¢ > 1 the Inversion of integrals of Abelian differentials is not possible
since any such differential has zeros (at least 2¢ — 2zeros). Instead of the problem of
inverting a single Abelian integral, Jacobi proposed for hyperelliptic surfaces w? = Ps(z)
the problem of solving the system

P
P, b, (5.1)
J zdz N zdz n
=12
Ps(z) A v/ P5(2)
where 71,1, are given numbers from which the location of the points P = (z1,w1),

Py = (zp,wy) is to be determined. It is clear, moreover, that P; and P, are determined from
(5.1) only up to permutation. Jacobi’s idea was to express the symmetric functions of P;
and P; as functions of 177 and . He noted also that this will give meromorphic functions
of 71 and > whose period lattice is generated by the periods of the basis of holomorphic
differentials dz/+/Ps(z) and zdz/+/Ps(z). This Jacobi inversion problem was solved by
Goepel and Rosenhain by means of the apparatus of theta functions of two variables.
The generalization of the Jacobi inversion problem to arbitrary Riemann surfaces and

109
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its solution are due to Riemann. We give a precise statement of the Jacobi inversion
problem. Let I' be an arbitrary Riemann surface of genus g, and fix a canonical basis of
cycles ay, ..., &g, B1,...,BgonT; as above let w;, ..., Wg be be the corresponding basis of
normalized holomorphic differentials. Recall (see Lecture 4.1.4) that the Abel mapping
has the form

A:T =), A(PP) = (uy(P),...,ug(P)), (5.2)

where J(I') is the Jacobi variety,
P
w(P) = i, (5.3)
Py

Py is a particular point of I', and the path of integration from Py to P is the same for
alli =1,...,g. Consider the gth symmetric power SEI" of I'. The unordered collections
(Py,...,Pyg) of g points of I are the points of the manifold S€T'. The meromorphic functions
on ST are the meromorphic symmetric functions of g variables Py, ..., Py, P; € T. The
Abel mapping (5.2) determines a mapping

A8 S8T — [(T), AS(Py,...,Pg) = A(P1) + -+ A(Py), (5.4)
which we also call the Abel mapping.

Lemma 5.1. If the divisor D = Py + - - - + Py is nonspecial, then in a neighborhood of a point
A®(Py, ..., Pg) € J(T') the mapping A®) has a single-valued inverse.

Proof. Suppose that all the points are distinct; let zy, ..., z; be local parameters in neigh-
borhoods of the respective points Py,..., P, with z(Pr) = 0 and w; = i(zi)dz; the
normalized holomorphic differentials in a neighborhood of Px. The Jacobi matrix of the
mapping (5.4) has the following form at the points (P, ..., Pg)

(¢11 (Zl = 0) e ¢1g(zg = 0))

oz =0) ... Dz = 0)

If the rank of this matrix is less than g, then I[(K — D) > 0, i.e., the divisor D is special
by the Riemann-Roch theorem. The case when not all the points Py, ..., P are distinct is
treated similarly. We now prove that the inverse mapping is single-valued. Assume that
the collection of points (P’l, ... ,P:g) is also carried into A(®) (P1,...,Pg). Then the divisor
D" = P} + -+ + Py is linearly equivalent to D by Abel’s theorem. If D' # D, then there
would be a meromorphic function with poles at points of D and with zeros at points of
D'. This would contradict the fact that D is nonspecial. Hence, D’ = D, and the points
P’l, e, P’g differ from Py, ..., Py only in order. The lemma is proved. O
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Since a divisor Py + ... + P¢ in general position is nonspecial (see Problem 4.82), the
Abel mapping (5.4) is invertible almost everywhere. The problem of inversion of this
mapping in the large is the Jacobi inversion problem. Thus, the Jacobi inversion problem
can be written in coordinate notation in the form

{ ul(P1)+~~+u1(Pg) =M
......... (5.5)
ug(P1) + - +ug(Pg) =4
which generalizes (5.1). To solve this problem we need the apparatus of multi-dimensional
theta functions.

5.2 Theta-functions

The g-dimensional theta-functions are defined by their Fourier serie. Let B = (Bj)
be a symmetric ¢ x ¢ matrix with negative-definite real part and let z = (z1,...,z,) and
N = (Ny,...,ng) be g-dimensional column vectors. The Riemann theta function is defined
by its multiple Fourier series,

8
0(z) = 0(z;B) = >_ exp (mi(NB,N) +(N,z)), (5.6)
NeZ

where the angle brackets denote the Euclidean inner product:

8 8
(N,z) =Y Niz, (NB,N)= )] B;N;Ny.
k=1 k=1

The summation in (5.6) is over the lattice of integer vectors N = (N, ..., Ng). The obvious
estimate R (i(NB,N)) < —b(N,N), where b > 0 is the smallest eigenvalue of the matrix
J(B), implies that the series (5.6) defines an entire function of the variables z, .. ., Zg.

Proposition 5.2. The theta-function has the following properties.
1. 6(—z; B) = 0(z; B).

2. For any integer vectors M, K € Z8,

O(z + K+ MB; B) = exp (—ni{MB, M) — 27nti(M, z)) 6(z; B). (5.7)
3. It satisfies the heat equation
0 1 o o
EQ(Z,B) = %(}ZiZjQ(Z/B), 175]
p o (5.8)
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Proof. The proof of properties 1. and 3. is straightforward. Let us prove property 2. In
the series for 0(z + K + MB) we make the change of summation index N — N — M. The
relation (5.7) is obtained after this transformation. O

The integer lattice {N + MB} is called the period lattice.

Remark 5.3. It is possible to define the function 6(z) as an entire function of zy,...,z,
satisfying the transformation law (5.7) (this condition determines 0(z) uniquely to within
a factor).

The theta-function is an analytic multivalued function on the g-dimensional torus
T8 = C8/{N + MB}. In order to construct single valued functions, i.e. meromorphic
functions on the torus, one can take for example, for any two vectors e1,e; € C$ the
product

O(z+e1)0(z—e1)
O(z +e)0(z—e2)’

Indeed the above expression is by (5.7) a single valued function on the g-dimensional
torus. In general for any two sets of g vectors e, ...eq € C$, vy,...0, € C¢ satisfying the
constraint

is a meromorphic function on the torus (verify this!).
Let p and g be arbitrary real g-dimensional row vectors. We define the theta function
with characteristics p and ¢:

0[p, q](z) = exp (nilpB, p) + 2mi(z + q,p)) O(z + q + pB)

= 2 exp (mi{(N + p)B,N + p) + 2ni{z + q,N + p)) . (59)
NezZs

For p = 0 and q = 0 we get the function 6(z). The analogue of the law (5.7) for the
functions O[p, g](z) has the form

O[p,q](z + K+ MB) = 0|p, q](z)exp [-mi{MB, M) — 2ni{lM, z + q) + 2mi{K, p)]. (5.10)

Observe that all the coordinates of the characteristics p and g are determined modulo 1.
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Definition 5.4. The characteristics p and q with all coordinates equal to 0 or 1/2 are called half
periods. A half period [p, q| is said to be even if 4(p,q) = 0 ( mod 2) and odd if Kp,q) = 1 (
mod 2).

Exercise 5.5: Prove that the function O[p, 4](z) is even if [p, 4] is an even half period and
odd if [p, q] is an odd half period.

In particular the function 6(z) is even and for e = g + Bp with 4(p,q) = 1 ( mod 2)
one has

O(e) = 0.

Example 5.6. For ¢ = 1 the theta-function reduces to the Jacobi theta-function. Let 7 be
an arbitrary number with J7 > 0. The Jacobi theta function is defined by the series

0(z;7) = Z exp (mitn? + 2minz) . (5.11)

—oo<n<oo
Since
lexp (mitn® + 2minz)| = exp (—nJtn® — 2nnJz))

the series (5.11) converges absolutely and uniformly in the strips |J(z)| < const and
defines an entire function of z.
The series (5.11) can be rewritten in the form common in the theory of Fourier series:

0(z) = Z exp(mitn?)e?™" (5.12)

—oo<n<wo

(the function 93(z; 7)) in the standard notation; see [[3]). The function 6(z) has the
following periodicity properties:

0(z+1) = 6(z) (5.13)
O(z + 1) = exp(—mit — 2miz)60(z) (5.14)

The integer lattice with basis 1 and 7 is called the period lattice of the theta function. The
remaining Jacobi theta-functions are defined with respect to the lattice 1, 7 = b/2mi as

91(z; 1) = 9[%, %](z) = Z exp [ni’c (n + %)2 + 2mi <z + %) <n + %)]

—o0o<n<oo

9 (z; 1) i= 9[%/0](2) = Z exp [m”c <n + %)2 + 2miz <n + %)]

—0<n<oo
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Su(z; T) := 0|0, %](z) = Z exp {nimz + 2 (z + %) n] .

—o0o<n<oo

The functions 9,(z; 1), 93(z; 7) and 94(z; 7) are even functions of z while 91(z; 7) is odd.
1+7

So for ¢ = 1, the theta-function 6(z; 7) = 93(z; 7) = 0 forz =

Exercise 5.7: Prove that the zeros of the function 0(z) form an integer lattice with the
1+7

2

By multiplying theta function (5.9) we obtain higher order theta functions. The func-
tion f(z) is said to be a nth order theta function with characteristics p and g if it is an entire
function of zy, ..., z; and transforms according to the following law under translation of
the argument by a vector of the period lattice

f(z+ N + MB) = exp [—nin{MB, M) — 2nin{M, z + q) + 2ni{p, N)| f(z). (5.15)

same basis 1, T and with origin at the point zy =

Exercise 5.8: Prove that the nth order theta functions with given characteristics g, p form
a linear space of dimension n8. Prove that a basis in this space is formed by the functions

G[lgil_—y,q](nz; nB), (5.16)

where the coordinates of the vector y run independently through all values from 0 to
n—1

Under a change of the homology basis ay,...,a; and fy,..., B¢ under a symplectic
transformation

o a b\ («a a b
()= () G) (a)esasm
The period matrix transforms as (see 4.76)
B = J @' = (clg +dB)(aly + bB) L.
Denote by R the matrix

R = al, + bB (5.17)

The transformed values of the argument of the theta-function and of the characteristics
are determined by

() = (o 0) ()20 () .
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Here the symbol diag means the vectors of diagonal elements of the matrices ab' and cd'.
We have the equality

olp',q'1(z; B') = x VdetRexp { Zzz]alogdetR} Olp,q](z; B), (5.19)

l<]
where y is a constant independent from z and B. See [19] for a proof.

Exercise 5.9: Prove the formula (5.19) for ¢ = 1. Hint. Use the Poisson summation
formula (see [20],[19]: if

o0]

= % Jf(x)e_i‘gxdx

is the Fourier transform of a sufficiently nice function f(x), then

n=—0o0 n=—0o0

Theta function are connected by a complicated system of algebraic relations, which
are called addition theorems. These are basically relations between formal Fourier series
(see [19]). We present one of these relations. Let

O[n](z:B) = 613, 0](22; 2B),

according to (5.16) this is a basis of second order theta functions.

Lemma 5.10. The following identity holds:

0z +w)0(z—w) = >, 0[n](z)0[n](w). (5.20)

nG(Zz)g

The expression 1 € (Z;)$ means that the summation is over the g-dimensional vectors
n whose coordinates all take values in 0 or 1.

Proof. Let us first analyze the case g = 1. The formula (5.20) can be written as
0(z + w)0(z — w) = O(2)0(w) + O[1](2)0[1](w) (5.21)
where

= Z exp(mibk* + 2mikz), 0(z) = Z exp (2mibk? + 4mikz),
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A

O[1](z) = > exp! [zmb(% + k)2 + 4mi(k + 1/2)2] , 3(b) > 0.
k

The left-hand side of (5.21) has then the form

> exp [mib(kZ + 1) + 2mik(z + w) + 2mil(z — w)] . (5.22)
k1

We introduce new summation indices m and n by setting m = (k+1)/2and n = (k —1)/2.
The numbers m and n simultaneously are integers or half integers. In these variables the
sum (5.22) takes the form

Z exp[2mribm? + 4nimz + 2nibn® + 4minw). (5.23)

We break up this sum into two parts. The first part will contain the terms with integers
m and n, while in the second part m and n are both half-integers. In the second part we
change the notation from m to m + 3 and from n to n + 3. Then m and n are integers, and
the expression (5.19) can be written in the form

Z exp[2mibm? + 4nimz] exp[2mibn® + 4ninw]+

mneZ

> exp[2mib(m + %)2 + 4mi(m + %)z] exp[2mib(n + %)2 + 4mi(n + %)w] =

mnes.

0(2)0(w) + O[1](2)0[1] (w).

The lemma is proved for g = 1. In the general case g > 1 it is necessary to repeat the
arguments given for each coordinate separately. The lemma is proved. m|

Exercise 5.11: Suppose that the Riemann matrix B has a block-diagonal form B =

/
<% 1?,,), where B’ and B” are k x k and I/ x [ Riemann matrices, respectively with

k +1 = g. Prove that the corresponding theta function factors into the product of two
theta function

O(z; B) = 6(<'; BYO(z"; B"),

(5.24)
z=(21,...,2¢), 2 = (21,...,2), 2" = (Zks1,---,Z¢)-

Notte that the period matrix of a Riemann surface never has a block diagonal structure.
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5.2.1 The Riemann theorem on zeros of theta functions and its applications

To solve the Jacobi inversion problem we use the Riemann 0-function 6(z) = 6(z; B) on
the Riemann surface I As usual we assume that a;,...a, and By, ..., is a canonical
homology basis. The basis of holomorphic differentials wy, . .., wq is normalized

J Wy = 6jk/ f Wy = Bjk-

] ]

Even though 0(z | B) is not single-valued on J(T'), the set of zeros is well defined because
of (5.7). The set of zeros of O(z|B) is an analytic set of codimension one in J(I'). Let
e=(ey,...,eq) € C3 be a given vector. We consider the function F : I' — C defined as

F(P) = O(A(P) —e), (5.25)
where the Abel map A
P P
A(P) = <LO a)l,...,LO a)g> ,

is a holomorphic map of maximal rank of I' into J(I'). Because of the periodicity properties
of the theta-function (5.7), the function F(P) transforms in the following way:

e F(P+aj)=F(P) (5.26)
P

e F(P+pj)=F(P)exp [*niB]-]- - 2nij w;j + 2711'6]-] . (5.27)
Py

The study of the zeros of F(P) is thus the study of the intersection of A(T') < J(I') with
the set of zeros of 0(z; B) which form a well defined compact analytic sub-variety of the
torus J(I'). Since I' is compact, there are only two possibilities. Either F(P) is identically
zero on I or else F(P) has only a finite number of zeros. The function F(P) is single-valued
and analytic on the cut surface I (the Poincaré polygon). Assume that it is not identically
zero. This will be the case if, for example 0(e) # 0.

Lemma 5.12. If F(P) # 0, then the function F(P) has g zeros on T (counting multiplicity).

Proof. To compute the number of zeros it is necessary to compute the logarithmic residue

1
or

(assume that the zeros of F(P) do not lie on the boundary of o). We sketch a fragment
of oI (cf. the proof of lemma 4.15). The following notation is introduced for brevity and
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Figure 5.1: A fragment of T'.

used below: F* denotes the value taken by F at a point on ¢l lying on the segment ay or
Br and F~ the value of F at the corresponding point a - Lor By ! (see the figure 5.1).

The notation u™ and 1~ has an analogous meaning. In this notation the integral (5.28)
can be written in the form

1 18 . _
i fﬁdlogF(P) = ﬁk_l (Lk —i—fk) [dlog F™ —dlogF|. (5.29)
of -

Note that if P is a point on a; then

u;(P) =u]J.r(P)+f a)]-:u;r(P)+B]-k, i=1...,8 (5.30)
B

(cf. (4.10)), while if P lies on f, then

u]J.r(P) =u; (P) +J wj=u; (P)+ b, j=1,...,8 (5.31)
a

(cfr. (4.11)). We get from the law of transformation (5.7) of the theta function or from
(5.27), that for P on the cycle aj one has

log F~(P) = —miBy, — 2miu (P) + 2mie; + log F* (P); (5.32)
while on the cycle B from (5.26) one has
logF* =logF . (5.33)
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From this on ay

dlog F~(P) = dlog F* (P) — frm—emiomegay(P), (5.34)
and on Sy
dlog F~(P) = dlog F*(P). (5.35)

Accordingly, from (5.34) and (5.34) the sum (5.29) can be written in the form
1
%ffdlogl-" —Zfﬁa}k =g
or ko

where we have used the normalization condition §ak wy = 2mti. The lemma is proved O

Note that although the function F(P) is not a single-valued function on T, its zeros
Py,...,P¢ do not depend on the location of the cuts along the canonical basis of cycles.
Indeed, if this basis cycles is deformed then the path of integration from Py to P can change
in the formulas for the Abel map. A vector of the form (§y w1, ..., §y wg) is added to the

argument of the theta-function 6(z) in (5.25). This is a vector of period lattice {N + MB}.
As aresult of this the function F(P) can only be multiplied by a non zero factor in view of
(5.7).

Now we will show now that the g zeros of F(P) give a solution of the Jacobi inversion
problem for a suitable choice of the vector e.

Theorem 5.13. Let e € C8, suppose that F(P) = O(A(p) —e) # 0and Py, ..., Pq are its zeros on
I'. Then on the Jacobi variety J(T')

AR(Py,...,Py) = e+ K, (5.36)

where K = (K1, ..., Ky) is the vector of Riemann constants,

1+ Bjj P
7(‘]. — _T]] _|_Z (%a}l(P) LO cu]-), j= 1,...,g. (537)

1#j \s

Proof. Consider the integral

Ci= i uj(P)dlogF(P). (5.38)
or
This integral is equal to the sum of the residues of the integrands i.e.,

Cj=uj(P1) + - +u;(Py), (5.39)
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where Py, ..., P, are the zeros of F(P) of interest to us. On the other hand, this integral
can be represented by analogy with the proof of Lemma 5.12 in the form

L + + oy -
Gj=5- <Lk+Lk> (wfdlogF* —u-dlogF))

1 ‘
=5 Z LJu}“dlogP* - (u;r + Bj)(dlog F* — 2miawy)]

+ —l; fku;.“dlogl-“+ - (u;r — 0jx)dlog F']

) . 1
{Lk Zmu;?a)k - Bjk J;lk d log Ft + 27113]7(} + 2_711 Lj d IOg F+,

in the course of computation we used formula (5.30)-(5.35). The function F takes the same
values at the endpoints of ay, therefore

J dlog F" = 2miny,
a
where 7y is an integer. Further let Q; and Q j be the initial and terminal point of §;. Then

dlogF* =1og F*(Q;) —log F*(Q)) =
Bj

= log O(A(Qj) + fj —e) —1log O(A(Q;) — e) = —miBj; + 2mie; — 2miu;(Q;),

where f; = (Byj,...,Bygj) is a vector of the period lattice. The expression for {; can now be
written in the form

C] = M]'(P1) + e+ M](P]) =

1 5.40
=ej— EBjj_uj(Qj) +ZJ uja)k—i—ZBjk(—nk—i-l). ( )
k Jak k

The last two terms can be thrown out, they correspond to the j-coordinate of some vector
of the period lattice. Thus the relation (5.40) coincides with the desired relation (5.36) if it
is proved that the constant in this equality reduces to (5.37), i.e.

1 .
_Eij_uj<Qj)+ZJ ujwy=%;, j=1,...,8
kY%
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Figure 5.2: Homology basis.

To get rid of the term u;(Q;) we transform the integral

1
Pujo; = 302Q) — 2Ry,
aj
where R; is the beginning of a; and Q; is its end (which is also the beginning of b;). Further
uj(Qj) = uj(R;) + 1. We obtain

ff;ujwj = %[Z”]’(Q]‘) —1],

aj
hence
8 1 g
—u]‘(Qj) + Z f Ujwg = _E + Z UjWy.
k=1"+% k#jk=1"%
The theorem is proved. m]

Remark 5.14. We observe that the vector of Riemann constant depends on the choice of
the base point Py of the Abel map. Indeed let Kp, be the vector of Riemann constants
with base point Py. Then K, is related to Kp, by

Po
Koy = Kpy + (8§ — 1)J . (5.41)
0

Example 5.15. The vector of Riemann constants can be easily calculated for hyperelliptic

Riemann surfaces. In particular let us consider the curve w? = ]_[15:1 (z—z;)of genus g = 2,

and choose a basis of cycles as indicated in the figure 5.2. A normal basis of holomorphic
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differentials has the form

B T, cjz"ldz

j = - , j=1L2 (5.42)

where the constants cj; are uniquely determined by

f a)]‘ = 5jk-
Ak

We chose as base point of the Abel map the point Py = (20, 20). We need to compute

orf). (1)

2 1

Using the fact that
P 24 Z4 (z,w) Z4 (z,—w)
%a)z(P)j w1 = %a)z(P)J‘ 1 +J a)z(z,w)f w1 —f a)z(Z, —w)J w1
s Po & Po Z3 Z4 Z3 Z4

Z4 Z4 1 BlZ
= a)PJa)zfa):————
fanp) [, n = | "= (-5 - 5

one obtains

In the same way calculating

P Zn Zn (z,w) Zn (z,—w)
%a)l(P)J w2=§a)1(P)f a)2+f a)l(z,w)f wz—f a)l(z,—w)f w2
Py Py z1 4/} Z1 22

a a

553
= fﬁa)l(P)J wy = —By1/2

Py

ag

one obtains that
1+B B
K = — + 2; + b2y

Observe that the vector K can be written in the form

1 11
K = (0,5) + (§,§>B
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Namely, given the odd characteristic

() - 63)
one has that K = g + pB. From this expression it follows that
6(K) = 0.
It is a general result not restricted to this particular example that 6(z)|,—¢ = 0.

Corollary 5.16. Let D a positive divisor of degree g. If the function
O(A(P) — A(D) + K)
does not vanish identically on I' then its divisor of zeros coincides with D.

Accordingly, if the function 6(A(P) — e) is not identically equal to zero on I’, then its
zeros give a solution of the Jacobi inversion problem (5.5) for the vector n = e+ %K. We have
shown that the map (5.4) AS : S8 — J(T') is a local homeomorphism in a neighborhood
of a non special positive divisor D of degree g. Since 0(z) # 0 for z € J(I'), then 6(A8(D))
does not vanish identically on open subsets of S8T'. In the next subsection, we characterize
the zero set of the O-function. The zeros of the theta-function form an analytic subvariety
of J(T'). The collection of these zeros forms the theta divisor in J(I').

5.3 The Theta Divisor

In this section we study the set of zeros of the theta functions and in particular the
Riemann vanishing theorem which prescribes in a rather detail manner the set of zeros
of the theta-function on C$.

Theorem 5.17. Let e € C8, then 6(e) = 0 if and only if e = A(Dg_1) — K where Dy 1 is a
positive divisor of degree § — 1 and K is the vector of Riemann constants (5.37).

Remark 5.18. For D € S©@~UT the expression A(D) — K does not depend on the base point
of the Abel map. The theorem 5.17 says that the theta-function vanishes on a g — 1-
dimensional variety parametrized by ¢ — 1 points of I. Defining A(S$7'T) = W,_; the
theta function vanishes on Wy_; — K.

Proof. We first prove sufficiency. Let P; + --- + P be a non special divisor and v =
A(Py + ---+ Pg) — K. Let us consider F(P) = O(A(P) — v). Either F is identically zero or
not. In the former case foreachk =1,...¢

F(P) = O(AP1+ -+ P+ -+ Py) —K) =0,
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where we use the symbol Py to mean that P; does not appear in the divisor. So for
e=A(Py +~-—1—15k+-~-—|—Pg)—7(wehave9(e) = 0.

In the latter case F(P) # 0, we have that F has precisely g zeros on I due to lemma 5.12.
Let Qy, ... Qg be the zeros of F, then according to theorem 5.13 one has

AQi+ -+ Qg) =v+K =A(Py + - + Dy).

Since Py +---+ P¢isnot special, it follows from the Riemann-Roch and the Abel theorems
that Q1 +--- + Qg = P1 + - - - + P,. Therefore also in this case F(Py) = O(A(P1 + - - - + P+
-+ Pg)—K) =0fork =1,...,g. Since the set of non-special divisor of degree g is dense
in S@T, the divisors of the form Py + -+ + P + -+ + P, form a dense subset of S&-1r.
Since the function 6(z) is continuous, it follows that 0(z) is identically zero on Wy 1 — K,
where in general W,, — J(I'), is the Abel image of S MT forn > 1.

Conversely, let O(e) = 0. Then by Jacobi inversion theorem, since 60 is not identically
zero on J(I'). Then there exists an integer s, 1 < s < g, so that

O(A(D; —Dy)—e) =0, VDy,DpesEUT
but
O(A(Dy — D) —e) #0, Di, D, e SOT.

Let Dy = Py 4+ --- + Psand D, = Q1 + --- + Qs where we assume that the points of the
divisors are mutually distinct. Now let us consider the function

F(P)=6(A(P) +A(P2+---4+Ps) —A(Q1+ -+ Qs) —e)

Since F(P1) # 0, this function is not identically zero on I'. Therefore, by theorem 5.13 it
has g zeros on I'. These zeros are by construction Qj, ..., Qs plus some other g — s points
Tsi1,...,Ty. By theorem 5.13 one has

AQi+ -+ Qs+ Tosr, - +Tg) —K=AQ1+ -+ Qs) —AP2+ -+ P5) +e
or equivalently

e=APy+ -+ Ps+ Tsp1,+-+Ty) =K
which is a point in W1 — K. O

Regarding the zeros of the theta-function it is possible to prove a little bit more then
stated in the previous theorems. Let D € S~ VT and lete = A(D) — K. Then

mult,_.0(z) = I(D).

where [(D) is the dimension of the space L(D). The proof of this identity can be found in
[20].
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Remark 5.19. The vector of Riemann constants has a characterisation in terms of divisors.
Indeed there is a non positive divisor A of degree ¢ — 1 such that its Abel image coincides
with K, namely A(A) = K. Furthermore let D be a positive divisor of degree g — 1, then
the vector

e=AD)-K

is a zero of the theta-function, namely 6(e) = 0. By the parity of the theta-function one
has O(—e) = 0. It follows by theorem 5.17 that

—e=AD")-K

where D' is a positive divisor of degree ¢ — 1. Then summing up the two relations we
obtain

2K = A(D + D)

where D + D' is a positive divisor of degree 2¢g — 2. It can be proved that the divisor D + D
is the divisor of a holomorphic differential, namely the vector 2K is the Abel image of the
divisor of a differential. More precisely a divisor D is canonical if and only if A(D) = 2K
(see [19] for a proof of these results).

Using the characterization of the theta-divisor one can complete the description of the
function F(P).

Lemma 5.20. Let F(P) = O(A(P) — e) where e = A(D) — K, D € S®T and K the vector of
Riemann constants defined in (5.37). Then

1. F(P) = 0 iff the divisor D is special;

2. F(P) # 0iffdimQ(D) = 0, i.e. the divisort D is not special. In this last case D is the divisor
of zeros of F(P).

Proof. Let’s prove part 1. of the lemma. Let F(P) = 0, then by theorem 5.17 there is a
positive divisor D of degree ¢ — 1 so that

A(D) — K — A(P) = A(D) — K.

By Abel theorem, the identity holds if and only if D and D + P are linearly equivalent, that
is there is a meromorphic function in L(D) with a zero in an arbitrary point P € I'. This is
possible only if /(D) > 1 or equivalently dimC(D) > 0, namely D is special. Conversely,
if D e S8T is special then /(D) > 1 and therefore there is a function f € L(D) with an
arbitrary zero in a point P € T so that (f) = P + D — D. where D € S8—UT. It follows
by Abel theorem that A(P) — A(D) + K = —A(D) + K, then by theorem 5.17, one has
O(A(D) —K) = 0.

Now let us prove part 2. of the lemma. Suppose now that D is not special, then
F(P) # 0 and by theorem 5.13, the divisors of zeros of F(P) coincides with D. ]
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Corollary 5.21. Let e = A(D) — K with D € S8~IT. Them the function F(P) = 6(A(P) — e)
vanishes identically if and only if dimQ(D + Pg) > 1 (Check!!) where Py is the base point of the
Abel map.

Proof. Let Py be the base point of the Abel map, then A(P—Py) = A(P). Suppose F(P) =0,
then by theorem 5.17 there exists a positive divisor D of degree ¢ — 1 such that

AP —Pg) — A(D) + K = —A(D) + K

which implies that A(D + Py) = A(D + P). By Abel theorem, there is a nontrivial
meromorphic function / with divisor

(h)y=D+P—-D-Py

for all P € I'. This implies that [(D + Py) > 2 or equivalently, D + Py is a special divisor.
Viceversa suppose that dimQ(D+Pg) > 1, then[(D+Py) > 1so that L(D+Py) is generated
by {1, h} where I is a meromorphic function. So there is a nontrivial meromorphic function
with poles in D + Py and having zero in an arbitrary point P ( take for example the function
h — h(P)) and some other g — 1 points given by the divisor D. It follows that

A(D + Py) = A(D + P)
or equivalently
A(P—Py) —A(D) +K = -AD) - K

which implies by theorem 5.17 that 0 = 6(—A(D) — K) = 0(A(P — Py) — A(D) — K) =
O0(A(P) — A(D) — K) where we recall that Py is the base point of the Abel map. O

The zeros of the theta function (the points of the theta divisor) form a variety of
dimension 2¢ — 2 (for g > 3). If we delete from J(I'), the theta divisor, then we get a
connected 2g-dimensional domain. We get that the Jacobi inversion problem is solvable
for all points of the Jacobian J(I') and uniquely solvable for almost all points. Thus
the collection (Py,...,P;) = (A®))~1(n) of points of the Riemann surface I' (without
consideration of order) is a single valued function of a point 7 = (11,...1¢) € J(I') (which
has singularities at points of the theta divisor.) To find an analytic expression for this
function we take an arbitrary meromorphic function f(P) on I'. Then the specification of
the quantities 17y, ..., ¢ uniquely determines the collection of values

f(P1),..., f(Pg), AW(Py,...,Pe) =1 (5.3.43)

Therefore, any symmetric function of f(P1), ..., f(Py) is a single-valued meromorphic
function of the g variables 7 = (11,...,75), that is 2g-fold periodic with period lattice
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{2niM + BN}. All these functions can be expressed in terms of a Riemann theta function.
The following elementary symmetric functions has an especially simple expression:

8
= >, f(P)). (5.3.44)
j=1

From Theorem 5.36 and the residue formula we get for this function the representation

o5 2m§f )dlog O(A(P) — 1+ K)
(5.3.45)

oy Res f(P)d1og O(A(P) 1+ ),
f(Qx)=0

the second term in the right hand side is the sum of the residue of the integrand over all
poles if f(P). As in the proof of Lemma 5.12 and Lemma 5.13, it is possible to transform
the first term in (5.3.45) by using the formulas (5.34) and (5.35). The equality (5.3.45) can
be written in the form

ansz Jwr = Z Resf )dlog O(A(P) — 1 + K). (5.3.46)

Here the first term is a constant independent of 7. We analyze the computation of the
second term (the sum of residue) using an example.

Example 5.22. T is an hyperelliptic Riemann surface of genus g given by the equation

w? = Ppe41(z), and the function f has the form f(z,w) = z, the projection on the z-plane.

This function on I' has a unique two-fold pole at co. We get an analytic expression for the

function o constructed according to the formula (5.3.44). In other words if P; = (z1,w1),
., Py = (z¢,wy) is a solution of the inversion problem A(Py) + --- + A(Pg) = 1, then

Gf(n) =Z1+ -+ Zg. (5.3.47)

We take o0 as the base point Py (the lower limit in the Abel mapping). According to
(5.3.46) the function o¢(17) has the form

of(n) =c— Rogs [zdlog O(A(P) — 1+ K)].

Let us compute the residue. Take 7 = 27 as a local parameter in a neighborhood
of co. Suppose that the holomorphic differentials w; have the form w; = ¢;(7)dt in a
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neighborhood of c. Then

8
dlog O(A(P) — n+K) = Zlog@ — 1+ Kiw;(P) =

I
_

e

[log O(A(P) — 1+ K)|iphi(t)dr

Il
—_

where |[...]; denotes the partial derivative with respect to the ith variable. By the choice
of the base point point Py = «, the decomposition of the vector-valued function A(P) in
a neighborhood of o has the form

A(P) = tU + O(7?),
where the vector U = (Uy, ..., Ug) has the form

Uj=yi0), j=1...8
From these formulas we finally get
ar(n) = —(log 6(n — K))i jUill; + c = —21log O(xU + 1 — K)|x0 + ¢, (5.3.48)

where (log 0(n — K)); ; denotes derivative with respect to the i — th and j — th argument
of the theta-function and c is a constant.

We shall show in the next Section that the function

2

0
= logO(Ux + Wt —n+K) +¢

u(x, t) = pm

1
where Wy = gl[)" (0) solves the Korteweg de Vries equation

Uy = Z(6uux + Uyxx)-

Exercise 5.23: Suppose that a hyperelliptic Riemann surface of genus g is given by the
equation w? = Pyg42(z). Denotes its points at infinity by P_ and P,. Chose P_ as the base
point Py of the Abel mapping. Take f(z, w) = z as the function f. Prove that the function
0f(n7) has the form

~K—-A
ar(n) = (105 o Q(UWEP”))AUHC
]

(5.3.49)
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where the vector U = (Uy, ..., Uy) has the form

Uuy=v¢;0), j=1,...,8 (5.3.50)
where the basis of holomorphic differentials have the form

wj(P) =¢j(t)dt, T= z7l, P-ow.

Exercise 5.24: Let T be a Riemann surface w?> = Ps(z) of genus 2. Consider the two

systems of differential equations:

d Ps(z d Ps(z

dzy _ VPsz) dzm_ VPs(z2) (5.3.51)
dx Z1 — 22 dx 22 — 21

dzy  224/Ps(z1)  dz,  z1+/Ps5(22)

dn _nyvosa) o dzn  avisiE) (5.3.52)
dt Z1 — 2o dt Zp — 21

Each of these systems determined a law of motion of the pair of points

Py = (z1, 4/ P5(z1)), P2 = (22, 4/P5(22))

on the Riemann surface I'. Prove that under the Abel mapping (5.1) these systems pass
into the systems with constant coefficients

am dna _

FPA T
am dm
- o Y

In other words, the Abel mapping (5.1) is simply a substitution integrating the equations
(5.3.51) and (5.3.52).
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