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Preface

This is my first lecture on compact Riemann surfaces and holomorphic line bundles and the very first lecture
that I plan and hold by myself. It is mainly a mixture of Franz Pedit’s C-seminar [1] and Ulrich Pinkall’s
lectures on complex analysis [2].

Felix Knöppel





Propaganda

Though the function z 7→ z2 is not bijective, it has full rank away from zero and the inverse function
theorem allows us to define a square root locally. This yields a nice analytic function which can be continued
analytically to a function z 7→

√
z defined on a slit region, say C \ (−∞, 0]. This so called branch is determined

completely by the initial local function we choose to start with. Here this is basically a choice of a sign—if we
would have chosen the other sign we would have ended up with another branch, namely z 7→ −

√
z.

There is no reason why one of the branches should be preferred. Also the choice of the slit was completely
arbitrary—one could have taken any other curve connecting zero to infinity on the Riemann sphere.

A way to resolve this problem is to change the domain of the function: The limit values of both branches on
one and the other side of the negative real axis differ by sign. So they both can be glued across the negative
real line to form a surface. On this surface the square root becomes a well-defined function.

Similarly, if we try to take the square root
√

p of a polynomial p(z) =
∏2n

i=1(z − zi) with pairwise distinct
roots zi ∈ C, we can find a branch defined on C \ {γ1, . . . , γn}, where γi are embedded curves each of which
connects two of the roots of p. Again there are two branches which can be glued across the curves γi to form
an abstract surface on which

√
p becomes a well-defined function. By this we can produce compact surfaces

of arbitrary topological type.

In 1913 Hermann Weyl published his "Die Idee der Riemannschen Fläche" [3] where he gave the first
definition of a Riemann surface—in his eyes was the actual object of importance. A slightly newer exposition
of this old approach can be found e.g. at the end of Ahlfors [4].

Though let us take yet another perspective. Consider the set M = {(z,w) ∈ C2 | w2 = p(z)}. By the implicit
function theorem it forms a complex 1-dimensional submanifold—a Riemann surface sitting in C2 = R4.
Topology and complex structure are inherited from the ambient space and the function

√
p, which on M

is just given by the projection to the second component, is a holomorphic function on M. Again it seems
natural to regard solutions of algebraic equations, like the ones above, as functions defined on a Riemann
surface. Though a famous theorem by Chow assures that all compact Riemann surfaces arise as algebraic
curves, i.e. from polynomial equations, the analytic continuation picture hints at that the ambient space is
of no importance at all. What has to be understood is holomorphic or meromorphic functions on Riemann
surfaces.

It turns out that it is not only about functions but about holomorphic sections of holomorphic line bundles
over a Riemann surface. Here one of the most famous results is the Riemann–Roch theorem. It gives us
information about the dimension of the space of holomorphic sections. Here the topology of the holomorphic
line bundle and the Riemann surface play a crucial role.

The main goal of this course will be to understand the Riemann–Roch theorem and its consequences from
a differential geometric point of view. Therefore, we build up a rigorous framework of smooth manifolds
and vector bundles and then use the elliptic theorem to draw conclusions about the topology of compact
Riemann surfaces and meromorphic functions, differentials, or sections of holomorphic line bundles over
Riemann surfaces. The elliptic theorem itself won’t be proven here.
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LOCAL THEORY OF SEVERAL COMPLEX

VARIABLES





Some Foundations 1
1.1 Holomorphic Maps in Several Variables

1.1.1 Complex Differentiability

Every complex vector space has an underlying real vector space V . This allows us consider real linear maps
between complex vector spaces opposed to only complex linear maps—as usual when one considers complex
vector spaces as vector spaces over the field of complex numbers. In particular multiplication by the complex
unit i can be considered as a distinguished real endomorphism which squares to −1—an almost complex
structure.

To make things precise let us fix some notation: For two real vector spaces V and W , we set

Hom(V ; W) := {λ : V → W | λ linear}, EndV := Hom(V ; V), V∗ := Hom(V ; R) .

Definition 1.1.1 (Almost Complex Structure) Let V be a real vector space. An endomorphism J ∈ EndV is called
an almost complex structure if J2 = −I.

Conversely, given a real vector space V together with an almost complex structure J ∈ EndV , then this
defines a complex scalar product:

(x + iy).v := xv + yJv v ∈ V .

As such a complex vector space is equivalent to a tuple (V , J) consisting of a real vector space V and an
almost complex structure J ∈ EndV . For convenience we usually just say that V is a complex vector space
and leave the almost complex structure implicit. Clearly, dim V = 2 dimC V .

Corollary 1.1.1 On a vector space of odd dimension there is no almost complex structure.

For complex vector spaces (V , JV ) and (W , JW ) we define the set Hom+(V ; W) of complex linear maps and the
set Hom−(V ; W) of complex antilinear maps as follows

Hom±(V ; W) := {A ∈ Hom(V ; W) | AJV = ±JW A} .

In particular, we have End±V := Hom±(V ; V).

Definition 1.1.2 (Holomorphic Map) Let V , W be complex vector spaces and U ⊂ V . A map f : U → W is called
complex differentiable at p ∈ U, if f is differentiable at p with complex linear differential dp f ∈ Hom+(V , W). If f
is complex differentiable at all points p ∈ U, then f is called holomorphic.

Exercise 1.1.1 Let f and g be holomorphic maps. Show that f + g and f ◦ g, wherever they are defined,
are holomorphic. Moreover, if f and g are complex–valued, then f g and f /g are holomorphic where they
are defined.

There are natural projections from the space of real linear maps to the space of complex linear and complex
antilinear maps.



1 Some Foundations

Theorem 1.1.2 For each A ∈ Hom(V ; W) there are is a unique A′ ∈ Hom+(V ; W) and a unique A′′ ∈ Hom−(V ; W)
such that A = A′ + A′′. The maps A′ and A′′ are given by the projections

A′ := 1
2 (A− JW AJV ), A′′ := 1

2 (A+ JW AJV ) .

In particular, Hom(V ; W) � Hom+(V ; W) ⊕Hom−(V ; W).

Proof. The proof is left as an exercise.

Corollary 1.1.3 Let f : V ⊃ U → W be differentiable. Then

f holomorphic ⇐⇒ J(df ) = (df )J ⇐⇒ df = (df )′ ⇐⇒ (df )′′ = 0 .

Let V be a complex vector space. If we choose a complex basis v1, . . . , vn, then this defines coordinate
functions zj = xj + iyj : V → C,

I =
n∑
j=0

zjvj .

From this we get differentials dxj , dyj ∈ V∗ and dzj , dz̄j ∈ Hom(V ; C). Clearly, dx1, dy1, . . . , dxn, dyn form a
basis dual to v1, Jv1 . . . , vn, Jvn.

Exercise 1.1.2 The differentials dz1, . . . , dzn resp. dz̄1, . . . , dz̄n form a basis of Hom+(V , C) resp. Hom−(V , C).

In particular, if f : V → W is a differentiable map into another complex vector space, then df can be written
in terms of dzj and dz̄j :

df =
n∑
j=1

∂ f
∂z j

dzj +
n∑
j=1

∂ f
∂z̄ j

dz̄j ,

where ∂ f
∂z j

and ∂ f
∂z̄ j

are maps defined on U with values in W .

Exercise 1.1.3 (Wirtinger Derivatives) If ∂
∂x j

and ∂ f
∂yj

denote differentiation with respect to the coordinates
xi , yi , then

∂ f
∂z j
= 1

2
( ∂ f
∂x j
− i ∂ f∂yj

)
, ∂ f

∂z̄ j
= 1

2
( ∂ f
∂x j
+ i ∂ f∂yj

)
.

Thus a map f : U → W is holomorphic if and only if, for j = 1, . . . , n,

∂ f
∂z̄ j
= 1

2
( ∂ f
∂x j
+ i ∂ f∂yj

)
= 0 .

Exercise 1.1.4 Let U ⊂ Cm. A map f = ( f1, . . . , fn) : U → Cn is holomorphic if and only if for i = 1, . . . , m
the component functions fi : U → C are holomorphic.

Definition 1.1.3 (Biholomorphism) Let V , W be complex vector spaces, U ⊂ V and Ũ ⊂ W . A map f : U → Ũ is
called biholomorphic if f is a holomorphic bijection with holomorphic inverse. If f : U → Ũ is a biholomorphism,
then U and Ũ are called biholomorphic.

Notation 1.1.1 (Isomorphic Sets) If U and Ũ are homeomorphic, diffeomorhic resp. biholomorphic, we
write U �C 0 Ũ, U �C∞ Ũ resp. U �O Ũ. If it is clear what category we are talking about we drop the index
and just write U � Ũ.
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1.1 Holomorphic Maps in Several Variables

Exercise 1.1.5 Show that biholomorphy defines an equivalence relation.

A famous result on holomorphic functions in one variable is the Riemann mapping theorem, which we state
here without proof.

Theorem 1.1.4 (Riemann Mapping Theorem) Every non–empty simply–connected open subset U  C is
biholomorphic to the open unit disc D2 ⊂ C.

Exercise 1.1.6 Consider the annuli Ai = {z ∈ C | ri < |z | < Ri}, Ri > ri > 0, i = 1, 2. Show:

(a) A1 �C∞ A2.
(b) A1 �O A2 ⇔ R1/r1 = R2/r2.

Exercise 1.1.7 Show that a holomorphic diffeomorphism is a biholomorphism.

It is also true that every biholomorphism is a holomorphic diffeomorphism. This follows from the fact that
holomorphic functions are smooth, which we show in the next section.

1.1.2 Local Form of Complex Differentiable Functions

It turns out that the multiindex notation is neat way to deal with indexing in the higher dimensional case.

Definition 1.1.4 (Multiindex Notation) For k ∈ Zn and z ∈ Cn we define

zk :=
n∏
j=1

zk j

j .

Moreover, we define 1 := (1, . . . , 1) ∈ Zn.

For z ∈ Cn with zj , 0, j = 1, . . . , n, we then get

z−1 =

n∏
j=1

z−1
j =

1∏n
j=1 zj

=
1
z1 .

Similarly, we write

dz = (dz)1 =
n∏
j=1

dzj .

Definition 1.1.5 (Polydisk, n-Torus) For a ∈ Cn, r ∈ (0,∞)n, we define the 2n-dimensional polydisk Da,r and
the n-dimensional Torus with center a and radius r by

Da,r := {(z1, . . . , zn) ∈ Cn | |zj − aj | ≤ rj∀ j} = Da1,r1 × · · · × Dan ,rn ,

Ta,r := {(z1, . . . , zn) ∈ Cn | |zj − aj | = rj∀ j} = ∂Da1,r1 × · · · × ∂Dan ,rn .

With this in place we can finally state the multi-dimensional version of the Cauchy–integral formula.

Theorem 1.1.5 (Cauchy–Integral Formula) Let U ⊂ Cn be open, Da,r ⊂ U and f : U → C holomorphic. Then

f (z) = 1
(2πi)n

∫
T (a,r)

f (w)

(w−z)1
dw, ∀z ∈ D̊a,r .

5



1 Some Foundations

Proof. This follows by induction on n ∈ N: For n = 1 that’s just the well-known Cauchy formula. For the
induction step we just consider the function g = f (−, z2, . . . , zn) defined on Da1,r1 . Then, by the Cauchy–
integral formula applied to g, the induction hypothesis and Fubini’s theorem, we get

f (z1, . . . , zn) = 1
2πi

∫
∂Da1,r1

f (w1,z1,...,zn)
w1−z1

dw1

= 1
2πi

∫
∂Da1,r1

1
w1−z1

1
(2πi)n−1

∫
f (w1,...,wn)

(w2−z2)·· ·(wn−zn)
dw2 · · · dwndw1

= 1
(2πi)n

∫
T (a,r)

f (w)

(w−z)1
dw.

Definition 1.1.6 (Multiindex Notation) For k ∈ Nn we define |k| =
∑n

j=1 |kj | and k! = k1! · · · kn!. Then

f (k)(z) := ∂|k| f

∂zk := ∂k1+. . .+kn

∂z1
k1 · · ·∂zn

kn f (z) = ∂k1

∂z1
k1
. . . ∂kn

∂zn
kn

f (z) .

Theorem 1.1.6 Holomorphic maps are smooth, i.e. all partial derivatives exist. In particular, all complex derivatives
exist and are holomorphic. Explicitly, for k ∈ Nn and j = 1, . . . , n,

f (k)(z) = k!
(2πi)n

∫
T (a,r)

f (w)

(w−z)k+1 dw .

Proof. By the Cauchy–integral formula, we have

f (z) = 1
(2πi)n

∫
T (a,r)

f (w)

(w−z)1
dw .

This form shows that all partial derivatives exist and are continuous. Moreover,

∂ f
∂z j
(z) = 1

(2πi)n

∫
T (a,r)

∂
∂z j

f (w)

(w−z)1
dw = 1

(2πi)n

∫
T (a,r)

f (w)

(wj−z j )(w−z)1
dw ,

and holomorphicity follows from the holomorphicity of the integrand and the claim follows by induction.

Lemma 1.1.7 (Geometric Series) Let z,w ∈ Cn such that |zj | < |wj | for all j = 1, . . . , n. Then

1
(w − z)1

=
∑

k∈Nn

zk

wk+1
.

Proof. It is known that the formula for the geometric series holds in C: For |q | < 1, we have
∑∞

k=0 qk = 1
1−q .

Thus, for |z | < |w |,
1

w − z
=

1
w

1
1 − z

w

=

∞∑
k=0

zk

wk+1
.

For the multi-variable version we make use of the absolute convergence of the geometric series. That allows
us to change the order of summation: Let z,w ∈ Cn such that |zj | < |wj | for all j = 1, . . . , n. Then we have

1
(w − z)1

=
1

w1 − z1
· · ·

1
wn − zn

=
∑

k∈Nn

zk1
1

w
k1+1
1

· · ·
zkn
n

wkn+1
n

=
∑

k∈Nn

zk

wk+1
.
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1.1 Holomorphic Maps in Several Variables

Theorem 1.1.8 (Power Series Expansion) The Taylor series of a holomorphic function f : D̊a,r → C converges
everywhere to f :

f (z) =
∑

k∈Nn

1
k! f (k)(a)(z − a)k.

Proof. As in the one-dimensional case, we start with the right-hand side and plug in the definition of f (k)(z):∑
k∈Nn

1
k! f (k)(a)(z − a)k = 1

(2πi)n

∑
k∈Nn

(z − a)k
∫
Ta,r

f (w)

(w−a)k+1 dw

= 1
(2πi)n

∫
Ta,r

∑
k∈Nn

f (w) (z−a)k

(w−a)k+1 dw

= 1
(2πi)n

∫
Ta,r

f (w)

((w−a)−(z−a))1
dw

= 1
(2πi)n

∫
Ta,r

f (w)

(w−z)1
dw

= f (z)

where we used for the last equality the Cauchy–integral theorem.

Corollary 1.1.9 (Principle of Analytic Continuation) Let U ⊂ Cn be open and connected, ∅ , Ũ ⊂ U open and
f : U → C holomorphic. Then

f |Ũ = 0 =⇒ f = 0 .

Proof. Define
Û :=

⋂
k∈Zn

{z ∈ U | f (k)(z) = 0}

then Û is a closed subset of U and Ũ ⊂ Û. Further, by the power series expansion theorem, Û is open. Since
U is connected we can deduce that U = ∅ or Û = U. Since Û ⊃ Ũ , ∅ by assumption, we have Û = U. Thus
the power series theorem implies that f ≡ 0.

Remark 1.1.1 In the one dimensional case, it was even sufficient that f vanishes on a set which has an
accumulation point in U. This does not generalize to higher dimensions. For example, any non-zero
complex linear function is holomorphic, but vanishes on a whole hyperplane.

The power series expansion theorem and the corollary do not hold in a real C∞-setting. There the situation is
utterly different—there are smooth functions which are constant on certain domains. For example, f : R→ R

given by

f (x) =

{
0 for x ≤ 0 ,

e−1/x for x > 0 .

Theorem 1.1.10 (Open Mapping Theorem) If U ⊂ Cn is connected and f : U → C is a non-constant holomorphic
function, then f is open, i.e. open set are mapped to open sets.

Proof. Let p ∈ Ũ ⊂̊U, where Ũ is star-shaped. Then, by the principle of analytic continuation, there is q ∈ Ũ
such that f (p) , f (p). Now, if Û is the intersection of Ũ with the affine complex line {p+ z(q − p) | z ∈ C} � C,

7



1 Some Foundations

then f restricts to a non-constant holomorphic function on Û, which is open by the open mapping theorem
in one variable. Hence f (Û) is open ⊂ f (U).

Corollary 1.1.11 Let U ⊂̊Cn be a domain and f : U → C holomorphic. Then | f | takes its maximum on the boundary
∂U of U.

Cauchy’s integral formula and the principle of analytic continuation also yield the following theorem.

Theorem 1.1.12 (Hartogs’ Extension Theorem—Polydisk Version) Let n ≥ 2 and Da,r , Da,R ⊂ Cn be polydisks
such that Da,r ⊂ D̊a,R. Then each holomorphic map f on D̊a,R \ Da,r has a unique holomorphic extension to D̊a,R.

This can be generalized to Hartog’s theorem. We state it here without proof.

Theorem 1.1.13 (Hartogs’ Extension Theorem) Let V be a complex vector space of dimC V ≥ 2. Let K ⊂ G ⊂ V
such that G is open, K is compact and G \ K is connected. Then each holomorphic map f on G \ K has is a unique
holomorphic extension to G.

Remark 1.1.2 Hartog’s theorem is wrong in complex dimension = 1—consider the function f : C \ {0} → C

given by z 7→ 1/z.

1.1.3 Inverse and Implicit Function Theorem for Holomorphic Maps

The inverse function theorem for holomorphic functions is an easy consequence of the inverse function
theorem of smooth functions.

Theorem 1.1.14 (Inverse Function Theorem) Let V , W be complex vector spaces and U be an open subset of V .
Let f : U → W be holomorphic and p ∈ U such that dp f is invertible. Then there are open neighborhoods Ũ ⊂ U of
p and Û ⊂ W of f (p) such that f |Ũ : Ũ → Û is a biholomorphism.

Proof. Since holomorphic maps are smooth, there are open neighborhoods Ũ ⊂ U of p and Û ⊂ W such that
f |Ũ : Ũ → Û is a diffeomorhism. That the inverse map is holomorphic is Exercise 1.1.7.

For the holomorphic version of the implicit function theorem we need a little preparation.

Definition 1.1.7 (Complex Subspace) Let (V , J) be a complex vector space. A linear subspace Ṽ ⊂ V is called
complex if it is J-invariant, i.e. JṼ ⊂ Ṽ .

If V , W are complex vector spaces, then the complex structure on their direct sum V ⊕W is given by

J(v,w) = (Jv, Jw)

for v ∈ V and w ∈ W . The complex structure on Hom+(V , W) is given as follows: For A ∈ Hom+(V , W),

(J A)v = J(Av) = A(Jv).

Theorem 1.1.15 Let V , W be complex vector spaces. Then A ∈ Hom(V , W) is complex linear if and only if its graph
GA = {(v, Av) ∈ V ⊕W | v ∈ V} of A is a complex subspace.

8



1.1 Holomorphic Maps in Several Variables

Proof. For A ∈ Hom+(V , W) we have J(v, A(v)) = (Jv, J A(v)) = (Jv, A(Jv)) ∈ GA. Conversely, if GA is a
complex subspace, then (Jv, J A(v)) = J(v, A(v)) ∈ GA, thus J A(v) = A(Jv).

Theorem 1.1.16 (Implicit Function Theorem) Let V1, V2 and W be complex vector spaces and let V := V1 ⊕ V2.
Let U ⊂ V be open and h : U → W be holomorphic. If q = (q1, q2) ∈ U such that f (q) = 0 and the restriction
dq f : V2 → W is bijective, then there are open neighborhoods U1 ⊂ V1 of q1 and U2 ⊂ V2 of q2 and a holomorphic
function g : U1 → U2 such that

∀(p1, p2) ∈ U1 ×U2 : h(p1, p2) = 0 ⇐⇒ p2 = g(p1) .

Proof. Again, we know already there is such a smooth function g : U1 → U2. We are left to show that g is
holomorphic. Therefore it is enough to show that for all p1 ∈ U1, the differential dp1g is complex linear.
Since dqh(V2) = W we can assume without loss of generality that d(p1,g(p1)h(V2) = W for all p1 ∈ U1. From
h(p, g(p)) = 0, we then get

0 = d(p1,g(p1))h
(
v1, dp1g(v1)

)
.

Hence the graph of dp1g is in the kernel of d(p1,g(p1))h and, since the have equal dimension, they must be equal.
Since the kernel of a complex linear map is a complex linear subspace, we conclude that dp1g is complex
linear and thus g is holomorphic.

Let V be a real vector space and M ⊂ V . A (global) parametrization of M over an open subset U of a vector
space is a smooth bijective map f : U → M with continuous inverse, which has full rank everywhere. If such
f exists, we say that M is smoothly parametrizable.

Lemma 1.1.17 Let V be a real vector space and M ⊂ V be smoothly parametrized by f : U → V . Then M is locally
a graph, i.e. for each q ∈ M there are subspaces V1, V2 ⊂ V such that V1 ⊕ V2 = V , open subsets U1 ⊂ V1, U2 ⊂ V2

and a smooth map g : U1 → U2 such that for all p1 ∈ U1 and p2 ∈ U2

(p1, p2) ∈ M ⇐⇒ p2 = g(p1) .

Proof. Without loss of generality we can assume that q = 0 and f (q) = 0. Define V1 := im dq f and choose a
complementary subspace V2, V = V1 ⊕ V2. Then f = ( f1, f2). Define ϕ̃ : U ⊕ V2 → V1 ⊕ V2 given by

(p, v2) 7→ ( f1(p), v2) .

the differential d(0,0)ϕ̃ is bijective. So locally there is a smooth inverse ϕ = (ϕ1, ϕ2) defined on, say, U1 ×U2,
Ui ⊂ Vi open. Since ϕ̃(p, 0) ∈ V1 × {0} and ϕ is bijective, we have Ũ := ϕ1(U1 × {0}) ⊂ U. Since ϕ is a
homeomorphism, Ũ is open. Moreover, since (v1, v2) = ϕ̃(ϕ(v1, v2)) = ( f1(ϕ1(v1, v2)), ϕ2(v1, v2)), we have
f1(ϕ1(v1, v2)) = v1. Thus

f ◦ ϕ(v1, v2) = (v1, f2(ϕ1(v1, v2))) .

Since the inverse of f is continuous f (Ũ) 3 f (p) is open in M. After possibly shrinking U1 and U2 we can
assume that M

⋂
(U1 ×U2) is the graph of the map g : U1 → U2 given by v1 7→ f2(ϕ1(v1, 0)).

A flattening of M is a smooth map ϕ mapping an open neighborhood U of M diffeomorphically onto its
image Ũ ⊂ V such that M = ϕ−1(Ũ

⋂
W) for some m-dimensional linear subspace W ⊂ V . If such ϕ exists we

say that M is smoothly flattenable.

Theorem 1.1.18 Let M be a subset of a real vector space V of real dimension n. Then the following are equivalent:

(a) Locally M is the zero set of a smooth map f of full rank into some (n −m)-dimensional real vector space.

9



1 Some Foundations

(b) Locally M looks like the graph of a smooth map g defined on an m-dimensional real subspace of V .
(c) Locally M is smoothly flattenable to some m-dimensional real vector space.
(d) Locally M is smoothly parametrizable by open sets in some m-dimensional real vector space.

Proof. Let M be given as the zero set of a function h. Then, by the implicit function theorem, M is locally the
graph of a function g : V1 → V2. The function ϕ : V1 ⊕ V2 → V1 ⊕ V2 given by ϕ(v,w) = (v,w − g(w)) is then a
flattening of M . Moreover, if π2 : V → V2 denotes the projection on the second component, M is then the zero
set of π2 ◦ ϕ. Thus we have seen that (a) ⇒ (b) ⇒ (c) ⇒ (a)—so they are equivalent. If M is the graph of a
function g : V1 → V2 then clearly f (v1) = (v1, g(v1)) is a parametrization of M over V1. The converse statement
is Lemma 1.1.17.

Looking through the last two proofs we can safely state that both—lemma and theorem—remain true when
we change smooth to holomorphic. Thus we get a holomorphic version of theorem.

Theorem 1.1.19 Let M be a subset of a complex vector space V of complex dimension n. Then the following are
equivalent:

(a) Locally M is the zero set of a holomorphic map f of full rank into some (n −m)-dimensional complex vector
space.

(b) Locally M looks like the graph of a smooth/holomorphic map g defined on an m-dimensional real/complex
subspace of V .

(c) Locally M is holomorphically flattenable to some m-dimensional complex vector space.
(d) Locally M is holomorphically parametrizable by open sets in some m-dimensional complex vector space.

Such flattenable spaces are called submanifolds. For the intrinsic geometry of M and objects living on it, as e.g.
functions, the environmental vector space plays absolutely no role—in fact, in many situations it blurs the
view. The next sections deal with building up a rigorous theory of abstract manifolds, which is build upon
topology.
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Manifolds 2
2.1 Manifolds

This section is meant to recall some basic notions of point set topology. It is written in such a way that it also
may serve as a brief introduction.

2.1.1 Some Basics in Point Set Topology

Definition 2.1.1 (Topological Space) A topological space is a pair (X ,O) consisting of a set X and a topology O,
i.e. a subset O of the power set P(X) of X such that

(a) ∅, M ∈ O,
(b) U ⊂ O⇒

⋃
U∈UU ∈ O,

(c) U ⊂ O finite⇒
⋂

U∈UU ∈ O.

An element of O is called an open set. If it is clear what topology we are speaking about we just say that X is a
topological space and speak of open sets. For convenience we then write

U ⊂̊ X :⇐⇒ U ∈ OX .

A set A ⊂ X is called a closed set if its complement Ac := X \ A is open.

A broad class of topological spaces, known from analysis are metric spaces.

Example 2.1.1 (Metric Topology) Given a metric space (X , d) then for a given point x ∈ X and a given
radius r > 0 we can define the open ball of radius r centered at x to be

Br (x) = {y ∈ X | d(x, y) < r} .

Let B := {Br (x) | x ∈ X , r > 0}. Then the metric topology is the set Od of arbitrary unions of elements in B,

Od :=
{ ⋃
U∈U

U | U ⊂ B
}

.

Note that the open sets in the metric topology agree with the notion of open set as it is known from
analysis. All the notions there that can be formulated purely in terms of open sets translate directly to
general topological spaces—so we can speak of neighborhoods, limits, compactness, covers, subcovers,
connectedness, connected components and so on.

Some more pathological examples of topologies are the following.

Example 2.1.2 (Trivial and Discrete Topology) Let X be a set. Then:

(a) O = {∅, X} defines a topology, called the trivial topology.
(b) O = P(X) defines a topology, called the discrete topology.

A set equipped with the discrete topology is called a discrete space.



2 Manifolds

Both examples are kind of extreme—each topology contains the trivial topology and is contained in the
discrete topology. Actually, as sets are partially ordered by inclusion so are topologies. If

O ⊂ Õ ,

then we say that OX is coarser than ÕX or, equivalently, ÕX is finer than OX . So we can say that the trivial
topology is the coarsest and the discrete topology is the finest among all topologies of X .

We are aiming at topologies which are not too coarse (Hausdorff) and not too fine (second countable).

In Example 2.1.1 the topology is generated by a set B—such set is called a basis of topology.

Definition 2.1.2 (Basis of Topology) Let (X , O) be a topological space. A basis of topology is a set B that generates
the topology, i.e. for each U ∈ O there is a subset U ⊂ B such that

U =
⋃
Ũ⊂U

Ũ .

Definition 2.1.3 (2nd-countable Space) A space is called 2nd-countable if it has a countable basis of topology.

Theorem 2.1.1 (2nd-countablility of Rn) Rn equipped with its norm topology is 2nd-countable.

Proof. Let B= {Br (x) | x ∈ Qn, r ∈ Q}. Clearly, B is countable. One easily checks that B is a basis.

An obvious example of a topological space which is not 2nd-countable is provided by any uncountable set
equipped with the discrete topology. Though this space just has uncountably many connected components.
An example of a connected space which is not 2nd-countable is the so-called long line.

Definition 2.1.4 (Subbasis) Let (X ,O) be a topological space. A subbasis of topology is a set S such that the set of
finite intersections { ⋂̃

A∈A

Ã | A⊂ S finite
}

forms a basis of topology.

Taking unions of finite intersections of elements in a given set S⊂ P(X) generates a topology O on X , which
is the coarsest topology which contains S.

Example 2.1.3 (Order Topology) Let (X , ≤) be a totally ordered set. Then the order topology is generated by
the subbase of open rays

(a,∞) := {x ∈ X | a < x}, (∞, a) := {x ∈ X | x < a}, a ∈ X .

Example 2.1.4 (Long Line) There is an uncountable well-ordered set ω1—called the first uncountable ordinal.
The closed long ray is defined as the cartesian product of ω1 with the half-open interval [0, 1) ⊂ R, equipped
with the order topology that arises from the lexicographical order on ω1 × [0, 1). The long line L is obtained
from the closed long ray by removing the smallest element (0, 0). Clearly, the long line is not 2nd-countable.

A subset of a topological space comes with a natural topology.

Example 2.1.5 (Subspace Topology) Let X be a subset of a topological space (Y ,OY ), then X inherits a
topology OY from X . It is given as follows:

OX := {U ∩ X | U ∈ OY } .
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Definition 2.1.5 (Continuous Map, Open Map, Homeomorphism) Let f : X → Y be a map between topological
spaces. Then we define

f continuous :⇐⇒ f −1(U) ⊂̊ X for all U ⊂̊Y ,

f open :⇐⇒ f (U) ⊂̊Y for all U ⊂̊ X .

If f is a continuous bijection which has a continuous inverse, then we say that f is a homeomorphism.

Exercise 2.1.1 Let X be a subset of a topological space Y . Show that the subspace topology is the coarsest
topology such that the inclusion X ↪→ Y is continuous.

The next theorem tells us that we get 2nd-countability for free, when we are working with sets which already
sit in some 2nd-countable space.

Theorem 2.1.2 A subspace of a 2nd-countable space is 2nd-countable.

Proof. Let {Uj}j∈N be a basis of topology of X and X̃ ⊂ X Then {Uj
⋂

X̃}j∈N is a basis of topology of X̃ .

Theorem 2.1.3 A subspace of a Hausdoff space is Hausdorff.

Proof. Let X be a subspace of a Hausdorff space Y and let x, x̃ ∈ X such that x , x̃. Then there are U, Ũ ⊂̊Y
such that x ∈ U, x̃ ∈ Ũ and U ∩ Ũ = ∅. Then U ∩ X , U ∩ X ⊂̊ X are disjoint, x ∈ U ∩ X and x̃ ∈ Ũ ∩ X .

Example 2.1.6 (Product Topology) Let X1, . . . , Xn be topological spaces. The product topology on the
cartesian product X1 × · · · × Xn is defined to be the coarsest topology such that the natural projections
πi : X1 × · · · × Xn → Xi , i = 1 . . . , n are continuous. A subbasis is given by{

π−1
i U | U ⊂̊ Xi , 1 ≤ i ≤ n

}
.

Theorem 2.1.4 The product of Hausdorff spaces is Hausdorff.

Proof. Exercise.

Example 2.1.7 (Quotient Topology) Let X̂ be a topological space and π : X̂ → X be surjective. Then

OX = {U ⊂ X | π−1U ∈ OX̂ }

defines a topology on X—the quotient topology. It is the coarsest topology on X such that π is continuous.
The map π yields an equivalence relation on X̂ given by

x ∼ y :⇐⇒ π(x) = π(y) .

Conversely, the canonical projection of an equivalence relation ∼ is such a map π. We denote the quotient
space by X = X̂/∼.

In general, if X̂ is 2nd-countable or Hausdorff, the quotient space might be not. If the natural projection is
open, then we can say something.
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Theorem 2.1.5 If X̂ is 2nd-countable and π : X̂ → X is a continuous open surjection, then X is 2nd-countable.

Proof. Let B̂be a countable basis of topology on X̂ . Then, since π is open, B := {π(Û) ⊂̊ X | Û ∈ Û}. Clearly
B is countable. To see that B is a basis of topology, let U ⊂̊ X . Then Û := π−1U ⊂̊ X̂ and there is a subset
A⊂ B̂ such that Û = ∪A∈AA. Hence

U = π(Û) = π
(⋃
A∈A

A
)
=

⋃
A∈A

π(A)

with {π(A) | A ∈ A} ⊂ B. Thus B is a basis of topology.

Theorem 2.1.6 Let π : X̂ → X be a continuous open surjection. Then R = {(x̂, ŷ) | π(x̂) = π(ŷ)} is closed in X̂ × X̂
if and only if X is Hausdorff .

Proof. Assume R is closed. If x, y ∈ X , x , y. Then there is (x̂, ŷ) < R such that π(x̂) = x and π(ŷ) = y. Since R
is closed, (X̂ × X̂) \ R is open and so there are open sets Û, V̂ ∈ X̂ such that x̂ ∈ Û, ŷ ∈ V̂ and (Û × V̂) ∩ R = ∅.
Then U := π(Û) and V := π(V̂) are open with x ∈ U, y ∈ V and U ∩V = ∅. So X is Haussdorff. Conversely,
assume that X is Hausdorff. If (x̂, ŷ) < R, then x := π(x̂) , π(ŷ) =: y and there are disjoint open neighborhoods
U of x and V of y. Then Û := π−1U and V̂ := π−1V are open. Û × V̂ is then an open neighborhood of (x̂, ŷ).
Since U and V were disjoint, (Û × V̂) ∩ R = ∅. Thus R is closed.

Example 2.1.8 (Torus) On X̂ = Rn we define p ∼ q :⇐⇒ q − p ∈ Zn. If Û ⊂ X̂ is open, then

π−1 (Û)
=

⋃
m∈Zn

(
Û +m

)
,

which is clearly open. Moreover, R =
{
(x, y) ∈ X̂ × X̂ | x ∼ y

}
= f −1(Z) for f (x, y) = x − y, which is closed

since f is continuous. Hence X̂/∼ is a 2nd-countable Hausdorff space. We also write Rn/Zn.

The very same arguments hold if we replace Zn in the equivalence relation by a lattice, i.e. a set Λ =
{
∑n

i=1 miωi | (m1, . . . , mn) ∈ Zn} where ω1, . . . ,ωn ∈ Rn are linearly independent. The quotient Rn/Λ is
called the real n-dimensional torus.

Definition 2.1.6 (Covering Map) A topological covering map is a continuous sujective map π : X̂ → X such
that for each point x ∈ X has a neighborhood U ⊂̊ X such that π−1U = Û∪α∈AUα such that for all α the restriction
π |Uα : Uα → U is a homeomorphism.

Exercise 2.1.2 (Atlas of the Torus) Show that the canonical projection π : Rn 7→ Rn/Λ is a covering map.

Exercise 2.1.3 Consider X̂ = R and let p ∼ q :⇐⇒ q − p ∈ Q. Show that X̂/∼ is not Hausdorff.

2.1.2 Differentiable Manifolds

In this section we introduce the central objects of this lecture—complex manifolds. We start out with the
basic concept of a topological manifold before we equip it with additional structures.

Definition 2.1.7 (Topological Manifold, Chart) An m-dimensional manifold is a 2nd-countable Hausdorff space
Mm which is locally homeomorphic to open sets in Rm, i.e. for each point p ∈ M there is U ⊂̊M of p, V ⊂̊Rm and a
homeomorphism ϕ : U → V . Such a homeomorphism ϕ : U → V is called a local chart or simply a chart at p—(U, ϕ),
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for short. Instead of locally homeomorphic to Rm, we also say that M is locally euclidean.

Let us go through some examples. Many manifolds just sit in some euclidean space.

Example 2.1.9 (Sphere) The n-dimensional sphere is defined as the set Sn := {x ∈ Rn+1 | |x |2 = 1}. As a
subset of euclidean space Sn is 2nd-countable and Hausdorff. Let D ⊂ Rn denote the open unit disk. Then,
for j = 1, . . . , n + 1, the sets U±j given by

U±j = {x = (x1, . . . , xn+1) ∈ Sn | ±xj > 0}

are open in Sn and ϕ±j : Uj → D by

ϕ±j (x1, . . . , xn+1) := (x1, . . . , x̂j , . . . , xn+1) := (x1, . . . , xj−1, xj+1, . . . , xn+1)

are homeomorphisms. Since each point p ∈ Sn is contained in at least one of the open sets U±j , we have
given for each point a neighborhood homeomorphic to D ⊂ Rn.

The collection of homeomorphism ϕ±j in the last example is what is called an atlas.

Definition 2.1.8 (Atlas) Let Mm be a topological manifold. An atlas of Mm is a collection A = {(Uα, ϕα)}α∈A of
charts on M such that their domains form an open cover of Mm,

⋃
α∈A Uα = M .

Exercise 2.1.4 (Atlas of the Torus) Show that the canonical projection π : Rn 7→ Rn/Λ is a covering map.
In particular, we obtain an atlas of Rn/Λ by restricting the canonical projection:

A =
{
(π |Û )

−1 : Û → U | Û such that π |Û : Û → U homeomorphism
}

.

Show that the coordinate changes are locally translations of the form x 7→ x +ω for some ω ∈ Λ.

In some situations a manifold structure comes from a collection of compatible bijections.

Example 2.1.10 (Manifold from Atlas) Given a set M together with a collection of bijective maps A =

{ϕα : Uα → Vα ⊂̊Rm}α∈A such that ∪α∈AUα = M for all α, β ∈ A the coordinate change

ϕβ ◦ ϕ
−1
α : ϕα(Uα ∩Uβ) → ϕβ(Uα ∩Uβ)

is a homeomorphism. Then there is a unique topology on M—the topology induces by A —such that for all
α ∈ A the map ϕα is a homeomorphism, i.e. we have a topological space which is locally homeomorphic
to Rm. If the induced topology is 2nd-countable and Haussdorff, then M is a manifold and A forms an
atlas for M .

Though this construction may not lead to a 2nd-countable Hausdorff topology—as illustrated by the
following examples.

Remark 2.1.1 (Long Line, Line with two Origins) Note, that there are topological spaces which satisfy all
but one of the three manifold properties—2nd-countability, Hausdorff property and property of being
locally euclidean. As an example of a 2nd-countable Hausdorff space which is not locally euclidean, one
can just consider a planar curve with self-intersections. The other examples are more difficult.

First, the long line, which is not 2nd-countable, but can be shown to be Hausdorff and locally euclidean.

Second, the line with two origins, which is obtained as a quotient—on the disjoint union of two real lines
we identify all points but the origin. The line with two origins is not Hausdorff but can be shown to be
2nd-countable and locally euclidean.
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In Example 2.1.10 above we have seen that if the coordinate changes—being homeomorphisms—respect
topology, we can lift the topology of Rm up to M . Similarly, other structures can be lifted, whenever we have
an atlas which respects them.

Definition 2.1.9 (Smooth Structure) A smooth atlas on a manifold Mm is an atlas A = {ϕα : Uα → Vα ⊂̊Rm}α∈A

such that for all α, β ∈ A the coordinate change

ϕβ ◦ ϕ
−1
α : ϕα(Uα ∩Uβ) → ϕβ(Uα ∩Uβ)

is a diffeomorphism. A maximal smooth atlas is called a smooth structure.

Definition 2.1.10 (Smooth Manifold) A smooth manifold is a pair (M , A ) consisting of a topological manifold
M and a smooth structure A on M .

Remark 2.1.2 Note, that a smooth atlas determines a unique maximal atlas. Thus it is enough to specify a
smooth atlas instead of a smooth structure.

Example 2.1.11 The atlases we defined above for the sphere and the torus define smooth structures.

Similarly, we define a complex structure on an even-dimensional manifold.

Definition 2.1.11 (Complex Structure) A complex atlas on a manifold M2n is an atlas {ϕα : Uα → Vα ⊂̊R2n =

Cn}α∈A such that for all α, β ∈ A the coordinate change

ϕβ ◦ ϕ
−1
α : ϕα(Uα ∩Uβ) → ϕβ(Uα ∩Uβ)

is a biholomorphism. A maximal complex atlas is called a complex differentiable or, for short, complex structure.

Definition 2.1.12 (Complex Manifold) A complex manifold is a pair (M , A ) consisting of a topological manifold
M and a complex structure A on M . A complex-1-dimensional manifold is also called a Riemann surface.

Remark 2.1.3 (Differentiable Manifold) Every complex manifold is a smooth manifold. If a manifold M is
smooth or complex and we want to leave it somewhat unspecified what kind of smooth structure explicitly
we are dealing with we just say that M is a differentiable manifold.

Example 2.1.12 (Complex Torus) Let Λ ⊂ R2n = Cn be a lattice. Then the atlas consisting of restrictions of
the canonical projection defines a complex structure and turns Cn/Λ into a complex manifold.

Another example is the complex projective space—due to its importance we will do it here in detail.

Example 2.1.13 (Complex Projective Space) Let (Cn+1)× := Cn+1 \ {0}. We define an equivalence relation
on (Cn+1)× as follows:

z ∼ w :⇐⇒ z = λw, for λ ∈ C .

The n-dimensional complex projective space is then defined to be the quotient space CPn = (Cn+1)×/∼. Let
π : (Cn+1)× → CPn denote the canonical projection. Since

π−1(π(U)) =
⋃
λ,0

λU ⊂̊ (Cn+1)× ,

the canonical projection is an open map. So we get that CPn is 2nd-countable. Furthermore, if f : (Cn+1)× ×
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(Cn+1)× → R is given by f (z,w) =
∑
|ziwj − zjwi |

2, then

R = {(z,w) ∈ (Cn+1)× × (Cn+1)× | z ∼ w} = f −1{0} .

Since f is continuous, R is closed and so CPn is Hausdorff. For j = 1, . . . , n+ 1, let Uj := {[z] ∈ CPn | zj , 0},

ϕj : Uj → Cn, [z1, . . . , zn+1] 7→ (z1, . . . , ẑj , . . . , zn+1)/zj ,

where the hat means omission. We leave it as an exercise to check that {(Uj , ϕj)}j=1,...,n+1 is a complex atlas.

Once we have a smooth structure we can define smooth maps.

Definition 2.1.13 (Smooth Map) A map f : Mm → Nn is called smooth, if for every two smooth charts ϕ of M
and ψ of N such that the composition

f̂ = ψ ◦ f ◦ ϕ−1

defined, the map f̂ is smooth as a map from some subset of Rm into Rn. The set of all smooth maps from M to N will
be denoted by C∞(M ; N). Furthermore, C∞M := C∞(M ; R).

Definition 2.1.14 (Diffeomorphism) A diffemorphism is a smooth bijection which has a smooth inverse. If there
exists a diffeomorphism between two manifolds we call them diffeomorphic.

Similary, we define holomorphic maps on a complex manifold.

Definition 2.1.15 (Holomorphic Map) A map f : M2m → N2n is called holomorphic, if for every two complex
charts ϕ of M and ψ of N such that the composition

f̂ = ψ ◦ f ◦ ϕ−1

defined, the map f̂ is holomorphic as a map from some subset of Cm into Cn. The set of holomorphic maps from M to
N will be denoted by O(M ; N). Furthermore, OM := O(M ; C).

Definition 2.1.16 (Biholomorphism) A biholomorphism is a holomorphic bijection which has a holomorphic
inverse. If there exists a biholomorphism between two complex manifolds we call them biholomorphic.

Example 2.1.14 (Riemann Sphere) Let Ĉ := C∪ {∞}. Define ϕ0 : Ĉ \ {∞} → C and ϕ∞ : Ĉ \ {0} → C by

ϕ0(z) = z, ϕ∞(z) =

{
1
z for z , ∞

0 for z = ∞

Then {ϕ0, ϕ∞} forms an complex atlas: ϕ∞ ◦ ϕ−1
0 : C \ {0} → C \ {0} is given by z 7→ 1/z.

Exercise 2.1.5 Show that the biholomorphisms of the Riemann sphere Ĉ are exactly the Möbius transfor-
mations. Moreover, show that Ĉ �O CP1.

Definition 2.1.17 (Local Diffeomorphism, Local Biholomorphism) A smooth map f : M → N between smooth
manifolds is called a local diffeomorphism if each p ∈ M has a neighborhood U ⊂̊M such that the restriction
f |U : U → f (U) is a diffeomorphism. Similarly, a holomorhic map f : M → N between complex manifolds is called
a local biholomorphism if each p ∈ M has a neighborhood U ⊂̊M such that the restriction f |U : U → f (U) is a
biholomorphism.
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Exercise 2.1.6 Let Λ ⊂ Rn be a lattice. Show that with the atlas we defined for the torus the canonical pro-
jection is a local diffeomorphism. Show, moreover, that smooth structure on Rn/Λ is uniquely determined
by the condition that the canonical projection Rn → Rn/Λ is a local diffeomorphism. The same statement
is true in the complex case.

Given two manifolds we can build their cartesian product. That leads again to a manifold—as carried out by
the next exercise.

Exercise 2.1.7 (Product Manifold) Show that the cartesian product M1 ×M2 of two manifolds M1 and M2

is a manifold. Show that, if A1 and A2 are atlases of M1 and M2, then{
ϕ1 × ϕ2 | ϕ1 ∈ A1, ϕ2 ∈ A2

}
,

forms an atlas of M1 ×M2. Here ϕ1 × ϕ2 denotes the cartesian product of functions,

(ϕ1 × ϕ2)(p1, p2) := (ϕ1(p1), ϕ2(p2)) .

Moreover, if A1 and A2 are smooth resp.complex, then so is the product atlas. Show that the natural
projections πi : M1 ×M2 → Mi are smooth resp. holomorphic.

Exercise 2.1.8 Show that Rn/Λ �C∞ (S
1)n = S1 × · · · × S1.

Remark 2.1.4 The last exercise shows in particular that all n-dimensional tori Rn/Λ are diffeomorphic,
but not biholomorphic.

2.1.3 Some Basics on Holomorphic Functions

Theorem 2.1.7 (Principle of Analytic Continuation) Let M be a connected complex manifold and f : M → C be
holomorphic. If f |U = 0 for some ∅ , U ⊂̊M , then f = 0.

Proof. To see this consider the set Z := {p ∈ M | ∃Up ⊂̊M , p ∈ Up : fUp = 0}. Clearly, Z is open and non-empty,
Z ⊃ U , ∅. Moreover, if q ∈ Z , then any open neighborhood of q intersects Z . So choose some connected
complex coordinate neighborhood, (V , ϕ). Then there is p ∈ V ∩ Z and hence Up ⊂̊M such that fUp = 0. Thus
f ◦ ϕ−1 : ϕ(U) → C vanishes on some open subset. Hence f ◦ ϕ−1 = 0 and so is fV = 0, i.e. p ∈ Z . Hence Z is a
non-empty set which is simultaneously open and closed. Since M is connected, Z = M .

Theorem 2.1.8 If M is a compact connected complex manifold and f : M → C is holomorphic, then f is constant.

Proof. Since | f | is continuous and M is compact, there is a point p ∈ M where | f | is maximal. Expressing f in
coordinates at p we obtain a holomorphic function whose modulus attains its maximum at an inner point
of some open set in Cm. Hence f is constant in some open neighborhood of p. Since M is connected, the
principle of analytic continuation yields that f is then constant on all of M .

Theorem 2.1.9 A non-constant holomorphic function f : M → C on a connected complex manifold is open.

Proof. The principle of analytic continuation yields that f is nowhere locally constant. The claim then follows
from the local result, since the property that a map is open is a local property. The details are left to the
reader.
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Corollary 2.1.10 A non-constant holomorphic map from a connected complex manifold to a Riemann surface is
open.

Corollary 2.1.11 A non-constant holomorphic map from a compact connected complex manifold to a connected
Riemann surface M is surjective. In particular, M is compact.

Smooth maps are much more flexible. This is becomes particularly apparent from the existence of a partition
of unity, which is an important construction tool and which is probably the best explanation for the necessity
of 2nd-countability.

2.1.4 Partitions of Unity

A collection Cof subsets of a manifold M is called locally finite, if each point p ∈ M has a neighborhood V
such that V ∩U , ∅ for only finitely many U ∈ C. The support supp f of a function f : M → R is the closure
of its zero set,

supp f := {p ∈ M | f (p) , 0} .

Definition 2.1.18 (Partition of Unity) A partition of unity on a smooth manifold M is a collection of smooth
functions {ρα : M → [0,∞)}α∈A such that

(a) the collection of supports {supp ρα}α∈A is locally finite, and
(b)

∑
α∈A ρα = 1.

A partition of unity {ρα : M → [0,∞)}α∈A is subordinate to an open cover {Uβ}β∈B, if for each α ∈ A there
exists β ∈ B such that supp ρα ⊂ Uβ . If A = B and supp ρα ⊂ Uα for all α ∈ A, we say that the partition of
unity is subordinate with the same index.

On Rn there are non-negative smooth functions with compact support. By a chart these can be transferred to
a manifold, where they serve as the fundamental building block for the construction of a partition of unity.

Lemma 2.1.12 There is a smooth function f : Rn → [0, 1] such that f (x) = 1 for |x | < 1 and f (x) = 0 for |x | > 2.

Proof. As the condition depends only on the norm of x, it is enough to show that there is such f for n = 1—for
larger n we can then precompose the norm. The function

h(t) =

{
e−1/t for t > 0

0 else

is smooth with h(t) = 0 for t ≤ 0 and h(t) > 0 for t > 0. From h we define a smooth non-negative function g:

g(t) :=
h(t)

h(t) + h(1 − t)
.

Then g(t) = 0 for t ≤ 0 and g(t) = 1 for t ≥ 1 and so

f (t) := g(t + 2)g(2 − t)

has the desired properties.

The principle to combine these localized functions to a partition of unity is quite simple. Suppose we would
have a finite cover C and for each open set U ∈ C some function fU : M → [0,∞)with supp fU ⊂ U and for
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each point p ∈ M there is at least one such function fU such that fU (p) > 0. Then f :=
∑

U∈C fU > 0 and the
functions

ρU = fU/ f

would form partition of unity. In general we need quite some amount of topology to get into a situation
similar to the one just described. The key here is 2nd-countability. Here we don’t go into details and, after
we introduced the needed terminology, just state the result. A proof is given in Appendix A.1.

Let Abe an open cover of M. A refinement of A is an open cover B such that each U ∈ B is contained in
some V ∈ A. If each open cover of M has a locally finite refinement, then M is called paracompact. A precompact
subset is a subset whose closure is compact.

Theorem 2.1.13 (Paracompactness of Manifolds) Every locally compact 2nd-countable Hausdorff space is
paracompact. In fact, given a locally compact 2nd-countable Hausdorff space X , an open cover C of X , and any basis
B of the topology of X , there exists a countable, locally finite refinement of C consisting of elements of B.

To obtain then a partition of unity subordinate to a given open cover we will apply Theorem 2.1.13 to a
particular adapted basis of topology.

Lemma 2.1.14 Let M be a smooth manifold and C be an open cover. Then, for each U ∈ C, the set

BU =
{

f −1(0,∞) ⊂ M | f : M → [0,∞) smooth, supp f ⊂ U
}

forms a basis of topology of U. A basis of the topology of M is given by their union

B=
⋃
U∈C

BU .

Proof. Let U ∈ C. To each p ∈ U we find a coordinate chart ϕp : Up → B3(0) such that Up ⊂̊U and ϕp(p) = 0.
So we can define a function fp : M → [0,∞) as follows

fp(q) =

{
f (ϕp(q)) for q ∈ Ûp

0 else

where f is the function from Lemma 2.1.12. Then supp fp ⊂ U and clearly fp is smooth. In particular,
Wp := f −1

p (0,∞) ⊂̊U. Hence U =
⋃

p∈U Wp with Wp ∈ B. Thus BU is a basis of topology of U. The second
claim simply follows from the fact that each V ⊂̊M can be written as V =

⋃
U∈CU ∩V .

We are now ready to prove existence of the partitions of unity as stated in Warner [5].

Theorem 2.1.15 (Existence of Partitions of Unity) Let M be a smooth manifold and C be an open cover of M.
Then there exists a countable partition of unity {ρi}i∈N subordintate to the cover Cwith supp ρi compact for all
i ∈ N. If one does not require compact supports, then there is a partition of unity {ρU }U∈C subordinate to the cover
Cwith at most countably many of the ρU not identically zero.

Proof. Let Bbe the basis of topology given in Lemma 2.1.14. For each element U ∈ B in this basis there is a
non-negative function fU : M → [0,∞) such that f −1

U (0,∞) = U. Then, by Theorem 2.1.13, there is a countable
locally finite refinement D of Cwhich consists of elements of B. Since D is locally finite, we can define

f =
∑
U∈D

fU .
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Since D is a cover, we find that f > 0. Hence we can define

ρU := fU/ f .

By construction,
∑

U∈D ρU = 1. Moreover, since D consists of the elements of B =
⋃

V ∈CBV , we have that
U ∈ BV for some V ∈ C. Thus supp ρU = supp fU ⊂ V . In particular, supp ρU is compact. Thus {ρU }U∈D is a
partition of unity subordinate to C.

To obtain obtain a partition of unity with the same index, we can basically sum up the functions with support
in a given set in C: Let C̃= {Ui}i∈N ⊂ Cbe a countable subcover. For j ∈ N, we define Dj := D\ {U ∈ D |

∃i < j : U ⊂ Ui} and
ρ̃Ui =

∑
U∈Di : U⊂Ui

ρU .

For U ∈ C\ C̃we set ρU = 0. Then { ρ̃U }U∈C is a partition of unity with at most countably many ρ̃U , 0.
That the support lies in U follows from the fact that, if A is a locally finite family of closed sets then⋃

A∈A A =
⋃

A∈A A.

Corollary 2.1.16 (Bump Function) Let M be a manifold, U ⊂̊M and A ⊂ M be closed, A ⊂ U. Then there is a
smooth function f : M → [0,∞) such that supp f ⊂ U and f |A = 1.

2.2 Submanifolds

2.2.1 Immersions, Submersions, Embeddings

A topological submanifold of a manifold M is a subset S ⊂ M , which itself has the structure of a manifold. If M
is a differentiable manifold, we must additionally impose some compatibility.

Definition 2.2.1 (Smooth Submanifold) Let M be a smooth manifold of dimension m. A subset S ⊂ M is called a
smoooth submanifold of dimension s, if for each point p ∈ S there is an adapted chart, a chart ϕ : U → V ⊂̊Rs ×Rm−s

such that p ∈ U ⊂̊M and
U ∩M = ϕ−1 (V ∩Rs × {0}

)
.

The adapted charts remind us to the flattenings that we already saw in local theory. This local flattability
property we also refer to as the submanifold property. Similarly, we define complex submanifolds.

Definition 2.2.2 (Complex Submanifold) Let M be a complex manifold of complex dimension m. A subset
S ⊂ M is called a complex submanifold of dimension s, if for each point p ∈ S there is an adapted chart, a chart
ϕ : U → V ⊂̊Cs ×Cm−s such that p ∈ U ⊂̊M and

U ∩M = ϕ−1 (V ∩Cs × {0}
)

.

Let f : M → N be a differentiable map between differentiable manifolds and let p ∈ M. Then if (U, ϕ) is a
chart at p and (V ,ψ) a chart at f (p), then we can write f in these coordinates and obtain a differentiable
map

f̂ = ψ ◦ f ◦ ϕ−1 : ϕ(U ∩ f −1V) 7→ ψ(V) .

The rank of f at p is then defined as the rank of f̂ at ϕ(p),

rankp f = rankϕ(p) f̂ = dim(im dϕ(p) f̂ ) .
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Exercise 2.2.1 Check that the definition of rank f is independent of the choice of coordinates.

We say that f is of full rank, if
rank f = min (dim M , dim N) .

Definition 2.2.3 (Immersion, Submersion) A differentiable map f : M → N of full rank is called

(a) a submersion, if dim M ≥ dim N ,
(b) an immersion, if dim M ≤ dim N .

Remark 2.2.1 (Local Diffeomorphism) A local diffeomorphism is a map of full rank between manifolds of
equal dimension. In particular, it is both an immersion and a submersion.

Let f : M → N be a surjection. Then M is separated into preimages of points in N : For q ∈ N ,

Mq := f −1{q}, q ∈ N

is called the fiber of f over q.

Remark 2.2.2 Our use of the word fiber is a slight abuse of language. The term fiber usually appears in
the context of topology for fiber bundles and fibrations, which are maps which have special topological
properties. Above we use it for maps between sets.

Theorem 2.2.1 (Submersion Theorem) The fibers of a surjective submersion f : M → N are closed differentiable
submanifolds of M of dimension dim M − dim N .

Proof. Since f is continuous, each fiber is closed. Using charts, the submanifold property follows then just by
Theorem 1.1.18 in the real and Theorem 1.1.19 in the complex case.

Example 2.2.1 (Algebraic Curves) An affine algebraic curve is the zero set Σ ⊂ C2 of a complex polynomial
p : C2 → C,

Σ =
{
(z1, z2) ∈ C2 | p(z1, z2) = 0

}
.

If p is irreducible and regular on Σ, then the submersion theorem tells us it is a 1-dimensional complex
submanifold, i.e. a Riemann surface.

A homogeneous polynomial of degree d is a polynomial P such that P(λz) = λdP(z). Each polynomial can
be homogenized by adding a dimension. In particular, if p : C2 → C is a polynomial of degree d, then
there is a homogeneous polynomial P : C3 → C of degree d such that

P(z1, z2, 1) = p(z1, z2) .

Since P is homogeneous, its zeros can be considered as a subset Σ̂ ⊂ CP2 called a projective algebraic curve,

Σ̂ =
{
[z1, z2, z3] ∈ CP2 | P(z1, z2, z3) = 0

}
,

which is closed and, since CP2 = π(S5) is compact, is compact as well. Furthermore, if P has full rank away
from zero, then Σ̂ is a compact Riemann surface which—as C2 = {[z1, z2, 1] ∈ CP2]} ⊂ CP2—contains Σ.
So Σ̂ is a compactification of Σ.

If Σ̂ has singular points then they must lie on the subset {[z1, z2, 0] ∈ CP2}. Since P is polynomial, the rank
drops only at isolated points and we have still some unique complex structure. This is basically due to
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Riemann’s theorem on removable singularities.

Exercise 2.2.2 (Hyperelliptic Curves) A hyperelliptic curve is an algebraic curve Σ of the form

Σ =
{
(µ, λ) ∈ C2 | µ2 = p(λ)

}
, where p(λ) =

n∏
j=1

(λ − λj), λ1, . . . , λn ∈ C .

Show that Σ is non-singular if and only if λj , λk for j , k. Moreover, show that the maps (µ, λ) 7→ λ

(away from Pj = (0, λj)) and (µ, λ) 7→ µ (close to Pj = (0, λj)) define a complex atlas for Σ.

Depending on the degree of p, we add one point P∞ or two points P±∞ over λ = ∞ to Σ,

Σ̂ :=

{
Σ

⋃
{∞} if n = 2k + 1

Σ
⋃
{+∞,−∞} if n = 2k + 2

Show that

(µ, λ) 7→ µ/λk+1 for (µ, λ) , P∞ close to P∞ resp. (µ, λ) 7→ 1/λ for (µ, λ) , P∞ close to P±∞

define complex compatible charts at the infinite points. Finally, show that Σ̂ is compact.

Exercise 2.2.3 (Hopf fibration) Let S2n+1 ⊂ R2n+2 = Cn+1 denote the unit sphere. The restriction π : S2n+1 →

CPn of the canonical projection (Cn+1)× → CPn to the unit sphere is a smooth submersion all of whose
fibers are diffeomorphic to the unit circle S1—such submersion is called a fibration with fiber S1. The
submersion π is called the Hopf fibration.

Remark 2.2.3 The unit circle S1 is Lie group, i.e. a group which is additionally a smooth manifold structure
within the the group operations, multiplication and inversion, are both smooth. S1 acts smoothly on S2n+1

by scalar multiplication and CPn �C∞ S2n+1/S1.

Similarly also immersions define submanifolds—at least locally.

Theorem 2.2.2 (Immersion Theorem) Let f : M → N be an immersion. Then each point p ∈ M has a neighborhood
U ⊂̊M such that f (U) ⊂ N is a differentiable submanifold of dimension dim M .

Proof. Again, this is an immediate consequence of Theorem 1.1.18 and Theorem 1.1.19.

Globally the image of an immersion need not be a submanifold—e.g. there might be self-intersections. But
even for injective immersions, the image can fail to be a submanifold. An additional property is needed.

Definition 2.2.4 (Topological Embedding) A map f : M → N between topological spaces is called a topological
embedding, if its restriction f : M → f (M) is a homeomorphism.

Definition 2.2.5 (Differentiable Embedding) A differentiable embedding is an immersion which is an topological
embedding.

Exercise 2.2.4 Show that the image of an immersion is a submanifold if and only if the immersion is an
embedding.

Theorem 2.2.3 If f : M → N is an injective immersion and M is compact, then f is an embedding.
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Proof. Since f : M → N is injective, its restriction is bijective. Since M is compact and Hausdorff, every closed
set A ⊂ M is compact and thus mapped to a compact and thus closed set f (A) ⊂ f (M). Hence the inverse of
the restriction is continuous. Hence the restriction is a homeomorphism, i.e. f is an embedding.

Exercise 2.2.5 Let M, M̃ be two 1-dimensional complex submanifolds of C2. Show that if they intersect,
then they intersect either in an isolated point or M and M̃ locally coincide.

Exercise 2.2.6 The Veronese map is a map ϑd : CPn → CPm, where m =
(
n+d
d

)
− 1, which sends

[(z0, . . . , zn)] ∈ CPn to the complex line spanned by monomials in z0, . . . , zn of degree d. For n = 1
and d = 3, we have

ϑ3 : CP1 → CP3, [(z,w)] 7→ [(z3, z2w, zw2,w3)] .

Show that ϑ3 is well-defined and holomorphic and that ϑ3(CP1) is a compact submanifold of CP3.

Exercise 2.2.7 (Conics) Two sets in CPn are projectively equivalent, if they one can be mapped to the other
by a projective transformation, i.e. a map f : CPn → CPn, [z] 7→ [Az] with A ∈ End+(Cn+1). A conic in CP2 is
an algebraic curve given by a homogeneous polynomial of degree 2. Show that

(a) all non-degenerate conics in CP2 are projectively equivalent,
(b) each non-degenerate conic is biholomorphic to CP1.

Hint for (b): Consider the Veronese map.

2.2.2 Tangent Space of Submanifolds in Rn

Let M ⊂ Rn be an m-dimensional smooth submanifold. By Theorem 1.1.18, M can be locally parametrized,
i.e. for each p ∈ M there is a neighborhood V ⊂̊M , some U ⊂̊Rm and smooth map f : U → V of full rank, an
embedding. In particular, there is an m-dimensional vector space attached to p ∈ V , its tangent space

T f
p M := im df −1(p) f .

One easily checks that TpM does not depend on the choice of the parametrization. We set TpM := T f
p M .

Theorem 2.2.4 Let M ⊂ R2n = Cn be a smooth submanifold of dimension 2m. Then M is a complex submanifold if
and only if for each p ∈ M the tangent space TpM is a complex subspace.

Proof. If M is a complex submanifold, then locally M can be parametrized by a holomorphic map. Clearly,
the image of the differential of a holomorphic map is a complex subspace. Conversely, by Theorem 1.1.18, M
can locally be written as the graph of a smooth function f over some open subset U in a complex subspace.
We can assume that U ⊂̊Cm and f : U → Cn−m. Then a local parametrization of M is given by f̂ = (idU , f )
and, for z ∈ U, we have

Tf̂ (z)M = dz f̂ (Cm) =
{
(X , dz f X) ∈ Cn | X ∈ Cm

}
.

Thus, by Theorem 1.1.15, dz f is complex linear, i.e. f is complex differentiable in z. Hence f is holomorphic
and, by Theorem 1.1.19, M is a complex submanifold.

In particular, if M is a complex submanifold, then each tangent space TpM inherits an almost complex
structure Jp from Cn.
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Theorem 2.2.5 Let M ⊂ Cn be a complex submanifold and g : M → Ck be a smooth map and let p ∈ M . Then

g complex differentiable in p ⇐⇒ J (dpg) = (dpg) Jp .

Proof. The inverse map of a complex chart of M yields a local holomorphic parametrization f of M. By
definition, the map g is complex differentiable if and only if g̃ = h ◦ f is complex differentiable. The claim
then follows from

(J dpg) dx f = J dx(g ◦ f ) = dpg (dx f J) = (dpg Jp) dx f , p = f (x), x ∈ U

and im dx f = TpM .

In particular, if A= {(U, ϕ)}α∈A is a smooth atlas of a submanifold M ⊂ Cn, then A is complex if and only if,
for all (U, ϕ) ∈ A,

dpϕ JpX = Jdpϕ X p ∈ U, X ∈ TpM .

Now, let M ⊂ R3 be a surface, i.e. a real 2-dimensional smooth manifold, and N the Gauss map of M, i.e. a
smooth map N : M → S2 such that Np ⊥ TpM for all p. Then Np turns TpM into a complex line with almost
complex structure given as follows: For X ∈ TpM ,

JpX := Np × X ,

where × denotes the cross product in R3. Though this almost complex structure is not coming from the
surrounding space, it still makes sense to talk about holomorphic maps in the sense above. It remains the
question whether M with this almost complex structure is a complex manifold.

In fact, it turns out in the end that in the case above there always exists a complex structure and, moreover,
all Riemann surfaces appear as surfaces in R3.

In conclusion, the ambient space allowed us to talk about tangent spaces and almost complex structures on
them—which turns out to be very useful when talking about holomorphic maps and complex structures. The
disjoint union of the tangent spaces TpM actually inherits a smooth structure and comes with a smooth map
onto M whose fibers have the structure of m-dimensional vector spaces—it forms a so-called vector bundle.

In the next chapter we are going to carry this concept over to abstract manifolds. In particular, we define the
tangent bundle of a smooth manifold.
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Vector Bundles 3
3.1 Smooth Vector Bundles

Loosely speaking a vector bundle of rank r is a disjoint union of r-dimensional vector spaces parametrized
over some space. We want to turn this into a rigorous definition. Definitions are given for the smooth setup,
but are easily translated to topological manifolds with appropriate changes. Throughout, let K = R, C.

Definition 3.1.1 (Smooth Vector Bundle) A smooth K-vector bundle of rank r is a triple (E , M , π) consisting of
smooth manifolds E and M and a smooth map π : E → M such that

(a) for each point p ∈ M the fiber Ep = π
−1{p} over p has the structure of an r-dimensional K-vector space ,

(b) for each point p ∈ M there is a neighborhood U and a diffeomorphism φ : π−1U → U ×Kr such that

π1 ◦ φ = π |U ,

where π1 : U ×Rr → U denotes the projection to the first component, and the restriction of φ to each fiber
over U is an isomorphism of K-vector spaces: For each q ∈ U, the restriction

φq : Eq → {q} ×Kr � Kr isomorphism .

E is called the total space, M the base space and π will be called the bundle projection.

Notation 3.1.1 If there is no danger of confusion, we usually just say that π : E → M or—even leaving the
bundle projection implicit—that E → M is a vector bundle, sometimes that E is a vector bundle over M .

Once we have a vector bundle there are distinguished maps from M to E—so-called sections.

Definition 3.1.2 (Smooth Section) Let π : E → M be a smooth vector bundle. A smooth section is a smooth map
ψ : M → E , p 7→ ψp such that π ◦ ψ = idM . The space of smooth sections of E is denoted by ΓE .

A section is so to say just the right-inverse of the bundle projection. The terminology also makes sense for
arbitrary maps.

3.1.1 Some Examples

Example 3.1.1 (The Trivial Bundle) Given a smooth manifold M , let Kr
M := M ×Kr and let π1 : Kr

M → M
denote the projection to the first component. Then (Kr

M , M , π1) is a smooth vector bundle—the trivial vector
bundle of rank r over M . Its sections can be canonically be identified with Kr -valued functions,

C∞(M ; Kr ) 3 f ←→ ψ = (idM , f ) ∈ ΓKr
M .

Exercise 3.1.1 Show that any section of a vector bundle is an embedding of the base into the total space.

Exercise 3.1.2 (Tangent Bundle of a Submanifold of Rn) Let M ⊂ Rn be a smooth submanifold. For each
p ∈ M we then have a linear subspace TpM ⊂ Rn. The tangent bundle of the submanifold M is defined as
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the disjoint union
T M :=

⊔
p∈M

TpM ⊂ Rn
M .

Show that T M is a smooth vector bundle of rank m.

Exercise 3.1.3 (Restricted Bundle) Let π : E → M be a smooth vector bundle of rank r. Let S ⊂ M be a
smooth submanifold and E |S := π−1S. Then πS : E |S → S is a smooth vector bundle of rank r .

Definition 3.1.3 (Vector Bundle Homomorphism) Let π : E → M and π̃ : Ẽ → M be smooth vector bundles.
A vector bundle homomorphism is a smooth map φ : E → Ẽ such that π̃ ◦ φ = π and for each point p ∈ M the
restriction

φp : Ep → Ẽp is a homomorphism of vector spaces .

A vector bundle isomorphism is a bijective vector bundle homomorhism. Two vector bundles E and Ẽ are called
isomorphic if there is a vector bundle isomorphism between them. In this case we write E � Ẽ . A vector bundle E is
called trivial, if it is isomorphic to the trivial bundle.

Remark 3.1.1 The inverse of a bijective vector bundle isomorphism is automatically a bundle homomor-
phism.

Example 3.1.2 (Local Trivialization, Vector Bundle Atlas) Every vector bundle E → M is locally trivial: In-
deed, if E is of rank r , then each point by definition has a neighborhood U ⊂ M and a bundle isomorphism
φ : E |U → Rr

M . Such φ is called a local trivialization of E .

In particular, there is a collection of local trivializations {(E |Uα , φα)}α∈A such that
⋃
α∈A Uα = M—a so-

called vector bundle atlas. The transition maps between two charts φα and φβ are of the form

φβ ◦ φ
−1
α : E |Uα∩Uβ → E |Uα∩Uβ , (p, v) 7→ (p, gβα(p)v), gβα ∈ C∞(Uα ∩Uβ ; GL(r , R)) .

The maps gβα satisfy the cocycle condition:

gαγgγβ = g−1
βα, for all α, β, γ ∈ A .

Example 3.1.3 (Vector Bundles by Gluing) Let M be a smooth manifold and {Uα}α∈A be an open cover
of M. Let gβα ∈ C∞(Uα ∩Uβ ; GL(Rr )) satisfy the cocycle condition. On Ê = M × A ×Rr we define an
equivalence relation

(p,α, v) ∼ (q, β,w) ⇐⇒ p = q and w = gβα(p)v .

Note that the projection to the first component is well-defined on the equivalence class. Similarly, the
vector space structure of Rr carries over to the fibers. This turns E := Ê/∼ into a smooth vector bundle of
rank r over M . Moreover, there is a bundle atlas whose transition maps are given by gαβ .

Let E be a vector bundle of rank r and let φ : E |U → U ×Kr be a local trivialization. Sometimes it is more
convenient to think of the inverse of φ rather as a collection of local sections: Let e1, . . . , er ∈ Kr denote the
canonical basis. Then we can define ψj ∈ Γ(E |U ),

ψjp := φ−1(p, ej), p ∈ M .

Note that for each p the vectors ψ1p , . . . ,ψrp form a basis of Ep . This motivates the following definition.

Definition 3.1.4 (Frame) Let E be a vector bundle of rank r. A frame is a set of sections σ = (ψ1, . . . ,ψr ) of E
such that for all p ∈ M the vectors ψ1p , . . . ,ψrp form a basis of Ep . A local frame is a frame for a restriction E |U .
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3.1 Smooth Vector Bundles

Conversely, given a smooth frame σ = (ψ1, . . . ,ψr ) over U, then

U ×Kr 3 (p, v) 7→ σp .v :=
r∑
j=1

vjψj,p ∈ E |U

is a smooth bundle isomorphism from Kr
U to E |U . We state an immediate corollary.

Corollary 3.1.1 A vector bundle is trivial if and only it has a global frame.

Exercise 3.1.4 (Möbius Bundle) Let SE(2) denote the euclidean group of R2. Given a subgroup G ⊂ SE(2),
then this defines an equilvalence relation on R2,

p ∼G q :⇐⇒ ∃g ∈ G : q = g.p .

This fibers the space in equivalence classes—the orbits of G. We denote the quotient space by R2/G. Now,
the maps σ and τ given by

σ(x, y) = (x + 1,−y), τ(x, y) = (x + 1, y) .

generate two such discrete subgroups Gσ = {σ
n | n ∈ Z} and Gτ = {τ

n | n ∈ Z} of SE(2). The correspond-
ing orbit spaces M = R2/Gσ and C = R2/Gτ are easily proven to be smooth manifolds. Show that M and
C are real vector bundles of rank 1 over the circle S1 = R/Z. Moreover, show that C is trivial while M is
not. In particular, M � C. The manifold M is called the Möbius bundle.

We have seen that to each submanifold of Rn we can assign a vector bundle consisting of tangent vectors,
which is fundamental when we want to speak about the derivative of functions. For abstract manifolds
we cannot rely on a surrounding vector space. So we have to clarify what a tangent vector shall be in this
situation.

3.1.2 The Tangent Bundle

A tangent vector can be understood as a directional derivative, i.e. it can be applied to any smooth function
and spits out a number, which basically tells us how this function infinitesimally changes if we move in the
direction of the vector through a given point. Let us give a rigorous definition.

Definition 3.1.5 (Tangent Space) Let M be a smooth manifold. The tangent space of M at p ∈ M is defined by

TpM :=
{

X ∈ (C∞M)∗ | ∃ γ : (−ε, ε) → M smooth : Xh = (h ◦ γ)′(0), ∀h ∈ C∞M
}

.

An element of TpM is a called a tangent vector at p. Moreover, T M :=
⊔

p∈M TpM is called the tangent bundle of M .

Remark 3.1.2 Using a chart, one easily shows that TpM is a linear subspace of (C∞M)∗.

In particular, if γ is a smooth curve in M , then γ′(t) ∈ Tγ(t)M is given as follows: If h ∈ C∞M , then

γ′(t)h = (h ◦ γ)′(t)

By definition, all tangent vectors appear as the derivatives of curves.

Corollary 3.1.2 (Leibniz’ Law) Let X ∈ TpM and f , g ∈ C∞M . Show that

X( f g) = (X f )g(p) + f (p)(Xg) .
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Our next goal is to equip T M with a canonical smooth structure which turns it into a smooth vector bundle.

Tangent Bundle of Open Subsets of Rm: Let U ⊂̊Rm. For g ∈ C∞U and (p, v) ∈ U ×Rm, the directional
derivative of g at p in the direction v is given as follows: Let γp,v(t) = p + tv. Then

∂v
��
p
g := (g ◦ γp,v)

′(0) = d
dt

��
t=0g(p + tv) .

Moreover, we set ∂i := ∂ei . By the definition it is clear that ∂v
��
p
∈ TpU. This establishes a canonical identifica-

tion between the definition of tangent spaces we gave for submanifolds of Rm and the abstract definition of
the tangent space which is given above:

U ×Rm 3 (p, v)
1 : 1
←→ ∂v

��
p
∈ TU .

Note that for fixed p ∈ M, the identification is linear in v. So TU inherits a smooth vector bundle structure
from U ×Rm. We want to carry this over to abstract smooth manifolds.

Definition 3.1.6 (Differential) Let f : M → N be smooth. Then the differential of f at p ∈ M is defined to be the
linear map dp f : TpM → Tf (p)N given as follows: For h ∈ C∞N and X ∈ TpM ,

dp f (X)h = X(h ◦ f ) .

We collect all these maps into one defined on T M : df : T M → T N is given by df (X) := dπ(X) f (X).

Let us check for sanity what the differential looks like on open subsets of euclidean space: Let U ⊂̊Rm and
f : U → Rn be smooth. Then, for ∂v |p ∈ TU and h ∈ C∞U,

df (∂v |p)h = ∂v |p(h ◦ f ) =
(
Jacp(h ◦ f )

)
v = (Jac f (p)h)(Jacp f ) v = ∂(Jacp f ) v | f (p)h ,

where Jacp f denotes the Jacobian of f at p. Hence, using the canonical identification, we get

U ×Rm ⊃ TpU 3 (p, v)
d f
7−→

(
f (p), (Jacp f ) v

)
∈ Tf (p)R

n ⊂ Rn ×Rn .

So, in euclidean space, the differential df is just given by the usual derivative—the Jacobian of f —only that
it also keeps track of the base point.

Each tangent vector comes from differentiating along a curve. On this level the differential is just mapping
the curve: Let f : M → N be a smooth map, γ be a curve in M and h ∈ C∞N . Then we get

df (γ′)h = γ′(h ◦ f ) = ((h ◦ f ) ◦ γ)′ = (h ◦ ( f ◦ γ))′ = ( f ◦ γ)′h .

With this at hand the chain rule boils down to the associativity of the composition of maps.

Theorem 3.1.3 Let g : M → M̂ and f : M̂ → M̃ be smooth maps, then

d( f ◦ g) = df ◦ dg .

Proof. Let X ∈ T M and γ such that γ′(0) = X . Then

(df ◦ dg)(γ′) = df (dg(γ′)) = df ((g ◦ γ)′) =
(
f ◦ (g ◦ γ)

) ′
=

(
( f ◦ g) ◦ γ

) ′
= d( f ◦ g)(γ′) .

Evaluation at zero yields (df ◦ dg)(X) = d( f ◦ g)(X).
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Since the differential of the identity idM at a point p ∈ M in a smooth manifold is the identity on the tangent
space idTpM , we get the following corollary.

Corollary 3.1.4 If f : M → N is a diffeomorphism, p ∈ M , then dp f : TpM → Tf (p)N is a vector space isomorphism.

In particular, if M is a smooth manifold and ϕ : U → V ⊂̊Rm is a smooth chart we get a bijection

dϕ : TU → TV = V ×Rm ⊂ Rm ×Rm .

Moreover, if ϕα : Uα → Vα and ϕβ : Uβ → Vβ are two smooth charts, then, for (x, v) ∈ Vα ×Rm,

dϕβ ◦ (dϕα)−1(x, v) = dϕβ ◦ dϕ−1
α (x, v) = d(ϕβ ◦ ϕ−1

α )(x, v) =
(
(ϕβ ◦ ϕ

−1
α )(x), Jacx(ϕβ ◦ ϕ

−1
α )v

)
,

which is smooth since ϕα and ϕβ smoothly compatible charts. Thus the differentials of smoothly compatible
charts are smoothly compatible bijections. This shall be our smooth charts at the end. But there is some
subtlety, in which sense is TU a subset of T M?

Lemma 3.1.5 (Localization Principle) Let p ∈ U ⊂̊M , ι : U ↪→ M . Then dp ι : TpU → TpM is an isomorphism.

Proof. Clearly dp ι is surjective: If X̃ ∈ TpM , then there is a curve γ in M such that γ′(0) = X̃ . Since U is open,
γ restricts to U. Thus X := γ′(0) ∈ TpU. Then, if h ∈ C∞M , we have

dp ι(X)h = X(h ◦ ι) = (h ◦ ι ◦ γ)′(0) = (h ◦ γ)′(0) = X̃h .

It is left to see that dp ι is injective: Let 0 , X ∈ TpU. Then there is a function h ∈ C∞U such that X̃h , 0. Then,
by Corollary 2.1.16, there is a function ρ ∈ C∞M such that supp ρ ⊂ U and ρ|V = 1 on some neighborhood
V ⊂ U of p. Thus we can extend ρh by zero on M \U and obtain a smooth function g on M . Then, by Leibniz’
law, we get

dp ι(X)g = X(g ◦ ι) = X(g |U ) = X(ρh) = (Xρ)︸︷︷︸
=0

h(p) + ρ(p)︸︷︷︸
=1

Xh = Xh , 0 ,

i.e. dp ι(X) , 0. Hence dp ι is injective.

Corollary 3.1.6 The tangent spaces of an m-dimensional smooth manifold are m-dimensional.

In particular, this shows that if ι : M ⊂̊U ↪→ M denotes the inclusion map, then dι : TU → T M |U = π−1U is a
bijection which restricts to isomorhisms on the fibers. This understood, we see that

dϕ : T M |U → V ×Rm

is a bijection which sends fibers isomorphically to fibers. Moreover, the transition maps between any two
such charts are smooth and in particular homeomorphisms. So there is an induced topology. In fact, in this
case this topology leads always to a manifold structure.

Theorem 3.1.7 Let E be a disjoint union of K-vector spaces over a smooth manifold M. Let {Uα}α∈A be an open
cover of M and let {φα : E |Uα → Uα ×Kr }α∈A be a collection of fiber-preserving bijections which restrict to linear
maps on the fibers. If for every two α, β ∈ A the composition φβ ◦ φα : (Uα ∩Uβ) ×Kr → (Uα ∩Uβ) ×Kr is a
smooth vector bundle isomorphism, then E has a unique structure such that {φα}α∈A forms a smooth bundle atlas.

Proof. Without loss of generality one can assume that A is countable and there are smooth charts ϕα : Uα → Vα.
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Since all φα shall become homeomorhisms there is no choice for the topology. We define:

U ⊂̊ E : ⇐⇒ φα(E |Uα ∩U) ⊂̊Uα ×Kr , ∀α ∈ A .

Since Uα ×Kr �C∞ Vα ×Kr , E is locally euclidean. As a countable union of open 2nd-countable subsets E is
2nd-countable. Moreover, E is Hausdorff—two disjoint open sets are easily constructed. By construction, the
φα then form a smooth atlas.

Definition 3.1.7 (Smooth Structure of the Tangent Bundle) The smooth structure of the tangent bundle T M of
a smooth manifold M is defined by the differentials of smooth charts of M .

Corollary 3.1.8 If f : M → N is smooth, then df : T M → T N is smooth.

Proof. If ϕ is a chart at p and ψ is a chart at f (p), then dψ ◦ df ◦ (dϕ)−1 = d(ψ ◦ f ◦ ϕ−1), which is smooth.

Next we are interested in the local form of the sections the tangent bundle—so-called tangent vector fields.

Definition 3.1.8 (Coordinate Frame) Let ϕ = (x1, . . . , xm) : U → V ⊂̊Rm be a smooth chart of M. Then we
define ∂

∂x1
, . . . , ∂

∂xm
∈ Γ(TU) as follows: For p ∈ U,

∂
∂xi

��
p

:= (dϕ)−1 (∂i |ϕ(p)) .

The local frame σϕ := ( ∂∂x1
, . . . , ∂

∂xm
) of T M is called the coordinate frame of the chart ϕ.

Two coordinate frames are related by the differential of the coordinate change.

Theorem 3.1.9 (Transformation of Coordinate Frames) Let (U, ϕ) and (V ,ψ) be charts of M and let p ∈ U ∩V .
Then, for all v ∈ Rm,

σϕ,pv = σψ,p .(dϕ(p)(ψ ◦ ϕ−1)v) .

Proof. Observe that (ϕ(p), v) = dϕ(σϕ,p .v). Similarly, (ψ(p),w) = dψ(σψ,p .w). We have

dϕ−1(ϕ(p), v) = (dψ−1 ◦ dψ ◦ dϕ−1)(ϕ(p), v) = dψ−1 ((dψ ◦ dϕ−1)(ϕ(p), v)
)
= dψ−1 (ψ(p), dϕ(p)(ψ ◦ ϕ−1)v)

)
.

Hence σϕ,p .v = dϕ−1(ϕ(p), v) = dψ−1 (ψ(p), dϕ(p)(ψ ◦ ϕ−1)v)
)
= σψ,p .(dϕ(p)(ψ ◦ ϕ−1)v).

Exercise 3.1.5 Let X : M → T M such that π ◦ X = idM . Show that X is smooth if and only if one of the
following equivalent conditions is fulfilled:

(a) For every smooth chart (U, ϕ), X |U = σϕ .α =
∑

i αi
∂
∂xi

with α ∈ C∞(U; Rm).
(b) For every smooth function h ∈ C∞M , the function Xh : p 7→ (Xh)p is smooth.

3.2 Intermission—Vector Fields as Operators on Functions

For X ∈ Γ(T M) and f ∈ C∞M , the map X f : p 7→ Xp f is smooth. So X can be viewed as endomorphism

X : C∞M → C∞M , f 7→ X f .
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Definition 3.2.1 (Lie Algebra) A Lie algebra is a vector space g together with a skew bilinear map [., .] : g × g→ g

which satisfies the Jacobi identity,

[X , [Y , Z]] + [Y , [Z , X]] + [Z , [X ,Y ]] = 0.

Theorem 3.2.1 (Lie Algebra of Endomorphisms) Let V be a vector space. EndV together with the commutator

[., .] : EndV × EndV → EndV , [A, B] := AB − BA

forms a Lie algebra.

Proof. That the commutator is a skew bilinear map is obvious. Further,

[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = A(BC −CB) − (BC −CB)A+ B(CA− AC)

− (CA− AC)B +C(AB − BA) − (AB − BA)C,

which is zero since each term appears twice but with opposite sign.

Theorem 3.2.2 For all f , g ∈ C∞M , X ,Y ∈ ΓT M , the following equality holds

[ f X , gY ] = f g[X ,Y ] + f (Xg)Y − g(Y f )X

Proof. Exercise.

Lemma 3.2.3 (Schwarz Lemma) Let ϕ = (x1, . . . , xn) be a coordinate chart, then[
∂
∂xi

, ∂
∂x j

]
= 0

Proof. Exercise.

Thus, if X =
∑

i ai ∂
∂xi

and Y =
∑

j bj
∂
∂x j

, we get

[X ,Y ] =
∑
i,j

[
ai ∂
∂xi

, bj
∂
∂x j

]
=

∑
i,j

(
ai
∂b j

∂xi
∂
∂x j
− bj

∂ai

∂x j

∂
∂xi

)
=

∑
i,j

(
aj

∂bi

∂x j
− bj

∂ai

∂x j

)
∂
∂xi

.

Thus [X ,Y ] ∈ Γ(T M). In particular, we get the following theorem.

Theorem 3.2.4 The set of sections on the tangent bundle Γ(T M) ⊂ End(C∞M) is a Lie subalgebra.

3.3 Tensors and Differential Forms

3.3.1 Tensor Bundles—Digression into Linear Algebra

The cotangent bundle T M∗ of a manifold M is defined to be the disjoint union of the dual spaces of the
tangent spaces.

T M∗ =
⊔
p∈M

(
TpM

)∗ .
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Again there is a priori no smooth structure. Though we can assign to each basis of TpM a basis of TpM∗—its
dual basis. Thus we can convert a smooth local frame into a local frame of T M∗—its dual frame.

Example 3.3.1 Let us play this through with the cotangent bundle: Let ϕ = (x1, . . . , xm) be a smooth chart.
Then the corresponding coordinate frame is given by

∂
∂x1

, . . . , ∂
∂xm

.

The derivative of the i-th coordinate at point p is then a linear map (dxi)p : TpM → Txi (p)R = R and as
such an element of (TpM)∗. One easily check that (dxi)p( ∂∂x j

|p) = δi j , where δi j is the Kronecker delta, i.e.

δi j =

{
1 if i = j

0 else

Hence the dual frame of the coordinate frame is given by the differentials of the coordinates of the chart,

dx1, . . . , dxm .

A frame is basically the same as the inverse of a trivialization. If a the basis changes by some automorphism,
then the dual basis changes by its adjoint. Hence the dual frames change smoothly as well. Theorem 3.1.7
then provides a smooth vector bundle structure on T M∗. In particular, a section η of T M∗ is smooth if and
only if has smooth coefficients when locally expressed by the dx1, . . . , dxm,

η |U =

m∑
i=1

ai dxi , ai ∈ C∞U .

Exercise 3.3.1 Let M be a smooth manifold, f ∈ C∞M and let ϕ = (x1, . . . , xm) be a chart defined on U ⊂̊M .
Show that

df |U =
m∑
i=1

∂ f
∂xi

dxi

The very same principle applies to various vector space constructions. So we can build dual bundles, direct
sums and tensor products of vector bundles. We will briefly discuss the underlying linear algebra.

For the rest of this section let U, V , W and V1, . . . , Vk denote finite–dimensional K-vector spaces, K = R, C.
We fix the following notation:

Mult(V1, . . . , Vk ; W) := {µ : V1 × · · · ×Vk → W | µ k-linear}, Multk(V ; W) :=Mult(V , . . . , V︸    ︷︷    ︸
k-times

; W) ,

Altk(V ; W) := {µ ∈ Multk(V ; W) | µ alternating} .

Moreover, we set Mult(V1, . . . , Vk) :=Mult(V1, . . . , Vk ; K), MultkV :=Multk(V ; K) and AltkV := Altk(V ; K).

Definition 3.3.1 (Tensor Product) The tensor product ⊗ : V∗1 × · · · ×V∗
k
→Mult(V1, . . . , Vk) is defined by

ω1 ⊗ · · · ⊗ ωk(v1, . . . , vk) := ω1(v1) · · ·ωk(vk) .

Remark 3.3.1 The tensor product is a k-linear map.
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Exercise 3.3.2 (Basis of Multilinear Forms) Let {ωi
1, . . . ,ωi

ni
} ⊂ V∗i be bases. Then

{ω1
j1
⊗ · · · ⊗ ωk

jk
| ji ∈ {1, . . . , ni} for i = 1, . . . , k}

forms a basis of Mult(V1, . . . , Vk).

Theorem 3.3.1 (Universal Property of Tensor Product) Show that for each µ ∈ Mult(V1, . . . , Vk ; W) there is a
unique linear map λ : Mult(V∗1 , . . . , V∗

k
) → W such that λ ◦ ⊗ = µ.

Proof. Exercise.

This shows that, in the finite–dimensional case, any k–linear map factors over ⊗ to a linear map.

Definition 3.3.2 (Tensor Product of Vector Spaces) The tensor product of V1, . . . , Vk is defined to be

V1 ⊗ · · · ⊗ Vk :=Mult(V∗1 , . . . , V∗k ) .

There are several natural isomorphisms around which should be internalized.

Exercise 3.3.3 Show that there are natural isomorphisms

U ⊗ V ⊗W � (U ⊗ V) ⊗W � U ⊗ (V ⊗W) ,

Mult(V1, . . . , Vk ; W) � Hom(V1 ⊗ · · · ⊗ Vk ; W) � V∗1 ⊗ · · · ⊗ V∗k ⊗W .

In particular, V∗1 ⊗ · · · ⊗ V∗
k
� (V1 ⊗ · · · ⊗ Vk)

∗. Thus we have an tensor product between arbitrary tensors.

Theorem 3.3.2 ⊗ is associative.

Exercise 3.3.4 Show that Mult(V , W) and Hom(V ; W∗) are naturally isomorphic. In particular,

Hom(V ; W) =Mult(V , W∗) .

Definition 3.3.3 (Almost Complex Structure) Let E be a smooth real vector bundle. A section J ∈ ΓEndE such
that J2 = −I is called an almost complex structure.

Remark 3.3.2 A complex bundle can be considered as a real vector bundle with almost complex structure.
Let E and F be complex vector bundles. A homomorphism of complex vector bundles is a homomorphism
A : E → F of the underlying real vector bundles such that A ◦ J = J ◦ A. If (E , J) and (Ẽ , J̃) are complex
vector bundles, then the almost complex structure Ĵ of the tensor product E ⊗ Ẽ is such that the tensor
product becomes complex bilinear: Let ψ ∈ ΓE and ψ̃ ∈ ΓẼ , then

Ĵ(ψ ⊗ ψ̃) = (Jψ) ⊗ ψ̃ = ψ ⊗ (J̃ψ̃) .

Example 3.3.2 (Tangent Bundle of Complex Manifolds) Let M be a complex manifold. Then its tangent
bundle is a complex vector bundle with almost complex structure induced by its complex charts: If
ϕ : U → Cm is a complex chart at p and X ∈ TpM , then

JX := dϕ−1(i dϕ(X)) .

Since any two complex charts are holomorphically compatible, J is independent of the choice of ϕ. Clearly,
J is smooth. Moreover, by definition, dϕ ◦ J = idϕ.
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3 Vector Bundles

This brings up an interesting question. If the tangent bundle of a manifold has an almost complex structure,
is it induced by a complex structure of the manifold? We will answer this question later by the Newlander–
Nierenberg theorem.

Definition 3.3.4 (Wedge Product) Let ∧ : V∗ × · · · ×V∗ → AltkV be given as follows: For ω1, . . . ,ωk ∈ V∗, we
define

ω1 ∧ · · · ∧ωk(v1, . . . , vk) := det
(
(ωi(vj))i,j

)
.

Exercise 3.3.5 (Basis of Alternating Forms) Let {v1, . . . , vn} ⊂ V be a basis and {ω1, . . . ,ωn} ⊂ V∗ its dual
basis. Then

{ωj1 ∧ · · · ∧ωjk | 1 ≤ j1 < . . . < ik ≤ n}

forms a basis of AltkV .

Theorem 3.3.3 (Universal Property of Wedge Product) Show that for each µ ∈ Altk(V ; W) there is a unique
linear map λ : AltkV∗ → W such that λ ◦ ∧ = µ.

Proof. Exercise.

Definition 3.3.5 (Exterior Product of a Vector Spaces) The k–th exterior product of a V is defined to be

Λ
kV := AltkV∗ .

The exterior algebra ΛV is then defined to be the direct sum over all possible degrees k, ΛV := ⊕kΛkV .

Definition 3.3.6 (Alternator) We define a projection Altk : MultkV → AltkV as follows:

Altk(µ)(v1, . . . , vk) := 1
k!

∑
σ∈Sk

sgnσ µ(vσ1 , . . . , vσk
) ,

where Sk denotes the symmetric group of k elements and sgnσ denotes the signum of the permutation σ.

Combining the alternator with the tensor product yields the wedge product and the symmetric product.

Definition 3.3.7 (Wedge Product) Let ∧ : ΛkV ×Λ`V → Λk+`V be given as follows:

ω ∧ η := (k+`)!k!`! Altk+`(ω ⊗ η) .

The wedge product formula looks quite complicated. Actually a more convenient formula can be achieved if
one only sums over the set of so–called (k, `)–shuffles:

Sh(k, `; n) := {σ ∈ Sk+` | 1 ≤ σ1 < . . . < σk ≤ n, 1 ≤ σk+1 < . . . < σk+` ≤ n} .

With this notation we get

ω ∧ η(v1, . . . , vk+`) :=
∑

σ∈Sh(k,`;n)

sgnσω(vσ1 , . . . , vσk
)η(vσk+1 , . . . , vσk+`

) .
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Exercise 3.3.6 Let ω1, . . . ,ωk+` ∈ V∗. Show that

(ω1 ∧ · · · ∧ωk) ∧ (ωk+1 ∧ · · · ∧ωk+`) = ω1 ∧ · · · ∧ωk+` .

Hint: It is enough to show equality on a basis.

The last exercise is a more general version of the Laplace expansion of the determinant and shows that the
definitions of wedge products given above are consistent. In particular, it shows that the wedge product is
associative.

Theorem 3.3.4 Let ω ∈ ΛkV∗, η ∈ Λ`V∗ and ξ ∈ ΛmV∗. Then

(ω ∧ η) ∧ ξ = ω ∧ (η ∧ ξ) .

Proof. Exercise.

Theorem 3.3.5 If ω ∈ ΛkV∗ and η ∈ Λ`V∗, then

ω ∧ η = (−1)k`η ∧ω .

Proof. Exercise.

All this carries over to bundles just fiberwise. In particular, if E → M is a smooth vector bundle, then we
have bundle of alternating k-forms with values in E ,

(ΛkT M∗) ⊗ E .

Definition 3.3.8 (Differential Forms) An E-valued differential form of degree k is an element of the space

Ω
k(M ; E) := Γ((ΛkT M∗) ⊗ E)

Moreover, the space of real-valued differential forms is denoted by ΩkM := Γ(ΛkT M∗).

From what was said, it is clear that a differential form η ∈ Ωk(M ; E) on an m-dimensional manifold M locally
is of the form

η |U =
∑

1≤i1< · · ·<ik ≤m

ψi1 · · ·ik dxi1 ∧ · · · ∧ dxik , ψi1 · · ·ik ∈ Γ(E |U ) .

Remark 3.3.3 (Wedge Product of Differential forms) The wedge product of real-valued differential
forms is defined just fiberwise. To define a wedge product for vector-valued differential forms we
need an additional multiplication: Let Ei , i = 1, 2, 3 be vector bundles over M. Given a multiplication
• ∈ Γ(Mult(E1, E2; E3)), we can wedge an E1-valued k-form with an E2-valued `-form with the very same
formula to obtain an E3-valued (k + `)-form: For ω ∈ Ωk(M ; E1) and η ∈ Ω`(M ; E2),

ω ∧• η(X1, . . . , Xk+`) :=
∑

σ∈Sh(k,`;n)

sgnσω(Xσ1 , . . . , Xσk
) • η(Xσk+1 , . . . , Xσk+`

) .
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Example 3.3.3 Let M ⊂̊Rm. Given two Rn-valued forms ω ∈ Ωk(M ; Rn) and η ∈ Ω`(M ; Rn),

ω =
∑

1≤i1< · · ·<ik ≤m

ωi1 · · ·ik dxi1 ∧ · · · ∧ dxik , η =
∑

1≤ j1< · · ·< j` ≤m

ηj1 · · · j` dxj1 ∧ · · · ∧ dxj` ,

we can wedge them using the standard inner product 〈., .〉 of Rn:

〈ω ∧ η〉 =
∑

1≤i1< · · ·<ik ≤m,
1≤ j1< · · ·< j` ≤m

〈ωi1 · · ·ik , ηj1 · · · j` 〉 dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxj`

Remark 3.3.4 (Properties of Wedge Product of Vector-valued Forms) The wedge product of vector valued
forms depends on the given multiplications. In general, one cannot commute these forms. Though, if the
forms satisfy additional properties, one gets the very same formulas: Let E1, E2, E3 vector bundles. Then:

(a) ψ1 • ψ2 = ψ2•̃ψ1, ∀ψi ∈ ΓEi , =⇒ ω1 ∧•ω2 = (−1)k1k2ω2 ∧•̃ω1, ∀ωi ∈ Ω
ki (M ; Ei).

(b) (ψ1 • ψ2)•̃ψ3 = ψ1•̂(ψ2•̄ψ3), ∀ψi ∈ ΓEi=⇒ (ω1 ∧•ω2) ∧ •̃ω3 = ω1 ∧•̂ (ω2 ∧•̄ω3), ∀ωi ∈ Ω
ki (M ; Ei).

Usually the pairing will finally appear will be natural, such as the multiplication of a section by a real
function or the multiplication of an endomorphism field with a section.

3.3.2 Sections along Maps and Pullback Bundles

Let π : E → M be a smooth vector bundle and f : S → M be a smooth map. A section along f is a map
ψ : S → E such that

π ◦ ψ = f .

Example 3.3.4 Let f : M → N be a smooth map and X ∈ Γ(T M). Then df ◦ X : M → T N and for p ∈ M we
have df (Xp) ∈ Tf (p)N . Hence π ◦ df ◦ X = f , i.e. df ◦ X is a section along f .

We will identify sections along maps with sections of the pullback bundle.

Definition 3.3.9 (Pullback Bundle) Let E → M be a smooth vector vector bundle and f : S → M be a smooth
map. Then the pullback bundle f ∗E → S is defined by

f ∗E :=
⊔
p∈S

E f (p) ⊂ S × E .

Exercise 3.3.7 Show that f ∗E ⊂ S × E is a smooth submanifold.

If ψ : S → E is a section along f , then the corresponding sections of f ∗E is given by ψ̂ = (idS ,ψ). Conversely,
if ψ̂ ∈ Γ( f ∗E), then π2 ◦ ψ̂, where π2 : S × E → E , is a section along f :

ψ
1 : 1
←→ (idS ,ψ) .

We will keep this identification in mind throughout.

Definition 3.3.10 Let E → M be a smooth vector bundle and f : S → M be a smooth map. If ψ ∈ ΓE , then
f ∗ψ ∈ Γ( f ∗E) is defined as f ∗ψ := ψ ◦ f .

Corollary 3.3.6 If ψ1, . . . ,ψr is a smooth local frame of E , then f ∗ψ1, . . . , f ∗ψr is a smooth local frame of f ∗E
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Theorem 3.3.7 Let f : M → N be smooth, X ,Y ∈ Γ(T M) and X̃ , Ỹ ∈ Γ(T N) such that f ∗ X̃ = df (X) and
f ∗Ỹ = df (Y ). Show that

df ([X ,Y ]) = f ∗[X̃ , Ỹ ] .

Proof. Exercise.

Example 3.3.5 (Pullback of Tautological Bundles) Let V be an n-dimensional vector space. The Grassman-
nian Grk(V) is the space of all k-dimensional subspaces of V . If we fix an inner product, we can identify
each k-dimensional subspace with the orthogonal projection onto it. Thus,

Grk(V) =
{
P ∈ GL(V) | P2 = P, P∗ = P, tr P = k

}
,

which can be shown to be a k(n − k)-dimensional submanifold of Sym(V) = {A ∈ GL(V) | A∗ = A}.

The tautological bundle is then defined as

Taut(Grk(V)) =
{
(P, v) ∈ Grk(V) ×V | Pv = v

}
,

i.e. to each k-dimensional subspace U ⊂ V as a point in the Grassmannian we assigned U as fiber.

Now given a smooth f : M → Grk(V) we obtain a rank-k bundle f ∗Taut(Grk(V)) → M. An interesting
question is whether—up to isomorphism—every vector bundle appears as pullback of a tautological
bundle.

Definition 3.3.11 (Pullback of Differential Forms) Let E → M be a smooth vector bundle, f : S → M be smooth
and ω ∈ Ωk(M ; E). Then the pullback f ∗ω ∈ Ωk(M ; f ∗E) of ω is defined to be f ∗ω := (df )∗ω, i.e.

( f ∗ω)(X1, . . . , Xk) = ω(df (X1), . . . , df (Xk)), for all X1, . . . , Xk ∈ Γ(TS) .

Theorem 3.3.8 Let f : S → M be smooth, ω ∈ ΩkM and η ∈ Ω`M . Then

f ∗(ω ∧ η) = ( f ∗ω) ∧ ( f ∗η) .

Proof. Exercise.

3.3.3 The Newlander–Nirenberg Theorem

Definition 3.3.12 (Almost Complex Manifold) An almost complex manifold is a pair (M, J) consisting of a
smooth manifold M and an almost complex structure J on its tangent bundle T M .

Remark 3.3.5 Any almost complex manifold is of even real dimension.

Example 3.3.2 shows that each complex manifold is an almost complex manifold.

Definition 3.3.13 (Holomorphic Maps between Almost Complex Manifolds) A smooth map f : M → N
between almost complex manifolds is called holomorphic, if it intertwines the almost complex structures,

J ◦ df = df ◦ J .

Remark 3.3.6 On a complex manifold, the notion of holomorphicity coincides with the previous one.
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Remark 3.3.7 Not every almost complex manifold is a complex manifold.

Theorem 3.3.9 Let M be an almost complex manifold. An atlas consisting of holomorphic charts is a complex atlas.

Proof. Let JCm denote the multiplication by i on Cm. Let ϕα and ϕβ be holomorphic charts of M , then

d(ϕβ ◦ ϕ−1
α ) ◦ JCm = dϕβ ◦ dϕ−1

α ◦ JCm = dϕβ ◦ J ◦ dϕ−1
α = JCm ◦ dϕβ ◦ dϕ−1

α = JCm ◦ d(ϕβ ◦ ϕ−1
α ) .

Thus all holomorphic maps are holomorphically compatible and so define a complex structure.

Remark 3.3.8 Thus a complex manifold is exactly the same thing as an almost complex manifold (M , J)
which can be covered by holomorphic charts. If M is complex, we call J a complex structure.

Whether an almost complex structure is complex can be answered by looking at its Nijenhuis tensor.

Definition 3.3.14 (Nijenhuis Tensor) Let M be a smooth manifold and A ∈ ΓEnd(T M). Then, for X ,Y ∈ Γ(T M),
the Nijenhuis tensor NA of A is given by

NA(X ,Y ) := −A2[X ,Y ] − [AX , AY ] + A([AX ,Y ] + [X , AY ]) .

We defined NA : Γ(T M)×Γ(T M) → Γ(T M). So, in which sense is it a tensor, i.e. a section of Mult(T M , T M ; T M)?

If E and F are vector bundles over M , then A ∈ ΓHom(E ; F) defines a map Â : ΓE → ΓF as follows:

(Âψ)p = Apψp .

Conversely, we have the following theorem.

Theorem 3.3.10 (Characterization of Tensors) Let E , F → M be vector bundles and let Â : ΓE → ΓF be R-linear
such that

Â( fψ) = f Â(ψ), for all f ∈ C∞M ,ψ ∈ ΓE .

Then there is A ∈ ΓHom(E , F) such that (Âψ)p = Ap(ψp) for all ψ ∈ ΓE , p ∈ M .

Proof. For ψ̃ ∈ Ep , p ∈ M , we define A(ψ̃) as follows: Choose ψ ∈ ΓE such that ψp = ψ̃ and set Ap(ψ̃) = (Âψ)p .
We have to show that A(ψ̃) is well-defined, i.e (Âψ)p depends only on ψp—if ψ, ψ̂ ∈ ΓE with ψp = ψ̂p then
(Âψ)p = (Âψ̂)p . Since Â is linear, it is enough to show that (Âψ)p = 0 for all ψ ∈ ΓE with ψp = 0.

Choose a local frame field (ψ1, . . . ,ψr ) of E on some neighborhood of p and a function ρ ∈ C∞M such that
f |M\U = 0 and f ≡ 1 near p. In particular, ρψ1, . . . , ρψr are globally defined sections. Let ψ ∈ ΓE with ψp = 0.
Since ψ is smooth, ψ |U = a1ψ1 + · · · + arψr with a1, . . . , ar ∈ C∞U. Again ρa1, . . . , ρar are globally defined.
Then

ρ2 Âψ = Â(ρ2ψ) = Â((ρa1)(ρψ1) + · · · + (ρak)(ρψk)) = (ρa1)Â(ρψ1) + · · · + (ρar )Â(ρψr )).

Evaluation at p yields then (Âψ)p = 0.

Note that the sections ΓE of a smooth vector bundle form a C∞M-module: If f ∈ C∞M and ΓE , then

( fψ)p = f (p)ψp .

Thus each tensor field A ∈ ΓHom(E ; F) can be identified with a unique (C∞M)-linear map Â : ΓE → ΓF. We
also say that Â is tensorial. In the following we won’t distinguish between the tensor field A and its tensorial
counterpart.
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Corollary 3.3.11 An R-multilinear map ΓE1 × · · · × ΓEk → ΓF is tensorial if and only if it is tensorial in each slot.

Proof. Clearly, if a map Â : ΓE1 × · · · × ΓEk → ΓF comes from a tensor field, then it is tensorial in each slot.
Conversely, for fixed ψi ∈ ΓEi ,

ΓEk 3 ψ 7→ Â(ψ1, . . . ,ψk1 ,ψ) ∈ ΓF

is tensorial and hence Â can be considered as a map ΓE1 × · · · × ΓEk−1 → ΓHom(Ek ; F). By the same
procedure we then get ΓE1 × · · · × ΓEk−2 → ΓMult(Ek−1, Ek ; F) and so on—till we finally end up with
A ∈ ΓMult(E1, . . . , Ek ; F).

Now, let A ∈ ΓEnd(T M). To check that NA is a tensor we have to check that it tensorial in both of its slots: Let
X ,Y ∈ Γ(T M) and f ∈ C∞M . Then, using the result of Exercise 3.2.2, we get

NA( f X ,Y ) = −A2[ f X ,Y ] − [A f X , AY ] + A([A f X ,Y ] + [ f X , AY ])

= −A2 ( f [X ,Y ] − (Y f )X
)
−

(
f [AX , AY ] − ((AY ) f )AX

)
+ A

(
f [AX ,Y ] − (Y f )AX + f [X , AY ] − ((AY ) f )X

)
= fNA(X ,Y ) + ((Y f )A2X + ((AY ) f )AX − (Y f )A2X − ((AY ) f )AX)

= fNA(X ,Y ) .

Tensoriality in the second slot follows then since Na is anti-symmetric:

NA(X , fY ) = −NA( fY , X) = − fNA(Y , X) = fNA(X ,Y ) .

Example 3.3.6 For M = Cm with JX = iX we have NJ = 0: Since NJ is tensorial, we can choose X ,Y ∈ ΓTCm

constant, then JX , JY are constant as well and all Lie brackets vanish.

This examples shows half of the following important theorem.

Theorem 3.3.12 (Newlander–Nirenberg) An almost complex manifold (M, J) is complex if and only if its
Nijenhuis tensor vanishes, NJ = 0.

The other direction (⇐) is hard and far beyond the scope of this course. A sketch of proof and reference to the
actual paper can be found in [6]. Thus we just state it here and prove instead an interesting consequence.

Theorem 3.3.13 On a surface, i.e. a manifold of real dimension 2, every almost complex structure is complex.

Proof. Let M be a surface with almost complex structure J. For X ∈ Γ(T M), we have

NJ (X , JX) = −J2[X , JX] − [JX , JJX] + J([JX , JX] + [X , JJX]) = [X , JX] + [JX , X] + J([JX , JX] − [X , X]) = 0 .

Since NJ is tensorial and Xp , JXp ∈ TpM form a basis whenever Xp , 0 that is sufficient.

Example 3.3.7 Let S ⊂ R3 be a surface and N : S → S2 such that Np ⊥ TpS for all p ∈ S. Then JX = N × X
defines an almost complex structure. Since S is real 2-dimensional, the Newlander–Nierenberg theorem
tells us that S is a Riemann surface.
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Differentiation in Vector Bundles 4
4.1 Derivative of Sections

If we think about a smooth function f : M → Rr , i.e. a section of the trivial bundle Rn
M , there is no question

about how to its the derivative. If we instead look at a section ψ ∈ ΓE of some smooth vector bundle E → M
in general, we run into a problem—different points in M are mapped by ψ to different fibers. And there
is a priori no canonical way to relate them at all. Actually this problem cannot be resolved without some
additional structure—a connection—on the bundle.

4.1.1 Connections

We formalize the derivative as a map that satisfies Leibniz’ law.

Definition 4.1.1 (Connection) A connection on a vector bundle E → M is an R-linear map ∇ : ΓE → Ω1(M ; E),
which satisfies Leibniz’ law, i.e., for all f ∈ C∞M and ψ ∈ ΓE ,

∇( fψ) = df ψ + f∇ψ .

Notation 4.1.1 If ψ ∈ ΓE and X ∈ Γ(T M), then one usually writes ∇Xψ for (∇ψ)(X).

Remark 4.1.1 A connection is sometimes called covariant derivative—we will use this terminology from
time to time.

Example 4.1.1 (The Trivial Connection) Let M be a smooth manifold. A section ψ ∈ ΓRr
M is of the form

ψ = (idM , f ), where f : M → Rr is smooth. We define the trivial connection d : ΓRr
M → Ω1(M; Rr

M ) by the
usual derivative: For X ∈ T M ,

dXψ := (π(X), df (X)) .

In particular, for X ∈ Γ(T M), using the standard identification, we can write dXψ = df (X).

Leibniz’ law provides some localization in the sense that the derivative of a section ψ at a point only depends
on the values of ψ in an arbitrarily small neighborhood of that point.

Theorem 4.1.1 (Localization Principle) Let ∇ be a connection on a smooth vector bundle E → M . If U ⊂̊M and
ψ1,ψ2 ∈ ΓE such that ψ1 |U = ψ2 |U , then ∇ψ1 |U = ∇ψ2 |U .

Proof. Let p ∈ U and X ∈ TpM. Then there is a closed neighborhood A ⊂ U of p and a smooth function
ρ : M → R such ρ|M\U = 0 and ρ|A = 1. In particular, ρψ1 = ρψ2 on all of M . Thus

∇Xψ1 = dρ(X)ψ1,p + ρ(p)∇Xψ1 = ∇X (ρψ1) = ∇X (ρψ2) = dρ(X)ψ2,p + ρ(p)∇Xψ2 = ∇Xψ2 .

Since X ∈ T M |U was arbitrary, we conclude ∇ψ1 |U = ∇ψ2 |U .

If we talk about vector bundles with connection, i.e. pairs (E ,∇), then the notion of homomorphism has to
be adapted in the obvious way.
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Definition 4.1.2 (Homomorphism of Vector Bundles with Connection) Let (E ,∇) and (Ẽ , ∇̃) be vector bundles
with connection. A homomorphism of vector bundles with connection is a homomorphism φ : E → Ẽ of vector
bundles such that

∇̃φ(ψ) = φ(∇ψ) for all ψ ∈ ΓE .

A vector bundle with connection is called trivial if it is isomorphic to the trivial bundle with the trivial connection.

Note, that a connection can be carried over from one to another bundle by an isomorphism.

Exercise 4.1.1 (Connection induced by Isomorphism) Let E , Ẽ → M be vector bundles, φ : E → Ẽ be
an isomorphism and let ∇ be a connection on E . Then there is a unique connection ∇̃ on Ẽ such that
φ(∇ψ) = ∇̃φ(ψ) for all ψ ∈ ΓE .

Hence we can always get a locally defined connection by carrying over the trivial connection by a local
trivialization. These can then be glued.

Theorem 4.1.2 On each vector bundle there exists a connection.

Proof. We choose local trivializations φα : E |Uα → Rr
M such that M =

⋃
α∈A Uα. Let {ρα}α∈A denote a partition

of unity subordinate to {Uα}α. Now we use Exercise 4.1.1 to pull the trivial connection back to obtain a
connection ∇α on E |Uα and define

∇ψ :=
∑
α∈A

ρα∇
α(ψ |Uα ) .

Clearly ∇ : ΓE → Ω1(M ; E). Moreover, ∇ satisfies the Leibniz law:

∇( fψ) =
∑
α∈A

ρα∇
α( fψ |Uα ) =

∑
α∈A

ρα
(
dfψ |Uα + f∇α(ψ |Uα )

)
= df

∑
α∈A

ραψ |Uα + f
∑
α∈A

ρα∇
α(ψ |Uα ) = dfψ + f∇ψ .

for f ∈ C∞M .

The next theorem tells us that the space of connections is an affine space over the space of endomorphism-
valued 1-forms.

Theorem 4.1.3 Any two connections ∇ and ∇̃ on a vector bundle E → M differ by a 1-form A ∈ Ω1(M ; EndE):

∇̃ = ∇ + A .

Remark 4.1.2 The space of connections on a vector bundle E forms an affine space over Ω1(M ; EndE).

Proof. Let ∇̃ − ∇, i.e. A : ΓT M × ΓE → ΓE is given by (X ,ψ) 7→ ∇̃Xψ − ∇Xψ. Clearly, A is tensorial in the first
slot. Moreover, if f ∈ C∞M and ψ ∈ ΓE , then

A( fψ) = ∇̃( fψ) − ∇( fψ) = dfψ + f ∇̃ψ − dfψ − f∇ψ = f (∇̃ψ − ∇ψ) = f Aψ .

Hence A is tensorial, i.e. A ∈ Γ(T M∗ ⊗ E∗ ⊗ E) = Ω1(M ; EndE).

Example 4.1.2 (Connections on the Trivial Bundle) Consider the trivial bundle Rr
M . Then each connection

∇ on Rr
M can be write with respect to the trivial connection d, i.e.

∇ = d + A, A ∈ Ω1(M ; EndRr
M ) .

Since EndRr = Rr×r , we find that A ∈ Ω1(M ; Rr×r ), which is a matrix of 1-forms, A = (ai j)i,j , ai j ∈ Ω1M .
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It is important to note that, given a vector bundle with connection, then we automatically get a connection
the dual bundle. This is stated in the theorem below, whose proof—being similar to the one above—is left as
exercise.

Theorem 4.1.4 (Dual Connection) Let E → M be a vector bundle with connection ∇. Then

(∇∗ω)(ψ) := d(ω(ψ)) −ω(∇ψ), for all ω ∈ ΓE∗, ψ ∈ ΓE .

defines a connection ∇∗ on E∗—called the dual connection.

Let 〈−|−〉 : ΓE∗ × ΓE → RM denote the dual pairing, i.e. 〈ω |ψ〉p = ωp(ψp). Then, for ω ∈ ΓE∗ and ψ ∈ ΓE ,

d〈ω |ψ〉 = 〈∇∗ω |ψ〉 + 〈ω |∇ψ〉 .

Hence ∇ on E∗ is the one and only connection which enforces the product rule for all pairs ω and ψ.

Similarly, we could define the connection for multilinear forms, i.e. for tensors. A different, less elegant, but
sometimes useful way to do this uses the locality principle—we will see then that this leads finally to the
same notion.

Theorem 4.1.5 (Tensor Connection) Let (E ,∇) and (Ẽ , ∇̃) be vector bundles with connection over M , then there
is a unique connection ∇⊗ on E ⊗ Ẽ such that, for all ψ ∈ ΓE and ψ̃ ∈ ΓẼ ,

∇⊗(ψ ⊗ ψ̃) = (∇ψ) ⊗ ψ̃ + ψ ⊗ ∇̃ψ̃ .

Proof. At each point of M there is a local frame of E ⊗ Ẽ which consists of sections of the form ψi ⊗ ψ̃j . One
easily checks that the above formula defines a connection: Let ψ̂ ∈ Γ(E ⊗ Ẽ) and X ∈ TpM, then there is a
neighborhood U ⊂̊M of p such that ψ̂ |U =

∑
ai jψi ⊗ ψ̃j for some ψi ∈ ΓE , ψ ∈ ΓẼ and ai j ∈ C∞M. If there is

some connection ∇⊗, it must satisfy

∇⊗X ψ̂ := (∇⊗ |U )X ψ̂ |U =
∑
(∇⊗ |U )X (ai jψi ⊗ ψ̃j)|U =

∑
∇⊗X (ai jψi ⊗ ψ̃j) =

∑(
dai j(X)ψi ⊗ ψ̃j + ai j∇⊗X (ψi ⊗ ψ̃j)

)
.

This shows already uniqueness. For existence we define ∇⊗ by the right-hand side. To verify that this defines
a connection is an easy exercise.

Remark 4.1.3 The previous proof shows that a connection is uniquely determined by its values on frames.

So once we have bundles with connection we get a connection on their tensor product. Which connection is
meant becomes usually clear from the context and we just write ∇.

Example 4.1.3 (Derivative of Tensors) In fact, a more useful formula for the derivative of tensor fields is
the following: If ω ∈ ΓE∗ and ψ̃ ∈ ΓẼ , then ∇(ψ̃ ⊗ ω) = ∇ψ̃ ⊗ ω + ψ̃ ⊗ ∇ω, i.e. for ψ ∈ ΓE , we get(
∇(ψ̃ ⊗ω)

)
(ψ) = ∇ψ̃ ⊗ω(ψ)+ ψ̃ ⊗ (∇ω)(ψ) = ∇ψ̃ ⊗ω(ψ)+ ψ̃ ⊗ d(ω(ψ))− ψ̃ ⊗ω(∇ψ) = ∇

(
ψ̃ ⊗ω(ψ)

)
− ψ̃ ⊗ω(∇ψ) .

Since each A ∈ ΓHom(E , Ẽ) is a sum of such fields, we get

(∇A)ψ = ∇
(
A(ψ)

)
− A(∇ψ) .

Note that Mult(E1, . . . , Ek ; F) = Hom(E1 ⊗ · · · ⊗ Ek ; F), i.e. if A ∈ ΓMult(E1, . . . , Ek ; F), then

A(ψ1, . . . ,ψk) = Â(ψ1 ⊗ · · · ⊗ ψk)
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4 Differentiation in Vector Bundles

for a unique Â ∈ ΓHom(E1 ⊗ · · · ⊗ Ek ; F). Hence

(∇A)(ψ1, . . . ,ψk) = ∇(Â(ψ1 ⊗ · · · ⊗ ψk)) − Â(∇(ψ1 ⊗ · · · ⊗ ψk)) = ∇(A(ψ1, . . . ,ψk)) −
∑
i

A(ψ1, . . . ,∇ψi , . . . ,ψk)) .

Since since the alternating forms are a subspace of the multilinear forms, Altk(E ; F) forms a subbundle of
Multk(E ; F). Moreover, we have a vector bundle homomorphism

Altk : Multk(E ; F) → Altk(E ; F) .

The next theorem tells us that it is compatible with the induced connection. It is very easy to prove using the
following lemma.

Lemma 4.1.6 Let E → M be a vector bundle with connection ∇. Then for each p ∈ M there exists a local frame
ψ1, . . . ,ψr ∈ ΓE at p such that

∇ψ1 |TpM
= · · · = ∇ψr |TpM

= 0 .

Proof. Exercise.

Theorem 4.1.7 Let E , F → M be vector bundles with connection and ω ∈ Multk(E ; F). Then

∇(Altk(ω)) = Altk(∇ω) .

In particular, if ω ∈ ΓAltk(E ; F), then ∇ω ∈ Ω1(M ; Altk(E ; F)).

Proof. Let ω ∈ ΓMultk(E ; F), ψ1, . . . ,ψk ∈ ΓE and X ∈ TpM. By the last lemma, we can without loss of
generality assume that ∇Xψi = 0 for all i = 1, . . . , k. Then

(∇XAltkω)(ψ1, . . . ,ψk) =
1
k!

∑
σ∈Sk

sgnσ ∇X (ω(ψσ1 , . . . ,ψσk
))

= 1
k!

∑
σ∈Sk

sgnσ (∇Xω)(ψσ1 , . . . ,ψσk
) = (Altk(∇Xω))(ψ1, . . . ,ψk) .

Since Altk is a projection, ∇ω = ∇(Altk(ω)) = Altk(∇ω). Hence ∇ω ∈ Ω1(M ; Altk(E ; F)).

If we have a splitting of a vector bundle E with connection into a sum of two subbundles E = E1 ⊕ E2, then
any connection splits in four parts.

Exercise 4.1.2 Let E = E1 ⊕ E2 be a vector bundle with connection ∇, then there are connections ∇i on Ei ,
A ∈ Ω1(M ; Hom(E1; E2)) and B ∈ Ω1(M ; Hom(E2; E1)) such that

∇ =

(
∇1 B
A ∇2

)
.

4.1.2 Parallel Transport

The analogue of a constant function in a vector bundle is a parallel section.

Definition 4.1.3 (Parallel Section) A section ψ of a vector bundle E with connection ∇ is called parallel if ∇ψ = 0.

48



4.1 Derivative of Sections

Example 4.1.4 Parallel sections of the trivial bundle Rr
M correspond to constant functions f ∈ C∞(M , Rr ).

Example 4.1.5 The identity I ∈ ΓEndE is always parallel, ∇I = 0: If ψ ∈ ΓE , then

(∇I)ψ = ∇(Iψ) − I∇ψ = ∇ψ − ∇ψ = 0 .

Example 4.1.6 A vector bundle homomorphism A : E → Ẽ restricts in each point to a linear map Ap : Ep →

Ẽp, i.e. Ap ∈ Hom(E , Ẽ). Thus A can be considered as a section of Hom(E , Ẽ). If E and Ẽ come with
connections, then saying A is an isomorphism of vector bundles with connection is equivalent to

∇(Aψ) = A(∇ψ) ⇐⇒ ∇A = 0 .

Definition 4.1.4 (Parallel Frame) Let E → M be a vector bundle with connection ∇. A parallel frame is a frame
σ = (ψ1, . . . ,ψr ) of E such that ∇ψ1 = · · · = ∇ψr = 0.

Theorem 4.1.8 Let E → M be a vector bundle of rank r with connection ∇ and σ be a parallel frame. Then

∇(σ.ν) = σ.(dν), ∀ ν ∈ C∞(M ; Rr ) .

Proof. Exercise.

As an immediate consequence we obtain the following theorem.

Theorem 4.1.9 A vector bundle with connection is trivial if and only if there exists a global parallel frame.

Lemma 4.1.10 Let E → M be a vector bundle of rank r with connection ∇ and σ and σ̃ be parallel frames. Then
locally σ and σ̃ differ by a constant matrix A ∈ Rr×r .

Proof. Since σ and σ̃ are parallel we have ∇(σ.ν) = σ(dν) and ∇(σ̃.ν) = σ̃.(dν). Moreover, since they both are
frames, there is a GL(Rr )-valued map A such that σ̃ = σ.A. Thus

σ.(Adν) = σ̃.(dν) = ∇(σ̃.ν) = ∇(σ.(Aν)) = σ.d(Aν) = σ.((dA)ν + Adν).

Hence dA = 0, i.e. A is locally constant.

Theorem 4.1.11 (Triviality of Vector Bundles over Intervals) Every vector bundle with connection over an
interval I ⊂ R is trivial.

Proof. Let I ⊂ R be an interval and E → I be a smooth rank r vector bundle with connection ∇. At first we
show that, at each point t0 ∈ I, there exists a local parallel frame, i.e. a frame consisting of parallel sections:
To see this, we choose some local frame σ defined on a neighborhood U ⊂̊ I of t0. This yields a trivialization
Rr

M 3 (t, v) 7→ σt .v ∈ Et . The connection induced from ∇ on the trivial bundle by this trivialization is of the
form d − A, where A ∈ Ω1(U; Rr×r ). Thus we have, for a v : U → Rr ,

0 = ∇ ∂
∂t
(σt .vt ) = σt .

(
∂
∂t v − A( ∂∂t vt )

)
⇐⇒ ∂

∂t v = A( ∂∂t )vt ,

which is an ordinary linear differential equation with smooth coefficients A( ∂∂t ) and thus can be solved on all
of U. Solving the initial value problem on a whole basis we obtain a parallel frame σ on U. Now, using the
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4 Differentiation in Vector Bundles

local existence, it is not hard to see that set V ⊂ I to which σ can be extended is open and closed: We have

V = {t ∈ I | ∃ frame σ̃ defined on Ũ ⊂̊ I : t ∈ Ũ, U ⊂ Ũ, σ̃ |U = σ} .

Clearly, V is open. To see that V is closed take a limit point t1 of V . Then there exists a local frame σ̂ define
on an open neighborhood V̂ ⊂ I of t1. Then V ∩W , ∅ and there is a from σ̃ defined on Ṽ ⊂̊ I with Ṽ ⊃ U
and t ∈ Ṽ . We can assume that V̂ ∩ Ṽ is connected. Then, by the previous lemma, σ̂.A = σ̃ on V̂ ∩ Ṽ for some
A ∈ Rr×r and we can define a new frame τ defined on V̂ ∪ Ṽ ⊂̊ I as follows:

τ |Ṽ = σ̃, τ |V̂ = σ̂.A .

Hence V is closed. Since I is connected and V ⊃ U , ∅ we conclude that V = I.

Theorem 4.1.12 (Pullback Connection) Let E → M be a vector bundle with connection ∇ and f : S → M be a
smooth map. Then there is a unique connection f ∗∇ on f ∗E such that

( f ∗∇)( f ∗ψ) = f ∗(∇ψ) for all ψ ∈ ΓE

Proof. The proof is basically the same as for the existence and uniqueness to the tensor connection.

As an immediate consequence of Theorem 4.1.11 we get the following theorem.

Corollary 4.1.13 Let E → M be a vector bundle with connection and γ : I → M be a smooth curve defined on some
interval I ⊂ R. Then there exists a parallel frame along γ.

Definition 4.1.5 (Parallel Transport) Let E → M be a vector bundle with connection ∇ and γ : [0, 1] → M be a
smooth curve. The parallel transport P∇γ : Tγ(0)E → Tγ(1)E along γ is given by

P∇γ (ψ0) = ψ(1),

where ψ ∈ Γ(γ∗E) is parallel such that ψ(0) = ψ0.

Exercise 4.1.3 Show that P∇γ is a linear isomorphism.

Exercise 4.1.4 Let γ : R → M be a smooth curve and let Pt : Eγ(0) → Eγ(t) denote the parallel transport
along its restriction γ |[0,t]. Show that

(γ∗∇) ∂
∂t

��
t=0

ψ = d
dt

��
t=0 P−1

t

(
ψ(t)

)
,

for all ψ ∈ Γ(γ∗E).

4.1.3 Affine Connections

An affine connection is a name to denote a connection on the tangent bundle. What is special about is that
they come with a particular tensor.

Definition 4.1.6 (Torsion Tensor) The torsion tensor T ∇ : T M ×T M → T M of an affine connection ∇ is defined
as follows: For X ,Y ∈ ΓT M ,

T ∇(X ,Y ) = ∇XY − ∇Y X − [X ,Y ] .
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4.2 Derivative of Differential Forms

Remark 4.1.4 T ∇ is skew.

We still need to check that T ∇ is a tensor: Since T ∇ is skew, it suffices to check tensoriality in only one
argument. For f ∈ C∞M and X ,Y ∈ Γ(T M), we have

T ∇( f X ,Y ) = f∇XY − (Y f )X − f∇Y X − f [X ,Y ] + (Y f )X = f T ∇(X ,Y ) .

Note that T M∗ ⊗ End(T M) =Mult2
(T M ; T M). In particular, any two affine connections differ by some section

A ∈ ΓMult2
(T M ; T M).

Lemma 4.1.14 Let ∇ be an affine connection on M and ∇̃ = ∇ + A for some A ∈ ΓMult2
(T M ; T M). Then,

T ∇̃ = T ∇ + 2Alt2(A) .

Proof. For X ,Y ∈ ΓT M , we have

T ∇̃(X ,Y ) = ∇XY + A(X ,Y ) − ∇Y X − A(Y , X) − [X ,Y ] = T ∇(X ,Y ) + A(X ,Y ) − A(Y , X) = T ∇ + 2Alt2(A)(X ,Y ) .

Definition 4.1.7 (Torsion-free) An affine connection ∇ is called torsion-free, if T ∇ = 0.

Theorem 4.1.15 On each tangent bundle there is a torsion-free connection.

Proof. Let ∇ be some affine connection and define A(X ,Y ) = − 1
2T ∇(X ,Y ). Then ∇̃ := ∇ + A has torsion

T ∇̃ = T ∇ + 2Alt2(A) = T ∇ −T ∇ = 0 .

Here the last equality used that T ∇ is skew.

Example 4.1.7 Take a look at our formula for the Lie-bracket expressed in local coordinates. We see that
the trivial connection ∇ on TRn is torsion-free, T ∇ = 0.

The bilinear forms Bil2 on a vector space splits into a direct sum of two subspaces—the skew bilinear forms
Alt2 and the symmetric bilinear forms Sym2. Similarly, we get a splitting for the bundle Bil 2(T M; T M) of
T M-valued bilinear forms defined on T M . The following theorem is a direct consequence of Lemma 4.1.14.

Corollary 4.1.16 The torsion-free affine connections on M form an affine space over ΓSym2(T M ; T M).

Proof. The difference of any two torsion-free affine connections is a skew bilinear form, which vanishes if
and only if the connections are equal.

4.2 Derivative of Differential Forms

4.2.1 Exterior Derivative

We have seen how to differentiate tensors. For skew-symmetric tensors, i.e. differential forms, there is a
another important notion of derivative—it only needs a connection on E .
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Definition 4.2.1 (Exterior Derivative) Let E → M be a smooth vector bundle with connection. Then the exterior
derivative d∇ : Ωk(M ; E) → Ωk+1(M ; E) is defined as follows: Let ω ∈ Ωk(M ; E) and X0, . . . , Xk ∈ Γ(T M), then

d∇ω(X0, . . . , Xk) :=
k∑
i=0

(−1)i∇Xi

(
ω(X0, . . . , X̂i , . . . , Xk)

)
+

∑
i< j

(−1)i+jω([Xi , Xj], X0, . . . , X̂i , . . . , X̂j , . . . , Xk) ,

where hat means that omission, i.e. ω(X0, . . . , X̂i , . . . , Xk) = ω(X1, . . . , Xi−1, Xi+1, . . . , Xk).

From the definition it is not clear that d∇ω is tensorial. One can directly check this. Since each manifold has
a torsion-free connection. It also follows from the next theorem which is interesting itself as it relates the
exterior derivative to the covariant derivative ∇ω of a form ω ∈ Ωk(M; E)when considered as a section of
Multk+1

(T M ; E).

Theorem 4.2.1 Let E → M be a vector bundle with connection. Then each choice of a torsion-free affine connection
on M induces a connection ∇ on Multk(T M ; E) ⊃ Altk(T M ; E) and we have

d∇ω = (k + 1)Altk+1(∇ω) = ∇ ∧ω .

Proof. Let X0, . . . , Xk ∈ ΓT M . Then

(k + 1)Altk+1(∇ω)(X0, . . . , Xk) =
∑

σ∈Sh(1,k;n)

sgnσ
(
∇Xσ0

ω
)
(Xσ1 , . . . , Xσk

) =

k∑
i=0

(−1)i
(
∇Xiω

)
(X1, . . . , X̂i , . . . , Xk)

=

k∑
i=0

(−1)i
(
∇Xiω(X1, . . . , X̂i , . . . , Xk)

)
−

∑
i,j

(−1)iω(X1, . . . ,∇Xi Xj , . . . , X̂i , . . . , Xk) .

Now,∑
i,j

(−1)iω(X1, . . . ,∇Xi Xj , . . . , X̂i , . . . , Xk)

=

k∑
i< j

(−1)i+j+1ω(∇Xi Xj , X1, . . . , X̂j , . . . , X̂i , . . . , Xk) +

k∑
i> j

(−1)i+jω(∇Xi Xj , X1, . . . , X̂j , . . . , X̂i , . . . , Xk)

= −

k∑
i< j

(−1)i+jω(∇Xi Xj − ∇Xj Xi︸             ︷︷             ︸
=[Xi ,Xj ]

, X1, . . . , X̂j , . . . , X̂i , . . . , Xk) ,

as claimed.

Corollary 4.2.2 Let E → M be a vector bundle with connection ∇ and ∇̃ = ∇ + A with A ∈ Ω1(M ; EndE). Then

d ∇̃ = d∇ + A∧ .

Remark 4.2.1 (Tautological 1-Form) On the tangent bundle T M we have the tautological 1-form ω ∈

Ω1(M ; T M) given by ω(X) = I X = X . Given connection on T M , we can compute its exterior derivative

d∇ω(X ,Y ) = ∇Xω(Y ) − ∇Yω(X) −ω([X ,Y ]) = ∇XY − ∇Y X − [X ,Y ] = T ∇(X ,Y ) .

Another important property of the exterior derivative is the following product rule for wedge products.
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Theorem 4.2.3 (Product Rule) Let E1, E2 and E3 be vector bundles with connection, let • ∈ Mult2
(E1, E2; E3) be

parallel and let ω ∈ Ωk(M ; E1) and η ∈ Ω`(M ; E2). Then

d∇(ω ∧• η) = d∇ω ∧• η + (−1)kω ∧• d∇η .

Proof. Again, we choose a torsion-free connection on the tangent bundle. Then, since Altk+l is parallel,

d∇(ω ∧• η) = (k + ` + 1)Altk+`+1
(
∇(ω ∧• η)

)
= (k + ` + 1)Altk+`+1

(
∇
(k+`)!
k!`! Altk+`(ω ⊗• η)

)
= (k + ` + 1)Altk+`+1

( (k+`)!
k!`! Altk+`(∇(ω ⊗• η))

)
.

Now, if X ∈ T M , then
∇X (ω ⊗• η) = (∇Xω) ⊗• η +ω ⊗• (∇Xη) .

If we choose a chart, we can write the involved 1-forms with respect to the corresponding coframe
dx1, . . . , dxm,

∇ω =

m∑
i=1

dxi ⊗ ω′i , with ω′i ∈ Ω
k(M ; E1) , ∇η =

m∑
i=1

dxi ⊗ η′i , with η′i ∈ Ω
`(M ; E2) .

So we get

(k+`)!
k!`! Altk+`

(
(∇ω) ⊗ •η +ω ⊗ •(∇η)

) )
=

m∑
i=1

dxi ⊗
(k+`)!
k!`! Altk+`

(
ω′i ⊗ •η +ω ⊗ •η

′
i

)
=

m∑
i=1

dxi ⊗
(
ω′i ∧ •η +ω ∧ •η

′
i

)
.

Hence,

d∇(ω ∧• η) =
m∑
i=1

(k + ` + 1)Altk+`+1
(
dxi ⊗

(
ω′i ∧ •η +ω ∧ •η

′
i

) )
=

m∑
i=1

dxi ∧
(
ω′i ∧ •η +ω ∧ •η

′
i

)
=

( m∑
i=1

dxi ∧ω′i
)
∧ •η + (−1)kω ∧ •

( m∑
i=1

dxi ∧ η′i
)

Moreover,

d∇ω = (k + 1)Altk+1(∇ω) = (k + 1)Altk+1
( m∑
i=1

dxi ⊗ ω′i
)
=

m∑
i=1

dxi ∧ω′i

and, similarly, d∇η =
∑m

i=1 dxi ∧ η′i . Plugging this into the formula for d∇(ω ∧ •η) derive above then completes
the proof.

Remark 4.2.2 Most pairings we usually work with are parallel. For an arbitrary pairing one would need
to include its derivative. The formula then becomes

d∇(ω ∧• η) = d∇ω ∧• η + (−1)kω ∧ (d∇•) ∧ η + (−1)kω ∧• d∇η .

As a first application we will show that for real valued forms the second exterior derivative always vanishes.
In this context the exterior derivative always means the exterior derivative with respect to the trivial
connection—unless explicitly stated differently. It will be denoted just by d.
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Theorem 4.2.4 Let ω ∈ Ωk(M ; Rr ), then d2ω = 0.

Proof. If f ∈ C∞(M; Rr ), X ,Y ∈ ΓT M, then d2 f (X ,Y ) = X(Y f ) −Y (X f ) − df [X ,Y ] = 0. It is enough to check
the claim for k-forms of the form ω = f0 df1 ∧ · · · ∧ dfk , where f0 ∈ C∞(m; Rr ) and f1, . . . , fk ∈ C∞M. This is
because every k-form is locally a sum of such and—as a connection only depends on a the values in a small
neighborhood—it is enough to check the equality locally. Then the product rule yields

dω = df0 ∧ df1 ∧ · · · ∧ dfk

and thus—again by the product rule—we conclude d2ω = 0.

Definition 4.2.2 (Exact and Closed Forms) Let (E ,∇) be a smooth vector bundle with connection over M . The
space Zk(M ; E) of closed k-forms and the space Bk(M ; E) of exact k-forms are defined as follows:

Bk(M ; E) = im
(
d∇ : Ωk−1(M ; E) → Ω

k(M ; E)
)

, Zk(M ; E) = ker
(
d∇ : Ωk(M ; E) → Ω

k+1(M ; E)
)

.

We set BkM = Bk(M ; RM ) and ZkM = Zk(M ; RM ).

Corollary 4.2.5 BkM ⊂ ZkM

Exercise 4.2.1 Let M = R3. Determine which of the following forms are closed and which are exact

(a) ω = yz dx + xz dy + xy dz ,
(b) ω = x dx + x2y2 dy + yz dz ,
(c) ω = 2xy2 dx ∧ dy + z dy ∧ dz .

If ω is exact, write down the potential form θ explicitly.

Definition 4.2.3 (De-Rahm Cohomology)

HkM := ZkM/BkM .

As a second application we show that pullback and exterior derivative commute.

Theorem 4.2.6 (Naturality of Pullback) Let E → M be a vector bundle with connection ∇, let f : S → M be
smooth and let ω ∈ Ωk(M ; E). Then

d f ∗∇ f ∗ω = f ∗(d∇ω) .

Proof. It is enough to check the equality for k-forms of the form ω = ψ dg1 ∧ · · · ∧ dgk , where ψ ∈ ΓE and
g1, . . . , gk ∈ C∞M . Now, first, the equation holds for the derivative of real functions: For g ∈ C∞M , we have

f ∗dg = dg ◦ df = d(g ◦ f ) = d( f ∗g) .

In particular, we get d( f ∗dg) = d2( f ∗g) = 0 and thus

d f ∗∇ f ∗ω = d f ∗∇( f ∗ψ f ∗(dg1 ∧ · · · ∧ dgk)) = d f ∗∇( f ∗ψ ( f ∗dg1 ∧ · · · ∧ f ∗dgk)) = (d f ∗∇f ∗ψ) ∧ ( f ∗dg1 ∧ · · · ∧ f ∗dgk)

= (( f ∗∇)( f ∗ψ)) ∧ f ∗(dg1 ∧ · · · ∧ dgk) = f ∗(∇ψ) ∧ f ∗(dg1 ∧ · · · ∧ dgk) = f ∗(∇ψ ∧ dg1 ∧ · · · ∧ dgk)

Hence we have f ∗(d∇ω) = f ∗(d∇ψ) ∧ dg1 ∧ · · · ∧ dgk) = f ∗(∇ψ ∧ dg1 ∧ · · · ∧ dgk) = d f ∗∇ f ∗ω.

54



4.2 Derivative of Differential Forms

4.2.2 Curvature—the 2nd Exterior Derivative

In general the second exterior derivative (d∇)2 does not vanish: Let ω ∈ Ωk(M ; E) and f : C∞M , then

(d∇)2( fω) = d∇(df ψ + f d∇ω) = (d2 f ) ∧ω − df ∧ d∇ω + df ∧ d∇ω + f d∇d∇ω = f (d∇)2ω .

So (d∇)2 is actually tensorial and as such a section of Ω2(M ; EndE). This tensor plays an extraordinary role.

Definition 4.2.4 (Curvature) Let E → M be a vector bundle. The curvature F∇ ∈ Ω2(M ; EndE) of a connection
∇ is given by

F∇ψ = d∇d∇ψ , ψ ∈ ΓE .

Theorem 4.2.7 (2nd Exterior Derivative) Let E be a vector bundle with connection and ω ∈ Ω2(M ; E). Then

(d∇)2ω = F∇∧ω .

Proof. Again we can assume without loss of generality that ω = ψdf1 ∧ · · · dfk for ψ ∈ ΓE and fi ∈ C∞M.
Then we get

(d∇)2ω = d∇(d∇ψ ∧ df1 ∧ · · · dfk) = (d∇)2ψ ∧ df1 ∧ · · · dfk = F∇ψ ∧ df1 ∧ · · · dfk = F∇∧ ψdf1 ∧ · · · dfk .

Hence we get (d∇)2ω = F∇∧ω.

Theorem 4.2.8 (2nd Bianchi Identty) For each vector bundle E with connection ∇ one has

d∇F∇ = 0 .

Proof. Let ω ∈ Ωk(M ; E). Then the product rule yields

(d∇F∇) ∧ω = d∇(F∇ ∧ω) − F∇ ∧ d∇ω = d∇((d∇)2ω) − (d∇)2(d∇ω) = ((d∇)3 − (d∇)3)ω = 0 .

Theorem 4.2.9 Le (E ,∇) and (Ẽ , ∇̃) be vector bundles with connection and φ : E → Ẽ be an isomorphism of vector
bundles with connection. Then

F ∇̃ = φ F∇φ−1 .

Proof. We have already seen that φ can be considered as a parallel section of Hom(E ; Ẽ), i.e.

φ ∈ Ω0(M ; Hom(E , Ẽ)), d ∇̂φ = ∇̂φ = 0 ,

where ∇̂ is the induced connection on Hom(E , Ẽ). In particular, we can wedge it with E-valued k-forms from
the right: Let ω ∈ Ωk(M ; E) The product rule then yields

d ∇̃(φ ∧ω) = (d ∇̂φ) ∧ω + φ ∧ d∇ω = φ ∧ d∇ω .

Hence
F ∇̃φ ∧ω = (d ∇̃)2φ ∧ω = φ ∧ (d∇)2ω = φ F∇∧ω .

Since ω was arbitrary, the claim follows.
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Theorem 4.2.10 On a trivial bundle always has curvature zero.

Proof. Theorem 4.2.4 says the trivial bundle has curvature zero. Theorem 4.2.9 says any trivial bundle has
curvature zero.

Exercise 4.2.2 If E → M is a vector bundle with connection ∇, f : S → M is smooth, then F f ∗∇ = f ∗F∇.

Theorem 4.2.11 (Change of Curvature from Change of Connection) Let E → M be a vector bundle with
connection ∇ and let ∇̃ = ∇ + A. Then

F ∇̃ = F∇ + d∇A+ A∧ A .

Proof. We know that d ∇̃ = d∇ + A∧. Let ω ∈ Ωk(M ; E). Then

F ∇̃ ∧ω = (d ∇̃)2ω = (d∇ + A∧)(d∇ω + A∧ω) = d∇ω + A∧ω)

= (d∇)2ω + d∇(A∧ω) + A∧ d∇ω + A∧ A∧ω = F∇ ∧ω + (d∇A) ∧ω + A∧ A∧ω

Remark 4.2.3 (Local Expression of Exterior Derivative and Curvature) Let σ = (ψ1, . . . ,ψr ) be a local
frame of a rank r vector bundle E with connection ∇. On the support U of σ each ω ∈ Ωk(M; E) can be
written in terms of σ and α ∈ Ωk(U; Rr ),

ωU = σ.α =
r∑
i=1

αi ψi .

This actually defines a local trivialization and thus a connection ∇̃ on the trivial bundle—which then can
be written with respect to the trivial connection, ∇̃ = d + A. Thus, on U,

d∇ω = d∇(σ.α) = σ.(d ∇̃α) = σ.(dα + A∧ α) .

In particular, since the curvature of the trivial connection is zero, we get

F∇σ = σ.(dA+ A∧ A) .

4.2.3 Fundamental Theorem of Flat Bundles

A flat vector bundle is a bundle which locally looks like the trivial bundle.

Definition 4.2.5 (Flat Vector Bundle) A vector bundle with connection is called flat if it is locally isomorphic to
the trivial bundle with trivial connection.

We immediately get the following equivalent description.

Corollary 4.2.12 A vector bundle is flat if and only if at each point there exist local parallel frames.

A flat bundle, being locally isomorphic to the trivial bundle, has vanishing curvature tensor. If we are able
to show that, whenever the curvature tensor vanishes, there is a local parallel frame, then we would have
shown the following theorem.
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4.2 Derivative of Differential Forms

Theorem 4.2.13 (Fundamental Theorem of Flat Vector Bundles) (E ,∇) is flat if and only if F∇ = 0.

Remark 4.2.4 If F∇ = 0 we call ∇ a flat connection.

We say that a set U ⊂̊M is a star-region with respect to p if it is the image of a diffeomorphism f : V → U,
where V ⊂̊Rm is star-shaped with respect to 0 and f (0) = p. In particular, each star-region comes with a
particular radial vector field ν—the push-forward of ∂

∂r ∈ Γ(TV) given by ∂
∂r

��
x
g = d

dt

��
t=0g((1 + t)x),

νq = ( f∗ ∂∂r )q = df
(
∂
∂r

��
f −1(q)

)
.

If (E ,∇) is a vector bundle over M and U ⊂̊M is a star region with radial field ν, then ψ ∈ Γ(E |U ) is called
radially parallel, if ∇νψ = 0.

Lemma 4.2.14 On every star-region there exists a radially parallel frame.

Proof. If we choose a basis of Ep then each basis vector can be parallel transported along radial lines in U.
The result is a radially parallel frame σ. That the sections are smooth is basically the smooth dependence
on parameters for solutions of ordinary differential equations: We have U = f (V), where V is star-shaped.
Consider f̃ : [0, 1] ×V → U given by f̃ (t, x) = f (t x). Then σ̃ = f̃ ∗σ solves

f̃ ∗∇ ∂
∂t
σ̃ = f ∗(∇σ)( ∂∂t ) = ∇d f̃ ( ∂∂t )

σ = ∇tνσ = 0,

i.e. σ̃ solves an initial value problem in f̃ ∗E with smooth coefficients and smooth initial data and, as such, is
smooth. In particular, since f (x) = f̃ (1, x), we have that σ = ( f −1)∗σ̃ is smooth.

Theorem 4.2.15 If F∇ = 0, a radially parallel frame is parallel.

Proof. Clearly ∇ψ
��
TpM

= 0. On U \ {p} we have polar coordinates r ,α1, . . . ,αm−1. We have

0 = F∇( ∂∂r , ∂
∂αi
)ψ = d∇∇ψ( ∂∂r , ∂

∂αi
) = ∇ ∂

∂r
∇ ∂
∂αi

ψ − ∇ ∂
∂αi

∇ ∂
∂r
ψ︸︷︷︸

=0

−∇
[ ∂∂αi

, ∂
∂r ]︸    ︷︷    ︸

=0

= ∇ ∂
∂r
∇ ∂
∂αi

ψ .

Since ∇ ∂
∂αi

ψ is radially parallel and vanishes at p, we get ∇ ∂
∂αi

ψ = 0. Hence ∇ψ = 0 on all of U.

Remark 4.2.5 (Maurer–Cartan Lemma) If we express the connection with respect to a local frame we
can write ∇ as d + A. Then the fundamental theorem of flat vector bundles becomes the well-known
Maurer–Cartan lemma:

∃g ∈ GL(Rr ) : g−1dg = A ⇐⇒ dA+ A∧ A = 0 .

Exercise 4.2.3 Let M ⊂ R2 be open. On E = M ×R2 we define two connections ∇ and ∇̃ as follows:

∇ = d +
(

0 −x dy
x dy 0

)
, ∇̃ = d +

(
0 −x dx

x dx 0

)
.

Show that (E ,∇) is not trivial. Further construct an explicit isomorphism between (E , ∇̃) and the trivial
bundle (E , d).
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Kähler Manifolds 5
5.1 Additional Structures and Compatibility

In many applications the vector bundle carries additional structures—such as almost complex or hermitian
structures—and the connection is required to be compatible with them, i.e. basically the structure behave
under differentiation as they were constant.

5.1.1 Euclidean Vector Bundles

Important structures are the so-called euclidean structures which provide an inner product per fiber so one
can can measure lengths and angles.

Definition 5.1.1 (Fiber Metric) A fiber metric 〈., .〉 on a vector bundle E is a section 〈., .〉 of the bundle Sym(E) of
symmetric bilinear forms such that 〈., .〉p is positive-definite for all p ∈ M . A (E , 〈., .〉) consisting of a vector bundle
E → M and a fiber metric 〈., .〉 on E is called a euclidean vector bundle.

Theorem 5.1.1 Every vector bundle admits a fiber metric.

Proof. Let E be a vector bundle. Choose a bundle atlas {φ : E |Uα → Uα ×Rr }α∈A and a partition of unity
{ρα}α∈A subordinate to {Uα}α∈A with the same index. On E |Uα a metric 〈., .〉α is given by 〈ψ1,ψ2〉α =

〈φ(ψ1), φ(ψ2)〉Rr . Then one can check that 〈., .〉 =
∑
α∈A ρα〈., .〉α defines a fiber metric on E .

Definition 5.1.2 (Metric Connection) Let (E , 〈., .〉) be a euclidean vector bundle over M . A connection ∇ on E is
called metric, if ∇〈., .〉 = 0.

Theorem 5.1.2 Each euclidean vector bundle admits a metric connection.

Proof. Let (E , 〈., .〉) be a euclidean vector bundle and ∇̃ be a connection on E . Then ∇̃〈., .〉 ∈ Ω1(M ; Sym2(T M))
which defines A ∈ Ω1(M ; EndE) through ∇̃〈., .〉 = 〈A., .〉. Clearly, A∗ = A. Set ∇ := ∇̃ + 1

2 A. Then, for ψ, ϕ ∈ ΓE ,

(∇〈., .〉)(ψ, ϕ) = d〈ψ, ϕ〉 − 〈∇̃ψ, ϕ〉 − 〈ψ, ∇̃ϕ〉 = d〈ψ, ϕ〉 − 〈(∇ + 1
2 A)ψ, ϕ〉 − 〈ψ, (∇̃ + 1

2 A)ϕ〉

= d〈ψ, ϕ〉 − 〈∇̃ψ, ϕ〉 − 〈ψ, ∇̃ϕ〉 − 1
2 〈Aψ, ϕ〉 − 1

2 〈ψ, Aϕ〉 = ∇̃〈., .〉(ψ, ϕ) − 〈Aψ, ϕ〉 = 0 ,

i.e. ∇ is metric.

Again the difference of two metric connections has a particular type.

Theorem 5.1.3 Let (E , 〈., .〉) be a euclidean vector bundle and ∇ and ∇̃ be two metric connections. Then

∇̃ = ∇ + A, A∗ = −A .
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Proof. Let A = ∇̃ − ∇. Then, for ψ, ϕ ∈ ΓE ,

〈Aψ, ϕ〉 = 〈∇̃ψ, ϕ〉 − 〈∇ψ, ϕ〉 = d〈ψ, ϕ〉 − 〈ψ, ∇̃ϕ〉 − d〈ψ, ϕ〉 + 〈ψ,∇ϕ〉

= 〈ψ,∇ϕ〉 − 〈ψ, ∇̃ϕ〉 = −〈ψ, Aϕ〉 .

Hence A∗ = −A.

Also the curvature of a metric connection is skew-adjoint.

Theorem 5.1.4 Let (E , 〈., .〉) be a euclidean vector bundle and ∇ be a metric connection. Then(
F∇

)∗
= −F∇ .

Proof. Let ψ, ϕ ∈ ΓE . Since 〈., .〉 is parallel, the product rule yields d〈ψ, ϕ〉 = 〈d∇ψ, ϕ〉 + 〈ψ, d∇ϕ〉 and thus

0 = d2〈ψ, ϕ〉 = 〈F∇ψ, ϕ〉 − 〈d∇ψ ∧ d∇ϕ〉 + 〈d∇ψ ∧ d∇ϕ〉 + 〈ψ, F∇ϕ〉 ⇐⇒ 〈ψ, F∇ϕ〉 = −〈F∇ψ, ϕ〉 .

Hence,
(
F∇

)∗
= −F∇.

Exercise 5.1.1 Let E1, E2 → M be euclidean vector bundles and E = E1 ⊕⊥ E2. Show that a connection ∇
on E is metric if and only if

∇ =

(
∇1 −A∗

A ∇2

)
,

where ∇1 and ∇2 metric connections and A ∈ Ω1(M ; Hom(E1; E2)).

5.1.2 Hermitian Vector Bundles

Now let us look at complex vector bundles.

Definition 5.1.3 (Complex Connection) Let (E , J) be a complex vector bundle. A connection ∇ on E is called
complex if ∇J = 0.

Remark 5.1.1 A complex connection is complex linear.

Theorem 5.1.5 Every complex vector bundle has a complex connection.

Proof. Let (E , J) be a complex vector bundle and let ∇ be some connection on E . Differentiating the equation
J2 = −I yields ∇J ∈ Ω1(M ; End−E). Set ∇̃ = ∇ − 1

2 J∇J. Then, for ψ ∈ ΓE ,

∇̃(Jψ) = ∇(Jψ) − 1
2 J(∇J)(Jψ) = J∇ψ + (∇J)ψ − 1

2 (J∇J)(Jψ) = J∇ψ + 1
2 (∇J)ψ = J

(
∇ψ − 1

2 (J∇J)(ψ)
)
= J∇̃ψ ,

i.e. ∇̃ is complex.

It is then natural to ask how two complex connections differ.

Recall that, given an almost complex structure J, the endomorphisms split in complex linear and complex
antilinear ones

EndE = End+E ⊕ End−E .
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Proposition 5.1.6 Any two complex connections on a complex vector bundle E differ by a End+E-valued 1-form.

Proof. If we have two connections which commute with J, so does their difference.

Similarly, we get the following theorem.

Theorem 5.1.7 The curvature of a complex connection is complex linear.

In the presence of an almost complex structure not all fiber metrics are equally well. We want to single out
those fiber metrics which turn J into an orthogonal endomorphism.

Definition 5.1.4 (Hermitian Fiber Metric) Let E be a complex vector bundle. A fiber metric 〈., .〉 is called
hermitian if J is orthogonal with respect to it, i.e. 〈Jψ, Jϕ〉 = 〈ψ, ϕ〉 for all ψ, ϕ ∈ ΓE .

Remark 5.1.2 If 〈., .〉 is a hermitian fiber metric on a complex vector bundle E , then J is skew, i.e. J∗ = −J:
Let ψ, ϕ ∈ ΓE , then

〈Jψ, ϕ〉 = −〈Jψ, J2ϕ〉 = −〈ψ, Jϕ〉 .

Remark 5.1.3 (Associated Complex-Valued Hermitian Fiber Metric) Usually the term hermitian is used
to denote a complex valued metric, whereas here a hermitian metric denotes a real valued bilinear form.
Though both notions are equivalent: If 〈., .〉C denotes a complex valued hermitian form, then its real part is
a hermitian form in the sense above. Conversely, given a real valued hermitian form 〈., .〉, then there is a
corresponding complex valued hermitian form:

〈ψ, ϕ〉C = 〈ψ, ϕ〉 + i〈Jψ, ϕ〉 . for all ψ, ψ̃ ∈ ΓE .

Definition 5.1.5 (Hermitian Vector Bundle) A hermitian vector bundle is a pair (E , 〈., .〉) consisting of a complex
vector bundle E and a hermitian fiber metric 〈., .〉.

Definition 5.1.6 (Unitary Connection) Let E be a hermitian vector bundle. A connection is called unitary if it is
both complex and metric. A hermitian vector bundle with unitary connection is called a unitary vector bundle.

Remark 5.1.4 Form the results above we conclude immediately that any two unitary connections differ
by a skew-adjoint complex linear endomorhism-valued 1-form.

We have seen above, that every vector bundle has a Riemannian metric, but not every bundle admits all of
the structures—e.g. there exists no complex structure J on TS4. Though given a complex vector bundle it has
always a hermitian structure.

Theorem 5.1.8 Every complex vector bundle has a hermitian metric.

Proof. Choose some fiber metric 〈., .〉∼ on E and for ψ, ϕ ∈ ΓE we set 〈ψ, ϕ〉 := 1
2 (〈ψ, ϕ〉∼ + 〈Jψ, Jϕ〉∼). Then,

since J2 = −1,

〈Jψ, Jϕ〉 = 1
2 (〈Jψ, Jϕ〉∼ + 〈J(Jψ), J(Jϕ)〉∼) = 1

2 (〈Jψ, Jϕ〉∼ + 〈ψ, ϕ〉∼) = 〈ψ, ϕ〉 .

Hence 〈., .〉 is hermitian.
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Theorem 5.1.9 Every hermitian vector bundle has a unitary connection.

Proof. Let E → M be a hermitian vector bundle. We already know that there is a metric connection, say ∇.
Then ∇̃ = ∇ − 1

2 J∇J is complex. Since J is skew-adjoint so is ∇J. To see this, let ψ, ϕ ∈ ΓE . Then

〈(∇J)ψ, ϕ〉 = 〈∇(Jψ) − J∇ψ, ϕ〉 = 〈∇(Jψ), ϕ〉 − 〈J∇ψ, ϕ〉 = 〈∇(Jψ), ϕ〉 + 〈∇ψ, Jϕ〉

= d〈Jψ, ϕ〉 − 〈Jψ,∇ϕ〉 + d〈ψ, Jϕ〉 − 〈ψ,∇(Jϕ)〉 = 〈ψ, J∇ϕ〉 − 〈ψ,∇(Jϕ)〉 = −〈ψ, (∇J)ϕ〉

Moreover, differentiating J2 = −I, we get (∇J)J = −J(∇J). Thus

〈J(∇J)ψ, ϕ〉 = −〈(∇J)ψ, Jϕ〉 = 〈ψ, (∇J)Jϕ〉 = −〈ψ, J(∇J)ϕ〉 .

Hence ∇̃ is still metric.

Exercise 5.1.2 The standard hermitian metric 〈., .〉 on the trivial bundle Cn+1
CPn induces a hermitian metric

on the tautological line bundle L = Taut(CPn). Let πL : Cn+1
CPn → L denote the orthogonal projection in the

fiber. Show that ∇ : Γ(L) → Ω1(CPn; L) given by

∇ψ = πL(dψ) ,

defines a unitary connection on L.

Exercise 5.1.3 Let E be a vector bundle with connection ∇ and let P∇ denote the parallel transport along a
curve γ. Show:

(a) P∇ is complex linear if and only if ∇ is complex.
(b) P∇ is an isometry if and only if ∇ is metric.

5.2 Kähler Manifolds

5.2.1 Riemannian and Kähler Manifolds

Vaguely, a Kähler manifold is a manifold which has a complex and a metric structure on its tangent bundle
which play together nicely. Let us make this precise. We start with the metric structure.

Definition 5.2.1 (Riemannian Manifold) A Riemannian manifold is a pair (M , 〈., .〉) consisting of manifold M
and a Riemannian metric 〈., .〉 on M, i.e. 〈., .〉 is a fiber metric on T M. A 2-dimensional Riemannian manifold is
called a Riemannian surface.

Theorem 5.2.1 (Koszul Formula) Let (M , 〈., .〉) be a Riemannian manifold. A metric and torsion-free connection
∇ satisfies the following formula: Let X ,Y , Z ∈ Γ(T M), then

2〈∇XY , Z〉 =
+ X 〈Y , Z〉 + Y 〈X , Z〉 − Z 〈X ,Y〉
− 〈X , [Y , Z]〉 − 〈Y , [X , Z]〉 + 〈Z , [X ,Y ]〉 .
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Proof. Let ∇ denote the Levi-Civita connection. Then

X 〈Y , Z〉 +Y 〈X , Z〉 − Z 〈X ,Y〉 = 〈∇XY , Z〉 + 〈Y ,∇XZ〉 + 〈∇Y X , Z〉 + 〈X ,∇Y Z〉 − 〈∇Z X ,Y〉 − 〈X ,∇ZY〉

= 〈∇XY + ∇Y X , Z〉 + 〈Y ,∇XZ − ∇Z X〉 + 〈X ,∇Y Z − ∇ZY〉

= 〈2∇XY − [X ,Y ], Z〉 + 〈Y , [X , Z]〉 + 〈X , [Y , Z]〉

Shifting all Lie bracket terms over to the left yields the desired formula.

The following theorem is sometimes called the fundamental theorem of Riemannian geometry.

Theorem 5.2.2 (Levi-Civita Connection) Let (M , 〈., .〉) be a Riemannian manifold. Then there is a unique metric
torsion-free affine connection ∇. The connection ∇ is called the Levi-Civita connection of (M , 〈., .〉).

Proof. Uniqueness follows from the Koszul formula. For the existence we define ∇ by the right-hand side of
the Koszul formula. It is left to show that ∇ really defines a connection which is metric and torsion-free. We
leave this as an exercise.

Theorem 5.2.3 (Change of Levi-Civita from Change of Riemannian Metric) Let M be a smooth manifold
and let 〈., .〉 and 〈., .〉∼ be a two Riemannian metrics on M. Then there is a unique positive-definite self-adjoint
B ∈ ΓEnd(T M) such that 〈., .〉∼ = 〈B., .〉 and the corresponding Levi-Civita connections ∇ and ∇̃ are related as
follows:

2B(∇̃ − ∇) = (∇B) � I − grad∇B ,

where I denotes the identity, � the symmetric product and (grad)∇ the gradient with respect to the metric 〈., .〉, i.e.(
(∇B) � I

)
(X ,Y ) = (∇XB)Y + (∇Y B)X ,

〈
(grad∇B)(X ,Y ), Z

〉
:=

〈
(∇ZB)X ,Y

〉
, (X ,Y ,Y ∈ TpM) .

Proof. The claim follows by a straight-forward computation using the Koszul formula. We leave it as
exercise.

Definition 5.2.2 (Almost Hermitian Manifold) An almost complex manifold (M , J) together with a hermitian
Riemannian metric is called an almost hermitian manifold.

Remark 5.2.1 Almost hermitian manifold are sometimes also called unitary manifolds.

Definition 5.2.3 (Kähler Manifold) A Kähler manifold is an almost hermitian manifold whose Levi–Civita
connection is complex.

Theorem 5.2.4 An almost complex manifold is complex⇐⇒ there is a complex torsion-free affine connection.

Proof. Let (M , J) be complex, then using an atlas {(Uα, ϕα)}α∈A, we locally find complex torsion-free connec-
tions ∇α. These can then be glued together using a partition of unity. Conversely, given a complex torsion-free
connection, we have

NJ (X ,Y ) = [X ,Y ] − [JX , JY ] + J([JX ,Y ] + [X , JY ])

= ∇XY − ∇Y X − J∇JXY + J∇JY X + J(∇JXY − J∇Y (X) + J∇XY − ∇JY X)

= 0 .
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By Theorem 3.3.12, (M , J) is complex.

As a direct consequence of Theorem 5.2.4 we get the following.

Corollary 5.2.5 A Kähler manifold is complex.

Definition 5.2.4 (Kähler Form) Let (M, 〈., .〉) be an almost hermitian manifold. The associated Kähler form
ω ∈ Ω2M is given by

ω(X ,Y ) = 〈JX ,Y〉 .

Theorem 5.2.6 Let M be an almost hermitian manifold with associated Kähler form ω. If M is complex, then

dω(X ,Y , Z) = 〈(∇X J)Y , Z〉 + 〈(∇Y J)Z , X〉 + 〈(∇Z )X ,Y〉 ,

2〈(∇X J)Y , Z〉 = dω(X ,Y , Z) − dω(X , JY , JZ) .

In particular, M is Kähler if and only if dω = 0.

Proof. Since M is complex one can assume that X ,Y , JY , Z , JZ are commuting vector fields. The proof is
straight-forward and left as an exercise.

Remark 5.2.2 A symplectic manifold is a manifold together with a symplectic form, i.e. a closed non-
degenerate 2-form σ ∈ Ω2M . The previous theorem shows that every Kähler manifold is symplectic.

Theorem 5.2.7 Let V be a vector space of dimension 2n < ∞ and σ : V × V → R be a skew-symmetric non-
degenerate bilinear form. Then there is a basis with respect to which σ is represented by the diagonal block matrix

diag
((

0 −1
1 0

)
, . . . ,

(
0 −1
1 0

))
.

In particular, for ω = dx1 ∧ dy1 + · · · + dxm ∧ dym, we get

ω ∧ · · · ∧ω = m!dx1 ∧ dy1 ∧ · · · ∧ dxm ∧ dym , 0 .

Theorem 5.2.8 If M is a compact Kähler manifold with Kähler form ω, then ω is not exact.

Proof. Assume that ω = dα for some α ∈ Ω1M . Then m!dvolM = ω ∧ω ∧ · · · ∧ω = d(α ∧ω ∧ · · · ∧ω). Hence

0 <
∫
M

ω ∧ω · · · ∧ω =

∫
M

d(α ∧ω ∧ · · · ∧ω) = 0 ,

which is a contradiction.

Corollary 5.2.9 If M is a Kähler manifold, then H2M , {0}.

Example 5.2.1 The unit circle S1 ⊂ C acts isometrically on S2n+1 ⊂ Cn+1. Thus the complex projective space
CPn = S2n+1/S1 comes with an induced metric—its Fubini–Study metric—turning the canonical projection
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π : S2n+1 → CPn into Riemannian submersion, i.e. for each point p ∈ S2n+1 the restriction

dpπ : (ker dpπ)
⊥ → Tπ(p)CPn

is an isometry of vector spaces (see Appendix A.2). Moreover CPn is complex. The Kähler form of ω
of Cn+1 and the Kähler form ωFS of the Fubini–Study metric are related as follows: If ι : S2n+1 ↪→ Cn+1

denotes the inclusion, then
π∗ωFS = ι

∗ω.

In particular, π∗dω = 0. Hence the Fubini–Study metric turns CPn into a Kähler manifold.

Exercise 5.2.1 Let ωFS denote the Fubini-Study Kähler form of CPn. Show that the tautological complex
line bundle over CPn has curvature F∇ = −ωFS J.

Exercise 5.2.2 Show that a complex submanifold of a Kähler manifold is Kähler.

Theorem 5.2.10 (A Version of Kodaira Embedding Theorem) Every compact Kähler manifold admits a complex
(not necessarily isometric) embedding in some CPn.

Proof. The proof is way to difficult to do it in the scope of this lecture, so we will skip it. It may be seen in a
lecture about algebraic geometry, as the result is one of the highlights of that lecture.

The manifold M := (C2 \ {0})/{z 7→2z }� S3 × S1 is a complex manifold—called a Hopf manifold.

The Künneth formula (1923) states that if [α1], . . . , [αn] is a basis of H∗M = H0M ⊕ · · ·HmM and [α̃1], . . . , [α̃ñ]
is a basis of H•M̃ . Then βi j = αi ∧ α̃j form a basis of H•M ⊗ H•M̃ � H•(M × M̃).

Corollary 5.2.11 The Hopf manifold M � S3 × S1 is not Kähler and therefore cannot be realized in any CPn.

Proof. By the Künneth formula, H2(S3 × S1) = {0}.

5.2.2 Riemann Surfaces and Oriented Riemannian Surfaces

On the ordered bases of an n-dimensional vector space we have an equivalence relation the corresponding
coordinate change has a positive determinant:

For each n–dimensional real vector space V we have an equivalence relation on the set of ordered bases
BV := {(v1, . . . , vn) ∈ Vn | v1, . . . , vn basis} given as follows: Any two elements B1 = (v1, . . . , vn) and B2 =

(w1, . . . ,wn) of B are related by a linear coordinate change, i.e. there is a unique isomorphism AB1B2 ∈ EndV
such that AB1B2vi = wi for i = 1, . . . , n. Then we set

B1 ∼ B2 :⇐⇒ det(AB1B2 ) > 0 .

Definition 5.2.5 (Vector Space Orientation) An element in [B] ∈ BV/∼ is called an orientation of V .

Complex vector spaces come with a canonical orientation. To see this we need a bit complex linear algebra.
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Lemma 5.2.12 Let A ∈ Cn×n and AR ∈ R2n×2n denote the corresponding real matrix. Then det AR = | detC A|2.

Proof. Write A = B + iC with B, C ∈ Rn. Then, with respect to the basis e1, . . . , en, ie1, . . . , ien, the matrix AR is
of the form

AR =

(
B −C
C B

)
.

No apply elementary operations:

|detC A|2 = detC ĀtdetC A = detC

(
B − iC 0

C B + iC

)
= detC

(
B −C + iB
C B + iC

)
= detC

(
B −C
C B

)
= detR AR .

Corollary 5.2.13 Let V be a complex vector spaces and A ∈ End+V . Then det A ≥ 0.

Proof. Each A ∈ End+V is represented by a complex matrix.

Corollary 5.2.14 (Canonical Orientation of Complex Vector Spaces) If (v1, . . . , vn) and (w1, . . . ,wn) are
complex bases of a complex vector space V , then the corresponding real bases are of the same orientation:

(v1, Jv1, . . . , vn, Jvn) ∼ (w1, Jw1, . . . ,wn, Jwn) .

This orientation we call the canonical orientation of the complex vector space V .

Proof. The coordinate change A ∈ EndV is complex linear, i.e. A ∈ End+V . So det A > 0.

Equivalently an orientation is given by an equivalence class of determinants, i.e. non-vanishing n-forms,
where we consider two such determinants as equivalent if they differ by a positive scalar. This can be easily
carried over to manifolds.

Let M be a smooth manifold of dimension m. A nowhere-vanishing ω ∈ ΩmM is called a volume form. On the
define an equivalence relation on the space of volume forms as follows:

ω̃ ∼ ω :⇐⇒ ∃ f ∈ C∞M , f > 0 : ω̃ = fω .

Definition 5.2.6 (Manifold Orientation) A manifold is called orientable if it has a volume form. An equivalence
class of volume forms is called an orientation. An oriented manifold is a pair (M , [ω]) consisting of a manifold and
an orientation on it.

From what was said above the following statement is obvious.

Corollary 5.2.15 Every almost complex manifold has a canonical orientation.

For surfaces we have the following statement.

66



5.2 Kähler Manifolds

Theorem 5.2.16 Each oriented Riemannian surface (M, 〈., .〉) has a unique almost complex structure J such that
〈., .〉 is hermitian and the canonical orientation of (M , J) coincides with the given one.

Proof. Define J to be the rotation by π/2 in the positive sense.

Theorem 5.2.17 Every oriented Riemannian surface is Kähler.

Proof. Since J is skew-adjoint, so is ∇J. Since we are on a surface, the skew-adjoint endomorphisms are
spanned by J and so ∇J = λJ for some real valued function λ. Differentiating J2 = −1, we find

0 = (∇J)J + J(∇J) = (λJ)J + J(λJ) = −2λ .

Hence ∇J = 0.

Corollary 5.2.18 The Nijenhuis tensor of an oriented Riemannian surface vanishes.

So each oriented Riemannian surface is a Riemann surface. Conversely, given a Riemann surface. This
determines a Riemannian surface up to conformal equivlence.

Definition 5.2.7 (Conformal Equivalence) Two Riemannian metrics g and g̃ on a manifold M are called
conformally equivalent, if there is u ∈ C∞M such that

g̃ = e2ug .

An equivalence class of conformal metrics is called a conformal structure.

Theorem 5.2.19 On a Riemann surface (M , J) there is a unique conformal structure and orientation such that for
all 0 , X ∈ T M the vectors X , JX have the same length and form an orthogonal positively oriented basis.

Proof. If X , JX are positively oriented, then the orientation is the canonical orientation. If 〈., .〉 is such that
|X | = |JX |, then 〈., .〉 is hermitian—such metric always exists. The conformal structure is unique, since the
space of hermitian sesquilinear forms on a complex line is of real dimension 1.
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Integration 6
6.1 Integration on Manifolds

6.1.1 Oriented Charts

Let (M , [ω]) be an oriented manifold. Then, given a chart ϕ : U → Rm, the pullback ϕ∗detRm of the determi-
nant

detRm ∈ ΩmRm

yields a volume form on U.

Definition 6.1.1 (Oriented Charts) A chart (U, ϕ) of an oriented manifold (M , [ω]) is called positively oriented,
if the orientation given by ϕ∗detRm coincides with the orientation induced by ω, i.e. [ϕ∗detRm ] = [ω |U ]. If
[ϕ∗detRm ] , [ω |U ], the chart ϕ is called negatively oriented.

If a chart ϕ is negatively oriented, then we can change it to a positively oriented chart by postcomposing a
reflection, as e.g. (x1, x2, . . . , xm) 7→ (−x1, x2, . . . , xm).

Corollary 6.1.1 Every oriented manifold has an oriented atlas, i.e. an atlas consisting of positively oriented charts.

The Jacobian of the coordinate change of any two equally oriented charts ϕ and ϕ̃ has a positive determinant:
Let e1, . . . , em denote the standard basis of Rm. Then, with ϕ∗detRm = λω and ϕ̃∗detRm = λ̃ω, we get

detRm

(
Jac(ϕ̃ ◦ ϕ−1)

)
= detRm

(
dϕ̃(dϕ−1(e1)), . . . , dϕ̃(dϕ−1(em))

)
= (ϕ̃∗detRm )

(
dϕ−1(e1), . . . , dϕ−1(em)

)
= (λ̃ω)

(
dϕ−1(e1), . . . , dϕ−1(em)

)
= (λ̃/λ) ◦ ϕ−1detRm (e1, . . . , em) = (λ̃/λ) ◦ ϕ−1 > 0 .

Note, that we can speak of equally oriented charts independently of a given orientation.

Theorem 6.1.2 An atlas of pairwise equally oriented charts defines an orientation.

Proof. Given an atlas {(Uα, ϕα)}α, we obtain locally defined volume forms ϕ∗αdetRm ∈ ΩmUα which can be
extended using a subordinate partition of unity to smooth forms on ωα ∈ Ω

mM. The sum ω =
∑
α ωα then

defines a volume form on M and thus an orientation [ω]. One easily checks that the charts ϕα are positively
oriented with respect to [ω].

6.1.2 Integration of Differential Forms

Let E → M be a vector bundle. The support of a section ψ ∈ ΓE is the closure of the set of points in M which
are mapped by ψ to a non-zero vector,

suppψ = {p ∈ M | ψp , 0} .
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Definition 6.1.2 (Forms with Compact Support)

Ω
k
0 M := {ω ∈ ΩkM | suppω compact} .

We first define the integral of compactly supported forms on Rm: Let ω ∈ Ωm
0 Rm. Then ω = f detRm for some

compactly supported smooth function f ∈ C∞Rm and we define∫
Rm

ω :=
∫

Rm

f dµm ,

where µm denotes the Lebesgue measure on Rm.

Lemma 6.1.3 Let ω, ω̃ ∈ Ωm
0 Rm and ϕ : supp ω̃ → suppω be a diffeomorphism such that ω̃ = ϕ∗ω and

detRm (Jac(ϕ)) > 0, then ∫
Rm

ω =

∫
Rm

ω̃ .

Proof. Let ω = f detRm and ω̃ = f̃ detRm . Let e1, . . . , em denote the standard basis of Rm, then

(ϕ∗detRm )(e1, . . . , em) = detRm

(
dϕ(e1), . . . , dϕ(em)

)
= detRm (Jac(ϕ)) .

Since AltmRm is one dimensional, we conclude that

ϕ∗detRm = detRm

(
Jac(ϕ)

)
detRm .

Hence, with detRm (Jac(ϕ)) > 0, we get

f̃ detRm = ω̃ = ϕ∗ω = ( f ◦ ϕ) ϕ∗detRm = ( f ◦ ϕ)detRm

(
Jac(ϕ)

)
detRm = ( f ◦ ϕ)

��detRm

(
Jac(ϕ)

) �� detRm .

So that ∫
Rm

ω̃ =

∫
Rm

f̃ dµm =
∫

Rm

( f ◦ ϕ)
��detRm

(
Jac(ϕ)

) �� dµm =
∫

Rm

f dµm ,

by the usual transformation formula of the Lebesgue integral.

Now we can define the integral for compactly supported m-forms on an oriented manifold whose support is
contained in a chart region: Let (U, ϕ) be a positively oriented chart on M and ω ∈ Ωm

0 M such that suppω ⊂ U,
then ∫

M

ω =

∫
Rm

(ϕ−1)∗ω .

By the last lemma, this integral is well-defined—the Jacobian of the coordinate change between two positively
oriented charts has a positive determinant.

Definition 6.1.3 (Integral of Compactly Supported Forms on a Manifold) Let M be an oriented manifold and
ω ∈ Ωm

0 M , then we define ∫
M

ω :=
∑
α∈A

∫
M

ραω ,

where {(Uα, ϕα)}α∈A is an oriented atlas and {ρα}α∈A is a partition of unity subordinate to it.

Theorem 6.1.4 The definition of the integral is independent of the choices.

Proof. Without loss of generality we can assume that the atlas contains all possible charts, so the independence
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of the atlas is clear. Now, let {ρα}α∈A and { ρ̃α}α∈A be two partitions of unity subordinate to the atlas, then∑
α∈A

∫
M

ραω =
∑
α∈A

∫
M

(
∑
β∈A

ρ̃β)ραω =
∑
α,β∈A

∫
M

ρ̃βραω =
∑
β∈A

∫
M

(
∑
α∈A

ρα)ρ̃βω =
∑
β∈A

∫
M

ρ̃βω .

Thus the definition is independent of the choice of the partition of unity as well.

Let (M̃ , [ω̃]) and (M , [ω]) be oriented manifolds. A diffeomorphism f : M → M̃ is called orientation-preserving,
if [ f ∗ω̃] = [ω]. From Lemma 6.1.3 we immediately get a transformation formula for the integral of differential
forms. The proof is left as an exercise.

Theorem 6.1.5 (Transformation Formula for Forms) If η ∈ Ωm
0 M̃ and f : M → M̃ is an orientation preserving

diffeomorphism between m-dimensional manifold, then∫
M

f ∗η =
∫
M̃

η .

6.2 Stokes’ Theorem

Stokes’ Theorem can be regarded as the manifold version of the fundamental theorem of calculus—it relates
the integral of the exterior derivative dω of an (m − 1)-form on an m-dimensional manifold M to the integral
of ω over the boundary ∂M . But what do mean by boundary?

6.2.1 Manifolds with Boundary

A manifolds with boundary are manifolds modeled over euclidean half-space Hm,

Hm := {(x1, . . . , xm) ∈ Rm | x1 ≤ 0} .

Definition 6.2.1 (Manifold with Boundary) A smooth m-dimensional manifold with boundary is a 2nd-countable
Hausdorff space M which is locally homeomorphic to open sets in Hm together with a maximal smooth atlas
{ϕα : Uα → Vα ⊂̊Hm}α∈A.

Remark 6.2.1 Note that in this situation the coordinate changes are between open subsets of Hm. Here
smooth means in the sense of Milnor: A map f defined on an arbitrary subset A ⊂ Rm is called smooth if
it has a smooth extension to an open neighborhood of A.

The boundary ∂Hm of Hm is defined as follows:

∂Hm = {0} ×Rm−1 .

The boundary of M simply consists of all its points which are mapped to ∂Hm.

Definition 6.2.2 (Boundary) Let M be a manifold with boundary, then the boundary ∂M is defined by

∂M := {p ∈ M | ϕ(p) ∈ ∂Hm for some smooth chart ϕ} .
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Exercise 6.2.1 Check that ∂M is well-defined, i.e. if ϕ(p) ∈ ∂Hm for some smooth chart ϕ, then ϕ(p) ∈ ∂Hm

for all smooth charts ϕ.

Remark 6.2.2 If M is an m-dimensional manifold with boundary, then

(a) M̊ := M \ ∂M is an m-dimensional manifold,
(b) ∂M is an (m − 1)-dimensional submanifold of M

—both without boundary.

Definition 6.2.3 (Outward-Pointing Vectors) Let M be a manifold with boundary and X ∈ T M |∂M . Then X is
called outwoard-pointing, if there is a smooth chart ϕ = (x1, . . . , xm) such that dx1(X) > 0.

Remark 6.2.3 Again it should be checked that the definition does not depend on the chart.

Lemma 6.2.1 (Existence of Outward-Pointing Fields) Each manifold with boundary has an outward-pointing
field, i.e. a smooth vector field ν ∈ ΓT M such that for all p ∈ ∂M the vector νp is outward-pointing.

Proof. This is again a partition of unity argument. The boundary ∂M can be covered by smooth charts
{(Ui , ϕi)}i∈I and on each Ui we have a smooth vector field given by νi,p := dϕ−1

i (ϕi(p), e1). Then there
is a partition of unity {ρM̊ }

⋃
{ρi}i∈I subordinate to M̊

⋃
{Ui}i∈I . Then define ν =

∑
i∈I ρiνi . Clearly, ν is

smooth. That ν is outward-pointing follows since convex combinations of outward-pointing vectors are
outward-pointing.

Given a k-form η ∈ ΩkM. For a given vector field X ∈ Γ(T M) we define a (k − 1)-form Xy η ∈ Ωk−1M as
follows: For X1, . . . , Xk−1 ∈ TpM ,

Xy η (X1, . . . , Xk−1) := η(Xp , X1, . . . , Xk−1) .

Now, if (M , [ω]) is an oriented manifold with boundary, ι∂M : ∂M ↪→ M denotes the inclusion and ν ∈ Γ(T M)
is an outward-pointing field. Then ι∂M

∗(νyω) is a volume form.

Definition 6.2.4 (Induced Orientation) The orientation of the boundary of an oriented manifold with boundary
(M , [ω]) is defined to be [ι∂M ∗(νyω)], where ν is an outward-pointing field.

6.2.2 Stokes’ Theorem

So we are finally ready to state and proof Stokes’ theorem.

Theorem 6.2.2 (Stokes’ Theorem) Let M be an oriented manifold with boundary ∂M and ω ∈ Ωm−1
0 M . Then∫

M

dω =
∫
∂M

ω .

Proof. The integral is defined via a partition of unity. All summands are integrals over Hm. Without loss of
generality we can assume that M = Hm. The form ω is then of the form

ω =

m∑
i=1

(−1)i−1ωi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm .
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Thus ω |∂M = ω1 dx2 ∧ · · · ∧ dxm and∫
∂M

ω =

∫
{0}×Rm−1

ω1 dµm−1 =

∫
Rm−1

ω1(0, .) dµm−1 .

On the other hand we have

dω =
m∑
i=1

(−1)i−1dωi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm =
( m∑
i=1

∂ωi

∂xi

)
dx1 ∧ · · · ∧ dxm =

( m∑
i=1

∂ωi

∂xi

)
detRm

and, by Fubini’s theorem and the fundamental theorem of calculus,∫
M

dω =
m∑
i=1

∫
Hm

∂ωi

∂xi
dµm =

∫
Rm−1

∫ 0

−∞

∂ω1
∂x1

dµ1︸         ︷︷         ︸
=ω1(0,.) (comp. supp.)

dµm−1 +

m∑
i=2

∫
Rm−1

∫ ∞

−∞

∂ωi

∂xi
dµ1︸          ︷︷          ︸

=0 (comp. supp.)

dµm−1 =

∫
Rm−1

ω1(0, .) dµm−1 ,

i.e. both integrals are equal.

6.2.3 Integration of Functions on Riemannian Manifolds

So far we can only integrate top-dimensional forms on oriented manifolds. If the manifold is Riemannian,
we can also integrate functions. This is basically because each oriented Riemannian manifold comes with a
canonical volume form.

Theorem 6.2.3 (Riemannian Volume Form) Let M be an oriented m-dimensional Riemannian manifold. Then
there is a unique m-form dvolM such that

dvolM (X1, · · · , Xm) = 1 ,

on each positive oriented orthonormal basis X1, · · · , Xm ∈ TpM . The form dvolM is called the Riemannian volume
form.

With this volume form at hand we can integrate functions just turning them into an m-form.

Definition 6.2.5 (Integral of Functions) Let M be an oriented Riemannian manifold and f ∈ C∞M . Then∫
M

f =
∫
M

f dvolM
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Complex Line Bundles 7
A complex line bundle is a complex vector bundle, whose fibers are complex 1-dimensional vector spaces—
complex lines. The goal of this chapter is to classify complex line bundles over an oriented compact surface.
It turns out that each line bundle L comes with a degree deg L ∈ Z which is the only topological invariant: If
L → M and L̃ → M are complex line bundles, then

L � L̃ ⇐⇒ deg L = deg L̃

7.1 Complex Line Bundles over Surfaces

7.1.1 The Degree

Let L be a complex line bundle over a compact oriented surface M . We know already that there are complex
connections on L and any two of such differ by a 1-form taking values in End+L—which is spanned by the
parallel endomorphism fields I and J and thus is trivial as complex vector bundle as well as complex vector
bundle with connection. Explicitly,

CM 3 α + iβ ←→ αI + βJ ∈ End+L .

In particular, the curvature of a complex complex connection ∇ on L is commuting with J and can thus be
regarded as a complex valued 2-form

F∇ ∈ Ω2(M ; C) .

Now, if ∇̃ is another complex connection then ∇̃ = ∇ + η for some η ∈ Ω1(M; C) then the usual change of
curvature formula yields

F ∇̃ = F∇ + dη + η ∧ η︸︷︷︸
=0

= F∇ + dη .

Hence Stokes’ theorem yields ∫
M

F ∇̃ =
∫
M

F∇ + dη =
∫
M

F∇ .

Thus the integral of curvature is independent of the particular choice of the complex connection.

Definition 7.1.1 (Degree) The degree of a complex line bundle L over a compact oriented surface M is defined as

deg L := i
2π

∫
M

F∇ ,

where ∇ is some complex connection on L.

Later the Poincaré–Hopf index theorem will reveal that the degree is actually an integer. For now we show
that the degree is a real number.

Theorem 7.1.1 Let L → M be a unitary line bundle. Then

F∇ = −2πiω, ω ∈ Ω2M .
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Proof. F∇ is both complex linear and skew-adjoint. Thus its real part of F∇ must vanish.

Since we are free to choose a hermitian metric and a unitary connection, when we compute the degree, we
obtain the following corollary.

Corollary 7.1.2 The degree of a complex line bundle is real.

Recall, two complex line bundles L → M and L̃ → M are isomorphic if there exists an isomorphism of
complex vector bundles between them. This mean that there is a nowhere-vanishing section of End+(L, L̃). A
complex line bundle is trivial if it is isomorphic to the trivial complex line bundle CM .

Exercise 7.1.1 If L1 � L2 and L̃1 � L̃2, then L1 ⊗ L2 � L̃1 ⊗ L̃2.

Thus the complex tensor product ⊗ descends to the space Lof isomorphism classes of complex line bundles.
Hence (L, ⊗) is a abelian group—the inverse element of a bundle L is given by its dual bundle L−1 := L∗.
The neutral element is given by the trivial bundle 1 = CM .

Theorem 7.1.3 If (L,∇) and (L̃, ∇̃) are complex line bundles with complex connections and ∇̂ is the corresponding
tensor connection, then

F ∇̂ = F∇ + F ∇̃ .

Proof. This is a local computation. Without loss of generality let ψ ∈ ΓL and ψ̃ ∈ ΓL̃ be non-vanishing
sections. Then ψ ⊗ ψ̃ is a non-vanishing section and, since the tensor connection is defined such that the
tensor product is parallel, we get

F ∇̂(ψ ⊗ ψ̃) = (d ∇̂)2(ψ ⊗ ψ̃) = d ∇̂
(
(d ∇̂ψ) ⊗ ψ̃ + ψ ⊗ (d ∇̃ψ̃)

)
= ((d ∇̂)2ψ) ⊗ ψ̃ − d ∇̂ψ ∧⊗ d ∇̃ψ̃ + d ∇̂ψ ∧⊗ d ∇̃ψ̃ + ψ ⊗ ((d ∇̃)2ψ̃)

= (F∇ψ) ⊗ ψ̃ + ψ ⊗ (F ∇̃ψ̃) .

Since the tensor product is complex bilinear, we get F ∇̂ = F∇ + F ∇̃.

Corollary 7.1.4 F∇
∗

= −F∇.

Clearly, we have deg CM = 0.

Corollary 7.1.5 The map deg : L→ (R,+) is a group homomorphism.

We are going now to show that the degree is an integer which counts the zeros of a section counted with
multiplicity—if the zeros are isolated.

7.1.2 Transversality

Let f : Mm → Nn be a smooth map. A point p ∈ M is called a regular point of f , if the differential dp f has full
rank. A point which is not regular is called a critical point. Let Cf ⊂ M denote the set of critical points of f .

Sard’s lemma then states that the set of critical values f (Cf ) of a smooth function f : Mm → Nn has measure zero.
With some effort this can be used to show one of the main results in differential topology—that, generically,
a smooth map intersects a submanifold transversely.
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Definition 7.1.2 (Transverse Intersection) Let N be a smooth manifold, M ⊂ N be a submanifold and f : S → N
be a smooth map. We say that f intersects M transversely, if

dp f (TpS) +Tf (p)M = Tf (p)N for all p ∈ f −1M .

We say that two submanifolds intersect transversely, if the inclusion map of one intersects the other transversely.

Remark 7.1.1 (Transverse Sections) Since a section of a vector bundle is always an embedding we can
speak of transverse sections.

The transversality theorem then states that transversality is a generic property—any smooth map can be
perturbed by an arbitrary small amount to a transverse map.

Theorem 7.1.6 (Transversality Theorem) Let N and S be a smooth manifold and M ⊂ N be a submanifold. Then
the set of transverse maps f : S → N is dense in the C∞-topology.

The proof of this theorem is far beyond the scope of this course. Instead let us look at some consequences.

Corollary 7.1.7 Let N be a smooth manifold, M ⊂ N be a submanifold and f : S → N be a transverse map. Let
n = dim N , m = dim M and s = dim S. Then f −1M ⊂ S is a closed (s +m − n)-dimensional submanifold.

Proof. Without loss of generality, M = Rm × {0} ⊂ Rn = N . Let f2 = π2 ◦ f , where π2 : Rm ×Rn−m → Rn−m.
Then f −1M = f −1

2 {0}. Transversality yields that rankp f2 = n −m for all p ∈ f −1
2 {0}. Hence, by the submersion

theorem, f −1M = f −1
2 {0} is a submanifold of dimension s − (n −m) = s +m − n.

Let us look at what this means for the zero set of a generic section of a vector bundle.

Corollary 7.1.8 If ψ ∈ ΓE is a smooth section, then any section ϕ can be perturbed to a section transverse to the
zero section.

If E → M is a smooth rank r vector bundle, then the zeros of a section ψ ∈ ΓE are exactly the intersection
points of ψ and the zero section p 7→ 0 ∈ Ep . The image of the zero section is an m-dimensional submanifold,
where m is the dimension of M . The total space E has dimension m + r . Thus

Corollary 7.1.9 Let E be a smooth rank r vector bundle over an m-dimensional manifold M and let ψ ∈ ΓE be
transverse to the zero section, then the zero set Zψ ⊂ M of ψ is a smooth submanifold of dimension m − r .

Proof. The dimension of the total space is n = m + r, the dimension of the image of the zero section is m.
Hence the zero set of a generic section is a submanifold of dimension m +m − (m + r) = m − r .

Remark 7.1.2 In particular, a generic section of a complex line bundle over a compact surface has finitely
many isolated zeros.

7.1.3 Poincaré–Hopf Index Theorem

Let L be a complex line bundle over a compact oriented surface M . If ψ ∈ ΓL be a section with isolated zeros,
then each zero comes with a particular sign:

79
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Given a smooth function z : M → C and a point p ∈ M, one can count how often z winds around zero
when one runs around p by integration of 1

2πi d log z = 1
2πi

dz
z over the boundary of a small enough disk D

containing p. Here small enough just means that z has no zeros in D \ {p}.

A similar formula allows us to define the index of a direction field.

Definition 7.1.3 (Direction Field) A direction field of L is a smooth section ψ of L defined away from a discrete
set S such that ψp , 0 for all p ∈ M \ S. We call S the set of isolated singularities of ψ.

Definition 7.1.4 (Index) Let ψ be a direction field of L with isolated singularities S. The index of ψ at p ∈ M is
defined as follows:

indpψ := 1
2πi

∫
∂D

d log z ,

where D 3 p is a disk such that D ∩ S = {p} and ψ = zϕ for some ϕ ∈ ΓL which has no zeros in D.

Remark 7.1.3 The definition is independent of both the choice of ϕ and the choice of D.

Remark 7.1.4 Clearly, indpψ = 0 for p ∈ M \ S.

Remark 7.1.5 If ψ is transverse to the zero section, then its zeros are isolated, the function z has only
simple zeros and the index of ψ at p ∈ M agrees with the sign of the determinant of dpz. In particular, ψ is
a direction field with isolated singularities.

Now, we are ready to formulate the Poincaré–Hopf index theorem. For a smooth section with isolated zeros
it basically states that the number of zeros of section, when counted with multiplicity, is prescribed by the
degree of the complex line bundle.

Theorem 7.1.10 (Poincaré–Hopf Index Theorem) Let ∇ be a complex connection on L and ψ ∈ ΓL be a direction
field. Then

i
∫
M

F∇ = 2π
∑
p∈M

indpψ .

Remark 7.1.6 Since the singularities of ψ are isolated and M is compact, there are only finitely many
singularities and the sum on the right-hand side is a sum over finitely many points.

Corollary 7.1.11 The degree of a complex line bundle is an integer.

Remark 7.1.7 Note that the right-hand side—and thus the degree of the bundle—does not depend on J
or ∇ but only depends only on the oriented rank 2 bundle. As such it is purely topological. A change of
orientation results in a change of sign.

The Poincaré–Hopf index theorem will follow as a corollary from Theorem 7.1.13, which is based on the
following observation.

Lemma 7.1.12 Let ∇ be a complex connection on L, ψ ∈ ΓL nowhere-vanishing and ∇ψ = ηψ, then

F∇ = dη .

The form η will be called the logarithmic derivative of ψ.

Proof. If ∇ψ = ηψ, then F∇ψ = d∇∇ψ = d∇(ηψ) = (dη)ψ − η ∧ ∇ψ = (dη)ψ − η ∧ η︸︷︷︸
=0

ψ = (dη)ψ.
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Theorem 7.1.13 Let (L,∇) be a complex line bundle with connection over a compact oriented surface M with
boundary, let ψ be a direction field of L with isolated singularities S ⊂ M̊ and let η denote the logarithmic derivative
of ψ. Then ∫

∂M
η =

∫
M

F∇ + 2πi
∑
p∈M

indpψ .

Proof. Since M is compact, ψ has only finitely many zeros, say p1, . . . , pn. Choose disks Di ⊂ M and sections
ϕi such that pi ∈ Di and pj < Dj for j , i, and such that the restrictions ϕi |Di have no zeros. Furthermore,
define M0 := M \ (

⋃n
i=1 Ůi). Then, with ∇ψ = ηψ and ∇ϕi = ηiϕi ,∫

M

F∇ =
∫
M0

F∇ +
n∑
i=1

∫
Ui

F∇ =
∫
M0

dη +
n∑
i=1

∫
Ui

dηi =
∫
∂M0

η +

n∑
i=1

∫
∂Ui

ηi =

∫
∂M

η +

n∑
i=1

∫
∂Ui

ηi − η .

since ∂M0 = ∂M −
∑n

i=1 ∂Ui—the boundary of M0 contains the boundary of
⋃n

i=1 Ui but with opposite induced
orientation. Now, on Ui we can write ψ = ziϕi . Thus

ηψ = ∇ψ = ∇(ziϕi) = (dzi)ϕi + zi∇ϕi = (d log zi)ziϕ + ziηiϕ = (d log zi + ηi)ψ

Hence ηi − η = −d log zi . Thus∫
∂M

η =

∫
M

F∇ −
n∑
i=1

∫
∂Ui

ηi − η =

∫
M

F∇ +
n∑
i=1

∫
∂Ui

d log zi =
∫
M

F∇ + 2π
n∑
i=1

indpiψ .

as was claimed.

7.1.4 Euler Characteristic

A nice application of the Poincaré–Hopf index theorem is the Theorem of Gauss–Bonnet which relates the
Euler characteristic χ(M) := deg(T M) of a compact Riemannian surface M to its Gaussian curvature K given
by

R∇ = −iKdvolM .

Here R∇ denotes the Riemannian curvature i.e. the curvature of the Levi-Civita connection and dvolM the
Riemannian volume form.

Theorem 7.1.14 (Gauss–Bonnet Theorem) Let M be a compact oriented Riemannian surface, then∫
M

K dvolM = 2πχ(M)

Remark 7.1.8 From this we can easily deduce the Hairy Ball Theorem: Every smooth vector field on a
sphere must have a zero.

Another consequence of the transversality theorem is that every manifold has a height function, i.e. a function
h ∈ C∞M such that dh vanishes only at isolated points.

One way manufacture a height function for an immersed surface f : M → R3 with Gauss map N is the
following: Choose some regular value of a ∈ S2 of N and define

h = 〈a, f 〉 .
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Consider the corresponding gradient field grad h ∈ Γ(T M), i.e. 〈grad h, .〉 = dh. The critical points split into
minima and maxima, where ind(grad h) = 1, and saddles, where ind(grad h) = −1.

Corollary 7.1.15 The Euler characteristic can be expressed by

χ(M) = #maxima − #saddles + #minima .

It is more common to define the Euler characteristic in terms of a cell decomposition or a triangulation.

A k-cell is a subset C ⊂ M which is diffeomorhic to a convex polytope in P ⊂ Rk . Set dim C := k. If P is a
simplex, i.e. the convex hull of k + 1 points in general position, the we call C a k-simplex.

Definition 7.1.5 (Cell Decomposition) A cell decomposition of a compact smooth manifold M is a finite collection
of cells D = {Cα}α∈A such that M =

⋃
α∈A Cα and for all α, β ∈ A there exists γ ∈ A such that Cα

⋂
Cβ = Cγ. A

simplicial decomposition is a cell decomposition which consists of simplices. A simplicial decomposition of a surface
is also called a triangulation.

A triangulation consists of cells of dimension k = 0, 1, 2. In this context we call the 0-cells vertices, the 1-cells
edges and the 2-cells triangles. Given a triangulation D of a compact oriented surface, one can construct a
vector field X ∈ Γ(T M)with 

a source at each face center,

a sink at each vertex,

a saddle at each edge center.

This then yields
χ(M) = #vertices − #edges + # f aces .

7.2 Classification of Complex Line Bundles

7.2.1 Complex Line Bundles over Surfaces

We have seen that deg : L→ Z is a group homomorphism. We will see now that it is actually an isomorphism.
Thus the complex line bundles over a surface are classified by their degree.

To show surjectivity of deg we need to come up with a line bundle L for an arbitrarily given degree d ∈ Z.

Given an integer d ∈ Z and a point p on a Riemann surface M we can define a complex line bundle sky(p, d)
over M as follows: Let (U, z) be a complex chart at p such that z(p) = 0. Then U0 = U and U1 = M \ {p} and is
an open cover of M . On U0

⋂
U1 = U \ {p} we define g01 : U0

⋂
U1 → C× � GL(1, C) by

g01(q) = (z(q))d .

This defines a cocycle and thus a complex line bundle sky(p, d) over M (compare Example 3.1.3).

Definition 7.2.1 (Skyscraper Bundle) The bundle sky(p, d) is called the skyscraper bundle of degree d at p.

More concretely, sky(p, d) is the quotient of the disjoint union (U0 ×C)
⊔
(U1 ×C) with respect to the equiva-

lence relation ∼ determined by

(0, q1, v) ∼ (1, q2,w) ⇐⇒ q1 = q2 and v = g01(q2)w = (z(q2))
dv .

In other words we glued the trivial bundles CU0
and CU1

over U \ {p} by g01.
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7.2 Classification of Complex Line Bundles

In particular, we have an inclusion CU1
↪→ sky(p, d). Under this inclusion each non-zero constant sections of

CU1
is mapped to a nowhere-vanishing smooth section of sky(p, d) defined away from p:

ξq :=

{
[(0, q, (z(q))d)] for q ∈ U0 ,

[(1, q, 1)] for q ∈ U1 .

The section ξ ∈ Γsky(p, d) is called the famous section. In particular, ξq , 0 for q , p. By construction, for small
enough ε > 0,

indpξ =
1

2πi

∫
|z |=ε

d log(zd) = d .

The Poincaré–Hopf index theorem applied to the famous section then yields the following.

Corollary 7.2.1 deg sky(p, d) = d.

In particular, since every oriented surface has a complex structure, we constructed for every degree d a
complex line bundle of that degree.

Corollary 7.2.2 deg : L 7→ Z is surjective.

It is left to show injectivity. Since deg is a homomorphism, it is enough to show that every line bundle of
degree zero is trivial or, equivalently, there is a nowhere vanishing section. This needs some preparation.

Lemma 7.2.3 Let M be a connected m-dimensioanal manifold, U ⊂̊M and p ∈ M . Then there is a diffeomorphism
f : M → M such that f (U) ⊂ U and f (p) ∈ U.

Proof. Since M is connected, there is a smooth γ : [0, 1] → M with γ(0) = p and γ(1) =: q ∈ U. By the
transversality theorem, we can assume that γ is embedded—if not, γ can be slightly perturbed to have
transverse self-intersections. These can be resolved to get a collection of embedded curves. If we delete
the loops we obtain an embedded curve from p to q. By the "tubular neighborhood theorem", we then get a
diffeomorphism g : [−ε, 1 + ε] × Dm−1 → V ⊂ M such that g(0, 0) = p and g(1, 0) = q.

Furthermore we can construct a diffeomorphism f̃ : [−ε, 1+ ε] ×Dm−1 → [−ε, 1+ ε] ×Dm−1 such that f̃ (x) = x
on some neighborhood of the boundary of [−ε, 1 + ε] × Dm−1, but f̃ (0, 0) = (1, 0). Then g ◦ f̃ ◦ g−1 defined on
V extends by the identity to a smooth map defined on M and does the trick.

Proposition 7.2.4 If M is a connected smooth m-dimensional manifold and p1, . . . , pn ∈ M , then there is a U ⊂ M
diffeomorphic to Dm such that p1, . . . , pn ∈ U.

Proof. We will proof this by induction on n ∈ N. For n = 1 the statement is clear. By the induction hypothesis
p1, . . . , pm−1 are already contained in some Ũ. Use the above Lemma to find a diffeomorphism f : M → M
with f (Ũ) ⊂ Ũ and f (pn) ∈ Ũ. If we define U := f −1Ũ, then p1, . . . , pn ∈ U.

Proposition 7.2.5 deg : L→ Z is injective.

Proof. Let L be a complex line bundle of degree zero over an m-dimensional manifold. We need to show that
there is a nowhere-vanishing section. By the transversality theorem we can choose a section ψ ∈ ΓL with
isolated zeros p1, . . . , pn. Then, by the Poincaré–Hopf index theorem, we have

n∑
i=1

indpiψ = deg L = 0 .
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By the proposition above, there is a U diffeomorphic to Dm such that p1, . . . , pn ∈ U. In particular this can
also be done such that this is true for some U1 ⊂ U. Since L |U is trivial, there is a nowhere-vanishing section
ϕ ∈ Γ(L |U ). In particular, ψ |U = gϕ for some g ∈ C∞(U, C). Since all zeros are contained in U1 ⊂ U with
winding numbers summing up to zero, we get∫

γ
d log g = 0

for all closed curves γ in U \U1. So there exists α ∈ C∞(U \U1; C) such that g = eα.

Now choose some ρ ∈ C∞M such that ρ|U1 = 0 and ρ|M\U = 1, and define a smooth section ψ̃ ∈ ΓL as follows:

ψ̃ =

{
e ραϕ on U

ψ on M \U

By construction, ψ̃ has no zeros.

The previous results can be compactly summarized by the following theorem.

Theorem 7.2.6 The map deg : L→ Z is an isomorphism of abelian groups.

7.2.2 Complex Line Bundles with Connection

Now, let us look at the isomorphism classes of complex bundles with connection. Since any two isomorphic
bundles with connection are in particular isomorphic as complex bundles, they must have the same degree.
So we are free to just look at different connections ∇ and ∇̃ on a single complex line bundle L → M . Thus

∇̃ = ∇ − 2πi η , η ∈ Ω1(M ; C) .

In this situation an isomorphism from (L,∇) to (L, ∇̃) just becomes a function g : M → C× such that

∇̃(gψ) = g∇ψ , for all ψ ∈ ΓL .

Hence
g∇ψ = ∇̃(gψ) = ∇(gψ) − 2πi η(gψ) = g(∇ψ + d log g ψ − 2πi η ψ) ⇐⇒ d log g = 2πi η .

In particular, η is an integral 1-form, i.e.∫
γ
η ∈ Z , for all closed curves γ : S1 → M .

Conversely, any such 1-form defines a C×-valued function. Therefore we choose a point o ∈ M and define
the function g : M → C× as follows:

g(p) = exp
(
2πi

∫ p

o

η
)

.

Here the integral is taken along some path from o to p. Clearly, dg = 2π iηg. By the computations above we
see then that g defines an isomorphism from (L,∇) to (L, ∇̃).

We still have to show that g is well-defined. To see this note that paths can be reversed and concatenated.

Let γ : [0, 1] → M be a path, then the reversed path γ−1 : [0, 1] → M is given by

γ−1(t) := γ(1 − t) .
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Clearly, we have ∫
γ−1

ξ = −

∫
γ
ξ , for all ξ ∈ Ω1(M , C) .

Moreover, given two paths γ : [0, 1] → M and γ̃ : [0, 1] → M such that γ(1) = γ̃(0), we can build their
concatenation γ̃ ∗ γ : [0, 1] → M as follows:

(γ̃ ∗ γ)(t) :=

{
γ(2t) for t ∈ [0, 1

2 ] ,

γ̃(2t − 1) for t ∈ [ 12 , 1] .

Clearly, ∫
γ̃∗γ

ξ =

∫
γ̃
ξ +

∫
γ
ξ , for all ξ ∈ Ω1(M , C) .

In general the concatenation is only piecewise smooth. We are talking here about curves up to reparametriza-
tion, i.e. one is free to precompose the curve by diffeomorphisms. If one is worried about that one can
precompose γ by a smooth map r : [a, b] → [a, b] such that γ(r(x)) = γ(b) for all x ∈ (b− ε, b]. Similarly, we
can reparametrize γ̃ such that γ̃(x) is constant for x close to c.

Now, if γ and γ̃ are two paths from o to p, then γ̃ ∗ γ−1 is a closed path in M . Thus∫
γ̃
η −

∫
γ
η =

∫
γ̃∗γ−1

η ∈ Z .

Hence
exp

(
2πi

∫
γ̃
η
)
= exp

(
2πi

∫
γ
η
)

,

i.e. g is well-defined. Thus we have shown the following theorem.

Theorem 7.2.7 Two complex line bundles with connection (L,∇) and (L, ∇̃) are isomorphic if and only if

∇̃ = ∇ − 2πi η for some integral η ∈ Z1(M ; C) .

In particular, isomorphic line bundles have the same curvature, which can be translated to a statement about
parallel transport along boundaries by the following Gauss-Bonnet type theorem.

Theorem 7.2.8 Let (L,∇) be a complex line bundle with connection. Then, if γ : [0, 1] → M parametrizes the
boundary of a region U ⊂ M , γ(0) = p = γ(1) and P∇γ : Lp → Lp denotes the parallel transport along γ, then

P∇γ = exp
(
−

∫
U

F∇
)

.

Proof. Without loss of generality we can assume that U = M and γ parametrizes its boundary. Let ϕ ∈ Γγ∗E
be a non-vanishing parallel field, so

P∇γ ϕ0 = ϕ1 .

Now, let ψ ∈ ΓE be a transverse section. We can assume that ψ has no zeros on the boundary. Then, on ∂M ,
we can write γ∗ψ = gϕ for some function g : [0, 1] → C and get

g(0)ϕ0 = ψγ(0) = ψγ(1) = g(1)ϕ1 = g(1)P∇γ ϕ0 .

Hence we have P∇γ = g(0)/g(1). On the other hand, if we look at the logarithmic derivative η of ψ, we get

γ∗η γ∗ψ = γ∗(ηψ) = γ∗(∇ψ) = γ∗∇γ∗ψ = γ∗(∇(gϕ)) = dg ϕ = (d log g) gϕ = (d log g) γ∗ψ .
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Hence we have
γ∗η = d log g

and thus, by Theorem 7.1.13,∫ 1

0
d log g =

∫ 1

0
γ∗η =

∫
∂M

η =

∫
M

F∇ + 2πi
∑
p∈M

indpψ ≡

∫
M

F∇ mod 2πZ .

Hence P∇γ = g(0)/g(1) = exp
(
−

∫
U

F∇
)
.

Note that the parallel transport along a closed path is given by a non-zero complex number, which is
independent of where we started on the path.

Lemma 7.2.9 Let (L,∇) and (L̃, ∇̃) be a complex vector bundles with connection and γ be a closed path, then

P∇
⊗

γ = P∇γ P ∇̃γ .

Proof. This easily follows from the fact that the tensor product of two parallel sections is parallel.

Corollary 7.2.10 Let (L,∇) be a complex vector bundle with connection and γ be a closed path, then

P∇
∗

γ = (P
∇
γ )
−1 .

From this we can easily deduce the following theorem.

Theorem 7.2.11 Let (L,∇) and (L̃, ∇̃) be complex line bundles with connection over a compact oriented surface.
Then

(L,∇) � (L̃, ∇̃) ⇐⇒ P∇γ = P ∇̃γ for all γ : S1 → M .

Proof. Clearly, if two complex line bundles are isomorphic, then the parallel transports coincide. Conversely,
let (L,∇) and (L̃, ∇̃) be two complex line bundles with connection. Then Hom+(L; L̃) has an induced complex
connection ∇̂. We want to show that Hom+(L; L̃) has a global parallel section. Since Hom+(L; L̃) = L̃ ⊗ L∗.
The parallel transport along any closed path γ is trivial,

P ∇̂γ = P ∇̃γ P∇
∗

γ = P ∇̃γ (P
∇
γ )
−1 = P∇γ (P

∇
γ )
−1 = 1 .

Moreover, clearly P ∇̂
γ−1 = (P

∇̂
γ )
−1. Hence the parallel transport from a point o ∈ M to another point p ∈ M is

independent of the path we take. Hence we can fix some non-zero complex linear map φo : Lo → L̃o and
define as φp = P∇

⊗

γ φo for some path from 0 to p. So we constructed a global non-zero parallel section φ.

So, if we put this together, a complex line bundle with connection (L,∇) is—up to isomorphism—determined
by its parallel transport along loops γ. If the loop is the boundary of a domain then the parallel transport is
determined by the curvature of the bundle. By theorem 7.2.7 we see that this freedom is controlled by some
ω ∈ Z1(M ; C).

Actually each ω ∈ Ω2M with
∫
M
ω ∈ 2πZ can be realized as curvature of a hermintian line bundle.

Theorem 7.2.12 For each ω ∈ Ω2(M ; R) with
∫
M
ω ∈ Z there is a hermitian line bundle L with connection ∇ such

that F∇ = −2πiω. Moreover, all hermitian line bundles of curvature −2πiω can be parametrized over Z1M/Z1
int M ,

where Z1
int M denotes the set of real-valued integral 1-forms.
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Proof. Let ω ∈ Ω2M such that d :=
∫
M
ω ∈ Z. Then there is a hermitian line bundle of degree d. Moreover,

there exists a unitary connection ∇̃. Any other unitary connection ∇ is of the form ∇ = ∇̃ + iα for α ∈ Ω1M.
Its curvature is then given by

F∇ = F ∇̃ + idα − α ∧ α︸︷︷︸
=0

= F ∇̃ + i dα .

So if we can solve dα = iF ∇̃ − 2πω we are done. As we will see (Theorem 8.2.15) this equation has a solution
whenever

∫
M

F ∇̃ − 2πω = 0, which is true by construction. Moreover, once we have a unitary connection
∇ such that F∇ = −2πiω. Then ∇ + 2πiβ with β closed is also a solution and, by the above considerations
adding an integral β leads to isomorphic bundle, so the space of isomorphism classes can be parametrized
by the quotient Z1M/Z1

int M .

The previous theorem is—almost verbatim—true for hermitian line bundles over an arbitrary compact
manifold M . It is the starting point for geometric quantization.

In contrast the obstruction here is not a single integer but an integer for any closed oriented surfaces inside
M , i.e. ω ∈ Ω2M must be integral,∫

S

ω ∈ Z , for all closed surfaces S ⊂ M .

Theorem 7.2.13 (Weil’s Theorem) For every integral ω ∈ Ω2M there is a hermitian line bundle L with connection
∇ such that F∇ = −2πiω and all hermitian line bundles of curvature −2πiω can be parametrized over Z1M/Z1

int M .

Remark 7.2.1 The curvature F∇ of a complex line bundle L is closed and thus determines an element of
the second de Rahm cohomology: i

2π F∇ ∈ H2M is called the first Chern class of L.
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∂̄-Operators and Elliptic Problems 8
A ∂̄-operator is a certain first-order elliptic differential operator on a complex vector bundle over an almost
complex manifold. Any holomorphic vector bundle comes with a ∂̄-operator. In this chapter we describe
the relation between holomorphic vector bundles and complex vector bundles over complex manifolds
equipped with ∂̄-operator. It turns out that an almost complex surface is always a complex curve and that
any ∂̄-operator on a complex vector bundle over an almost complex surface always uniquely turns it into a
holomorphic vector bundle.

8.1 ∂̄-Operators

8.1.1 The Canonical Bundle

Let E → M be a complex vector bundle over an almost complex 2m-dimensional manifold (M, J). The
complex-valued linear forms on M split into complex linear and complex antilinear forms Hom+(T M, E)
and Hom−(T M ; E). Similarly, the differential forms split into forms with a certain bidegree.

Definition 8.1.1 (Bigraded Alternating Forms) For p, q ∈ N, we set

Altp,q
(T M ; E) :=

{
η ∈ Altp+q(M ; E) | η(zX1, . . . , zXp+q) = zp z̄qη(X1, . . . , Xp+q), ∀z ∈ C

}
.

The space of differential form of bidegree (p, q) is given by

Ω
p,q(M ; E) := ΓAltp,q

(M ; E) , Ω
p,qM = Ωp,q(M ; C) .

Definition 8.1.2 (Canonical Bundle K , Anticanonical Bundle K̄)

K := Altm,0
(T M ; C) , K̄ := Alt0,m

(T M ; C) .

Moreover, we set KE := Altm,0
(T M , E) and K̄E := Alt0,m

(T M , E).

Theorem 8.1.1 (Type Argument) Let E and Ẽ be complex vector bundles over an almost complex manifold M and
• ∈ ΓMult(E , Ẽ ; C) be complex bilinear. Let

ω ∈ Γ(KE), ω̃ ∈ Γ(KẼ), η ∈ Γ(K̄E), η̃ ∈ Γ(K̄ Ẽ) .

Then
ω ∧• ω̃ = 0, η ∧• η̃ = 0 .

Furthermore, if • is non-degenerate, then

ω ∧• η̃ = 0 ⇐⇒ ω = 0 or η̃ = 0 .

Proof. Let ω1, . . . ,ωm be a basis of Hom+(TpM ; C). Then there are for some ψ ∈ Ep and ψ̃ ∈ Ẽp such that

ωp = ω1 ∧ · · · ∧ωm ψ , ω̃p = ω1 ∧ · · · ∧ωm ψ̃ .
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So we get

(ω ∧• ω̃)p = (ω1 ∧ · · · ∧ωm ψ) ∧ •(ω1 ∧ · · · ∧ωm ψ̃) = (ω1 ∧ω1︸   ︷︷   ︸
=0

) ∧ · · · ∧ (ωm ∧ωm︸     ︷︷     ︸
=0

) (ψ • ψ̃) = 0 .

Similarly, we can write η and η̃ with respect to ω̄1 . . . , ω̄m. The same calculation show that η ∧ η̃ = 0.

If X1, . . . , Xm denotes the dual basis of ω1, . . . , Xm, then ωi ∧ ω̄i(Xj , JXj) = 0 and

ωi ∧ ω̄i(Xi , JXi) = ωi(Xi)ω̄i(JXi) −ωi(JXi)ω̄i(Xi) = −iωi(Xi)ω̄i(Xi) − iωi(Xi)ω̄i(Xi) = −2i

Hence, if
η̃p = ω̄1 ∧ · · · ∧ ω̄m ϕ̃ .

for ϕ̃ ∈ Ep , then ω ∧• η̃ = ±ω1 ∧ ω̄1 ∧ · · · ∧ωm ∧ ω̄m (ψ • ϕ̃) and so

(ω ∧• η̃)p(X1, JX1, . . . , Xm, JXm) = ±(−2i)mψ • ϕ̃ .

This yields the additional claim.

Remark 8.1.1 In general, one has Altm(T M ; C) =
⊕

p+q=m Altp,q
(T M ; C).

8.1.2 ∂̄-Operators

Let M be an almost complex manifold. The trivial connection d on ΓCM = C∞(M; C) splits into a complex
linear and complex antilinear part: For f ∈ C∞(M ; C),

df = d ′f + d ′′f , d ′f = (df )′ ∈ Ω1,0M , d ′′f = (df )′′ ∈ Ω0,1M .

More concretely,
d ′f = 1

2 (df − idf ◦ J) , d ′′f = 1
2 (df + idf ◦ J) .

Clearly,
f : M → C holomorphic ⇐⇒ df ∈ Ω1,0M ⇐⇒ d ′′f = 0 ⇐⇒ f ∈ ker d ′′ .

Definition 8.1.3 (∂̄-Operator) Let E be a complex vector bundle over an almost complex manifold M . A ∂̄-operator
is a linear operator ∂̄ : ΓE → Ω0,1(M ; E) such that, for all ψ ∈ ΓE and f ∈ C∞(M ; C),

∂̄( fψ) = (d ′′f )ψ + f ∂̄ψ .

Remark 8.1.2 The operator d ′′ is a ∂̄-operator and referred to as the canonical ∂̄-operator of the trivial bundle.

Remark 8.1.3 Clearly, as for connections, the product rule assures that the operator is local in the sense
that, if X ∈ TpM and ψ, ψ̃ ∈ ΓE are such that ψ |U = ψ̃ |U for some neighborhood U of p, then ∂̄Xψ = ∂̄X ψ̃.

Definition 8.1.4 (Holomorphic Section) Let E be a complex vector bundle over an almost complex manifold M
with ∂̄-operator. A section ψ ∈ ΓE is called holomorphic, if ∂̄ψ = 0. The space of holomorphic sections is denoted by

H0E = ker ∂̄ .

Moreover, we define h0E := dimC H0E .
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8.1 ∂̄-Operators

Theorem 8.1.2 Let ∂̄ and ˜̄∂ be ∂̄-operators on a complex vector bundle E over an almost complex manifold M . Then

˜̄∂ = ∂̄ + ξ, ξ ∈ Ω0,1(M ; End+E) .

Proof. Let ξ := ˜̄∂ − ∂̄ and let f ∈ C∞(M; C), X ∈ ΓM and ψ ∈ ΓE . Then clearly, ξf X = f̄ωX . Moreover, by the
product rule, we get

ξ( fψ) = ˜̄∂( fψ) − ∂̄( fψ) = (∂̄ f )ψ + f ˜̄∂ψ − (∂̄ f )ψ − f ∂̄ψ = f ˜̄∂ψ − f ∂̄ψ = f ξψ .

Hence ξ is tensorial—complex antilinear in X and complex linear in ψ—i.e. ξ ∈ Ω0,1(M ; End+E).

Example 8.1.1 (∂̄-Operator from Complex Connection) Let (E , J) be a complex vector bundle over an
almost complex manifold M . If ∇ is a complex connection, then

∇ = ∇′ + ∇′′,

where
∇′ : ΓE → Ω

1,0(M ; E) , ∇′′ : ΓE → Ω
0,1(M ; E) .

Both, ∇′ and ∇′′ are given by the usual splitting T M∗ ⊗ E = Hom+(T M ; C) ⊕Hom−(M ; C) ⊗ E . Concretely,

∇′ = 1
2 (∇ + J ∗ ∇) , ∇′′ = 1

2 (∇ − J ∗ ∇) .

Clearly, ∇′′ is a ∂̄-operator. In particular, since every complex vector bundle has a complex connection,
there always exists a ∂̄-operator.

Theorem 8.1.3 Let E → M be a complex vector bundle over an almost complex manifold. Given a ∂̄-operator ∂̄ on
E , then there is a complex connection ∇ on E such that ∇′′ = ∂̄.

Proof. Any choice of a complex connection ∇̃ defines a ∂̄-operator ˜̄∂. Then ∂̄ = ˜̄∂ + ξ with ξ ∈ Ω0,1(M ; End+E)
and ∇ = ∇̃ + ξ is a complex connection with ∇′′ = ∂̄.

Theorem 8.1.4 Let ∇ be a complex torsion-free connection on an almost complex manifold M , X ,Y ∈ Γ(T M). Then

∇′′XY = 1
2
(
[X ,Y ] + J[JX ,Y ]

)
.

Proof. ∇′′XY = 1
2
(
∇XY + J∇JXY

)
= 1

2
(
∇Y X + [X ,Y ] + J∇Y JX︸  ︷︷  ︸

=−∇YX

+J[JX ,Y ])
)
= 1

2
(
[X ,Y ] + J[JX ,Y ]

)
.

Example 8.1.2 (Canonical ∂̄-Operator on the Canonical Bundle of an Almost Complex Surface) On an
almost complex surface M , we can identify K̄K and Alt2

(T M ; C) as follows:

K̄K 3 β←→ 2Alt2(β) ∈ Alt2
(T M ; C) .

Moreover, ΓK ⊂ Ω1(M ; C) and Ω0,1(M ; K) = Γ(K̄K). The exterior derivative hence restricts to a map

∂̄ : ΓK → Ω
2(M ; C) = Ω0,1(M ; K), ∂̄ω = dω .
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8 ∂̄-Operators and Elliptic Problems

Actually, ∂̄ is a ∂̄-operator on K . To see this let ω ∈ ΓK and f ∈ C∞(M ; C). Then

∂̄( fω) = d( fω) = df ∧ω + f dω = (∂̄ f ) ∧ω + f dω = (∂̄ f )ω + f ∂̄ω .

Here the third equality uses the type argument—Theorem 8.1.1.

Remark 8.1.4 In case M is a complex curve, K is a holomorphic line bundle. A complex coordinate z yields
a holomorphic frame dz. Then ω = gdz for some C-valued function g and

∂̄ω = d(g dz) = dg ∧ dz = (gz dz + gz̄ dz̄) ∧ dz = gz̄ dz̄ ∧ dz ,

where gz̄ is the usual Wirtinger derivative. Hence ω holomorphic if and only if f holomorphic, Thus the
canoncical ∂̄-operator of K coincides with the ∂̄-operator of the holomorphic line bundle.

Corollary 8.1.5 Let η ∈ ΓK . Then:
η holomorphic ⇐⇒ η closed .

As for connections one can show that given vector bundles with ∂̄-operators, then there are unique induced
∂̄-operators on the dual and tensor bundles such that the product rule holds. We leave the proofs as an
exercise.

Theorem 8.1.6 (Dual Holomorphic Structure) Given a ∂̄-operator ∂̄ on a complex vector bundle E over an almost
complex manifold, then there is a unique ∂̄-operator ˆ̄∂ on E∗ such that, for all ϕ ∈ ΓE∗ and ψ ∈ ΓE ,

∂̄〈ϕ|ψ〉 = 〈 ˆ̄∂ϕ|ψ〉 + 〈ϕ|∂̄ψ〉 .

Here 〈.|.〉 denotes the natural complex bilinear pairing of E∗ and E .

Theorem 8.1.7 (Tensor Holomorphic Structure) Given ∂̄-operators ∂̄ and ˜̄∂ on the complex vector bundles E and
Ẽ over an almost complex manifold, then there is a unique ∂̄-operator ˆ̄∂ on E ⊗ Ẽ such that, for all ϕ ∈ ΓE ,ψ ∈ ΓẼ ,

ˆ̄∂(ϕ ⊗ ψ) = (∂̄ϕ) ⊗ ψ + ϕ ⊗ ( ˜̄∂ψ) .

As usual, unless explicitly stated differently, the ∂̄-operator on dual bundles or tensor bundles are the
induced ones. This understood, we do not explicitly distinguish the corresponding operators but just write
∂̄.

Exercise 8.1.1 (Canonical ∂̄-operator on K∗) Let K be the canonical bundle of an almost complex surface
M. Show that T M = K∗. As the dual bundle of K the tangent bundle has a canonical ∂̄-operator ∂̄. Show
that for any torsion-free connection ∇,

∂̄ = ∇′′ .

8.1.3 Holomorphic Vector Bundles

Definition 8.1.5 (Holomorphic Vector Bundle) A holomorphic vector bundle of rank r is a complex vector bundle
π : E → M of complex rank r where E and M are complex manifolds, π : E → M is holomorphic and at each point
p ∈ M there is a biholomorphic trivialization φ : E |U → U ×Cr , U 3 p.

Every holomorphic vector bundle comes with a canonical ∂̄-operator.

Example 8.1.3 (∂̄-Operator of a Holomorphic Vector Bundle) Let E → M be a holomorphic vector bundle.

92
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Then we define a ∂̄-operator ∂̄ as follows: If σ is a holomorphic frame and ψ ∈ ΓE , then ψ = σ.ξ for some
Cr -valued function ξ. Define

∂̄(ψ) := σ.(∂̄ξ) .

Since any two holomorphic frames are related by a GL(Cr )-valued holomorphic map, ∂̄ is well-defined.
Moreover, one easily checks that ∂̄, as defined above, satisfies

∂̄( fψ) = (∂̄ f )ψ + f (∂̄ψ) .

for all ψ ∈ ΓE and f ∈ C∞(M ; C).

Corollary 8.1.8 If E be a holomorphic vector bundle, then

H0E = {ψ ∈ ΓE | ψ : M → E holomorphic} .

Example 8.1.4 (Trivial Holomorphic Vector Bundle) Let M be a compact connected complex manifold,
then E = CM is a holomorphic vector bundle. Its holomorphic sections are holomorphic functions. Thus, if
M is compact and connected, H0E consists only of constant functions and h0E = 1.

Example 8.1.5 (Tangent Bundle of a Complex Manifold) If M is a complex manifold, then T M is a
holomorphic vector bundle—the transition maps between coordinate frames of holomorphic charts are
holomorphic.

Theorem 8.1.9 Let E be a complex vector bundle over a complex manifold M. If there is a vector bundle atlas
{φα : E |Uα → Uα ×Cr }α such that the corresponding cocycle gβα : Uα

⋂
Uβ → GL(Cr ) consists only of holomor-

phic maps, then this turns E into a holomorphic vector bundle.

Proof. The bundle charts—combined with charts of M—yield charts of E which by the holomorphicity of
the coycle are holomorphically compatible. Holomorphicity of the projection follows from construction.

Example 8.1.6 (Skyscraper Bundle) Let M be a Riemann surface, p ∈ M and d ∈ Z. Then sky(p, d) is a
holomorphic line bundle—the transition map used to construct it is obviously holomorphic.

Example 8.1.7 (Tautological Line Bundle) The tautological line bundle Taut(CPn) over CPn is a holomor-
phic line bundle. The open set Ui = {[z] ∈ CPn | zi , 0} form a cover of CPn. On each Ui we have a smooth
non-vanishing section

ψi,[z] = (z0, . . . , zn)/zi .

This defines a smooth vector bundle atlas φi : Taut(CPn)|Ui → Ui ×C, Taut(CPn)|Ui 3 ψi,[z]w 7→ ([z],w) ∈
Ui ×C. The corresponding cocycle is gji : Ui

⋂
Ui → C∗ given by gji([z]) = zj/zi .

Theorem 8.1.10 A holomorphic line bundle E of negative degree over a compact Riemann surface has no non-zero
holomorphic sections, h0E = 0

Proof. Follows from Poincaré–Hopf and the fact that holomorphic sections have non-negative index.

8.1.4 Connections on Holomorphic Vector Bundles

We want to characterize those complex bundles with connection which admit a complex structure so that
they become a holomorphic vector bundle. We follow the discussion in [7].
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8 ∂̄-Operators and Elliptic Problems

Let E → M be a complex vector bundle over a complex manifold. Then each complex connection ∇ on E
splits into a holomorphic ∇′ and antiholomorphic structure ∇′′, ∇ = ∇′ +∇′′. Similarly, the exterior derivative
splits: d∇ = d∇

′

+ d∇
′′

, where

d∇
′

: Ωp,q(M ; E) → Ω
p+1,q(M ; E), d∇

′′

: Ωp,q(M ; E) → Ω
p,q+1(M ; E) .

and decomposition of the product rule with respect to the bidegree (p, q) yields, for ψ ∈ ΓE and ω : Ωp,qM ,

d∇
′

(ψω) = ∇′ψ ∧ω + ψ d ′ω , d∇
′′

(ψω) = ∇′′ψ ∧ω + ψ d ′′ω .

The curvature then spits into 3-parts,

F∇ = (d∇
′

+ d∇
′′

)(d∇
′

+ d∇
′′

) = (d∇
′

)2 + (d∇
′

d∇
′′

+ d∇
′′

d∇
′

) + (d∇
′′

)2 ,

where

(d∇
′

)2 ∈ Ω2,0(M ; End+E) , (d∇
′′

)2 ∈ Ω0,2(M ; End+E) ,

d∇
′

d∇
′′

+ d∇
′′

d∇
′

∈ Ω1,1(M ; End+E) .

Proposition 8.1.11 Let E be a holomorphic vector bundle. If ∇ is a complex connection such that ∇′′ = ∂̄, then

(d∇
′′

)2 = 0 .

Proof. Let σ be a holomorphic frame. Then d∇
′′

σ = ∇′′σ = ∂̄σ = 0 and thus (d∇
′′

)2 vanishes on a frame.

Conversely, one as the following proposition—a proof can be found in [7].

Proposition 8.1.12 Let E be a complex vector bundle over a complex manifold. If ∇ is a connection on E such that
(d∇

′′

)2 = 0, then there is a unique complex structure on E which turns E into a holomorphic vector bundle with
holomorphic structure ∂̄ = ∇′′.

Now, if we have just a complex vector bundle E → M over a complex manifold with holomorphic structure
∂̄, then we may ask, whether there is a complex structure on E which turns it into a holomorphic vector
bundle such that H0E = ker ∂̄. The above theorem tells us that we can do so, whenever we have a complex
connection ∇ with ∇′′ = ∂̄ and (d∇

′′

)2 = 0. In general, it is not easy to come up with such a connection.

The problem boils down to the existence of local flat connections: Suppose we have given a some complex
connection ∇ and a frame σ of E . Then we have

∇σ = σ.(α + β) , α ∈ Ω1,0(M ; Cr×r ), β ∈ Ω0,1(M ; Cr×r ) .

In particular, we have

F∇σ = σ.
(
d(α + β) + (α + β) ∧ (α + β)

)
= σ.

(
dα + dβ + α ∧ α + β ∧ β + [α ∧ β]

)
,

where [., .] denotes the Lie bracket of Cr×r , i.e. [α ∧ β](X ,Y ) = [α(X), β(Y )] − [α(Y ), β(X)]. Thus we get

(F∇)2,0σ = σ.(d ′α + α ∧ α) , (F∇)0,2σ = σ.(d ′′β + β ∧ β) ,

(F∇)1,1σ = σ.
(
d ′′α + d ′β + [α ∧ β]) .
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So, in order to apply the proposition above, one needs, first, that M is complex and, second, to solve a
nonlinear differential equation

d ′′β + β ∧ β = 0

If M is an almost complex surface, the situation becomes a bit better. Here Alt2,0M and Alt0,2M are trivial
and we are left with just one component,

F∇σ = σ.(dα + dβ + [α ∧ β]) ,

Hence
F∇ = 0 ⇐⇒ dα + [α ∧ β] = −dβ ⇐⇒ ∂̄α + [α ∧ β] = −dβ ,

where we identified Γ(K̄K) and Ω2(M; C) as usual. Prescribing ∂̄ on E is the same as prescribing β. The
existence of a flat ∇ with prescribed bar∂-operator is thus related to the solvability of an inhomogeneous
equation involving ∂̄ + [., β]—which itself is a ∂̄-operator on Cr×r

M . This problem is an elliptic problem—a so
called ∂̄-problem. This problem is not asy to solve by elementary tools. In particular, since we cannot assume
the existence of complex charts, one cannot even apply the local complex theory.

Soon we will see that—at least for line bundles—for each ∂̄-operator there always exist locally a correspond-
ing flat connection (Theorem 8.2.8) which then, by the fundamental theorem of flat bundles, assures the
existence of local holomorphic frames (Theorem 8.2.9). As a consequence we obtain the following theorem.

Theorem 8.1.13 A complex line bundle E with ∂̄-operator over an almost complex surface can be turned uniquely
into a holomorphic line bundle such that its induced ∂̄-operator equals the given one.

8.2 Elliptic Problems

Already twice we came to the point that got stuck with a first-order differential equation, which we called
elliptic—once in Weil’s theorem 7.2.13 as we tried to classify the hermitian line bundles with connection, and
once when we tried to show that a complex line bundle with ∂̄-operator over an almost complex surface is
the same thing as a holomorphic line bundle. Now we are going to explain what elliptic means and when
such an equation can be solved. Finally we look at certain problems.

8.2.1 Fundamental Theorem of Elliptic Theory

Since we only need to solve linear first-order equations we restrict our attention to first-order operators,
which keeps the setup quite simple and transparent.

Definition 8.2.1 (Linear first-order differential operator) Let K = R, C. Let E and Ẽ be K-vector bundles over
a smooth manifold M . Then a K-linear map D : ΓE → ΓẼ is called linear first-order differential operator, if there is
a A ∈ ΓHom(T M∗; Hom(E ; Ẽ)) such that, for all f ∈ C∞M and ψ ∈ ΓE ,

D( fψ) = Ad fψ + f Dψ .

Example 8.2.1 (∂̄-Operators) A ∂̄-operator on a vector bundle E → M is a linear first-order differential
operator—the field A ∈ ΓHom(T M∗; Hom(E ; E)) is the projection to the complex antilinear part,

Ad f = ∂̄ f = d ′′f .
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The field A is actually uniquely determined by D. To see this, let ϕ1, . . . , ϕr be local frames of E and let
∂
∂x1

, . . . , ∂
∂xm

be a coordinate frame of M all defined on a common neighborhood U of p. Then, for ψ =
∑

i yiϕi ,
we get

Dψ =
∑
i

(
Adyiϕi + yiDϕi

)
=

∑
i

(∑̀ ∂yi
∂x`

Adx` ϕi + yiDϕi
)

.

For given j, k there are functions yjk,i such that yjk,i(p) = 0 and ∂yjk ,i
∂x`
= δikδj` . Thus

D
(∑

i

yjk,iϕi

)��
p
=

∑
i

∑̀
∂yjk ,i
∂x`

Adx` ϕi
��
p
= Adx j ϕk

��
p

.

Hence A is uniquely determined.

Definition 8.2.2 (Symbol of First-Order Differential Operator) The uniquely determined field A in the definition
of a linear first-order differential operator D is called the symbol of D.

Let E be a real vector bundle over a compact oriented m-dimensional manifold M. Then there is a natural
non-degenerate pairing between Ωm(M ; E∗) and ΓE : For ω ∈ Ωm(M ; E∗) and ψ ∈ ΓE , let

〈〈ω |ψ〉〉 =

∫
M

〈ω |ψ〉 .

Definition 8.2.3 (Formal Adjoint) Given non-degenerate pairings between the possibly infinite-dimensional
vector spaces Ṽ and V and between W̃ and W . Then, if B : V → W is a linear map, a linear map B̃ : W̃ → Ṽ is called
an adjoint of B if, for all v ∈ V and w̃ ∈ W̃ ,

〈〈w̃ |Bv〉〉 = 〈〈B̃w̃ |v〉〉 .

If B̃ exists, it is unique and we write B̃ = B∗.

The following theorem can be proven using basically integration by parts.

Theorem 8.2.1 If E and Ẽ are vector bundles over a compact oriented manifold M and D : ΓE → ΓẼ is a linear
first-order differential operator, then D has an adjoint

D∗ : Ωm(M ; Ẽ∗) → Ω
m(M ; E∗)

and D∗ is again a linear first-order differential operator.

Though in practice D∗ can usually be written down explicitly.

Definition 8.2.4 (Elliptic Operator) Let D : ΓE → ΓẼ be a linear first-order differential operator with symbol A.

D elliptic :⇐⇒ ∀0 , ω ∈ T M∗ : Aω : Eπ(ω) → Ẽπ(ω) isomorphism of vector spaces.

Remark 8.2.1 Note that, as M is a real manifold, ω here always refers to real-valued covectors.

Example 8.2.2 (∂̄-Operators) The symbol of a ∂̄-operator is given by

Aω = ω′′ = 1
2 (ω + iω ◦ J), ω ∈ T M∗ .

Clearly, Aω = 0 only if ω = 0. Hence ∂̄ is elliptic.

Now we are ready to formulate the elliptic theorem in a form adapted to our needs.
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Theorem 8.2.2 (Fundamental Theorem of Elliptic Theory) Let E and Ẽ be vector bundles over a compact
oriented manifold M and let D : ΓE → ΓẼ be an elliptic linear first-order differential operator. Then:

(i) dim ker D < ∞.
(ii) D∗ : Ωm(M ; Ẽ∗) → Ωm(M ; E∗) is elliptic and im D = (ker D∗)⊥. In particular, (im D)⊥ = ker D∗.

This theorem is well-known to experts. Though proofs are somehow rare to find—especially for the specific
version given above. One quite excellent reference is [8]. Another reference is [5]—there the theorem is
contained as an exercise at the end of the book.

Corollary 8.2.3 For a holomorphic vector bundle E over a compact complex manifold, the space of holomorphic
sections H0E is finite-dimensional.

Definition 8.2.5 (Genus of a Compact Riemann Surface) The genus g of a compact Riemann surface is defined
as the complex dimension of the space of holomorphic sections of the canonical bundle K ,

g := dimC H0K .

8.2.2 ∂̄-Problems

Let M denote a compact almost complex surface. Let K = R, C. Two K-vector bundles E , Ẽ → M are called
paired vector bundle if there is a non-degenerate tensorial pairing 〈.|.〉K : ΓẼ × ΓE → Ω2(M ; K). In particular,

〈〈., .〉〉K : ΓE × ΓẼ → K, 〈〈ψ̃ |ψ〉〉K =

∫
M

〈ψ̃ |ψ〉K .

is a non-degenerate as well. Usually we drop the subindex.

Remark 8.2.2 If E , Ẽ → M are paired bundles, there is a natural isomorphism Ẽ � Λ2T M∗ ⊗ E∗.

Theorem 8.2.4 Let E → M be a complex vector bundle over an almost complex surface. Then there is a natural
isomorphism Φ : K̄KE → Λ2T M∗ ⊗ E given by

K̄KE 3 η 7→ η ◦ ∧ ∈ Λ2T M∗ ⊗ E .

Moreover, if ∇ is a complex connection on E and ∇′′ = ∂̄, then Φ ◦ ∂̄ = d∇.

Proof. To see that Φ is an isomorphism we explicitly write down the inverse isomorphism. Therefore, given
σ ∈ Λ2(M ; E), we define σ̂ ∈ K̄(KE) as follows: For X ,Y ∈ TpM ,

σ̂X (Y ) := 1
2
(
σ(X ,Y ) + Jσ(JX ,Y )

)
.

We leave it as an exercise to verify that σ̂ has the correct types and that Φ(σ̂) = σ. That Φ ◦ ∂̄ = d∇ follows
from local considerations by an easy type argument: For ψ ∈ ΓE and ω ∈ ΓK , we have

d∇η = d∇(ψω) = ∇ψ ∧ω + ψdω = ∇′′ψ ∧ω + ψdω = Φ((∂̄ψ)ω) +Φ(ψ∂̄ω) = Φ(∂̄(ψω)) = Φ(∂̄η) .

Since every η ∈ Γ(KE) can be locally written as such a product we are done.

Let E → M be a vector bundle with ∂̄-operator over an almost complex surface. Then, under the isomorphism
above, E∗ is naturally paired with K̄KE . Similarly, K̄E∗ is naturally paired with KE . We have the following
theorem.
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8 ∂̄-Operators and Elliptic Problems

Theorem 8.2.5 For ϕ ∈ ΓE∗ and η ∈ ΓKE

〈〈ϕ|∂̄η〉〉 = −〈〈∂̄ϕ|η〉〉 .

Proof. Let ∇ be a complex connection on E such that ∇′′ = ∂̄. Then we have

〈〈ϕ|∂̄η〉〉 =

∫
M

〈ϕ|Φ(∂̄η)〉 =

∫
M

〈ϕ|d∇η〉 =
∫
M

d〈ϕ|η〉 −
∫
M

〈∇ϕ∧η〉 = −

∫
M

〈∇ϕ∧η〉 = −

∫
M

〈∂̄ϕ∧η〉 = −〈〈∂̄ϕ|η〉〉 ,

where again a type argument was used.

As an immediate consequence of part (ii) of the fundamental theorem we obtain the following theorems. The
details of the proofs are left as an exercise.

Theorem 8.2.6 Let ω ∈ Ω2(M ; E), then

∃ η ∈ ΓKE : ω = d∇η ⇐⇒ ∀ ϕ ∈ H0E∗ : 〈〈ϕ|ω〉〉 = 0 .

Theorem 8.2.7 Let η ∈ ΓK̄E , then

∃ψ ∈ ΓE : η = ∂̄ψ ⇐⇒ ∀ ϕ ∈ H0KE∗ : 〈〈ϕ|η〉〉 = 0 .

Theorem 8.2.8 Let L be a complex line bundle with ∂̄-operator. Then, locally, there is a flat complex connection ∇
such that ∇′′ = ∂̄.

Proof. Let ∇̃ be some complex connection such that ∇̃′′ = ∂̄. If η ∈ ΓK and ∇ = ∇̃ − η then also ∇′′. The
curvature of ∇ is given by

F∇ = F ∇̃ − dη .

Thus ∇ is flat if and only if dη = F ∇̃, which is locally solvable by Theorem 8.2.6. The details are left as
exercise.

Theorem 8.2.9 Let E → M be a complex line bundle with ∂̄-operator over a compact almost complex surface. Then
for each p ∈ M there exists a local holomorphic frame at p.

Proof. Locally there is a flat connection ∇ such that ∇′′ = ∂̄. By the fundamental theorem of flat bundles,
there is a local parallel frame ψ ∈ ΓL. In particular, ∂̄ψ = ∇′′ψ = 0.

In particular, this proves that almost complex surface are complex curves—without using the Newlander–
Nirenberg Theorem.

Theorem 8.2.10 Every almost complex surface is complex.

Proof. The canonical bundle has a local holomorphic frames. In particular, at each point there is locally a
closed nowhere-vanishing η ∈ ΓK . A complex chart is defined by z =

∫
η.

Furthermore this ensures the local solvability of ∂̄-problems by gluing a complex chart neighborhood to
CP1. The details are left as exercise.

Theorem 8.2.11 For every η ∈ ΓK̄E , the ∂̄-problem ∂̄ψ = η has always local solutions.
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8.2 Elliptic Problems

8.2.3 Hodge-Decomposition of 1-Forms

Definition 8.2.6 (Hodge–∗–Operator) For ω ∈ Ω1(M ; E),

∗ω = −ω ◦ J .

Note that the Hodge-star operator is a natural almost complex structure on the—a priori real— bundle T M∗.
As such T M∗ becomes a complex line bundle which is naturally isomorphic to the canonical bundle K via
the isomorphism

T M∗ 3 α = Re η←→ η = α + i ∗ α ∈ K .

One easily checks that the isomorphism is well-defined and complex linear.

Definition 8.2.7 (Harmonic 1-Forms) A harmonic 1-form is an element of the following space

Harm M := {α ∈ Ω1M | dα = 0 = d ∗ α} = ker d ∩ ker d ∗ .

Corollary 8.2.12 Under the above identification, we have

Harm M � H0K .

Remark 8.2.3 As such the harmonic forms form a g-dimensional complex subspace. In particular, there is
an underlying 2g-dimensional real space.

Similarly, we can identify T M∗ with K̄ . Thus, if η ∈ ΓK̄ and ξ ∈ ΓK , then we there are α, β ∈ Ω1M such that

η = α − i ∗ α, ξ = β + i ∗ β .

If we express now the pairing of K̄ and K in terms of α and β we get∫
M

η ∧ ξ =

∫
M

(α − i ∗ α) ∧ (β + i ∗ β) =
∫
M

(α∧ β + ∗α∧ ∗β)+ i
∫
M

(α∧ ∗β − ∗α∧ β) = 2
∫
M

α∧ β + 2i
∫
M

α∧ ∗β .

Its imaginary part yields an inner product 〈〈., .〉〉 : Ω1M ×Ω1M → R,

〈〈α, β〉〉 =
∫
M

α ∧ ∗β .

Definition 8.2.8 Let α ∈ Ω1M . Then

α coclosed :⇐⇒ d ∗ α = 0 ⇐⇒ α ∈ ker d∗ ,

α coexact :⇐⇒ ∃ f ∈ C∞M : α = ∗df ⇐⇒ α ∈ im ∗ d .

Remark 8.2.4 Note that coexact implies coclosed.

Using Stokes theorem we get for f ∈ C∞M and β ∈ Ω1M ,

〈〈df , β〉〉 = −
∫
M

f d ∗ β , 〈〈∗df , β〉〉 = −
∫
M

f dβ .

Thus ker d ⊥ im ∗ d and ker ∗d ⊥ im d. We can say even more.

99



8 ∂̄-Operators and Elliptic Problems

Theorem 8.2.13 (Hodge-Decomposition)

Ω
1M = im d ⊕⊥ im ∗ d ⊕⊥ Harm M .

Proof. Let α ∈ Ω1M . We have to show that we can uniquely decompose α into an orthogonal sum of an exact
and coexact and a harmonic form. Therefore we choose a orhonormal basis h1, . . . , h2g ∈ Harm M and define
α̃ = α − h, where h :=

∑
i 〈〈α, hi〉〉hi . Then α̃ ⊥ Harm M . Let η := α̃ − i ∗ α̃ ∈ ΓK̄ and ξ = β + i ∗ β ∈ H0K . Then∫

M

η ∧ ξ = −2〈〈α̃, ∗β〉〉 + 2i〈〈α̃, β〉〉 = 0 .

By Theorem 8.2.7 we hence get that η = 2∂̄ f for some function f = u + iv ∈ C∞(M ; C) and

α̃ = 2 Re (∂̄ f ) = Re
(
(d − i ∗ d)(u + iv)

)
= du + ∗dv .

Thus we have α = α̃ + h = du + ∗dv + h, as desired.

Corollary 8.2.14
Harm M � H1M .

In combination with Theorem 8.2.6 we get almost immediately the following important theorem.

Theorem 8.2.15 Let M be a compact almost complex surface and ω ∈ Ω2M . Then

∃ f ∈ C∞M : d ∗ df = ω ⇐⇒

∫
M

ω = 0 .

The previous theorem basically tells us when a Poisson problem can be solved: Given a metric on M , we can
define the Laplace operator ∆ : C∞M → C∞M through

(∆ f ) dvolM := d ∗ df ,

where dvolM denotes the Riemannian volume form. Poisson’s equation is then ∆ f = g.

Corollary 8.2.16 Let M be a compact oriented Riemannian surface and g ∈ C∞M . Then

∃ f ∈ C∞M : ∆ f = g ⇐⇒

∫
M

g = 0 .

Proof of theorem. Clearly, if ω = d ∗ df , then
∫
M
ω = 0 by Stokes’ theorem. Conversely, let

∫
M
ω = 0. Then,

since Ω2M ⊂ Ω2(M; C), Theorem 8.2.6 yields an η ∈ ΓK such that dη = ω. Since η ∈ ΓK , there is α ∈ Ω1M
such that η = α + i ∗ α. Hodge-decomposition yields α = ∗df + dg + h, where f , g ∈ C∞M and h ∈ Harm M.
Taking the real part of dη = ω yields dα = ω. Thus ω = dα = d ∗ df .
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Holomorphic Line Bundles 9
In this section we classify the holomorphic line bundles over a compact Riemann surface. Furthermore
we prove the Mittag–Leffler Theorem, which yields conditions on the existence or non-existence of mero-
morhic sections in terms of their their residues. In particular, we obtain existence theorems for meromorhic
differentials—so called Abelian differentials. This at hand we are able to prove the Riemann–Roch theorem
which is then applied to certain problems.

9.1 Classification of Holomorphic Line Bundles

Throughout let M denote a compact Riemann surface of genus g.

9.1.1 First Homology of Riemann Surfaces

We have seen that the first cohomology of M is isomorphic to Harm M and thus forms a 2g-dimensional real
vector space.

Definition 9.1.1 (First Homology Vector Space) The first homology vector space is given by

H1(M ; R) := (H1M)∗

Remark 9.1.1 In general, on every m-dimensional compact manifold all cohomolgy groups are finite-
dimensional. The above definition can be modified in the obvious way to define the k-th homology vector
space. Though, for our purposes, it is enough to define the first homology. This has the advantage that
a 1-cycle in M (in the sense of algebraic topology) can simply be considered as a map from a compact
oriented 1-dimensional manifold—a finite disjoint union of oriented circles—into M. This allows us to
avoid the definition of the boundary operator on chains. This does not work for k-cycles in general—for
k > 2 a k-cycle is the image of a manifold but a so-called pseudomanifold.

Definition 9.1.2 (1-Cycle) A 1-cycle is a smooth map γ : C → M , where C is 1-dimensional, compact and oriented.

Definition 9.1.3 (Homologuous Cycles) Two 1-cycles γ and γ̃ are called homologuous, if∫
γ
α =

∫
γ̃
α , for all α ∈ Z1M .

A 1-cycle is called null-homologuous, if it is homologuous to a constant cycle.

Remark 9.1.2 Two 1-cycles γ0, γ1 : C → M are homotopic, if there exists a smooth map H : [0, 1] ×C → M
such that H(0, .) = γ0 and H(1, .) = γ1—a homotopy. By Stokes’ theorem homotopic cycles are homologuous.

To be homologuous defines an equivalence relation on the space of 1-cycles in M . We write γ ∼ γ̃. The set of
homology classes [γ] forms an abelian group: If γ : C → M and γ̃ : C̃ → M are 1-cycles, then γ + γ̃ : C t C̃ → M
is given by

(γ + γ̃)|C = γ, (γ + γ̃)|C̃ = γ̃ .

The inverse of γ : C → M , denoted by −γ, is simply obtained by switching the orientation of C.
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Definition 9.1.4 (First Homology) The first homology group of M

H1(M ; Z) :=
{
[γ] | γ 1-cycle in M

}
.

Theorem 9.1.1 Every homology class [γ] ∈ H1(M; Z) has a representative, which consists of finitely many non-
intersecting embedded curves.

Proof. By the transversality theorem, we obtain a representative which consists of finitely many curves that
intersect transversely. The transverse intersections can be eliminated by cutting and gluing.

Each homology class [γ] ∈ H1(M ; Z) can be considered as an element of H1(M ; R): For [α] ∈ H1M ,

〈〈[γ]|[α]〉〉 =

∫
γ
α .

By definition, the inclusion H1(M ; Z) ↪→ H1(M ; R) is injective. Moreover, we have the following theorem.

Theorem 9.1.2 Let α ∈ Ω1M . Then

α exact ⇐⇒
∫
γ
α = 0 for all closed curves γ : S1 → M .

Proof. One direction follows immediately from Stokes’ theorem. For the other one, suppose that the integral
of α vanishes along any closed path. Assume without loss of generality that M is connected. Fix p0 ∈ M and
define f (p) =

∫ p

p0
α, where the integral is taken along an arbitrary path from p0 to p. Since any two paths

from p0 to p differ by a closed curve, f is well-defined. Clearly, df = α.

Corollary 9.1.3
H1(M ; Z)⊥ = {0} .

Since (H1M)∗ = Harm M , we immediately get the following theorem.

Theorem 9.1.4 (Poincaré Dual) If [γ] ∈ H1(M ; Z), then there is a unique αγ ∈ Harm M such that∫
γ
β =

∫
M

αγ ∧ β for all β ∈ Z1M .

Though it is worth to look at an explicit construction: Let γ : C → M be a embedding, C oriented. Then, by
the tubular neighborhood theorem, there is an embedding f : [−ε, ε] ×C → M such that f (0, .) = γ. Without
loss of generality we can assume that f is also oriented. On the image of f there is a real-valued function h
which takes values in [−ε, ε]. Now, let g : R → R smooth such that g(x) = 0 for x < −ε/2 and g(x) = 1 for
x > ε/2. Then d(g ◦ h) has support in the image of f and hence extends to a form α̃γ ∈ Ω

1M. Clearly, α̃γ is
closed. For β ∈ Z1M , we get∫

M

α̃γ ∧ β =

∫
f ([−ε,ε]×C)

α̃γ ∧ β =

∫
f ([−ε,ε]×C)

d(g ◦ h) ∧ β =
∫
f ([−ε,ε]×C)

d((g ◦ h)β)

=

∫
∂ f ([−ε,ε]×C)

(g ◦ h)β =
∫
∂ f ({ε }×C)

β =

∫
f ({0}×C)

β =

∫
γ
β .

Hence α̃γ = αγ + dg̃.
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9.1 Classification of Holomorphic Line Bundles

Note that this yields a skew bilinear product on 1-cycles: If [γ], [γ̃] ∈ H1(M ; Z), then

[γ] • [γ̃] := 〈〈αγ |αγ̃〉〉 .

Given two transversely embedded 1-cycles γ and γ̃ and p ∈ im γ ∩ im γ̃. Then we set

sp(γ, γ̃) = signσ(γ′(t), γ̃′(t̃)) ,

where γ(t) = p = γ̃(t̃) and σ ∈ Ω2M represents the canonical orientation of M .

Theorem 9.1.5 The product [γ] • [γ̃] of two transversely embedded 1-cycles γ and γ̃ equals to the number of
intersections counted with sign,

[γ] • [γ̃] =
∑

p∈γ∩γ̃

sp(γ, γ̃) .

In particular, • : H1(M ; Z) × H1(M ; Z) → Z—called the intersection product.

Proof. Let γ, γ̃ be two transversely embedded 1-cycles and α̃γ and α̃γ̃ be the corresponding closed representa-
tives coming from the explicit construction above. Then, since transverse intersections are isolated and γ̃ is
compact, there are only finitely many intersections. Given a tubular neighborhood f̃ : (−ε, ε) × C̃ → M of γ̃
this splits γ into finitely many components—curves γi in the image of f̃ starting and ending at the boundary
of f̃ ((−ε, ε) × C̃). By choosing ε small enough, we can assume that each component γi contains exactly one
intersection point pi . Then

[γ] • [γ̃] =

∫
γ
α̃γ̃ =

∑
i

∫
γi

d(g ◦ h̃) =
∑
i

spi (γ, γ̃) .

Here we used in the last equality that spi (γ, γ̃) = ±1, if γi starts in f̃ ({∓ε} × C̃) and ends in f̃ ({±ε} × C̃).

Theorem 9.1.6 H1(M ; Z) ⊂ H1(M ; R) forms a 2g-dimensional lattice, i.e. a discrete additive subgroup. In particular,
H1(M ; Z) � Z2g.

Proof. Clearly, H1(M ; Z) forms a subgroup. It is left to show that it is discrete. Therefore it is enough to show
that there is a neighborhood of zero which contains no other element than the zero cycle. Since H1(M ; Z)⊥ = 0,
we can choose a cycles γ1, . . . , γ2g such that the corresponding forms α1, . . . ,α2g ∈ H1M form a basis. Now
we define an inner product as follows

‖ξ‖2 =
∑
i

〈〈αi |ξ〉〉
2 .

Now, let [γ] ∈ H1(M ; Z). Then

‖[γ]‖2 =
∑
i

〈〈αi |[γ]〉〉
2 =

∑
i

([γi] • [γ])
2 ∈ Z .

Hence there is a neighborhood of zero which contain no element of H1(M; Z) \ {0}. Since on a finite-
dimensional vector space, all inner products are equivalent and we are done.

Definition 9.1.5 (Canonical Basis of Homology) A canonical basis of homology is a basis a1, . . . , ag, b1, . . . , bg ∈
H1(M ; Z) such that

ai • aj = bi • bj = 0 , ai • bj = δi j .
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9 Holomorphic Line Bundles

So a canonical basis is a basis with respect to which the intersection form is represented by the matrix(
0 −I
I 0

)
.

To show that there is always a canonical basis of homology we need some preparation.

Lemma 9.1.7 Let γ : S1 → M be an embedding such that M \γ is connected. Then there is an embedding γ̃ : S1 → M
such that γ and γ̃ have a single positive intersection point. In particular, [γ] • [γ̃] = 1 and [γ] , 0.

Proof. Since M \ γ is connected, there is a curve in M \ γ from one to the other side of γ. Using the transversal-
ity theorem we can resolve self-intersections to get an embedded curve. Connecting then both ends passing
through γ yields an embedded closed curve γ̃ in M . With the right choice of orientation we can achieve that
the intersection is positive, [γ] • [γ̃] = 1. Since • is non-degenerate [γ] , 0.

In particular, an embedded cycle is zero if and only if it splits the surface into two parts.

Theorem 9.1.8 Let γ : S1 → M be an embedding. Then

[γ] = 0 ⇐⇒ ∃ surface S ⊂ M with boundary ∂S = γ .

Proof. If γ = ∂S, then
∫
γ
α =

∫
∂S
α =

∫
S

dα = 0 for all α ∈ Harm M . Hence [γ] = 0. Conversely, we can assume
that M is connected. If γ is not a boundary, then M \ γ is connected. Hence [γ] , 0.

Corollary 9.1.9 Let M be connected and γ : S1 → M be an embedding, [γ] , 0. Then there is an embedding
γ̃ : S1 → M such that γ and γ̃ have a single positive intersection point. In particular, [γ] • [γ̃] = 1.

Lemma 9.1.10 Let a, b : S1 → M be transverse embeddings which intersect in a single point p ∈ M and [c] ∈
H1(M; Z) such that [a] • [c] = [b] • [c] = 0. Then there are tubular neighborhoods A of a and B of b such that
b−1(M \ A) and a−1(M \ B) are connected and an embedded representative γ of [c] with image in M \ (A∪ B). In
particular, γ does not intersect a nor b.

Proof. Without loss of generality we can choose an embedded representative γ of [c] which intersects a and
b transversely. Choose a tubular neighborhoods A of a and B of b such that A∩ B is a small cube around p
and b−1(M \ A) is connected. Since [a] • [c] = 0, there are as many positive as negative intersection points
between a and γ. Order them to pairs (pj , qj) and let aj denote the segment of a joining pj to qj . Then we
can add loops aja−1

j to γ and, after cutting and gluing, homotope γ out of A. The resulting homotoped γ

may have self-intersections. Again, by cutting and gluing, we can assure by a small perturbation that γ
is embedded in M \ A intersecting b transversely. In particular, the intersections of γ and b lie outside A.
Since [b] • [γ] = 0, the positive and negative intersection points again come in pairs. Since b−1(M \ A) is
connected we can proceed as before and join them by segments of b contained in M \ A, use them to resolve
the intersections with b and then push γ out of A∪ B. Again we can repair possible self-intersections and,
after a small perturbation, obtain a representative γ embedded in M \ (A∪ B).

Theorem 9.1.11 (Existence of Canonical Basis) Each compact Riemann surface has a canonical basis of homology
which consists of transversely embedded closed curves any two of which intersect in at most a single point.
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Proof. Without loss of generality M is connected. Suppose a1, . . . , an, b1, . . . , bn : S1 → M are transverse
embeddings such that

ai • bj = δi j , ai • aj = 0 = bi • bj ,

where ai intersects bi in a single point. Then, if there is some [γ] ∈ H1(M ; Z) with [γ] • [ai] = 0 = [γ] • [bi] for
i = 1, . . . , n, we can successively apply the previous lemma to obtain an embedded representative which
does not intersect any of the a1, . . . , an, b1, . . . , bn. Pick a non-trivial component an+1 : S1 → M of γ. Since
an+1 is non-trivial, there is γ̃ : S1 → M such that [an+1] • [γ̃] = 1. Then

γ̂ := γ̃ −
n∑
j=1

(
[γ̃] • [bj]aj − [γ̃] • [aj]bj

)
satisfies [an+1] • [γ̂] = [an+1] • [γ̃] = 1. For i ≤ n we get

[ai] • [γ̂] = [ai] • [γ̃] −
n∑
j=1

(
[γ̃] • [bj][ai] • [aj] − [γ̃] • [aj][ai] • [bj]

)
= [ai] • [γ̃] +

n∑
j=1

[γ̃] • [aj]δi j = 0 ,

[bi] • [γ̂] = [bi] • [γ̃] −
n∑
j=1

(
[γ̃] • [bj][bi] • [aj] − [γ̃] • [aj][bi] • [bj]

)
= [bi] • [γ̃] +

n∑
j=1

[γ̃] • [bj]δi j = 0 .

Hence, again by the previous lemma, we can find an embedded representative of γ̂ which does not intersect
any of the a1, . . . , an, b1, . . . , bn. Keeping γ̂ fixed in a small tubular neighborhood of an+1, we can assure
that γ̂ has a component bn+1 that intersects an+1 transversely in a single point, [an+1] • [bn+1]. Clearly,
[bn+1] • [bn+1] = 0. Starting from n = 0 we repeat this process. Since H1(M; Z) � Z2g it stops for n = g and
we are left with 2g embedded curves a1, . . . , ag, b1, . . . , bg, which form a canonical basis of homology. The
additional statement on transversality can be established by the usual perturbation arguments.

Connecting the intersection points pi of ai and bi by an embedded curve to a fixed p0 ∈ M we can change the
ai and bi so that they all start and end at p0. Cutting M open along these curves we obtain a 4g-gon—the
fundamental polygon Fwith boundary

∂F=
∑
i

(ai + bi + a−1
i + b−1

i ) .

9.1.2 The Picard Group

Let M be a compact Riemann surface. Then

Pic M := {isomorphism classes of holomorphic line bundles (L, ∂̄) over M} .

Theorem 9.1.12 The tensor product defines a multiplication Pic M × Pic M → Pic M , which turns Pic M into an
abelian group with identity element given by the trivial holomorphic line bundle CM and inverse given by L−1 = L∗.

Proof. Exercise.

Definition 9.1.6 (Picard Group) The group (Pic M , ⊗) is called the Picard group.

Let p ∈ M and d ∈ Z. The skyscraper bundle sky(p, d) is then a holomorphic line bundle of degree d. Hence
the following theorem is an immediate consequence of Theorem 7.2.6.
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Theorem 9.1.13 The degree deg : Pic M → Z is a surjective group homomorphism.

Definition 9.1.7 (Jacobi Variety) For d ∈ Z we define

PicdM := deg−1
{d} .

The group Jac M := Pic0M is then called the Jacobian variety.

We have Picd1 M ⊗ Picd2 = Picd1+d2 M and Jac M ⊂ Pic M . Thus Jac M acts on Pic M .

Exercise 9.1.1 The action Jac M × Pic M → Pic M is free and transitive.

If we fix L0 ∈ PicdM , we obtain a bijection

Jac M → PicdM , L 7→ L ⊗ L0 .

This allows us to identify PicdM with Jac M so that, in order to put more structure on PicdM , we can focus
solely on Jac M .

As we show now we can assign to each holomorphic line bundle of degree zero a unique connection.

Recall that every holomorphic line bundle (L, ∂̄) has a hermitian metric. The next theorem tells us that the
choice of such a metric fixes a connection on L.

Theorem 9.1.14 Let (L, ∂̄) be a holomorphic line bundle over M with hermitian metric 〈., .〉. Then there is a unique
unitary connection ∇ such that ∇′′ = ∂̄.

Proof. There exists some unitary connection ∇̃. Then ∂̄ = ∇̃′′ − iξ for ξ ∈ ΓK̄ . Hence there is α ∈ Ω1M such
that 2ξ = α − i ∗ α = 2α′′. Then ∇ = ∇̃ − iα is unitary and

∇′′ = ∇̃′′ − iα′′ = ∇̃′′ − iξ = ∂̄ ,

as desired.

Moreover, we have the following result.

Theorem 9.1.15 Let (L, ∂̄) be a holomorphic line bundle of degree d and σ ∈ Ω2M such that
∫
M
σ = 2πid. Then

there is a hermitian metric on L (unique up to constant scale) such that the corresponding unitary connection ∇
with ∇′′ = ∂̄ has curvature F∇ = −iσ.

Proof. Let 〈., .〉 be some hermitian metric and its associated connection ∇. If we change the metric to e2u 〈., .〉
for some u ∈ C∞M , we obtain a new associated connection ∇̃. Since J is parallel with respect to both ∇ and ∇̃
and ∇′′ = ∂̄ = ∇̃′′, we have

∇̃ = ∇ + η, η ∈ ΓK .

Furthermore, since ∇̃ is metric with respect to e2u 〈., .〉, we get for ψ ∈ ΓL

2e2u 〈∇̃ψ,ψ〉 = d(e2u |ψ |2) = 2e2u(〈ψ,∇ψ〉 + |ψ |2du) = 2e2u(〈∇̃ψ,ψ〉 + |ψ |2(du −Re η) ,

which implies that du = Re η and hence η = 2∂u. Thus we get the following relation of curvatures:

F ∇̃ = F∇ + 2d∂̄u = F∇ + id ∗ du .
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Thus F ∇̃ = −iσ if and only if d ∗ du = iF∇ − σ, which by Theorem 8.2.15 is solvable, since
∫
M

iF∇ − σ = 0.
The solution is unique up to an additive constant.

The following theorem is now an immediate consequence.

Theorem 9.1.16 Each holomorphic line bundle (L, ∂̄) with deg L = 0 has a unique flat connection ∇ such that
∇′′ = ∂̄, which is unitary in the sense that there exists a parallel hermitian metric.

In summary, we have identified Jac M with the space of flat unitary connections. Hence, using Weil’s theorem,
Jac M may be parametrized by Z1M/Z1

int M � Harm M/H1(M ; Z) � R2g/Z2g—a 2g-dimensional torus.

Remark 9.1.3 Let us make this identification more precise using the trivial unitary bundle CM . One easily
checks that the associated connection is the trivial connection d. The corresponding point in Jac M is then(

CM , d ′′
)

.

Any other flat unitary line bundle class is then obtained by changing the trivial connection ∇ = d − 2πiα,
where α ∈ Harm M . The corresponding holomorphic structure is obtained by extracting the K̄-part,

∇′′ = d ′′ − 2πiα′′ .

Since α is harmonic, α′′ is closed. So we get an affine map to the holomorphic bundles of degree zero

ker
(
d : ΓK̄ → Ω

2(M ; C)
)
∈ ξ 7→

(
CM , d ′′ − 2πiξ

)
∈ Jac M .

Note that ker
(
d : ΓK̄ → Ω2(M ; C)

)
� ΓK̄/im ∂̄. The non-degenerate pairing 〈〈.|.〉〉 : ΓK̄ × ΓK → C descends

to a non-degenerate pairing 〈〈.|.〉〉 : ΓK̄/im ∂̄ × H0K → C giving us an isomorphism

(H0K)∗ � ΓK̄/im ∂̄ � ker
(
d : ΓK̄ → Ω

2(M ; C)
)

.

Moreover, each γ ∈ H1(M ; C), can be considered as an element of (H0K)∗ as usual, η 7→
∫
γ
η. In terms of the

harmonic form αγ corresponding to γ, η 7→
∫
γ
η is then represented as follows: If η = β + i ∗ β, then∫

γ
η =

∫
γ
β + i

∫
γ
∗β =

∫
M

αγ ∧ β + i
∫
M

αγ ∧ ∗β =

∫
M

α′′γ ∧ η .

In particular, αγ ∈ Z1
int (M ; R). Thus we have shown that

Jac M � (H0K)∗/H1(M ; Z) .

Corollary 9.1.17 If M is diffeomorphic to S2, then deg : Pic M → Z is an isomorphism. In particular, up to
isomorphism, for each degree there is a unique holomorphic line bundle.

Proof. If M is diffeomorphic to S2, then H0K = {0}.

9.2 Meromorphic Sections

Throughout this section L denotes a holomorphic line bundle over a connected compact Riemann surface M
of genus g.
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9 Holomorphic Line Bundles

9.2.1 Mittag–Leffler Theorem

A meromorphic section of a holomorphic bundle is a section which, with respect to a holomorphic frame, is
represented by a meromorhic function. We are interested in what configurations of poles appear as the poles
of a meromorphic section.

Definition 9.2.1 (Section with Poles) Let p1, . . . , pn ∈ M be pairwise distinct. Then ψ ∈ ΓL |M\{p1,...,pn } is called
a section with poles p1, . . . , pn, if there is η ∈ ΓK̄L such that

∂̄ψ = η ,

and for each j ∈ {1, . . . , n} and every metric ψ either smoothly extends to pj or

|ψp | −→ ∞ for p→ pj .

Remark 9.2.1 Note ψ is a meromorphic section of L if and only if ψ is a section with poles such that ∂̄ψ.
The limit condition in the definition excludes the possibility of essential singularities.

Theorem 9.2.1 If ψ is a section of L with poles p1, . . . , pn, then for each j ∈ {1, . . . , n} there is a neighborhood Uj

of pj , a meromorphic section ψ of U |Uj with a single pole at pj and a smooth ϕj ∈ Γ(L |Uj ) such that

ψ |Uj = ψj + ϕj .

Proof. Let η := ∂̄ψ. By Theorem 8.2.11, there is a neighborhood Uj of pj and ϕj ∈ ΓL |Uj such that

∂̄ϕj = η .

Then ψj := ψUj \{p j } − ϕj satisfies ∂̄ψj = 0 and is either smoothly extendable or satisfies |ψj,p | → ∞ for p→ pj ,
i.e. ψj is meromorphic.

Definition 9.2.2 (Residue) Let ω be section of K with poles. Then the residue of ω at p ∈ M is defined by

2πi Respω := lim
r→0

∫
|z |=r

ω ,

where z is a complex chart at p.

Exercise 9.2.1 Show that the residue is well-defined.

Theorem 9.2.2 (Mittag–Leffler Theorem) Let ψ be a section of L with poles p1, . . . pn . Then there is a meromorphic
section ψ̃ of L such that ψ̃ ≡ ψ mod ΓL if and only if

n∑
j=1

Resp j 〈ξ |ψ〉 = 0 , for all ξ ∈ H0KL−1 .

Proof. By Theorem 9.2.1 we can assume without loss of generality that there are pairwise disjoint open
disks U1, . . . , Un around p1, . . . , pn such that ∂̄ψ |Uj \{p j } = 0. Define M0 := M \ (∪jUj), η ∈ ΓK̄L and let
η |M\{p1,...,pn } = ∂̄ψ |M\{p1,...,pn }. In particular, η |Uj = 0. Now suppose that there is ϕ ∈ ΓL such that ψ − ϕ is
meromorphic. Then η − ∂̄ϕ = ∂̄(ψ − ϕ) = 0 and the ∂̄-problem ∂̄ψ = η has a solution. Conversely, if ∂̄ϕ = η for
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9.2 Meromorphic Sections

some ϕ ∈ ΓL, then ψ − ϕ is meromorphic. Hence

∃ ϕ ∈ ΓL such that ψ − ϕ is meromorphic ⇐⇒ ∃ ϕ ∈ ΓL such that ∂̄ϕ = η ,

which, by Theorem 8.2.7, is the case if and only if, for all ξ ∈ H0KL−1,

0 = 〈〈η |ξ〉〉 =
∫
M

〈η ∧ ξ〉 =

∫
M0

〈η ∧ ξ〉 =

∫
M0

〈∂̄ψ ∧ ξ〉 = −

∫
∂M0

〈ψ ∧ ξ〉 =

n∑
j=1

∫
∂Uj

〈ψ ∧ ξ〉 = 2πi
n∑
j=1

Resp j 〈ξ |ψ〉 ,

where the last equality uses that ψ is holomorphic in Uj \ {pj}.

Corollary 9.2.3 The residues of a meromorphic differential η ∈ ΓK on a compact Riemann surface sum to zero.

9.2.2 Abelian Differentials and Riemann Bilinear Identity

An Abelian differential is a meromorhic section of the canonical bundle K . They divide into three classes.

Definition 9.2.3 (Abelian Differentials) An Abelian differential is called

I of the first kind, if it has no poles,
I of the second kind, if it has no residues,
I of the third kind, if it has residues.

Remark 9.2.2 Away from singularities Abelian differentials are holomorphic and hence closed. In particu-
lar, an Abelian differential of the first kind is nothing else then a holomorphic differential.

Let a1, . . . , ag, b1, . . . , bg be a canonical basis of homology of M. The Riemann bilinear identity relates the
integral of the wedge product of two closed complex-valued 1-forms ω and η to their a- and b-periods.

Theorem 9.2.4 (Riemann Bilinear Identity) Let ω, η ∈ Ω1(M ; C) be closed. Then∫
M

ω ∧ η =

g∑
i=1

( (∫
ai

ω
) (∫

bi

η
)
−

(∫
ai

η
) (∫

bi

ω
) )

.

Proof. We can assume that the a- and b cycles are all embedded starting and ending at the same point. If we
cut M along the cycles we obtain a 4g-gon with boundary ∂F=

∑
i(ai + bi + a−1

i + b−1
i ). Any closed curve in

F̊corresponds to a closed curve in M which, since it does not intersect any a- or b-cycle, is null-homologous.
In particular, any closed 1-form on F is exact. In particular, if p0 ∈ F̊, then

f (p) =
∫ p

p0

ω ,

where the integration is taken along some path γp from p0 to p in F, yields a potential of ω, i.e. df = ω. In
particular we get∫

M

ω ∧ η =

∫
F

df ∧ η =
∫
F

d( f ∧ η) =
∫
∂F

f η =
g∑
i=1

(∫
ai

f η +
∫
bi

f η +
∫
a−1
i

f η +
∫
b−1
i

f η
)

.
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9 Holomorphic Line Bundles

By construction, if p ∈ ai ⊂ F and p̃ ∈ a−1
i ⊂ F correspond the same point in M, then the path γ−1

p

concatenated with γp̃ closes in M and is homologous to bi . Hence

f (p̃) = f (p) +
∫
bi

ω .

Similarly, for p ∈ bi ⊂ Fand p̃ ∈ b−1
i ⊂ Fwhich correspond to the same point in M we get

f (p̃) = f (p) −
∫
ai

ω .

Hence we get∫
M

ω ∧ η =

g∑
i=1

(∫
ai

f η +
∫
bi

f η −
∫
ai

(
f +

∫
bi

ω
)
η −

∫
bi

(
f −

∫
ai

ω
)
η
)
=

g∑
i=1

(
−

∫
ai

(∫
bi

ω
)
η +

∫
bi

(∫
ai

ω
)
η
)

,

which yields the desired formula after pulling the constants
∫
bi
ω and

∫
ai
ω out of the integrals.

Corollary 9.2.5 If η = α + i ∗ α is a holomorphic differential, then∫
M

α ∧ ∗α =

g∑
i=1

Im
( (∫

ai

η
) (∫

bi

η
) )

.

Proof. Exercise.

Corollary 9.2.6 Let η ∈ H0K . Then η = 0 if and only if all its a-periods vanish.

Corollary 9.2.7 Let η ∈ H0K . Then η = 0 if and only if all its a- and b-periods are real.

Remark 9.2.3 Note that, by Corollary 9.2.6, a1, . . . , ag form a complex basis of (H0K)∗.

Definition 9.2.4 (Canonical Basis of Holomorphic Differentials) The basis ω1, . . . ,ωg ∈ H0K dual to
a1, . . . , ag ∈ (H0K)∗ is called canonical.

Definition 9.2.5 An Abelian differential η is callled normalized, if
∫
ai
η = 0 for all i = 1, . . . , g.

Since H0CM consists only of constant. The Mittag–Leffler theorem tells us that the only condition on the
poles is that the residues have to sum up to zero. This yields the following theorem.

Theorem 9.2.8 Let (U, z) be a complex chart at p ∈ M and (V ,w) be a complex chart at q ∈ M . Then:

(a) For each 1 ≤ n ∈ N there is a unique normalized Abelian differential of the second kind ωn
p with a single pole

at p such that
ωn

p |U =
( 1
zn+1 + O(1)

)
dz .

(b) There is a unique normalized Abelian differential of the third kind ωpq with exactly two poles at p and q such
that

ωpq |U =
( 1
z + O(1)

)
dz , ωpq |V =

(
− 1

w + O(1)
)

dw .
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9.2 Meromorphic Sections

Proof. Existence of Abelian differentials with these poles is assured by the Mittag–Leffler Theorem. They are
unique since the difference of two normalized Abelian differentials with the same poles is a holomorphic
differential with vanishing a-periods.

Remark 9.2.4 Note that ωn
p integrates to a meromorphic function f : F→ C with a pole at p of the form

f |U = − 1
zn + O(1) .

If γ is an embedded path from p to q in F, then ωpq integrates to a holomorphic function ϕ : F\ γ → C

such that
ϕ|U = log z + O(1) , ϕ|V = − logw + O(1) .

In particular, g = eϕ becomes a holomorphic function defined on Fwhich has a single simple zero at p
and a single simple pole at q:

g |U = z(c + O(z)) , g |V =
1
w (d + O(w)) ,

where c, d are non-zero constants.

Theorem 9.2.9 Let ωpq be a normalized Abelian differential of the third kind with only poles at p and q such that

Respωpq = 1 , Resqωpq = −1

and ω1, . . . ,ωg be the canonical basis of holomorphic differentials. Then∫
bi

ωpq = 2πi
∫ p

q

ωi , i = 1, . . . , g .

Proof. On F there is fi such that dfi = ωi . Since fiωpq is holomorphic on F\ {p, q} we have∫
∂F

fiωpq =

∫
|z |=ε

fiωpq +

∫
|w |=ε

fiωpq = 2πi fi(p) − 2πi fi(q) = 2πi
∫ p

q

dfi = 2πi
∫ p

q

ωi .

On the other hand, as in the proof of the Riemann bilinear identity one shows that∫
∂F

fiωpq =
∑
j

(∫
a j

ωi

∫
b j

ωpq −

∫
b j

ωi

∫
a j

ωpq

)
.

Hence, using
∫
a j
ωi = δi j and

∫
a j
ωpq = 0, we find that

∫
bi
ωpq = 2πi

∫ p

q
ωi .

9.2.3 Divisors and the Abel–Jacobi Map

Let M be a compact Riemann surface. A divisor is a map D : M → Z with discrete supp D = {p1, . . . , pn} ⊂ M .
If we identify a point p ∈ M with the divisor which assigns the value 1 to p and vanishes else, we can write

D =
∑
p∈M

D(p) p =
n∑
i=1

di pi .

Clearly, with addition of functions the divisors form an Abelian group, which we denote by Div M .
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Example 9.2.1 (Divisor of Direction Fields) Let ψ be a direction field. Then the index of ψ is a divisor:

(ψ) := indψ ∈ Div M .

Definition 9.2.6 (Divisor Class Group) A divisor is called a principal divisor if it is the divisor of a meromorhic
function. Two divisors are called equivalent if and only if their difference is principal. The corresponding quotient
group is called the divisor class group Cl M = Div M/∼.

To each divisor we can assign a holomorphic line bundle as follows: To each divisor D we assign the
holomorphic line bundle

[D] :=
⊗
p∈M

sky(p, D(p)) .

Clearly, [D] � [D̃] if and only if D ∼ D̃. Hence the map D 7→ [D] defines an injective group homomorphism

Cl M ↪→ Pic M .

We will see soon that this is actually an isomorphism.

Remark 9.2.5 (Degree of Divisors) Since Cl M ⊂ Pic M , each divisor has a degree. To compute it, note that
each skyscraper bundle comes with a meromorphic section—its famous section. The product of these
famous sections is then a meromorphic section of SD . In particular, if D =

∑n
i=1 dipi , then it follows from

the Poincaré–Hopf index theorem that

deg D := deg [D] =
n∑
i=1

di .

In particular, we have divisors of a certain degree DivdM = Div M ∩ PicdM .

The restriction of the map S to the divisors of degree zero is called the Abel–Jacobi map.

Definition 9.2.7 (Abel–Jacobi Map) The map A: Div0M → Jac M given by D 7→ [D] is called Abel–Jacobi map.

For p, q ∈ M we have p − q ∈ Div0M . Hence, if we fix q ∈ M , we obtain a map A : M → Jac M :

A(p) = A(p − q) = [p − q] .

We want to show that A is holomorphic. Therefore we need to get out which element in (H0K)∗ belongs to
p − q. To do so we explicitly construct an isomorphism from A(p) to the trivial bundle.

Let a1, . . . , ag, b1, . . . , bg be a canonical basis of homology and ω1, . . . ,ωg ∈ H0K be the corresponding
canonical basis of holomorphic differentials.

Note that the famous section ψ of L = [p − q] is a holomorphic section with a single simple zero at p and a
single simple pole at q. Let ωpq be a normalized Abelian differential of the third kind with respωpq = 1 and
resqωpq = −1. Since ωpq is normalized, it has no a-periods.

Recall, to each cycle we can assign the Poincaré dual, i.e. to each ai we have a harmonic form αi and to each
bi a harmonic form βi such that for all η ∈ H0K∫

a j

η =

∫
M

α′′i ∧ η ,
∫
b j

η =

∫
M

β′′i ∧ η .
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Define

ω = ωpq +

g∑
i=1

ci α′′i , ci =
∫
bi

ωpq .

Then ω has no periods we get a function f = exp
(
−

∫
ω
)

with a single pole at p and a single zero at q.

Hence ϕ = fψ extends to a smooth section of L and defines an isomorphism with the trivial bundle CM ,

C∞(M ; C) 3 z 7→ Φ(z) := zϕ ∈ ΓL .

Under this isomorphism the ∂̄-operator of L takes the form d ′′ − 2πiξ with ξ ∈ ΓK̄ closed. To determine ξ we
can use that ψ is meromorphic. We have

∂̄Φ(z) = ∂̄(z fψ) =
(
d ′′(z f )

)
ψ = (d ′′z + d ′′ log f )ϕ = Φ(d ′′z + d ′′ log f ) .

Since d log f = −ωpq −
∑g

i=1 ci α′′i and ω′′pq = 0, we get 2πiξ = −d ′′ log f =
∑g

i=1 ci α′′i . With Theorem 9.2.9, we
thus obtain the following coordinate expression for A:

A(p) = 1
2πi (c1, . . . , cn) =

∫ p

q

(ω1, . . . ,ωg) .

which can be identified with just the integral operator
∫ q

p
considered as an element of (H0K)∗.

Theorem 9.2.10 Let D =
∑

i(pi − qi), then

A(D) =
∑
i

∫ pi

qi

: H0K → C

9.2.4 Existence of Non-Trivial Meromorphic Sections and the Riemann–Roch
Theorem

The Riemann–Roch theorem then relates the dimensions of H0L and H0KL−1 to the degree of L and the
genus g of M .

Theorem 9.2.11 (Riemann–Roch Theorem)

h0L − h0KL−1 = deg L + 1 − g .

If we subtract deg L on both sides of the equality we are left with an integer on the right-hand side that only
depends on the genus of the surface so does the left-hand side. We give it a name:

nL := h0L − h0KL−1 − deg L .

Since nCM
= h0CM − h0K − deg CM = 1 − g, the Riemann–Roch theorem just becomes nL = nCM

.

We will show nL is invariant under tensoring in skyscraper and thus divisor bundles. The Riemann–Roch
Theorem then follows directly from the existence of a meromorphic sections.

Let p ∈ M . The skyscraper bundle [p] = sky(p, 1) then comes with its famous section, which is a holomorphic
section with a single simple zero at p. Every other holomorphic bundle wiht this property is holomorphically
equivalent: If S is another such holomorphic line bundle, then the quotient [p]S−1 has a section with a
removable singularity, i.e. it is holomorphically trivial.
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Tensoring in a skyscraper bundle changes the dimension of the space of holomophic sections by at most 1:
Let ϕ ∈ H0[p] denote the famous section. Then we have an injection H0L ↪→ H0[p]L given by

H0L 3 ψ 7→ ϕ ⊗ ψ ∈ H0[p]L .

The image of this map equals ker(ψ̃ 7→ ψ̃p). In particular, we get the following corollary.

Corollary 9.2.12 h0[p]L − h0L ∈ {0, 1}

This previous theorem says that the difference h0[p]L − h0L is boolean. Moreover, it proves half of the
following theorem—namely, (b) ⇔ (c).

Theorem 9.2.13 The following are equivalent:

(a) There is a meromorphic section ψ of L with a single simple pole at p.
(b) There is ψ̃ ∈ H0[p]L with ψ̃p , 0.
(c) h0[p]L > h0L.

Proof. It is left to show (a) ⇔ (b). Let ψ be a meromorphic section of L with a single simple pole at p and
0 , ϕ ∈ H0[p]. Then ϕ ⊗ ψ ∈ H0[p]L with (ϕ ⊗ ψ)p , 0. Conversely, if there is ψ̃ ∈ H0[p]L with ψ̃p , 0, then
ψ = ψ̃/ϕ is meromorphic with single simple pole at p.

Moreover, the Mittag–Leffler Theorem yields the following lemma.

Lemma 9.2.14 There is a holomorphic section ψ of L with ψp , 0 if and only if there is no meromorphic section η of
KL−1 with a single simple pole at p.

Proof. "⇒": If there would be such ψ and η then 〈η |ψ〉 would have a single simple pole at p, which contradicts
the fact that the residues of a meromorphic 1-form sum up to zero. "⇐": Suppose all ψ ∈ H0L would vanish
at p. Let ξ be a smooth section of KL−1 with a single simple pole at p. Then Resp 〈ξ |ψ〉 = 0 for all ψ ∈ H0L
and, by the Mittag–Leffler theorem, there is a meromorphic η ≡ ξ mod ΓKL−1.

This together yields the following theorem.

Theorem 9.2.15 The following are equivalent:

(a) h0L[p] > h0L.
(b) There is ψ̃ ∈ H0L[p] with ψ̃p , 0.
(c) There is a no meromorphic section of KL−1[−p] with a single pole at p.
(d) not( h0KL−1 > h0KL−1[−p] ).

Boolean algebra-wise, the equivalence of (a) and (d) yields in particular that

h0L[p] − h0L = 1 −
(
h0KL−1 − h0KL−1[−p]

)
.

Thus

h0L[p] − h0KL−1[−p] − deg L[p] = h0L[p] − h0KL−1[−p] − deg L − 1 = h0L − h0KL−1 − deg L = nL .

Hence we have shown that nL is invariant under tensoring with a divisor.
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Lemma 9.2.16 Let D ∈ DivM , then
nL = nL[D] .

Proof. The above computation shows that nL = nL[p]. Hence nL = nL[D].

Theorem 9.2.17 Every holomorphic line bundle has a non-trivial meromorphic section.

Proof. For large n the bundle L̃ = L[np] satisfies deg KL̃−1 < 0. Thus h0KL̃−1 = 0 and so we have

nL = nL̃ = h0 L̃ − deg L̃ .

Hence h0 L̃ > 0 for n large enough. Hence there is ψ ∈ H0 L̃. Then, if ϕ ∈ H0[np] denotes the famous section,
the section ψ/ϕ is a meromorphic section of L.

Given the existence of a non-trivial meromorphic section and that nL is invariant under tensoring in point
bundles, the proof of the Riemann–Roch Theorem becomes a triviality:

Proof of the Riemann–Roch Theorem. Let ψ be a meromorphic section of L and D = (ψ), then L[−D] is trivial
and hence nL = nL[−D] = nCM

.

9.3 Some Applications of the Riemann–Roch Theorem

Through out this section, let M be a compact Riemann surface of genus g.

9.3.1 The Riemann–Hurwitz Formula

We can use the Riemann–Roch theorem to compute the degree of the canonical bundle K of M .

Theorem 9.3.1 deg K = 2g − 2.

Proof. By the Riemann–Roch theorem, 1 − g = nK = h0K − h0CM − deg K = g − 1 − deg K .

Corollary 9.3.2 χ(M) = 2 − 2g.

The Riemann–Hurwitz formula relates the branch order of a holomorphic map to degree and genus:

Definition 9.3.1 (Degree of a Holomorphic Map) Let M̃ and M be compact Riemann surfaces and f : M̃ → M
be holomorphic. The degree of f is given by

deg f := #sheets =
1

vol M

∫
M̃

f ∗ωM ,

where ωM denotes the volume form of M .

Remark 9.3.1 In fact, for each smooth map f : M̃ → M̂ between equidimensional connected compact
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manifolds, dim M̃ = m = dim M̂ , one can show that there is deg f ∈ Z such that∫
M̃

f ∗ω = deg f
∫
M̂

ω

for all ω ∈ ΩmM̂ . Also in this situation the degree is a sum over sheets, but counted with sign—as explained
e.g. in [9]. A proof of the degree formula can be found in [10].

The following lemma is then an easy exercise.

Lemma 9.3.3 Let M̃ , M be compact Riemann surfaces, f : M̃ → M be holomorphic and L → M be a complex line
bundle. Then

deg f ∗L = deg f · deg L

Now, let M̃ and M be compact Riemann surfaces and f : M̃ → M be holomorphic. Then we can consider
df as a section of Hom(T M̃; f ∗T M). Since f is holomorphic, we have Jdf = df ◦ J. Hence df ∈ Γ(K̃ f ∗T M),
where K̃ denotes the canonical bundle of M̃. So df is a section of a complex line bundle. Moreover, df has
isolated zeros. In this context the index of df is called the branch order.

Definition 9.3.2 (Branch Order) Let M̃ , M be compact Riemann surfaces and f : M̃ → M be holomorphic. Then
the branch order of f at p ∈ M̃ is defined to be bp( f ) := indp(df ). The branch order of f is then defined as

b( f ) =
∑
p∈M̃

bp( f ) .

Example 9.3.1 If f (z) = zn we have df = nzn−1dz and thus b0 f = n − 1. Recall that every holomorphic
function locally looks like this.

In particular, by the Poincaré–Hopf index theorem the branch order of f equals the degree of K̃ f ∗T M , i.e.

b( f ) =
∑
p∈M̃

indp(df ) = deg(K̃ f ∗T M) = deg K̃ + deg f ∗T M = deg K̃ − deg f deg K = 2(g̃ − 1 − deg f (g − 1)) .

Here g and g̃ denote the genus of M and M̃ , respectively. The last two equalities follows from Lemma 9.3.3
and Theorem 9.3.1. This proves the Riemann–Hurwitz formula.

Theorem 9.3.4 (Riemann–Hurwitz Formula) Let M̃ and M be compact Riemann surfaces of genus g̃ and g,
respectively. If f : M̃ → M is holomorphic, then

b( f ) = 2
(
g̃ − 1 − deg f (g − 1)

)
.

E.g. this enables us to compute the genus of hyperelliptic curves.

Exercise 9.3.1 Show that the differentials ωj =
z j−1

w dz, j = 1, . . . , g, form a basis of holomorphic differentials
of the hyperelliptic Riemann surface given by w2 =

∏n
i=1(z − zi), zi , zj for i , j, n = 2g + 1 or n = 2g + 2.

9.3.2 The Abel Theorem

By the Poincaré–Hopf index theorem any principle divisor is of degree zero. Abel’s theorem answers
precisely the question when a given degree zero divisor is principal. This is based on the simple observation
that a holomorphic line bundle of degree zero is trivial if and only if there exists a non-trivial holomorphic
section.
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9.3 Some Applications of the Riemann–Roch Theorem

Theorem 9.3.5 (Abel’s Theorem) Let D ∈ Div0M . Then

D principal ⇐⇒ A(D) = 0 .

Proof. Let L = [D] and ϕ its famous section. Clearly, ϕ is meromorphic with (ϕ) = D. Thus D is principal if
and only if there is a meromorphic function f such that

D = ( f ) ⇐⇒ ψ = ϕ/ f ∈ H0L ⇐⇒ H0L , {0} ⇐⇒ L trivial ,

i.e. A(D) = 0.

The existence of non-trivial meromorphic sections implies that the Abel–Jacobi map is surjective group
homomorphism. With Abel’s theorem we get that Adescends to a group isomorphism from the divisor class
group to the Jacobi variety.

Corollary 9.3.6 A: Cl M → Jac M is an isomorphism of Abelian groups.

9.3.3 The Jacobi Inversion Theorem

The Jacobi inversion theorem is a refinement of Corollary 9.3.6 on the particular form of the divisor. It
says that each element of Jac M can be represented by a divisor of the form D =

∑g

i=1(pi − p0) = D0 − gp0,
0 ≤ D0 ∈ DivgM . One way to show this uses the following fact (cf. [11], page 237).

Proposition 9.3.7 Let f : M̃ → M̂ be a holomorphic map between equidimensional compact connected complex
manifolds.If there is exists a point p ∈ M̃ such that dp f is bijective, then f is surjective.

To apply the theorem to the problem one identifies the positive divisors of degree g on a compact Riemann
surface M with unordered g-tuples, i.e. with points in the g-th symmetric product M (g)—which is defined as
the quotient of the g-th cartesian product Mg by the action of the symmetric group Sg: For σ ∈ Sg,

(p1, . . . , pg) ∼ (zσ1 , . . . , zσg ) .

For a Riemann surface M the n-th symmetric product M (n) has a natural complex structure. This is basically
due to the fundamental theorem of algebra—every unordered n-tuple of points in the complex plane can be
identified with the zero set of a polynomial of degree n, which is unique up to a multiplicative constant and
as such can be considered as a point in the n-dimensional complex projective space.

Clearly, if M is connected and compact, so is M (g). Hence the Jacobi inversion theorem in principle follows
from the following lemma.

Lemma 9.3.8 Generically the map A : Mg → (H0K)∗ given by A(p1, . . . , pg) =
∑g

i=1

∫ pi

p0
is regular.

Proof. If ω1, . . . ωg ∈ H0K is a basis of holomorphic differentials, then its dual basis gives coordinates on
(H0K)∗. With respect to these coordinates, we have

A(p1, . . . , pg) =
∑
i

∫ pi

p0

(ω1, . . . ,ωg) ∈ Cg .
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9 Holomorphic Line Bundles

In particular, if zi are coordinate charts at pi , its Jacobi matrix is of the form

©­­­«
ω1
dz1

· · ·
ω1
dzg

...
...

ωg

dz1
· · ·

ωg

dzg

ª®®®¬ .

Now we can choose p1 ∈ M such that ω1
dz1
|p1 , 0 and subtract multiples of ω1 from ω2, . . . ,ωg such that

ωi

dz1
|p1 = 0 for i > 1. Then choose p2 such that ω2

dz2
|p2 , 0 and subtract multiples of ω2 from ω3, . . . ,ωg to

annihilate the entries below ω2
dz2
|p2 . Proceeding like that the Jacobian of Abecomes an upper triangular matrix

with non-zero entries on the diagonal and we are done.

Another more direct way to prove the Jacobi inversion theorem is based on the Riemann–Roch theorem.

Theorem 9.3.9 (Jacobi Inversion Theorem) ∀ µ ∈ Jac M , p0 ∈ M ∃ p1, . . . , pg ∈ M : A
(∑g

i=1(pi − p0)
)
= µ.

Proof. By Lemma 9.3.8 there are (p̃1, . . . , p̃g) such that d(p̃1,...,p̃g )A is bijective. Thus A is locally invertible, i.e.
there are open neighborhoods Ui of p̃i and V of µ̃ = A(p̃1, . . . , p̃g) such that A : U1 × · · ·Ug → V is invertible.
In particular, given µ ∈ (H0K)∗ there is n ∈ N such that µ̃ − 1

N µ ∈ V . Hence there are p̂1, . . . , p̂g such that
µ̃− 1

N µ = A(p̂1, . . . , p̂g). Thus, with D̃ =
∑g

i=1 p̃i and D̂ =
∑g

i=1 p̂i , we get

A(D̂ − gp0) = A(D̃ − gp0) −
1
N µ ⇐⇒ µ = N

(
A(D̂ − gp0) −A(D̃ − gp0)

)
+A

(
N(D̂ − D̃)

)
.

It is left to show that N(D̂ − D̃) ∼ D − gp0 for some D ≥ 0 with deg D = g. Therefore consider the bundle
L = [N(D̂ − D̃) + gp0]. Then the Riemann–Roch theorem yields

h0L ≥ h0L − h0KL−1 = deg L + 1 − g = 1 .

So if 0 , ψH0L and ϕ denotes the famous section of L we get a meromorphic function f = ψ/ϕ with

( f ) = D − N(D̂ − D̃) − gp0 ⇐⇒ N(D̂ − D̃) + ( f ) = D − gp0 ,

where D = (ψ) =
∑g

i=1 pi . Hence µ = A(N(D̂ − D̃)) = A(D − gp0) = A
(∑g

i=1(p1 − p0)
)
.

9.3.4 Branched Coverings of Riemann Sphere

Let L → M be a holomorphic line bundle of degree d over a compact Riemann surface of genus g. Then, if
d = g + 1, the Riemann–Roch theorem yields that

h0L ≥ h0L − h0KL−1 = deg L + (1 − g) = 2 .

Thus there are two linearly independent sections ψ1,ψ2 ∈ H0L which by f = ψ2/ψ1 define a non-constant
moromorphic function, i.e. a holomorphic map f : M → CP1. Since f is non-constant, f is surjective—
a branched covering. Surjectivity also yields that f is of degree ≥ 1. On the other hand, counted with
multiplicity, ψ1 has d + 1 zeros. Thus f has at most d + 1 poles and so deg f ≤ f . Since on every compact
Riemann surface there exists holomorphic line bundles of arbitrary degree we have shown the following
theorem.

Theorem 9.3.10 Let M be a compact Riemann surface of genus g. Then there exists a holomorphic map f : M → CP1

whose degree satisfies 1 ≤ deg f ≤ g + 1.

In particular, since a holomorphic map f of degree one is a biholomorphism we get the following corollary.
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9.3 Some Applications of the Riemann–Roch Theorem

Corollary 9.3.11 Any Riemann surface of genus zero is biholomorphic to CP1.

Proof. Choose some holomorphic line bundle L → M of degree one. Then h0L = 2. If ψ1,ψ2 ∈ H0L are
linearly independent, then f := ψ2/ψ1 is a meromorphic function, i.e. a holomorphic map M → CP1. A
holomorphic section of L has exactly one simple zero and so the preimage of∞ ∈ CP1 is a single point. In
particular, deg f = 1 and thus f is a biholomorphism.

Corollary 9.3.12 There is a holomorphic line bundle L → M such that deg L = 1 and h0L = 2 if and only if M is
of genus zero.

9.3.5 The Abel–Jacobi Map on Surfaces of Genus g > 0

From Corollary 9.3.12 we can draw the following conclusion on the zeros of holomorphic differentials.

Theorem 9.3.13 On a Riemann surface of genus g > 0 there is no point at which all holomorphic differentials
vanish simultaneously.

Proof. Suppose that all holomorphic differentials vanish at a point p ∈ M . Then h0K[−p] = g and

h0[p] − g = h0[p] − h0K[−p] = 1 + 1 − g = 2 − g .

Hence h0[p] = 2 and so M is of genus zero—a contradiction.

Corollary 9.3.14 Let M be of genus g > 0, p0 ∈ M . Then A : M → Jac M , A(p) := A(p − p0) is an embedding.

Proof. From the last theorem we get that A is an immersion, which is injective by Abel’s theorem. Since M is
compact, A is an embedding (Theorem 2.2.3).

Thus each Riemann surface of genus larger than zero is holomorphically embedded into its Jacobian.

Moreover, for surfaces of genus g = 1 the Jacobi inversion theorem yields surjectivity of the Abel–Jacobi map.
Thus we get the following theorem.

Theorem 9.3.15 Every Riemann surface of genus one is biholomorphic to its Jacobi variety.

In particular, each Riemann surface of genus one is a conformally equivalent to a flat torus C/Λ. Clearly, if
Λ′ = cΛ for c ∈ C×, then C/Λ � C/Λ′. Hence we can assume that

Λ = {m1 +m2τ | m1, m2 ∈ Z} .

where Im τ > 0. Moreover, one can show that two such tori are isometric if and only if Λ′ = Λ. In this case
the generators (1, τ′) and (1, τ) are then related by some M ∈ SL(2, Z). The corresponding action of Sl(2, Z)

on τ is generated by the following two transformations:

τ 7→ τ + 1 , τ 7→ −1/τ .

Hence the Riemann surfaces of genus one can be identified with equivalence classes of points in the upper
halfplane H2. Each class has a representative τ with |τ | ≥ 1, − 1

2 ≤ Re τ ≤ 1
2 and Im τ ≥ 0. If the point does

not lie on the boundary the representative is unique. The quotient H2/SL(2, Z) is called the moduli space.
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9 Holomorphic Line Bundles

9.4 Holomorphic Maps into Complex Projective Space

Let M be a complex manifold. There is a natural one-to-one correspondence between maps M → CPn and
complex line subbundles of Cn+1

M :

C∞(M ; CPn) 3 f 7→ f ∗Taut(CPn) ⊂ Cn+1
M .

Conversely, given a complex line subbundle L ⊂ Cn+1
M we can define fL : M → CPn by f (p) = π(Lp) ∈ CPn.

Remark 9.4.1 Similarly, higher rank subbundles correspond to maps into Grassmannians.

Recall that the tautological line bundle Taut(CPn) is a holomorphic line bundle.

Proposition 9.4.1 A map f : M → CPn is holomorphic if and only if f ∗Taut(CPn) is a holomorphic subbundle.

Proof. If f is holomorphic, then any holomorphic frame of Taut(CPn) pulls back to a holomorphic frame
of f ∗Taut(CPn). Conversely, if f ∗Taut(CPn) ⊂ Cn+1

M is a holomorphic subbundle, then at each p we find
a holomorphic frame ψ of f ∗Taut(CPn), i.e. a holomorphic map ψ : M → (Cn+1)× such that π ◦ ψ = f . In
particular, f is holomorphic.

Definition 9.4.1 (Linearly Full) A map f : M → CPn is called linearly full, if its image f (M) is not contained in
any projective hyperplane.

Corollary 9.4.2 Let L := f ∗Taut(CPn), where f : M → CPn is holomorphic and linearly full. Then h0L∗ ≥ n + 1.

Proof. Each element of (Cn+1)∗ restricts to a section ψ of Taut(CPn)∗. Clearly, ψ is holomorphic. Since f is
holomorphic, f ∗ψ ∈ H0L∗. This defines a linear map (Cn+1)∗ → H0L∗. Since f is linearly full, this map is
injective. Hence h0L∗ ≥ n + 1.

9.4.1 Linear Systems and Some Bounds on their Dimension

Now let L be a complex line bundle over a complex manifold M . We want to construct a map from M into
complex projective space. Therefore we start with a basepoint-free linear system.

Definition 9.4.2 (Basepoint-Free Linear System) A basepoint-free linear system is a finite-dimensional complex
subspace V ⊂ ΓL such that

(a) For each p ∈ M there is ψ ∈ V such that ψp , 0.
(b) For all ψ, ϕ ∈ V the function ψ/ϕ : M \ ϕ−1{0} → C is holomorphic.

Such a basepoint-free linear system determines a unique ∂̄-operator.

Theorem 9.4.3 If V ⊂ ΓL is a basepoint-free linear system, then there is a unique ∂̄-operator such that V ⊂ H0L.

Proof. For each p ∈ M there is ψ ∈ V such that ψp , 0. Hence for each ϕ ∈ ΓL there are ψi ∈ V and zi ∈ C∞M
such that ϕ =

∑m
i=1 zi ψi . Then

∂̄ϕ :=
m∑
i=1

(d ′′zi)ψi .
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9.4 Holomorphic Maps into Complex Projective Space

defines a ∂̄-operator. That ∂̄ϕ does not depend on the choice of zi and ψi follows since any two sections in V
differ by a holomorphic function. Clearly V ⊂ H0L and ∂̄ is uniquely determined by this condition.

To each point ξ ∈ L∗p we can assign a linear functional δξ ∈ (ΓL)∗ as follows: For ψ ∈ ΓL,

δξ (ψ) := ξ(ψp) .

This yields a complex linear map δ : L∗ → (ΓL)∗. Given a basepoint-free linear system V ⊂ H0L, the restriction
δ : L∗ → V∗ is smooth and descends to a smooth map fV : M → P(V∗):

fV (p) = δL∗p .

The map fV is called the Kodaira correspondence.

Theorem 9.4.4 If V ⊂ H0L is a basepoint-free linear system of complex dimension m > 0, then the Kodaira
correspondence fV : M → P(V∗) � CPm−1 is a linearly full holomorphic map.

Proof. Exercise.

Let us fix the notation for the degree and the dimension of holomorphic sections: For a holomorphic line
bundle L → M over a compact Riemann surface of genus g, we write

d = deg L , n = h0L .

The Riemann–Roch theorem relates d to n. We are interested in bounds on n in terms of d. Let us collect the
most obvious relations in the following proposition.

Proposition 9.4.5 We have n ≥ d + 1 − g. Moreover:

(a) If d < 0, then n = 0.
(b) If d = 0, then n ∈ {0, 1}.
(c) If d > 2g − 2, then n = d + 1 − g.
(d) If d = 2g − 2, then n ∈ {d + 1 − g, d + 2 − g}.

Proof. (a) is the statement of Theorem 8.1.10 followed from the Poincaré–Hopf index theorem and the fact
that holomorphic sections only have zeros of positive index. In particular, a holomorphic section of a degree
zero bundle has no zeros at all. So there are only two cases—either L is non-trivial (n = 0) or L is trivial
(n = 1). Let L̃ := KL−1 and ñ = h0 L̃. The Riemann–Roch theorem then states that

n = d + 1 − g + ñ .

Hence n ≥ d + 1 − g. Moreover, since deg L̃ = deg KL−1 = 2g − 2 − d, (c) and (d) follow from (a) and (b)
applied to L̃.

A less obvious bound is the following.

Theorem 9.4.6 For d ≥ −1, we have n ≤ d + 1.

Proof. For n = 0 the inequality holds. Suppose that n > 0. For p1, . . . , pn−1 ∈ M pairwise distinct, pi , pj for
i , j, and U0 := H0L. Define recursively

Ui := {ψ ∈ Ui−1 | ψpi = 0} .
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9 Holomorphic Line Bundles

Then dim Ui ≥ n − i. In particular, dim Un−1 ≥ 1. Hence there is a holomorphic section with at least n − 1
zeros. The Poincaré–Hopf index theorem then yields d ≥ n − 1.

9.4.2 Clifford’s Theorem—A Tighter Upper Bound

Let L → M be a holomorphic line bundle of degree d over a compact Riemann surface of genus g and let
n = h0L. We have seen that n = 0 for d < 0 and that n = d + 1 − g for d > 2g − 2. Moreover, for 0 ≤ d ≤ 2g − 2,
we have shown that

d + 1 − g ≤ n ≤ d + 1 .

A tighter upper bound is given by the following theorem.

Theorem 9.4.7 (Clifford’s Theorem) Suppose n > 0 and n > d − (g − 1). Then

n ≤
d
2
+ 1 .

Its proof is mainly based on the following dimensionality relation between three finite-dimensional complex
vector spaces U, V , W on which exists a bi-injective complex bilinear pairing ∗U ×V → W , i.e. u ∗ v = 0 only if
u = 0 or v = 0. The dimension of W is bound form below by the dimensions of U and V .

Example 9.4.1 Let C≤d[z] denote the space of polynomials of degree at most d. Then multplication of
functions yields a biinjective bilinear pairing C≤d1 [z] ×C≤d2 [z] → C≤d1+d2 [z] and we have

dim C≤d1+d2 [z] = d1 + d2 + 1 = dim C≤d1 [z] + dim C≤d2 [z] − 1 .

The example shows that the inequality from the next theorem is tight.

Theorem 9.4.8 Let U, V , W be finite-dimensional complex vector spaces, such that dim U + dim V ≤ dim W , and
∗ : U ×V → W bilinear, such that u ∗ v = 0⇒ u = 0 or v = 0. Then

dim W ≥ dim U + dim V − 1 .

We state the theorem here without proof—its proof is much harder and more interesting than one might
think at first. A proof can be found in [12]. A more geometric proof is given in Appendix A.3.

Theorem 9.4.9 h0L > 0, h0 L̃ > 0⇒ h0LL̃ ≥ h0L + h0 L̃ − 1

Proof. Apply Theorem 9.4.8 to the map ∗ : H0L × H0 L̃ → H0LL̃ defined by the tensor product.

Proof of Theorem 9.4.7. Assume that h0L, h0 L̃ > 0, where L̃ = KL−1. Then, by Theorem 9.4.9 and the Riemann–
Roch theorem,

g = h0K ≥ n + ñ︸︷︷︸
n−d+g−1

−1 = 2n − d + g − 2 .

Hence 2n ≤ d + 2 and thus n ≤ d/2 + 1.

9.4.3 Rational Curves—Holomorphic Line Bundles over S2

Over a compact Riemann surface of genus zero the inequality of the previous proposition becomes tight.
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9.4 Holomorphic Maps into Complex Projective Space

Theorem 9.4.10 If g = 0 and d ≥ −1, then n = d + 1.

Proof. Exercise.

Without loss of generality, M = CP1. The tautological line bundle T = Taut(CP1) is of degree −1. By
Corollary 9.1.17, there is only one holomorphic bundle for each degree d over the sphere. Thus, if L → M is
a holomorphic line bundle of degree d, then

L � T−d .

Recall that a homogeneous polynomial of degree d on C2 is a polynomial P : C2 → C such that P(λψ) =
λdP(ψ) for all λ ∈ C and ψ ∈ C2. Let Vd denote the space of homogeneous polynomials on C2.

Each P ∈ Vd can be seen as a constant map defined on CM . In particular, each P restricts to a map α : T→ C.
For λ ∈ C and ψ ∈ Tp , we have

αp(λψ) = λ
dαp(ψ)

and thus αp ∈ T−dp = Lp . Clearly, α ∈ H0L. As Vd → ΓL is injective, we have Vd ⊂ H0L. Moreover, since there
is a one to one correspondence between homogeneous polynomials of degree d on C2 and polynomials of
degree d on C, we know dim Vd = d + 1 = h0L and thus Vd = H0L.

To write the Kodaira correspondence fH0L in coordinates, consider the basis {α0, . . . ,αd} ⊂ H0L given by

wd , zwd−1, . . . , zd−1w, zd ,

where (z,w) are the standard coordinates of C2. Let {α∗0, . . . ,α∗
d
} ⊂ V∗

d
denote its dual basis. Then, for ξ ∈ L∗p ,

δξ |Vd
=

d∑
i=0

〈δξ |αi〉 α
∗
i .

Let p ∈ CP1 and ψ = (ψ1,ψ2) ∈ C2 such that π(ψ) = p. Then ψ ∈ Tp and hence ψd ∈ Td
p = L∗p. Thus

〈δξ |αi〉 = ψ
i
1ψ

d−i
2 . The Kodaira correspondence f : CP1 → CPd is then given by

f ([z,w]) = [(wd , zwd−1, . . . , zd−1w, zd)] .

or, in affine coordinates, z 7→ (z, z2, . . . , zd)—the rational normal curve.

Definition 9.4.3 (Rational Curve) The image of a non-constant holomorphic γ : CP1 → CPm−1 of degree d, i.e.
d = −deg γ∗Taut(CPm−1), is called a rational curve in CPm−1.

A rational curve γ : CP1 → CPm−1 of degree d is the same thing as an m-dimensional baspoint-free linear
system V ⊂ H0L, where L = T−d � γ∗Taut(CPm−1)−1.

Since the inclusion V → H0L is injective, its dual map (H0L)∗ → V∗ is surjective and we get the following
commuting diagram:

CP1 P(V∗)

P((H0L)∗)

γ

f
π
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9 Holomorphic Line Bundles

Consider γ : C → Cn given by γ(z) =
(
P1(z)/Q1(z), . . . , Pm−1(z)/Qm−1(z)

)
, where Pi , Qi : C → C are polyno-

mial. Then γ is an affine version of γ̂ : C→ Cm given by

γ̂(z) =

©­­­­­«
Q1(z)Q2(z) · · ·Qm−1(z)
P1(z)Q2(z) · · ·Qm−1(z)

...
Q1(z)Q2(z) · · · Pm−1(z)

ª®®®®®¬
=

©­­­«
a00 · · · a0d

...
...

am−1,0 · · · am−1,d

ª®®®¬︸                        ︷︷                        ︸
=A

©­­­­­«
1
z
...

zd

ª®®®®®¬
.

Hence, if [A] denote the projective map given by A, then γ = [A] f .

9.4.4 Curves in CPm−1

Let M be a compact Riemann surface of genus g. The Kodaira correspondence then identifies pairs (L, V)
consisting of a holomorphic line bundle L → M and an m-dimensional basepoint-free linear systems V ⊂ H0L
with linearly full holomorphic maps f : M → CPm−1:

(L, V) ←→ fV .

This understood, let us fix notation for degree and the dimensions of the space of holomorphic sections and
the linear system:

d = deg L , n = h0L , m = dim V .

Clearly, m ≤ n. We are interested in further relations between d, n, and m an the genus g of M .

Theorem 9.4.11 If d = 1 and m ≥ 2, then g = 0, m = 2 and f is a biholomorphism.

Proof. Corollary 9.3.12 we obtain that g = 0. In particular, if m > 2, then n ≥ m > 2 = d − (g − 1) and Clifford’s
theorem yields that m ≤ n ≤ d/2 + 1 < 2—a contradiction.

Corollary 9.4.12 The only holomorphic curves of degree 1 in projective space are projective lines.

Theorem 9.4.13 If d = 2, then either

I m = 2, or
I g = 0 and m = 3.

Proof. Suppose that m , 2. Then n > 2. If we assume that g > 0, then n > d − (g − 1) and, by Clifford’s
theorem, we get m ≤ n ≤ d/2 + 1 = 2—a contradiction. Thus g = 0. Now, if n > 3, then Clifford’s theorem
yields n ≤ 2—again a contradiction. Thus 2 < m ≤ n ≤ 3 and so m = 3.

Theorem 9.4.14 If d = 3 and m ≥ 3, then either

I g = 0 and m ∈ {3, 4}, or
I g = 1 and m = 3.

Proof. If n > d − (g − 1) = 4− g, then Clifford’s theorem yields 2 ≤ m ≤ n < 3/2+ 1 < 3—a contradiction. Thus
3 ≤ m ≤ n ≤ 4 − g. Thus, either g = 0 and m ∈ {3, 4}, or g = 1 and m = 3.
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Recall: Any rational curve defined on CP1 is a projection of the rational normal curve. For d = 3 the rational
normal curve f : CP1 → CP3 is given by

f ([(z,w)]) = [(z3, z2w, zw2,w3)] .

Corollary 9.4.15 Cubic plane curves, i.e. d = 3, m = 3 are either rational, i.e. g = 0 and n = 4, or elliptic, i.e. g = 1.

Proof. This follows from the previous theorem with d = 3, m = 3.

9.4.5 The Kodaira Embedding Theorem

Let L → M be a holomorphic line bundle over a compact Riemann surface of genus g. We have seen that
the Kodaira corresponce f : M → CPm−1 of a basepoint-free linear system V of dimension dim V = m ≥ 1 is
holomorphic. We want to see now that, provided the degree of L is large enough, H0L is a basepoint-free
linear system and that its Kodaira correspondence f actually provides an embedding of M into CPm−1.

The key to show the existence of a basepoint-free linear system is the Mittag–Leffler theorem.

Proposition 9.4.16 For deg L > deg K + 1 the space of holomorphic sections H0L is a basepoint-free linear system.

Proof. Let p ∈ M. Since deg L = deg K + 1, we have h0KL−1[p] = h0KL−1 = 0. The Riemann–Roch theorem
then yields

h0L[−p] = deg L − g < deg L + 1 − g = h0L ,

which, by Theorem 9.2.13, is equivalent to the existence of ψ ∈ ΓL with ψp , 0.

Since M is compact, injective immersions are embeddings. For the Kodaira correspondence both injectivity
and the immersion property translate into existence of certain holomorphic sections.

Lemma 9.4.17 Let L → M be a holomorphic line bundle, H0L basepoint-free, f its Kodaira correspondence. Then:

f injective ⇐⇒ ∀ p, q ∈ M , p , q ∃ψ ∈ H0L : ψp , 0 , ψq = 0 .

Proof. Let p , q and let ξ ∈ (L∗p)× and ζ ∈ (L∗q)
× such that f (p) = [δξ ] and f (q) = [δζ ]. If f (p) , f (q), then

δξ , δζ are linearly independent and extend to a basis of (H0L). The first vector ψ of the dual basis of H0L then
satisfies 1 = δξ (ψ) = 〈ξ |ψp〉 and 0 = δζ (ψ) = 〈ζ |ψq〉 = 0. Thus ψp , 0 and, since ζ , 0, ψq = 0. Conversely, if
there is ψ ∈ H0L such that ψp , 0 and ψq = 0, then 〈ξ |ψp〉 , 0 and 〈ζ |ψq〉 = 0. From this one easily concludes
that δξ and δζ are linearly independent. Thus f (p) , f (q).

Lemma 9.4.18 Let L → M be a holomorphic line bundle, H0L basepoint-free, f its Kodaira correspondence. Then f
is an immersion if and only if for each p ∈ M there exists ψ ∈ H0L with a simple zero at p.

Proof. Let p ∈ M. Suppose there is 0 , ψ ∈ H0L with simple zero at p. Since H0L is basepoint-free we can
extend ψ to a basis ψ1 = ψ,ψ2, . . . ,ψn ∈ H0L with ψn,p , 0. Then, locally at p, with respect to the dual basis, f
is given in homogeneous coordinates by

f = [ f1, f2, . . . , fn−1, 1] ,
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where fi = ψi/ψn. Then, if z is a complex coordinate at p with z(p) = 0, f1 = zg for some holomorphic function
h such that h(p) , 0. Thus dp f1 = h(p)dpz , 0 and f is an immersion. The converse is left as an exercise.

This in turn can be transformed into a statement on the dimension of spaces of holomorphic sections.

Theorem 9.4.19 Let L → M be a holomorphic line bundle, H0L basepoint-free, f its Kodaira correspondence. Then:

f embedding ⇐⇒ ∀ p, q ∈ M : h0L[−p − q] < h0L[−q] .

Proof. By Lemma 9.4.17, f is injective if and only if for any two distinct points p, q ∈ M there is ψ ∈ H0L such
that ψp , 0 but ψq = 0. By Theorem 9.2.13 this is equivalent to

h0L[−p − q] < h0L[−q] .

The very same equation with p = q is equivalent to the existence of ψ ∈ H0L with a simple zero at p, which,
by Lemma 9.4.18, is equivalent to f being an immersion. Since M is compact injective immersions are
embeddings.

Theorem 9.4.20 (Kodaira Embedding Theorem) Let L → M be a compact Riemann surface of genus g of degree
d > 2g, then the Kodaira correspondence f : M → P((H0L)∗) � CPd−g is an embedding.

Proof. Since d > 2g = deg K + 2, we have h0KL−1 = 0. Thus the Riemann–Roch theorem yields

h0L = d + 1 − g > 2g + 1 ≥ 1 .

Thus, by Proposition 9.4.16, H0L is basepoint-free and the Kodaira correspondence is a well-defined map
f : M → CPd−g. Since d > deg K + 2, we have h0KL−1[p] = h0KL−1[p + q] = 0 and thus

h0L[−p − q] = d − 1 − g < d − g = h0L[−p]

for all p, q ∈ M , by the Riemann–Roch theorem. Thus the claim follows from Theorem 9.4.19.

Remark 9.4.2 Since on every compact Riemann surface there exist holomorphic line bundles of arbitrary
degree, every compact Riemann surfaces can be embedded into some complex projective space.

The following important theorem is out of the scope of the lecture (cf. [11]).

Theorem 9.4.21 (Chow’s Theorem) Each compact complex submanifold of complex projective space is algebraic,
i.e. it is the zero set of homogeneous polynomials.

Corollary 9.4.22 Every compact Riemann surface is algebraic.

9.4.6 Canonical Curves and Hyperellipticity

Let M be a compact Riemann surface of genus g ≥ 2. By Theorem 9.3.13 the holomorphic differentials H0K
forms a g-dimensional basepoint-free linear system. Its Kodaira correspondence is a holomorphic map

ιK : M → CPg−1 ,

which is called the canonical mapping of M . Its image ιK (M) ⊂ CPg−1 is called the canonical curve of M .
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Theorem 9.4.23 The canonical mapping ιK is an embedding if and only if h0[p + q] = 1 for all p, q ∈ M .

Proof. By Theorem 9.4.19, ιK is an embedding if and only if h0K[−p− q] < h0K[−p] for all p, q ∈ M . Moreover,
by Corollary 9.2.12 and the fact that H0K is basepoint-free, we get h0K[−p] = g − 1. Thus

h0K[−p − q] < h0K[−p] = g − 1 .

Moreover, the Riemann–Roch theorem yields

h0K[−p − q] = g − 3 + h0[p + q] .

Thus ιK is an embedding if and only if

h0K[−p − q] < h0K[−p] ⇐⇒ h0[p + q] = 1 .

for all p, q ∈ M .

Definition 9.4.4 (Hyperelliptic Riemann Surface) A Riemann surface is called hyperelliptic if there are p, q ∈ M
such that h0[p + q] > 1.

Theorem 9.4.24 M is hyperelliptic if and only if it is a 2-sheeted branch covering of CP1.

Remark 9.4.3 Hyperelliptic Riemann surfaces have a holomorphic involution.

Corollary 9.4.25 The canonical mapping is an embedding if and only if M is not hyperelliptic.

Theorem 9.4.26 If g = 2, then M is hyperelliptic.

Proof. This follows from the Riemann–Roch theorem—the details are left as exercise.

For p, q ∈ M the Riemann–Roch theorem yields

h0[p + q] = 3 − g + h0K[−p − q]

Moreover, by Corollary 9.2.12, we have h0K[−p] = h0K[−p − q] + b with b ∈ {0, 1} and h0K[−p] = g − 1.
Hence

h0[p + q] = h0K[−p − q] + 3 − g = 2 − b .

Thus M is hyperelliptic if there are p, q such that b = 0. By Theorem 9.2.13 this means that there is no
ψ ∈ H0K[−p] such that ψq , 0. Since H0K[−p] is isomorphic to the holomorphic differentials which vanish at
p, we find that

M hyperelliptic ⇐⇒ ∃ p, q ∈ M ∀ω ∈ H0K : ωp = 0 ⇒ ωq = 0 .

—a rather special situation. That the generic Riemann surface of genus g ≥ 3 is nonhyperelliptic is shown by
Riemann’s count.
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Miscellaneous A
A.1 Paracompactness of Manifolds

Let X be a topological space and Abe an open cover. A refinement of A is an open cover B such that each
U ∈ A is contained in some V ∈ B. A collection Cof subsets of X is called locally finite, if each point x ∈ X
has a neighborhood V such that V ∩U , ∅ for only finitely many U ∈ C. If each open cover of X has a locally
finite refinement, then X is called paracompact. In the end we want to show that manifolds are paracompact.

We start spelling out an immediate consequence of being locally euclidean.

Corollary A.1.1 Every manifold is locally compact, i.e. each point has a compact neighborhood.

A precompact subset is a subset whose closure is compact.

Lemma A.1.2 On a locally compact Hausdorff space each basis of topology has a refinement to a basis, which only
consists of precompact sets.

Proof. Let Bbe a basis of a locally compact Hausdorff space X . Let B0 := {U ∈ B | U precompact}. We claim
that B still forms a basis. Let V ⊂̊ X . Every point p ∈ V has a compact neighborhood Kp ⊂ V . The interior K̊p

then contains an open neighborhood Up ∈ Bof p. Since Kp ⊂ X is compact and X is Hausdorff, Kp is closed.
In particular, the closure of Up in X coincides with the closure of Up in Kp, which—as closed subset of a
compact space—is compact. Hence Up is precompact in X and thus Up ∈ B0. Moreover, V =

⋃
p∈V Up .

Lemma A.1.3 (Existence of Compact Exhaustion) Every locally compact 2nd-countable Hausdorff space X
admits a compact exhaustion, i.e. a countable collection of compact sets {Ki ⊂ X}i∈N such that K̊i ⊂ Ki+1 and
X =

⋃
i∈N Ki .

Proof. By 2nd-countability and Lemma A.1.2, there is a basis of topology {Ui}i∈N, such that Ui is precompact
for each i ∈ N . Then we define a sequence of compact sets Ki recursively by setting K0 = U0, n0 = 0 and

Ki+1 :=
ni+1⋃
j=1

Uj , ni+1 := min
{
n ∈ N |

n⋃
j=1

Ui ⊃ Ki , n > ni
}

.

Note, since Ki is compact, we have ni ∈ N. In particular, Ki+1 is compact. K̊i ⊂ Ki+1 for all i ∈ N and⋃
i=0 Ki = X follows from construction.

Theorem A.1.4 (Paracompactness of Manifolds) Every locally compact 2nd-countable Hausdorff space is
paracompact. In fact, given a locally compact 2nd-countable Hausdorff space X , an open cover C of X , and any basis
B of the topology of X , there exists a countable, locally finite refinement of C consisting of elements of B.

Proof. Let X be a locally compact 2nd-countable Hausdorff space and let C be an open cover of X . Let
further Bdenote a basis of topology. By Lemma A.1.2, there is a refinement B0 of Bwhich consists only of
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precompact sets. By Lemma A.1.3, there exists a compact exhaustion {Ki}i∈N of X . Now, set

Vj := Kj+1 \ K̊j , Wj := K̊j+2 \ Kj−1, for j ∈ N ,

where we used the convention that K−1 = ∅. Note that Vj is compact, contained in Wj ⊂̊ X . For each x ∈ Vj

there is some Ux ∈ C containing x. Thus there is Ux,j ∈ B such that x ∈ Ux,j ⊂ Ux ∩Wj . These Ux,j form an
open cover for Vj and hence there is a finite subcover. The union of these subcovers over j ∈ N forms a
countable cover of X , which refines C. Furthermore,

Wj ∩Wk , ∅ ⇐⇒ |k − j | ≤ 2 .

Since each subcover of Vj is finite, we get that the constructed cover is locally finite.

A.2 Riemannian Immersions and Submersions
Definition A.2.1 (Riemannian Immersion) A Riemannian immersion is an immersion f : S → M between
Riemannian manifolds (S, g) and (M , 〈., .〉) such that

g(X ,Y ) = f ∗〈., .〉(X ,Y ) := 〈df (X), df (Y )〉 , for all X ,Y ∈ ΓTS .

Remark A.2.1 Suppose S has no metric, then g := f ∗〈., .〉 defines a metric on S, which turns f into a
Riemannian immersion. In this context g is called the first fundamental form.

Given an immersion f : S → M we obtain an orthogonal splitting of f ∗T M into TS and normal bundle ⊥ fS
with fiber ⊥ fSp := (im df )

⊥ over p ∈ S—the identification is given by

φ : TS⊕⊥ fS → f ∗T M , (X , ξ) 7→ df (X) + ξ .

Clearly, φ is an isomorphism of vector bundles. Hence f ∗∇ induces a connection ∇̃ on TS⊕⊥ fS which then
splits in four parts:

∇̃ =

(
∇1 A
B ∇2

)
,

where A ∈ Ω1(S; Hom(⊥ fS; TS)), B ∈ Ω1(S; Hom(TS;⊥ fS)) and ∇1 resp. ∇2 are connections on TS resp. ⊥ fS.

Now, if S has a Riemannian metric g, then we can build the orthogonal sum TS⊕⊥ ⊥ f S and, if f is a
Riemannian immersion, Φ becomes an isomorphism of euclidean vector bundles. In particular,

∇̃ =

(
∇1 −II∗

II ∇2

)
.

with ∇1 and ∇2 metric and II ∈ Ω1(TS; Hom(TS;⊥ fS)). The tensor II is called the second fundamental form.

Let ωS ∈ Ω
1(S; TS) and ωM ∈ Ω

1(M; T M) denote the tautological 1-forms and consider φ as element of
ΓHom(TS⊕ ⊥ fS; f ∗T M), i.e. as a homomorphism-valued 0-form. Note, that

f ∗ωM = df = φ
(
ωS

0

)
By the definition of ∇̃, φ is parallel. Hence we have

0 = f ∗(T ∇) = f ∗(d∇ωM ) = d f ∗∇
(

f ∗ωM

)
= d f ∗∇

(
φ

(
ωS

0

))
= φ d ∇̃

(
ωS

0

)
=

(
d∇

1
ωS

II∧ωS

)
=

(
T ∇

1

II∧ωS

)
.
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Note that II∧ωS(X ,Y ) = IIXY − IIY X . Thus II(X ,Y ) = IIXY is symmetric in X ,Y and ∇1 is torsion-free, i.e. ∇1

is the Levi–Civita connection of S. In particular we have shown the following useful theorem.

Theorem A.2.1 If f : S → M is a Riemannian immersion, then

( f ∗∇)Xdf (Y ) = df (∇XY ) + II(X ,Y ) ,

where II ∈ ΓSym2(TS;⊥ fS) denotes the second fundamental form.

Now, let f : M̂ → M be a submersion. Then the the vertical bundle V is defined to be the kernel of df ,
V := ker df , i.e. it consists of all the vector in T M̂ which are tangent to the fibers of f . Now, given a
Riemannian metric on M̂, we can define the horizontal bundle H to be the orthogonal bundle of V , H := V⊥.
Thus we have an orthogonal splitting

T M̂ = V ⊕⊥ H .

Note also that the horizontal bundle is isomorphic to f ∗T M . The isomorphism is just given by the restriction
of df to H,

H 3 X̂ 7→ df (X̂) ∈ f ∗T M .

In particular, for each vector field X ∈ ΓT M there is a horizontal vector field XH ∈ ΓH ⊂ ΓT M̂ such that

f ∗X = df ◦ XH .

We call XH the horizontal lift of X .

Definition A.2.2 (Riemannian Submersion) A Riemannian submersion is a submersion f : M̂ → M between
Riemannian manifolds M̂ and M such that the restriction

df : H → f ∗T M

is an isomorphism of euclidean vector bundles.

Remark A.2.2 In particular, along a fiber, the horizontal spaces are isometrically identified.

Now, given a Riemannian submersion, we would like to know how the Levi–Civita connections are related.

Let X ,Y , Z ∈ ΓT M . Then, by Theorem 3.3.7, we have f ∗[Y , Z] = df ([YH , ZH ]) and thus

f ∗〈X , [Y , Z]〉 = 〈 f ∗X , f ∗[Y , Z]〉 = 〈df (XH ), df ([YH , ZH ])〉 = 〈XH , [YH , ZH ]〉 .

Moreover, we have

f ∗(X 〈Y , Z〉) = ( f ∗X)〈Y , Z〉 = df (XH )〈Y , Z〉 = XH ( f ∗〈Y , Z〉) = XH 〈df (YH ), df (ZH )〉 = XH 〈YH , ZH 〉 .

Together with the Koszul formula, this proves the following theorem.

Theorem A.2.2 Let f : M̂ → M be a Riemannian submersion, then

f ∗〈∇XY , Z〉 = 〈∇XHYH , ZH 〉 .
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A.3 A Proof of Theorem 9.4.8

In order to show Theorem 9.4.8 we apply Theorem A.3.1 to the so-called Segré embedding: Let U, V be complex
vector spaces, dim U = r , dim V = s, the Segré embedding is given by

σ : CPr−1 ×CPs−1 → CPrs−1, ([ψ], [ϕ]) 7→ [ψ ⊗ ϕ] ∈ P(U ⊗ V) .

To formulate Theorem A.3.1 we still need the notion of sectional curvature: Let M be a Riemannian manifold,
p ∈ M and E ⊂ TpM be a 2-dimensional subspace. Then

KE :=
〈R(X ,Y )Y , X〉

〈X , X〉〈Y ,Y〉 − 〈X ,Y〉2
,

where E = span{X ,Y }, is called the sectional curvature of E . Using the symmetries of the Riemannian curvature
tensor one easily checks that KE is well-defined.

Theorem A.3.1 Let M0, M1 ⊂ M be compact complex submanifolds of a Kähler manifold with positive sectional
curvature, dim M0 + dim M1 ≥ dim M . Then

M0 ∩M1 , ∅ .

The proof of Theorem A.3.1 relies on the first variational formula of length: Let

γ : (−ε, ε) × [0, L] → M , γt (s) = γ(t, s) ,

be a smooth variation of the curve γ0 parametrized by arclength, |γ′0 | = 1. Then, with Y = ∂γ
∂t

��
(0,s). we have

d
dt

��
t=0L(γt ) = 〈Y , γ′0〉

��L
0 −

∫ L

0
〈Y , γ′′0 〉 .

Proof. Since ∇ is torsion-free we have |γ′t |
· = 〈(γ′)·, γ′〉/|γ′ | = 〈 Ûγ′, γ′〉/|γ′ |. Thus

d
dt

��
t=0L(γt ) =

∫ L

0
〈Y ′, γ′0〉 =

∫ L

0
〈Y , γ′0〉 − 〈Y , γ′′0 〉

Since the distance d : M ×M → [0,∞) is a continuous function it has a minimum L on a compact set. Thus
for two compact submanifolds M0, M1 ⊂ M of a complete Riemannian manifold there is always a geodesic γ0

connecting them γ0(0) ∈ M0, γ0(L) ∈ M1 which realizes this distance. Since γ0 was a minimum of the distance,
we have d

dt |0L(γt ) = 0 for all variations γ of γ0 with γt (0) ∈ M0 and γt (L) ∈ M1 for all t ∈ (−ε, ε). Since γ0 is a
geodesic, we obtain from the first variational formula

0 = 〈Y (L), γ′0(L)〉 − 〈Y (0), γ
′
0(0)〉 .

Since we can achieve variations with arbitrary vectors Y (0),Y (L) we conclude that γ′0(0) is perpendicular to
Tγ0(0)M0 and γ′0(1) is perpendicular to Tγ0(1)M1.

Lemma A.3.2 Let M0, M1 ⊂ M be two compact submanifolds of a complete Riemannian manifold and γ : (−ε, ε) ×
[0, L] → M be a variation of the shortest curve γ0 connecting M0 to M1 such that η0(t) := γt (0) ∈ M0 and
η1(t) := γt (L) ∈ M1. Then

d2

dt2

��
t=0L(γt ) = 〈η′′1 (0), γ

′
0(L)〉 − 〈η

′′
0 (0), γ

′
0(0)〉 +

〈
Ŷ , Ŷ ′

〉���L
0
−

∫ L

0
〈Ŷ ′′ + R(γ′0, Ŷ )γ′0, Ŷ〉 ,

where Ŷ denotes the normal part of the variational vector field of γ.
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Proof. As before, we have |γ′t |
· = 〈 Ûγ′, γ′〉/|γ′ | = 〈 Ûγ′, γ′/|γ′ |〉. Thus

|γ′t |
· · =

〈
( Ûγ′)·, γ′

|γ′ |

〉
+

〈
Ûγ′, ( γ

′

|γ′ | )
·
〉

=
〈
( Ûγ′)·, γ′

|γ′ |

〉
+

〈
Ûγ′, 1
|γ′ |

(
(γ′)· −

〈(γ′)· ,γ′〉
〈γ′γ′〉 γ

′
)〉

=
〈
( Ûγ′)·, γ′

|γ′ |

〉
+

〈
Ûγ′, 1
|γ′ | ( Ûγ

′)⊥
〉

,

where (.)⊥ denotes the projection to the normal space of γ. Furthermore,

(( Ûγ)′)· = R( Ûγ, γ′) Ûγ + Üγ′ .

So we get for t = 0 ��γ′t ��· · = 〈
R(Y , γ′)Y , γ′0

〉
+

〈
ÛY ′, γ′0

〉
+

〈
Y ′, (Y ′)⊥

〉
.

Note that, since γ′′0 = 0, we have (Y⊥)′ = (Y ′)⊥ and by the symmetries of the curvature tensor〈
R(Y , γ′0)Y , γ′0

〉
=

〈
R(Y⊥, γ′0)Y

⊥, γ′0
〉

.

Thus,

d2

dt2

��
t=0L(γt ) =

∫ L

0

〈
R(Y⊥, γ′)Y⊥, γ′0

〉
+

〈
(Y⊥)′, (Y⊥)′

〉
+

〈
ÛY ′, γ′0

〉
= −

∫ L

0

〈
Y⊥, (Y⊥)′′ + R(Y⊥, γ′)γ′0

〉
+

(〈
(Y⊥), (Y⊥)′

〉
+

〈
ÛY , γ′0

〉) ′ .

Furthermore, given a Riemannian immersion f : M → M̃ , then for X ,Y ∈ ΓT M , we have

( f ∗∇̃)Xdf (Y ) = df (∇XY ) + II(X ,Y ) ,

where II denotes the second fundamental form (cf. Appendix A.2). Using this one easily shows the follow-
ing

Theorem A.3.3 If M̃ is Kähler, M complex and f : M → M̃ a holomorphic immersion. Then, for X ,Y ∈ ΓT M ,

II(X , JY ) = JII(X ,Y ) = II(JX ,Y ) .

Proof. Exercise.

Corollary A.3.4 In the above situation we have, II(JX , JX) = −II(X , X).

Remark A.3.1 In particular, in this situation the mean curvature of M is zero, i.e. M is minimal.

Also note that if γ : I → M is a smooth curve and γ̃ = f ◦ γ, then

γ̃′′ = df (γ′′) + II(γ′, γ′) .

Proof of Theorem A.3.1. Let γ denote the shortest curve connecting M0 to M1. Assume that L(γ) = L > 0, i.e.
M0 ∩M1 , ∅. Then we know that N0 := γ′(0) is a normal vector of M0 and N1 := γ′(L) is a normal vector of
M1. Let

Pγ : Tγ(0)M → Tγ(L)M
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denote the parallel transport along γ. Since ∇ is metric and complex, Pγ is orthogonal and a complex linear
isomorphism. Since γ is a geodesic, γ′ is parallel and hence

Pγ(N0) = N1 .

Now, let us consider U = Pγ(Tγ(0)M0) and V = Tγ(L)M1. Then, since

dim U + dim V ≥ m = dim M

and
0 , N1 ∈ (U +V)⊥

we have
1 ≤ dim(U +V)⊥ = m − (dim U + dim V − dim(U ∩V)) ≤ dim(U ∩V) .

So there is a parallel vector field Y along γ such that Y (0) is tangent to M0 and Y (L) is tangent to M1. If we
now vary γ such that Ûγ = Y and apply Lemma A.3.2, we get

0 ≤ 〈 Üη1(L), γ′(L)〉 − 〈 Üη0(0), γ′(0)〉 −
∫ L

0
Kspan{Y ,γ′ } .

Since K > 0, we have then

0 < 〈 Üη1(L), γ′(L)〉 − 〈 Üη0(0), γ′(0)〉 = 〈II(YL ,YL), γ′(L)〉 − 〈II(Y0,Y0), γ′(0)〉 .

Since U and V were complex, JY has the same properties as Y , but II(JY , JY ) = −II(Y ,Y ) by the last corollary.
This yields the above inequality with opposite sign, which is a contraction.

Theorem A.3.5 Let U, V , W be finite-dimensional complex vector spaces, such that dim U + dim V ≤ dim W , and
∗ : U ×V → W bilinear, such that u ∗ v = 0⇒ u = 0 or v = 0. Then

dim W ≥ dim U + dim V − 1 .

Proof. Let dim U = r , dim V = s, dim W = t and consider the Segré embedding by

σ : CPr−1 ×CPs−1 → CPrs−1, ([ψ], [ϕ]) 7→ [ψ ⊗ ϕ] ∈ P(U ⊗ V) .

We leave as an exercise to show that σ defines a holomorphic embedding.
Now choose bases ψ1, . . . ,ψr of U and ϕ1, . . . , ϕs of V and define a linear map

f : U ⊗ V → W by f (ψi ⊗ ϕj) = ψi ∗ ϕj .

Then
dim ker f = rs − dim im f ≥ rs − t .

Then M̃ := P(ker f ) ⊂ CPrs−1 is of dimension ≥ rs − t − 1. Furthermore, we have that M̂ = imσ is of
dimension r + s − 2. Suppose now that t < r + s − 1, i.e. t ≤ r + s − 2. Then

dim M̃ + dim M̂ ≥ r + s − 2 + rs − t − 1 ≥ rs − 1 = dim CPrs−1 .

Thus, by Theorem A.3.1, M̂ ∩ M̃ , ∅ and hence there are 0 , ψ ∈ U and 0 , ϕ ∈ V with ψ ∗ ϕ = f (ψ ⊗ ϕ) = 0,
which is a contradiction to the "zero-divisor free" property of ∗.
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