
..

RIGEL: A 1,024-CORE SINGLE-CHIP
ACCELERATOR ARCHITECTURE

..

RIGEL IS A SINGLE-CHIP ACCELERATOR ARCHITECTURE WITH 1,024 INDEPENDENT

PROCESSING CORES TARGETED AT A BROAD CLASS OF DATA- AND TASK-PARALLEL

COMPUTATION. THIS ARTICLE DISCUSSES RIGEL’S MOTIVATION, EVALUATES ITS

PERFORMANCE SCALABILITY AS WELL AS POWER AND AREA REQUIREMENTS,

AND EXPLORES MEMORY SYSTEMS IN THE CONTEXT OF 1,024-CORE SINGLE-CHIP

ACCELERATORS. THE AUTHORS ALSO CONSIDER FUTURE OPPORTUNITIES AND

CHALLENGES FOR LARGE-SCALE DESIGNS.

......Increasing demand for perfor-
mance on data-intensive parallel workloads
has driven the design of throughput-oriented
parallel compute accelerators. For this work,
we consider programmable accelerators in
contrast to fixed-function or hardwired
application-specific accelerator units. Cur-
rent programmable accelerators generally
expose restricted programming models that
yield high performance for data-parallel
applications with regular computation and
memory-access patterns, but present a more
difficult target for less-regular parallel appli-
cations. Generally, existing compute ac-
celerators provide higher throughput via
architectural choices that compromise the
generality of the programming model. For
instance, accelerators commonly achieve
high throughput by using wide single-
instruction, multiple-data (SIMD) process-
ing elements, as opposed to the multiple-
instruction, multiple-data (MIMD) model
used in general-purpose processors. For
dense or regular data-parallel computations,
SIMD hardware reduces the cost of perform-
ing many computations by amortizing costs

such as control and instruction fetch across
many processing elements. However, when
applications don’t naturally map to the
SIMD execution model, programmers must
adapt their algorithms or suffer reduced effi-
ciency. SIMD then limits the scope of appli-
cations that can achieve the hardware’s peak
performance. The memory system is another
area where accelerators commonly favor
hardware efficiency over programmability.
Programmer-managed scratchpad memories
yield denser hardware and tighter access-
latency guarantees and consume less power
than caches; however, they impose an addi-
tional burden on either the programmer or
software tools. Additionally, the multiple ad-
dress spaces often associated with scratchpad
memories require copy operations and ex-
plicit memory management.

We conceived of the Rigel architecture in
2007 to address some shortcomings of paral-
lel computation accelerators while pushing
the envelope on throughput-oriented designs.
(For more information on throughput-
oriented designs, see the ‘‘Throughput
Processors’’ sidebar.) Broadly, Rigel’s goals

[3B2-9] mmi2011040030.3d 19/7/011 13:12 Page 30

Daniel R. Johnson

Matthew R. Johnson

John H. Kelm

William Tuohy

Steven S. Lumetta

Sanjay J. Patel

University of Illinois at

Urbana-Champaign

..

30 Published by the IEEE Computer Society 0272-1732/11/$26.00 �c 2011 IEEE

[3B2-9] mmi2011040030.3d 19/7/011 13:12 Page 31

...

Throughput Processors

We consider two broad classes of throughput-oriented architectures:

general-purpose chip multiprocessors (CMPs) and specialized accelera-

tors. For this work, we consider programmable accelerators in contrast

to fixed-function or hardwired application-specific logic. Contemporary

general-purpose CMP development is driven by the need to increase

performance while supporting a vast ecosystem of existing multitask-

ing operating systems, programming models, applications, and devel-

opment tools. Increasingly, CMPs are integrating additional

functionality such as memory controllers and peripheral controllers

on die, converging on an SoC model. Accelerators are designed to max-

imize performance for a specific class of workloads by exploiting char-

acteristics of the target domain, and are optimized for a narrower class

of workloads and programming styles. Although general-purpose pro-

cessors tend to employ additional transistors to decrease latency

along a single execution thread, accelerators are architected to maxi-

mize aggregate system throughput, often with increased latency for

any particular operation.

Throughput-oriented CMPs such as Sun’s UltraSPARC T31 target

server workloads with a moderate number of simple, highly multi-

threaded cores. Such CMPs achieve relatively high throughput but are

limited by low memory bandwidth relative to contemporary graphics pro-

cessors and the per-core features and latency-reduction techniques

required to meet the needs of general-purpose workloads.

Tilera’s most recent processors,2 based on earlier work on RAW,3 fea-

ture up to 100 cache-coherent cores in a tiled design with a mesh inter-

connect optimized for message passing and streaming applications.

Although they’re Linux capable, Tilera’s chips have poor floating-point ca-

pability. Intel has developed several experimental mesh-based through-

put processors, including the 1-Tflop 80-core chip4 and the 48-core

single-chip cloud computer.

The Cell processor,5 introduced with the PlayStation 3 and also used

in high-performance computing, uses a heterogeneous model with a mul-

tithreaded PowerPC processor and up to eight synergistic processing ele-

ments (SPEs) as coprocessors. SPEs use a programmer-managed

scratchpad for both instruction and data access and implement a

SIMD instruction set.

Stream processors are programmable accelerators targeted at media

and signal processing workloads with regular, predictable data-access

patterns. Imagine pioneered the stream processing concept,6 and stream

processing has influenced modern graphics processor designs.

GPUs are the most prominent class of programmable accelerators

at present. GPUs from Nvidia7 and AMD are targeted primarily at the

graphics rendering pipeline, but have exposed an increasingly flexi-

ble substrate for more general-purpose data-parallel computations.

For instance, compared with the first CUDA-capable GPUs, Nvidia’s

latest Fermi GPUs include a cached memory hierarchy and acceler-

ated atomic operations, support execution of multiple concurrent ker-

nels, and reduce the performance penalty for memory-gather

operations.

Both Nvidia and AMD GPUs utilize single-instruction, multiple-

thread (SIMT)-style architectures, whereby a single instruction

simultaneously executes across multiple pipelines with different

data. A key aspect of SIMT designs is their ability to allow control

divergence for branching code, whereby only a subset of a SIMT

unit’s pipelines are active. Such designs enable dense hardware

with high peak throughput but work best for regular computations

with infrequent divergence. Both Nvidia and AMD rely on programmer-

managed scratchpad memories and explicit data transfers for high

performance, though modern variants do implement small noncoher-

ent caches. GPUs also rely on high memory bandwidth and thou-

sands of hardware threads to hide memory latency and maximize

throughput.

Intel’s Larrabee project approached the accelerator design point

with a fully programmable many-core x86 design, cached memory hi-

erarchy, and hardware cache coherence.8 Like Rigel, Larrabee was in-

tended for more general-purpose parallel programming. Larrabee and

Intel’s AVX extensions support wide SIMD vectors for parallel pro-

cessing. These wide vectors represent a vastly different design

point than the independent scalar cores of Rigel or the SIMT units

of GPUs, requiring additional programmer or compiler effort for pack-

ing and alignment.

References

1. J. Shin et al., ‘‘A 40 nm 16-Core 128-Thread CMT SPARC

SoC Processor,’’ Proc. IEEE Int’l Solid-State Circuits Conf.,

IEEE Press, 2010, pp. 98-99.

2. S. Bell et al., ‘‘Tile64 Processor: A 64-Core SoC with Mesh

Interconnect,’’ Proc. IEEE Int’l Solid-State Circuits Conf.,

IEEE Press, 2008, pp. 88-598.

3. M.B. Taylor et al., ‘‘The Raw Microprocessor: A Computa-

tional Fabric for Software Circuits and General Purpose Pro-

grams,’’ IEEE Micro, vol. 22, no. 2, 2002, pp. 25-35.

4. S. Vangal et al., ‘‘An 80-Tile 1.28 Tflops Network-on-Chip in

65 nm CMOS,’’ Proc. IEEE Int’l Solid-State Circuits Conf.,

IEEE Press, 2007, pp. 98-99, 589.

5. M. Gschwind, ‘‘Chip Multiprocessing and the Cell Broadband

Engine,’’ Proc. 3rd Conf. Computing Frontiers, ACM Press,

2006, pp. 1-8.

6. S. Rixner et al., ‘‘A Bandwidth-Efficient Architecture for

Media Processing,’’ Proc. 31st Ann. ACM/IEEE Int’l Symp.

Microarchitecture, IEEE CS Press, 1998, pp. 3-13.

7. ‘‘Nvidia’s Next Generation CUDA Compute Architecture:

Fermi,’’ white paper, Nvidia, 2009.

8. L. Seiler et al., ‘‘Larrabee: A Many-Core x86 Architecture for

Visual Computing,’’ ACM Trans. Graphics, vol. 27, no. 3,

2008, article 18.

..

JULY/AUGUST 2011 31

are to demonstrate the feasibility of a single-
chip, massively parallel MIMD accelerator
architecture; to achieve high computation
density, or throughput, in terms of

operations=sec

mm2

� �
; and to determine how to

organize such a device to be programmer-
friendly, presenting a more general target to
developers and enabling a broader range of
parallel applications to target the design.

These goals drove our development of
Rigel, a 1,024-core single-chip accelerator ar-
chitecture that targets a broad class of data-
and task-parallel computations, especially vi-
sual computing workloads.1 With the Rigel
design, we aim to strike a balance between
raw performance and ease of programmabil-
ity by adopting programming interface ele-
ments from general-purpose processors.
Rigel comprises 1,024 independent, hierarchi-
cally organized cores that use a fine-grained,
dynamically scheduled single-program,
multiple-data (SPMD) execution model.
Rigel adopts a single global address space
and a fully cached memory hierarchy. Paral-
lel work is expressed in a task-centric, bulk-
synchronized manner using minimal hardware
support. Compared to existing accelerators—
which contain domain-specific hardware,
specialized memories, and restrictive pro-
gramming models—Rigel is more flexible
and provides a more straightforward target
for a broader set of applications.

The design of Rigel’s memory system,
particularly cache coherence, shaped many
other aspects of the architecture. We observed
that we could leverage data sharing and com-
munication patterns in parallel workloads in
designing memory systems for future many-
core accelerators. Using these insights, we
developed software and hardware mecha-
nisms to manage coherence on parallel accel-
erator processors. First, we developed the
Task-Centric Memory Model (TCMM), a
software protocol that works in concert with
hardware caches to maintain a coherent,
single-address-space view of memory without
the need for hardware coherence.2 Although
we originally developed Rigel without global
cache coherence, we ultimately found that
we could implement hardware-managed
cache coherence (HWcc) with low overhead
for thousand-core processors. Thus, we

developed WayPoint, a scalable hardware co-
herence solution for Rigel.3 Finally, we devel-
oped Cohesion as a bridge enabling effective
use of both hardware and software coherence
mechanisms, simplifying the integration of
multiple memory models in heterogeneous
or accelerator-based systems.4

Rigel system architecture
Rigel is a MIMD compute accelerator

developed to target task- and data-parallel vi-
sual computing workloads that scale up to
thousands of concurrent tasks.1 Rigel’s de-
sign objective is to provide high-compute
density while enabling an easily targeted con-
ventional programming model. Figure 1
shows a block diagram of Rigel.

Rigel’s basic processing element is an
area-optimized, dual-issue, in-order core
with a 32-bit reduced-instruction-set com-
puting architecture, a single-precision floating-
point unit (FPU), and an independent
fetch unit. Eight independent cores and a
shared cluster cache compose a single Rigel
cluster. Clusters allow efficient communica-
tion among their cores via the shared cluster
cache. Clusters are grouped logically into a
tile using a bidirectional tree-structured
interconnect. We selected a tree-structured
interconnect based on our use model; the
interconnect links the cores to memory but
does not enable arbitrary core-to-core com-
munication. Eight tiles of 16 clusters each
are distributed across the chip, attached to
global cache banks via a multistage switch
interconnect. The last-level globally shared
cache provides buffering for multiple high-
bandwidth memory controllers. Our baseline
1,024-core design incorporates eight 32-bit
Graphics Double Data Rate (GDDR5) mem-
ory controllers and 32 global cache banks.
Table 1 summarizes our design parameters.

Memory and cache management
All cores on Rigel share a single global ad-

dress space. Cores within a cluster have the
same view of memory via the shared cluster
cache, while cluster caches aren’t explicitly
kept coherent with one another in our baseline
architecture. When serialization of accesses is
necessary between clusters, the global cache is
the point of coherence. Rigel implements two
classes of memory operations: local and global.

[3B2-9] mmi2011040030.3d 20/7/011 16:14 Page 32

..

32 IEEE MICRO

...

BIG CHIPS

Local memory operations constitute the
majority of loads and stores and are the de-
fault memory-operation class the compiler
generates. Memory locations accessed by
local operations are cacheable at the cluster
cache but aren’t kept coherent by hardware
between clusters. Local memory operations
are used for accessing read-only data, private
data, and data shared within the same cluster.

Global loads and stores on Rigel always by-
pass cluster-level caches and complete at the
global cache. Memory locations operated solely
by global memory operations are thus kept triv-
ially coherent across the chip. Global operations
are key for supporting system resource manage-
ment, synchronization, and fine-grained inter-
cluster communication. However, because of
increased latency, the cost of global memory
operations is high relative to local operations.
Rigel also implements a set of atomic opera-
tions (arithmetic, bitwise, min/max, and ex-
change) that complete at the global cache.

In the baseline Rigel architecture, soft-
ware must enforce coherence when interclus-
ter read-write sharing exists. We can do this
by colocating sharers within a single coherent
cluster, by using global memory accesses for
shared data, or by forcing the writer to
explicitly flush shared data before allowing
the reader to access it. Rigel provides explicit
instructions for actions such as flushing and

eviction for cache management. We explore
the topic of coherence in more detail later.

Area and power
To demonstrate Rigel’s feasibility on cur-

rent process technology, we provide area and
power estimates on a commercial 45-nm
process. Our estimates are derived from syn-
thesized Verilog, compiled static RAM
(SRAM) arrays, IP components, and die plot
analysis of other 45-nm designs. Figure 2
shows a breakdown of preliminary area esti-
mates for the Rigel design. Cluster caches
are 64 Kbytes each, and global cache banks
total 4 Mbytes. ‘‘Other logic’’ encompasses

[3B2-9] mmi2011040030.3d 20/7/011 16:14 Page 33

Cluster view Chip-level view

Core Core Core Core
GDDR

Global cache banksTile view

In
te

rf
ac

e
to

 ti
le

 in
te

rc
on

ne
ct

L2 cluster cache

Core Core Core Core

Interconnect

Interconnect

In
te

rc
on

ne
ct

I$ D$ I$ D$ I$ D$ I$ D$

I$ D$ I$ D$ I$ D$ I$ D$

Figure 1. Block diagram of the Rigel accelerator processor: cluster view (a) and chip-level

view (b). The Rigel cluster is a collection of cores with a shared cache. Clusters are organ-

ized into tiles to share interconnect, and tiles are connected to a last-level global cache.

(GDDR: Graphics Double Data Rate.)

Table 1. Simulated parameters for the Rigel architecture.

Component Characteristics

Cores 1,024, two-wide issue, in order

DRAM Eight 32-bit channels, GDDR5, 6 Gbyte/s/pin,

192 Gbyte/s total

Level 1 (L1)

instruction cache

2 Kbytes, two-way associative

L1 data cache 1 Kbyte, two-way associative Kbyte

L2 cluster cache Unified, one per 8-core cluster, 64 Kbytes, 16-way

associative

L3 global cache Unified, globally shared, 4 Mbytes total, 32 banks,

8-way associative

..

JULY/AUGUST 2011 33

interconnect as well as memory controller
and global cache controller logic. For a con-
servative estimate, we include a 20-percent
charge for additional overhead. The resulting
320 mm2 is reasonable for implementation
in current process technologies and leaves
space for additional SRAM cache or more

aggressive memory controllers. Table 1 sum-
marizes the chip parameters.

Typical power consumption of the design
with realistic activity factors for all compo-
nents at 1.2 GHz is expected to be in the
range of 99 W, though peak power consump-
tion beyond 100 W is possible. Our estimate
is based on power consumption data for com-
piled SRAMs, postsynthesis power reports for
logic, leakage, and a clock tree of cluster com-
ponents, estimates for interconnect and I/O
pin power, and the 20-percent charge for ad-
ditional power overhead. The figure is similar
to modern GPUs from Nvidia that consume
around 150 W,5 while modern high-end
CPUs can consume nearly as much.

Programming Rigel
Rigel isn’t restricted to running software

written in a particular hardware-specific par-
adigm, but instead has the ability to run
standard C code. We target Rigel using the
Low-Level Virtual Machine (LLVM) com-
piler framework and a custom back end.
Rigel applications are developed using the
Rigel Task Model (RTM), a simple bulk-
synchronous parallel (BSP), task-based work
distribution library that we developed. Appli-
cations are written in RTM using an SPMD
execution paradigm, where all cores share an
application binary with arbitrary control flow
per core. The programmer defines parallel
work units, referred to as tasks, that are man-
aged via queues by the RTM runtime. RTM
task queues can act as barriers when empty to
provide global synchronization points. Fig-
ure 3 illustrates the BSP model we imple-
ment along with our hierarchical task queues.

Scalability
We evaluate Rigel using various parallel

applications and kernels drawn from visual
and scientific computing. Most benchmarks
are written in a bulk-synchronous style
using RTM for dynamic work distribution,
but stencil statically allocates work to
threads. While all of our applications exhibit
abundant data parallelism, the structure varies
from dense (dmm, sobel) to sparse (cg) to
irregular task-parallel (gjk) and includes di-
verse communication patterns (kmeans,
fft, heat, stencil). Table 2 describes
our set of benchmark codes. Figure 4

[3B2-9] mmi2011040030.3d 19/7/011 13:12 Page 34

Table 2. Data- and task-parallel workloads.

Benchmark Description

cg Conjugate gradient linear solver

dmm Blocked dense-matrix multiplication

fft 2D complex-to-complex radix-2 fast Fourier transform

gjk Gilbert-Johnson-Keerthi 3D collision detection

heat 2D 5-point iterative, out-of-place stencil computation

kmeans K-means clustering

march Marching cubes polygonization of 3D volumetric data

mri Magnetic resonance image reconstruction (F H D matrix)

sobel Sobel edge detection

stencil 3D 7-point iterative, out-of-place stencil computation

GCache
30 mm2

(10%)

Other logic
30 mm2

(9%)

Overhead
53 mm2

(17%) Cluster cache SRAM
75 mm2 (23%)

Logic (core + cache)
112 mm2 (35%)

Register files
20 mm2 (6%)

Clusters
207 mm2

(67%)

Figure 2. Area estimates for the Rigel design. Our estimate includes cluster

cache, logic, register files, overhead, other logic, and global cache.

Communication

Execution

Barrier

Task execution

Idle time

Ti
m

e
In

te
rv

al

…

…

Local
task queues

Global
task queue

Cores
…

Task queue hierarchy

Figure 3. The bulk-synchronous parallel (BSP) execution model (a) and

hierarchical task queues (b) that constitute the Rigel Task Model.

..

34 IEEE MICRO

...

BIG CHIPS

illustrates kernel scalability for various parallel
applications up to 1,024 cores. Across our se-
lection of benchmarks, we observe an average
speedup of 84� (harmonic mean) at 1,024
cores compared to one eight-core cluster
(128� speedup is ideal). For a more thor-
ough evaluation of the baseline Rigel archi-
tecture, see our previous work.1

Coherence and memory system
A high-performance accelerator requires

efficient mechanisms for safely sharing data
between multiple caches. Scalable multiproc-
essor hardware coherence schemes6 exist, but
were designed for machines with a different
mix of computation, communication, and
storage resources than chip multiprocessors
(CMPs). Indeed, modern general-purpose
CMPs and multisocket systems generally
use much simpler protocols that work well
for small systems but are cost-prohibitive
for a 1,024-core accelerator. (For more infor-
mation on cache coherence, see the ‘‘Related
Work in Coherence’’ sidebar.)

Additionally, our target applications ex-
hibit data-sharing patterns that are more
structured than those targeted by traditional
distributed machines and CMPs. While our
initial design goal for Rigel was to achieve
good performance and programmability
without HWcc, we have since examined
ways to achieve the benefits of hardware co-
herence with reduced overhead by leveraging
our target workloads’ sharing characteristics.

The design of Rigel’s memory system is
informed by the sharing and communication
patterns of the parallel workloads targeted by
accelerators. In studying several such applica-
tions written for two different platforms
(x86/pthreads and Rigel/RTM), we found
that structured, coarse-grained sharing patterns
are common, that most sharing occurs across
global synchronization points (barriers), and
that fine-grained data sharing between barriers

[3B2-9] mmi2011040030.3d 19/7/011 13:12 Page 35

2X

4X

8X

16X

32X

64X

128X
1

til
e

2
til

es
4

til
es

8
til

es
1

til
e

2
til

es
4

til
es

8
til

es
1

til
e

2
til

es
4

til
es

8
til

es
1

til
e

2
til

es
4

til
es

8
til

es
1

til
e

2
til

es
4

til
es

8
til

es
1

til
e

2
til

es
4

til
es

8
til

es
1

til
e

2
til

es
4

til
es

8
til

es
1

til
e

2
til

es
4

til
es

8
til

es
1

til
e

2
til

es
4

til
es

8
til

es
1

til
e

2
til

es
4

til
es

8
til

es

cg dmm fft gjk heat kmeans march mri sobel stencil

S
p

ee
d

up
 o

ve
r

8-
co

re
 c

lu
st

er

Figure 4. Benchmark scalability on Rigel with one, two, four, and eight 128-core tiles (128 to 1,024 cores). Speedups are

relative to one eight-core cluster. The 128� represents linear scaling at 1,024 cores. Benchmark binaries and data sets are

identical across all system sizes; global cache capacity and memory bandwidth are scaled with the number of tiles.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

W
rit

e

R
ea

d

W
rit

e

R
ea

d

W
rit

e

R
ea

d

W
rit

e

R
ea

d

W
rit

e

R
ea

d

W
rit

e

R
ea

d

W
rit

e

R
ea

d

cg dmm gjk heat kmeans mri sobel

Output Conflict Private Input

Figure 5. Characterizing memory accesses in task-based BSP applications.

Input reads and output writes communicate data across barriers. The

majority of memory accesses are to data that is private to a task. Conflict

accesses share data between two tasks in the same barrier interval,

requiring hardware coherence or synchronization mechanisms such as

atomic operations to maintain correctness, but these are rare in the

applications we examine.

..

JULY/AUGUST 2011 35

is uncommon.2 Figure 5 illustrates the sharing
patterns in several of our workloads.

Software-managed coherence
Adopting a structured programming

model lets us implement software-managed
cache coherence (SWcc) efficiently. We devel-
oped TCMM as a contract describing the

software actions necessary to ensure correct-
ness in task-based BSP programs in the ab-
sence of hardware-enforced coherence.2 The
left side of Figure 6 illustrates the state tran-
sitions for a cache line in our protocol. The
coherence state of a block is implicit and
must be tracked by the programmer or run-
time system. All blocks start in the clean

[3B2-9] mmi2011040030.3d 19/7/011 13:12 Page 36

...

Related Work in Coherence

A rich and diverse set of related work exists on the topic of cache

coherence.1 Researchers developed distributed shared memory as a scal-

able way to provide the illusion of a single, coherent address space

across multiple disjoint memories.2 Various mechanisms such as that

by Zebchuk et al.3 have been proposed for reducing directory overhead

on CMPs, and novel optical networks have been proposed for 1,000-

core cache-coherent chips.4 The Smart Memories project has examined

programmable controllers that can implement various on-chip memory

models including cache coherence,5 while Cohesion enables the man-

agement of multiple coherence domains simultaneously. A more com-

plete treatment of related work on memory models and cache

coherence can be found in our earlier work.6-8

References

1. D.J. Lilja, ‘‘Cache Coherence in Large-Scale Shared-Memory

Multiprocessors: Issues and Comparisons,’’ ACM Comput-

ing Surveys, vol. 25, no. 3, 1993, pp. 303-338.

2. J. Hennessy, M. Heinrich, and A. Gupta, ‘‘Cache-Coherent Dis-

tributed Shared Memory: Perspectives on Its Development and

Future Challenges,’’ Proc. IEEE, vol. 87, no. 3, 1999, pp. 418-429.

3. J. Zebchuk et al., ‘‘A Tagless Coherence Directory,’’ Proc.

42nd Ann. IEEE/ACM Int’l Symp. Microarchitecture, ACM

Press, 2009, pp. 423-434.

4. G. Kurian et al., ‘‘ATAC: A 1000-Core Cache-Coherent Pro-

cessor with On-Chip Optical Network,’’ Proc. 19th Int’l

Conf. Parallel Architectures and Compilation Techniques,

ACM Press, 2010, pp. 477-488.

5. A. Firoozshahian et al., ‘‘A Memory System Design Frame-

work: Creating Smart Memories,’’ Proc. 36th Ann. Int’l

Symp. Computer Architecture, ACM Press, 2009,

pp. 406-417.

6. J.H. Kelm et al., ‘‘A Task-Centric Memory Model for Scalable

Accelerator Architectures,’’ Proc. Int’l Conf. Parallel Architec-

tures and Compilation Techniques, IEEE CS Press, 2009,

pp. 77-87.

7. J.H. Kelm et al., ‘‘Cohesion: A Hybrid Memory Model for

Accelerators,’’ Proc. Int’l Symp. Computer Architecture,

ACM Press, 2010, pp. 429-440.

8. J.H. Kelm et al., ‘‘Waypoint: Scaling Coherence to 1000-Core

Architectures,’’ Proc. Int’l Conf. Parallel Architectures and

Compilation Techniques, ACM Press, 2010, pp. 99-110.

T=0 T=1 T=2 T=3 T=4
0x100

0x140
0x160
0x180

0x1C0
…

0x120

0x1A0

Software-managed coherence protocol Hardware-managed coherence
protocolSoftware-to-hardware transitions

Cohesion

SWcc cache lineHWcc cache line Transition

A
d

d
re

ss
 s

p
ac

e

TimeImmutable

Globally
coherent

Private
(dirty)

Clean
Private
(clean)

Inv

L.LD

L.LD

L.ST WB

L.LD,
L.ST

ε

ε

G.LD,G.ST,INV

G.LD,
G.ST

L.LD,
Inv

L.LD

Figure 6. Cohesion is a hybrid memory model for accelerators that enables hardware-managed cache coherence (HWcc)

and software-managed cache coherence (SWcc) to coexist, with data migrating between the two domains dynamically.

On the left, state transitions for a cache line under control of the Task-Centric Memory Model (TCMM) protocol. (G: global

operations; L: local operations; WB: writebacks; INV: invalidates; 2: no sharers; LD: loads; and ST: stores.)

..

36 IEEE MICRO

...

BIG CHIPS

state with no sharers or cached copies and
can transition to immutable (read-only),
shared as globally coherent, or
private. Cached local memory operations
may operate on private or immutable
data, whereas uncached global operations are
required for globally coherent data.
Transitioning data between states requires
first moving through the clean state.

SWcc requires minimal hardware support
in the form of instructions for explicitly writ-
ing back and invalidating data in private
caches. We found that a small number of ad-
ditional hardware mechanisms, such as
broadcast support to accelerate global bar-
riers and global atomic operations to facili-
tate infrequent intrabarrier sharing, greatly
improved scalability over a naive design.
With these relatively inexpensive mecha-
nisms, SWcc could achieve performance
within a few percent of idealized hardware
coherence at 1,024 cores. Future accelerators
might improve upon TCMM by automating
coherence actions in the compiler and sched-
uling coherence actions to maximize cache
locality. Our earlier work describes the
TCMM protocol and provides a detailed
performance analysis.2

Hardware-managed coherence
Though SWcc can provide high perfor-

mance and hardware efficiency for many par-
allel applications, two important benefits
motivate the investigation of hardware coher-
ence. First, applications with fine-grained or
unpredictable sharing benefit from hardware
coherence because of the removal of software
coherence instructions. Second, when accept-
able performance can be achieved, hardware
coherence decreases the programmer’s bur-
den by implicitly handling data movement
between caches. We developed WayPoint,3

a directory-based hardware coherence scheme
that exploits the characteristics of our archi-
tecture and applications to achieve scalable
performance and low overhead for up to
1,024 cores.

Through our analysis of several existing
coherence schemes on Rigel, we determined
that set-associative on-chip directory caches
are more scalable than duplicate tag, snoopy,
or in-cache directory approaches for our
workloads. When the directory cache

overflows, either complete sharing informa-
tion must be preserved or the system must
act conservatively the next time the evicted
line is accessed. The most common methods
of dealing with directory cache overflows are
to immediately invalidate all sharers of the
line, or to simply drop the directory entry
and send a broadcast invalidation to all
caches the next time the evicted line is
accessed (also known as probe filtering). For
applications with widely shared data, both
approaches result in on-chip coherence traffic
that scales roughly as the square of the num-
ber of coherent caches, impeding overall
scalability.

WayPoint vastly decreases the cost of a di-
rectory cache eviction by spilling the evicted
entry to a hardware-managed in-memory
hash table, eliminating the need for eviction-
related broadcasts. Figure 7 illustrates the
WayPoint microarchitecture. Directory
entries in the hash table can be held on-die
along with application data in the last-level
cache. WayPoint dynamically provides the il-
lusion of increased associativity for those di-
rectory sets that require it. WayPoint is more
efficient than statically provisioning the di-
rectory cache for worst-case demand because
the group of directory cache sets that require
high associativity varies widely across applica-
tions and over time. We find that WayPoint
with a four-way associative directory caches

[3B2-9] mmi2011040030.3d 19/7/011 13:12 Page 37

Overflow directory
(in cached memory)

Bucket 0

…

B-1

Tag Sharers State

WayPoint
controller

Directory entry format

1

Set 0
1

N-1

Way 0 1 … M-1

Directory cache

Directory
queries

…

Figure 7. WayPoint consists of a directory cache bank, a hardware control-

ler, and a cached, in-memory hash table of directory entries associated

with each global cache bank. The hash table, known as the overflow direc-

tory, acts as a backing store for the directory cache, providing increased

directory associativity when needed with lower storage requirements than

a cached full directory.

..

JULY/AUGUST 2011 37

outperforms a 64-way conventional directory
cache (see Figure 8). Across our benchmarks,
WayPoint achieves performance within
4 percent of an infinitely large on-die direc-
tory while adding less than 3 percent to the
total die area.

Hybrid coherence
Memory models in use today are either

fully hardware coherent or fully software co-
herent. In systems that include both models,
the two models are strictly separated by using
disjoint address spaces or physical memories.
As systems on chip (SoCs) and other hetero-
geneous platforms become more prevalent,
the ability to seamlessly manage data across
different memory models will become in-
creasingly important.

SWcc removes the area, power, and inter-
connect traffic overhead of cache coherence
for structured data sharing patterns and
allows experienced application developers to
achieve high performance. Hardware coherence
avoids the instruction overhead of software
coherence, performs well with unstructured
sharing patterns, and provides correct data
sharing with low programmer effort. To
achieve the combined benefits of these two
models, we have developed Cohesion, a hy-
brid memory model.

Cohesion includes a hardware coherence
implementation which tracks the entire

address space by default. The developer can
selectively remove cache lines from the
HWcc domain at runtime and manage them
using software to improve performance. Be-
cause data can move back and forth between
the SWcc and HWcc domains at will, Cohesion
can be used to dynamically adapt to the shar-
ing needs of applications and runtimes and
does not require multiple address spaces nor
explicit copy operations. Cohesion can also
enable the integration of multiple memory
models in heterogeneous or accelerator-based
systems such as SoCs. Figure 6 illustrates
the high-level operation of Cohesion. We
implement SWcc using TCMM and use an
MSI-based hardware coherence protocol,
but any hardware and software protocols
could be used so long as the necessary state
transitions are enforced.

A developer can instruct the hardware co-
herence machinery to defer to software man-
agement for a particular cache line by
updating a software-accessible table in mem-
ory. For instance, hardware coherence man-
agement is inefficient when data is private
or when a large amount of data can be man-
aged as a unit by software. Handling read-
mostly and private data outside the scope
of the hardware coherence protocol can in-
crease performance and reduce the load on
the coherence hardware, increasing the effec-
tive directory size for data managed under

[3B2-9] mmi2011040030.3d 19/7/011 13:12 Page 38

0.0x

0.2x

0.4x

0.6x

0.8x

1.0x
W

ay
p

oi
nt

B
as

el
in

e

W
ay

p
oi

nt

B
as

el
in

e

W
ay

p
oi

nt

B
as

el
in

e

W
ay

p
oi

nt

B
as

el
in

e

W
ay

p
oi

nt

B
as

el
in

e

W
ay

p
oi

nt

B
as

el
in

e

W
ay

p
oi

nt

B
as

el
in

e

W
ay

p
oi

nt

B
as

el
in

e

W
ay

p
oi

nt

B
as

el
in

e

W
ay

p
oi

nt

B
as

el
in

e

W
ay

P
oi

nt

B
as

el
in

e

cg dmm fft gjk heat kmeans march mri sobel stencil hmean

S
p

ee
d

up
 r

el
at

iv
e

to
 D

irF
ul

l

64 way 32 way 16 way 8 way 4 way

Figure 8. Performance of WayPoint and a conventional sparse directory cache (Dir4B) versus directory cache associativity.

All results are for a 1,024-core system with 2,048 directory entries per global cache bank. Results are normalized to an

infinite on-die directory. By avoiding expensive global broadcasts on directory insertion or eviction, WayPoint provides

robust performance without requiring a highly associative directory cache, reducing area and power costs.

..

38 IEEE MICRO

...

BIG CHIPS

HWcc (see Figure 9). Ultimately, Cohesion
allows explicit coherence management to be
an optional optimization opportunity, rather
than necessary for correctness.

Looking forward
When we conceived of the Rigel accelera-

tor architecture in 2007, we concerned our-
selves with the technology parameters and
constraints of that time. Although large dies
with billions of transistors were possible in
45-nm technology, our target of 1,024 cores
was very aggressive and led to sacrifices in
our design. We developed Rigel as a copro-
cessor for parallel computation, and as an
alternative to GPUs, rather than as a com-
plete system. We limited ourselves to 32-bit
data paths and single-precision FPUs to
limit the die area. As process technology
marches on, these limitations can be ad-
dressed, though ultimately at the expense of
throughput.

Rigel’s architecture achieves its scale in
part because of what it omits compared to
GPUs. While GPUs expend substantial die
area on graphics-specific hardware, Rigel
repurposes this die area for features such as
caches and independent processing cores.
(Nvidia’s Tesla die is approximately 25 per-
cent stream processing units, while roughly
half the die area is dedicated to graphics-
related hardware such as texture and raster
operations.5) Ultimately, Rigel makes choices
that aim to increase generality. Further work
is merited to drive down the cost of Rigel’s
MIMD hardware compared to efficient
SIMD hardware.

Power
We chose an aggressive design point for

Rigel and show that it’s feasible in current
process technology within a reasonable
power budget, on par with GPUs of similar
peak throughput.5 We made architectural
choices generally favorable to power efficiency,
including the use of small, nonspeculative in-
order cores and moderate clock targets. Al-
though industry researchers have advocated
future thousand-core chips,7 power con-
sumption for future large-scale processors
nevertheless remains a concern.8 Although
some studies portend challenges for scaling
multicore processors in a power-constrained

world of dark silicon, others find that thou-
sands of cores are reasonable for highly par-
allel workloads such as ray tracing. Future
massively parallel processors such as Rigel
will likely need to conserve power through
various techniques at multiple levels of the
technology stack, including process technol-
ogy, circuits, architecture, and software.

Off-chip bandwidth
Although on-chip transistor and band-

width budgets will likely increase along with
Moore’s law, off-chip memory bandwidth
will increase more slowly,8 becoming a scal-
ability bottleneck for many applications.

[3B2-9] mmi2011040030.3d 19/7/011 13:12 Page 39

0.0x

1.0x

2.0x

3.0x

4.0x

5.0x

6.0x

7.0x

8.0x

256 512 1,024 2,048 4,096 8,192 16,384

S
lo

w
d

ow
n

no
rm

al
iz

ed
 to

 in
fin

ite
 e

nt
rie

s

Directory entries per L3 cache bank(a)

cg
dmm
gjk
heat
kmeans
mri
sobel
stencil

0.0x

1.0x

2.0x

3.0x

4.0x

5.0x

6.0x

7.0x

8.0x

256 512 1,024 2,048 4,096 8,192 16,384

Directory entries per L3 cache bank(b)

S
lo

w
d

ow
n

no
rm

al
iz

ed
 to

 in
fin

ite
 e

nt
rie

s cg
dmm
gjk
heat
kmeans
mri
sobel
stencil

Figure 9. Performance versus directory cache size for HWcc alone (a) and

for Cohesion (b). Cohesion amplifies effective directory size by removing

data easily tracked by software from the hardware coherence protocol.

..

JULY/AUGUST 2011 39

High-bandwidth off-chip memory systems
are also a major source of power consump-
tion in high-performance systems, requiring
more than 30 W to meet modern GPU sys-
tems’ bandwidth demands. Future accelera-
tors will require careful consideration of
data locality at all levels of the memory hier-
archy to make optimal use of limited off-chip
bandwidth. Emerging technologies such as
optical off-chip interconnect or 3D die stack-
ing with through-silicon vias could provide
additional bandwidth to future designs.

System software support
Like GPUs, Rigel was originally con-

ceived as a coprocessor, complementary to
a general-purpose CPU. Both omit system-
level support required for features such as re-
source virtualization, multiprogramming,
process isolation, and resource management.
Recent GPUs implement a form of virtual
memory and allow execution of multiple
concurrent kernels in space, although they
generally can’t be time- or space-multiplexed
efficiently among multiple applications.
When required, a host processor must emu-
late unimplemented functionality at a signif-
icant cost. Future accelerators will need to
integrate into systems as first-class entities,
manage their own resources when possible,
and provide the safety and portability guar-
antees that enhance programmer productiv-
ity and robustness on general-purpose
processors. Providing this additional func-
tionality while maintaining an accelerator’s
performance characteristics is an important
problem.

A tale of two laws
Amdahl’s law states that overall system

performance is ultimately limited by the se-
rial portion of a problem. As additional pro-
cessing elements are added, performance
levels off. Gustafson’s law9 is a counterpoint
to Amdahl’s, arguing that as more parallel
resources become available, larger problem
sizes become feasible. Rather than becoming
dominated by the serial portion of a prob-
lem, the parallel portion expands to exploit
additional processing capability.

One possible future for designs such as
Rigel is as a parallel computation fabric for het-
erogeneous systems. Sufficient die area is now

available such that multiple high-performance
CPUs can be integrated onto the same die
as Rigel. This strategy allows a few latency-
optimized cores to handle operating systems,
serial code, and latency-sensitive code while
offloading parallel work to a more efficient
computational substrate. Evidence of such an
approach can already be seen in the embedded
SoC space, where consumer-oriented visual
computing applications are driving the
demand for increased performance. AMD’s
Fusion and Intel’s on-die integration of
GPUs are also a step in this direction.

W ith the transistor count afforded by
modern manufacturing processes

and large available die sizes, a 1,024-core
processor is feasible in today’s technology.
Exploiting sharing patterns in our target
applications and co-optimizing hardware,
system software, and applications has en-
abled the Rigel architecture to scale to 1,024
cores. Our evaluation of accelerator mem-
ory systems has given rise to software-
managed, hardware-managed, and hybrid
memory models that enable accelerator
architects to match the memory model to
their needs. M I CR O

..
References

1. J.H. Kelm et al., ‘‘Rigel: An Architecture and

Scalable Programming Interface for a 1,000-

Core Accelerator,’’ Proc. 36th Ann. Int’l

Symp. Computer Architecture, ACM Press,

2009, pp. 140-151.

2. J.H. Kelm et al., ‘‘A Task-Centric Memory

Model for Scalable Accelerator Architec-

tures,’’ Proc. Int’l Conf. Parallel Architec-

tures and Compilation Techniques, IEEE

CS Press, 2009, pp. 77-87.

3. J.H. Kelm et al., ‘‘Waypoint: Scaling Coher-

ence to 1,000-Core Architectures,’’ Proc.

Int’l Conf. Parallel Architectures and Compi-

lation Techniques, ACM Press, 2010,

pp. 99-110.

4. J.H. Kelm et al., ‘‘Cohesion: A Hybrid Mem-

ory Model for Accelerators,’’ Proc. Int’l

Symp. Computer Architecture, ACM Press,

2010, pp. 429-440.

5. E. Lindholm et al., ‘‘Nvidia Tesla: A Unified

Graphics and Computing Architecture,’’

IEEE Micro, vol. 28, no. 2, 2008, pp. 39-55.

[3B2-9] mmi2011040030.3d 19/7/011 13:12 Page 40

..

40 IEEE MICRO

...

BIG CHIPS

6. J. Laudon and D. Lenoski, ‘‘The SGI Origin:

A CCNUMA Highly Scalable Server,’’ Proc.

24th Ann. Int’l Symp. Computer Architec-

ture, ACM Press, 1997, pp. 241-251.

7. S. Borkar, ‘‘Thousand Core Chips: A Tech-

nology Perspective,’’ Proc. 44th Ann. De-

sign Automation Conf., ACM Press, 2007,

pp. 746-749.

8. International Technology Roadmap for

Semiconductors, tech. report, ITRS, 2009.

9. J.L. Gustafson, ‘‘Reevaluating Amdahl’s

Law,’’ Comm. ACM, vol. 31, no. 5, 1988,

pp. 532-533.

Daniel R. Johnson is a PhD candidate in
electrical and computer engineering at the
University of Illinois at Urbana-Champaign.
His research interests include parallel accel-
erators and domain-specific architectures.
Johnson has an MS in electrical and
computer engineering from the University
of Illinois at Urbana-Champaign. He’s a
member of the ACM and IEEE.

Matthew R. Johnson is a PhD candidate in
electrical and computer engineering at the
University of Illinois at Urbana-Champaign.
His research interests include memory sys-
tems, energy-efficient architectures, and
hardware/software codesign. Johnson has a
BS in electrical and computer engineering
and computer science from Duke University.
He’s a member of the ACM and IEEE.

John H. Kelm is a software engineer at Intel.
His research interests include parallel
architectures, memory system design, and
cache-coherence protocols. Kelm received
his PhD in electrical and computer engineer-
ing from the University of Illinois at Urbana-
Champaign. He’s a member of the ACM
and IEEE.

William Tuohy is a PhD student in
electrical and computer engineering at the
University of Illinois at Urbana-Champaign.
His research interests include parallel archi-
tectures, compilers, and memory systems.
Tuohy has a BS in electrical engineering and
computer science from the University of
California, Berkeley. He’s a member of the
ACM and IEEE.

Steven S. Lumetta is an associate professor
in the Electrical and Computer Engineering
Department at the University of Illinois at
Urbana-Champaign. His interests center on
high-performance networking and comput-
ing, hierarchical systems, and parallel run-
time software. Lumetta has a PhD in
computer science from the University of
California, Berkeley. He’s a member of the
ACM and IEEE.

Sanjay J. Patel is an associate professor in
the Electrical and Computer Engineering
Department and a Sony Faculty Scholar
at the University of Illinois at Urbana-
Champaign. His research interests include
high-throughput chip architectures and visual
computing. Patel has a PhD in computer
science and engineering from the University
of Michigan, Ann Arbor. He’s a member of
IEEE.

Direct questions or comments about this
article to Daniel R. Johnson, University of
Illinois at Urbana-Champaign, Coordinated
Sciences Laboratory, 1306 W. Main St.,
Urbana, IL 61801; djohns53@illinois.edu.

[3B2-9] mmi2011040030.3d 19/7/011 13:12 Page 41

..

JULY/AUGUST 2011 41

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 36
 36
 36
 36
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.002400
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

