
Rigid Bodies



Simulation Homework

• Build a particle system based either on F=ma or 
procedural simulation

– Examples: Smoke, Fire, Water, Wind, Leaves, Cloth, 
Magnets, Flocks, Fish, Insects, Crowds, etc.

• Simulate a Rigid Body 

– Examples: Angry birds, Bodies tumbling, bouncing, 
moving around in a room and colliding, Explosions & 
Fracture, Drop the camera, Etc…

Thursday 
Simulation & 

Unity



Rigid Body as “Particle Chunks”

Consider a rigid body It can be broken up into chunks 
(or elements), and each chunk 
can be treated as a single 
particle if it is small enough

A small chunk of 
a rigid body



Center of Mass

• A body composed of 𝑛 particle “chunks” with masses 𝑚𝑖 has total mass 

𝑀 =෍

𝑖=1

𝑛

𝑚𝑖

• If the particles have positions Ԧ𝑥𝑖 , the center of mass is

ҧ𝑥 =
σ𝑖=1
𝑛 𝑚𝑖 Ԧ𝑥𝑖
𝑀

• The center of mass for a rigid body has position ҧ𝑥 and translational velocity 
ҧ𝑣 similar to a single particle

• When we refer to the position and velocity of a rigid body, we are referring 
to the position and translational velocity of its center of mass

• The center of mass obeys the same ODEs for position and velocity as a 
particle does, but using the TOTAL mass and the NET force



Orientation



Orientation
• A rigid body can rotate or change its orientation 

while its center of mass is stationary

• Different ways to keep track of the rotation 𝑅:
– 3x3 Matrix, 3 Euler angles, 1 Quaternion

• Place a coordinate system at the center of mass in 
object space

• The rotation 𝑅 rotates the rigid body (and the 
object space coordinate system) into its world space 
orientation

• Recall: the columns of 𝑅 are the three object space 
axes in their world space orientations



Combining Position and Orientation

ҧ𝑥

t

𝑅

𝑥𝑤
𝑥𝑏

• The rigid body has an intrinsic coordinate system in its 
object space, with its center of mass at the origin

• It’s put into world space with a translation and a rotation



Combining Position and Orientation

• The translation of the origin of the object space 
coordinate system is given by the position of the center 
of mass ҧ𝑥

• The world space orientation of the object space 
coordinate system is given by 𝑅

– Assume 𝑅 is a matrix, equivalently expressed as a unit 
quaternion

• A point 𝑥𝑜 in object space has a world space location
𝑥𝑤 = ҧ𝑥 + 𝑅𝑥𝑜

– Notice that the center of mass (at the origin) maps to ҧ𝑥

– Notice that (1,0,0), (0,1,0), (0,0,1) are all rotated by 𝑅 before 
being translated by ҧ𝑥



Angular Velocity



• Both ҧ𝑥 and 𝑅 are functions of time
• The rate of change of the position of the center of mass ҧ𝑥

with respect to time is the translational velocity of the center 
of mass ҧ𝑣

• (From our quaternion discussion…) The orientation of the 
body is changing as it is rotated about some axis ො𝑛 emanating 
from the center of mass

• The rate of change of the orientation 𝑅 is given by the world 
space angular velocity 𝜔
– its direction is the axis of rotation, ො𝑛
– Its magnitude is the speed of rotation

• The pointwise velocity of any point x on the rigid body is 
given by

𝑣𝑝 = ҧ𝑣 + 𝜔 × 𝑥 − ҧ𝑥 = ҧ𝑣 + 𝜔 × 𝑟
where r is the moment arm and × is the cross-product

Angular Velocity



Aside: Cross Product Matrix

• Given vectors 𝑎 = [𝑎1, 𝑎2, 𝑎3] and 𝑏 = 𝑏1, 𝑏2, 𝑏3 , their cross 
product 𝑎 × 𝑏 can be written as matrix multiplication 𝑎∗𝑏 by 
converting 𝑎 to a cross product matrix

• 𝑎∗ =

0 −𝑎3 𝑎2
𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

• 𝑎∗𝑇 = −𝑎∗

• 𝑎∗𝑏 = −𝑏∗𝑎

• Using this new notation, the pointwise velocity of any point 
x on the object is then given by:                     

𝑣𝑝 = ҧ𝑣 + 𝜔∗𝑟



Linear and Angular  Velocity

ҧ𝑥

ҧ𝑣

𝜔



ODE for Orientation

• The ODE for orientation (angular position) is given 
by

ሶ𝑅 = 𝜔∗𝑅

• That is,  ሶ𝑅 = 𝜔 × 𝑅 where the cross product is 
applied independently to each of the three columns 
of 𝑅

• Writing the 3x3 matrix  𝜔∗ and using matrix 
multiplication 𝜔∗𝑅 automatically performs these 3 
cross products



Inertia Tensor



Inertia Tensor

• Linear momentum is defined as the product of the 
mass times the translational velocity
– Mass is something that resists change in velocity

• Angular momentum 𝐿 is defined as an “angular mass” 
times the angular velocity 𝜔

• The “angular mass” is called the moment of inertia (or 
inertia tensor) 𝐼 of the rigid body

• If you spin in your chair while extending your legs, and 
then suddenly pull your legs closer the chair spins 
faster
– 𝐼 reduces when you pull your legs closer.
– Hence 𝜔 has to increase to keep angular momentum 𝐿 = 𝐼𝜔

constant



Inertia Tensor
• For a system of n particles, the angular momentum is 

𝐿 =෍

𝑖

(𝑥𝑖
𝑤)∗𝑚𝑖𝑣𝑖 =෍

𝑖

ҧ𝑥 + 𝑟𝑖
∗𝑚𝑖𝑣𝑖 = ҧ𝑥∗𝑀 ҧ𝑣 +෍

𝑖

𝑟𝑖
∗𝑚𝑖𝑣𝑖

– where 𝑟𝑖 is the moment arm of the 𝑖𝑡ℎparticle

• 𝑣𝑖 can be written as ҧ𝑣 + 𝜔∗𝑟𝑖 so

𝐿 = ҧ𝑥∗𝑀 ҧ𝑣 +෍

𝑖

𝑟𝑖
∗𝑚𝑖 ҧ𝑣 +෍

𝑖

𝑟𝑖
∗𝑚𝑖𝜔

∗𝑟𝑖

• σ𝑖 𝑟𝑖
∗𝑚𝑖 ҧ𝑣 = ( ҧ𝑣∗)𝑇 σ𝑖𝑚𝑖𝑟𝑖 = 0 so

𝐿 = ҧ𝑥∗𝑀 ҧ𝑣 +෍

𝑖

𝑚𝑖(𝑟𝑖
∗)𝑇𝑟𝑖

∗𝜔 = ҧ𝑥∗𝑀 ҧ𝑣 + 𝐼𝜔

– where 𝐼 = σ𝑖𝑚𝑖(𝑟𝑖
∗)𝑇𝑟𝑖

∗



Object Space Inertia Tensor
• We can pre-compute the object space inertia tensor as a 3x3 

matrix 𝐼𝑜

• Then, the world space inertia tensor is given by the 3x3 
matrix

𝐼 = 𝑅𝐼𝑜𝑅𝑇

• One can compute the SVD of the symmetric 3x3 matrix 𝐼𝑜 to 
obtain 𝐼𝑜 = 𝑈𝐷𝑈𝑇 where 𝐷 is a 3x3 diagonal matrix of 3 
singular values

• Then rotating the object space rest state of the rigid body by 
𝑈−1 gives a new object space inertia tensor of 

𝑈−1𝐼𝑜𝑈−𝑇 = 𝑈−1𝑈𝐷𝑈𝑇𝑈−𝑇 = 𝐷

• That is, properly orienting the rest pose of a rigid body in 
object space gives a diagonal object space inertia tensor 𝐼𝑜



Forces and Torques



Forces and Torques
• Newton’s second law for angular quantities

• A force 𝐹 changes both the linear momentum 𝑀 ҧ𝑣 and the 
rotational (angular) momentum 𝐿

• The change in linear momentum is independent of the 
point on the rigid body 𝑥 where the force is applied

• The change in angular momentum does depend on the 
point 𝑥 where the force is applied

• The torque is defined as
𝜏 = 𝑥 − ҧ𝑥 × 𝐹 = 𝑟 × 𝐹

• The net change in angular momentum is given by the sum 
of all the external torques

ሶ𝐿 = 𝜏



ODEs



Rigid Body: Equations of Motion

• State vector for a rigid body

𝑋 =

ҧ𝑥
𝑅
𝑀 ҧ𝑣
𝐿

• Equations of motion

𝑑

𝑑𝑡
𝑋 =

𝑑

𝑑𝑡

ҧ𝑥
𝑅
𝑀 ҧ𝑣
𝐿

=

ҧ𝑣
𝜔∗𝑅
𝐹
𝜏



Rigid Body: Equations of Motion

• State vector for a rigid body

𝑋 =

ҧ𝑥
𝑅
ҧ𝑣
𝐿

• Equations of motion

𝑑

𝑑𝑡
𝑋 =

𝑑

𝑑𝑡

ҧ𝑥
𝑅
ҧ𝑣
𝐿

=

ҧ𝑣
𝜔∗𝑅
𝐹/𝑀
𝜏

Equations of 
motion for a 
particle at the 
center of mass



Forward Euler Update

𝑋𝑛+1 = 𝑋𝑛 + Δ𝑡

ҧ𝑣
𝜔∗𝑅
𝐹/𝑀
𝜏

𝑛

• Newmark for better accuracy and stability, etc…

• Better results are obtained on the second equation 
by rotating the columns of 𝑅 directly using the 
vector Δ𝑡𝜔

• Need to periodically re-orthonormalize the columns 
of 𝑅 to keep it a rotation matrix 



Rigid Body: Equations of Motion

• State vector for a rigid body

𝑋 =

ҧ𝑥
𝑞
ҧ𝑣
𝐿

• Equations of motion

𝑑

𝑑𝑡
𝑋 =

𝑑

𝑑𝑡

ҧ𝑥
𝑞
ҧ𝑣
𝐿

=

ҧ𝑣
1

2
𝜔∗𝑞

𝐹/𝑀
𝜏

• Once again, preferable to rotate q by Δ𝑡𝜔
• Renormalize q using a square root



Question #1

LONG FORM:
• Summarize rigid body simulation.
• Identify 10 rigid bodies in a typical room.

SHORT FORM:
• Identify 10 rigid bodies in this room.



Geometry



Rigid Body Modeling
• Store an object space triangulated surface to 

represent the surface of the rigid body

• Store an object space implicit surface to represent 
the interior volume of the rigid body

• Collision detection between two rigid bodies can 
then be carried out by checking the surface of one 
body against the interior volume of another

• Implicit surfaces can be used to model the interior 
volume of kinematic and static objects as well

• Implicit surface representations of interior volumes 
can also be used for collisions with particles and 
particle systems  



• Implicit surfaces represent a surface with a function 𝜙(𝑥) defined over the whole 
3D space

• The inside region Ω−, the outside region is Ω+, and the surface 𝜕Ω are all defined 
by the function 𝜙(𝑥)

• 𝜙 𝑥 < 0 inside

• 𝜙 𝑥 > 0 outside

• 𝜙 𝑥 = 0 surface

• Easy to check if a point is inside an object

• Efficient to make topology changes to an object

• Efficient boolean operations: Union, Difference, Intersection

Recall: Implicit Surfaces



Analytic Implicit Surfaces

• For simple functions, write down the function and analytically 
evaluate 𝜙(𝑥) to see if 𝜙 𝑥 < 0 and thus 𝑥 is inside the object

• 2D circle

• 3D ellipsoid



Discrete Implicit Surfaces

• Lay down a grid that spans the space you are trying 
to represent, e.g. a padded bounding box 

• Store values of the function at grid points

• Then for arbitrary locations in space, interpolate 
from the nearby values on the grid to see if 𝜙 𝑥 <
0
• use trilinear interpolation, like 3D textures

• Signed Distance Functions are implicit surfaces 
where the magnitude of the function gives the 
distance to the closet point on the surface



Constructing Signed Distance Functions
• Start with a triangulated surface
• Place a grid inside a slightly padded bounding box of the object 

– This grid will contain point samples for the signed distance function
– The resolution of the grid is based on heuristics

• Place a sphere at every grid point and find all intersecting triangles 
– the radius of the sphere only needs to be a few grid cells wide, because 

we only care about grid points near the triangulated surface
– If the sphere does not intersect any triangles, then the grid point is not 

near the triangulated surface
– (An acceleration structure is useful, e.g. bounding box hierarchy)

• For each nearby triangle, find the closest point on that triangle 
– see this document for details

• Take the minimum of all such distances as the magnitude of 𝜙
• Could initialize all grid points this way, but it is expensive for points 

farther from the surface where one has to check many more 
(potentially all) triangles

https://www.researchgate.net/profile/Mark_Jones38/publication/243787422_3D_Distance_from_a_Point_to_a_Triangle/links/54cb6c3b0cf2240c27e7da11/3D-Distance-from-a-Point-to-a-Triangle.pdf


Fast Marching Method
• Similar to Dijkstra's algorithm

• Walk outwards from the previously initialized points to fill the rest of the domain 

Initialization

• Mark all the previously computed points nearby the triangulated surface as Black

• Mark the rest of the points White

Iteration

• White points adjacent to Black points are re-labeled as Red

• Estimate the distance value for all Red points using only their Black neighbors

– by solving a quadratic equation for distance

• The Red point with the smallest distance value is found and labeled Black

– a heap data structure is ideal, and then the fast marching method runs in 
𝒪 𝑁𝑙𝑜𝑔𝑁 where 𝑁 is the number of grid points

• Labeling this point Black turns some White points into Red

– and also changes the value of some of the previously computed Red points, 
since there is a new Black point to use in their distance computation



Sign of 𝜙

• Perform a flood fill on the grid
– Start from a random grid point
– Put it on a stack; mark it as 0
– Pop it off; put its connected non-

occluded neighbors on the stack; 
mark them as 0; repeat

– When there are no more cells on 
the stack, find a random uncolored 
cell, mark it as 1, and repeat

• The region (0 or 1) that touches 
the grid boundary is marked as 
outside

• The other region is marked as 
inside

• Could have more than two 
regions in some cases



Question #2

LONG FORM:
• Summarize rigid body geometric modeling.
• Answer short form question below

SHORT FORM:
• Give an example of a rigid body with an interesting 

shape that could be used in a game. How would it 
be used?



Collisions



Collision Detection
• Test all the triangulated surface points of one body against the 

implicit surface volume of the other (and vice versa)

– A world space point is put into object space to check against 
an implicit surface using

𝑥𝑜 = 𝑅−1(𝑥𝑤 − ҧ𝑥)

• Partial derivatives are used to compute the normal

𝑛 𝑥0, 𝑦0, 𝑧0 = อ
𝑑𝜙

𝑑𝑥
,
𝑑𝜙

𝑑𝑦
,
𝑑𝜙

𝑑𝑧
𝑥0,𝑦0,𝑧0

𝑁𝑜𝑟𝑚𝑎𝑙 𝑥0, 𝑦0, 𝑧0 =
𝑛 𝑥0, 𝑦0, 𝑧0
𝑛 𝑥0, 𝑦0, 𝑧0

• Note: A particle can be moved to the surface of the implicit 
surface by tracing a ray in the normal direction and looking for 
the intersection with the 𝜙 = 0 isocontour (see CS148)



Rigid Body Collisions

Collision detection

𝑢1

𝑢2

Compute the 
initial relative 
velocity

The final relative 
velocity is calculated 
using the coefficient 
of restitution. 

Calculate and apply 
the collision impulse

𝑗2

𝑗1

After evolving the 
bodies in time, they 
eventually separate



Collision Response

Equations for applying an impulse to one body with 
collision location 𝑟𝑝 with respect to its center of mass:

• 𝑀 ҧ𝑣𝑛𝑒𝑤 = 𝑀 ҧ𝑣 + 𝑗

• 𝐼𝜔𝑛𝑒𝑤 = 𝐼𝜔 + 𝑟𝑝
∗𝑗 (note 𝐼 doesn’t change)

• And then, in terms of the pointwise velocity…

• 𝑢𝑝
𝑛𝑒𝑤 = ҧ𝑣𝑛𝑒𝑤 + 𝜔𝑛𝑒𝑤∗

𝑟𝑝 = ҧ𝑣𝑛𝑒𝑤 + 𝑟𝑝
∗𝑇𝜔𝑛𝑒𝑤

• 𝑢𝑝
𝑛𝑒𝑤 = ҧ𝑣 +

𝑗

𝑀
+ 𝑟𝑝

∗𝑇 𝜔 + 𝐼−1𝑟𝑝
∗𝑗

• 𝑢𝑝
𝑛𝑒𝑤 = 𝑢𝑝 +

1

𝑀
𝐼3𝑥3 + 𝑟𝑝

∗𝑇𝐼−1𝑟𝑝
∗ 𝑗 = 𝑢𝑝 + 𝐾𝑗

• Infinite mass kinematic/static objects (e.g. ground 
plane) are treated by setting the impulse factor 𝐾 = 0



Collision Response
• Equal and opposite impulse applied to each body:

𝑢1
𝑛𝑒𝑤 = 𝑢1 + 𝐾1𝑗 and   𝑢2

𝑛𝑒𝑤 = 𝑢2 − 𝐾2𝑗

• Calculate the relative velocity 𝑢𝑟𝑒𝑙 = 𝑢1 − 𝑢2 at the point of 
collision
– Relative normal velocity is 𝑢𝑟𝑒𝑙,𝑁 = 𝑢𝑟𝑒𝑙 ⋅ 𝑁

– Only collide when 𝑢𝑟𝑒𝑙,𝑁 < 0, i.e. bodies not already separating

• Define a total impulse factor 𝐾𝑇 = 𝐾1 + 𝐾2, then

𝑢𝑟𝑒𝑙
𝑛𝑒𝑤 = 𝑢𝑟𝑒𝑙 + 𝐾𝑇𝑗

𝑢𝑟𝑒𝑙,𝑁
𝑛𝑒𝑤 = 𝑢𝑟𝑒𝑙,𝑁 +𝑁𝑇𝐾𝑇𝑗

• Since the collision impulse should be in the normal direction, 
we can write 𝑗 = 𝑁𝑗𝑛, hence

𝑢𝑟𝑒𝑙,𝑁
𝑛𝑒𝑤 = 𝑢𝑟𝑒𝑙,𝑁 + 𝑁𝑇𝐾𝑇𝑁𝑗𝑛

• Given 𝑢𝑟𝑒𝑙,𝑁
𝑛𝑒𝑤 = −𝑐𝑅𝑢𝑟𝑒𝑙,𝑁, we solve for 𝑗𝑛 and apply 𝑗 = 𝑁𝑗𝑛



Friction
• Relative tangential velocity is 𝑢𝑟𝑒𝑙,𝑇 = 𝑢𝑟𝑒𝑙 − 𝑢𝑟𝑒𝑙,𝑁𝑁

• First assume static friction, i.e. 𝑢𝑟𝑒𝑙,𝑇
𝑛𝑒𝑤 = 0, so that

𝑢𝑟𝑒𝑙
𝑛𝑒𝑤 = −𝑐𝑅𝑢𝑟𝑒𝑙,𝑁𝑁

• Solve for a full 3D impulse 𝑗 using 𝑢𝑟𝑒𝑙
𝑛𝑒𝑤 = 𝑢𝑟𝑒𝑙 + 𝐾𝑇𝑗, by inverting 

the 3x3 matrix 𝐾𝑇
• If this impulse is in the friction cone, i.e. if 𝑗 − 𝑗 ⋅ 𝑁 𝑁 ≤ 𝜇𝑠 𝑗 ⋅ 𝑁 , 

then the assumption of sticking due to static friction was correct

• Otherwise we start over using kinetic friction instead (𝜇𝑘≤ 𝜇𝑠)

– With tangential direction 𝑇 =
𝑢𝑟𝑒𝑙,𝑇

𝑢𝑟𝑒𝑙,𝑇
,  the kinetic friction impulse 

is  𝑗 = 𝑗𝑛𝑁 − 𝜇𝑘𝑗𝑛𝑇

– And we can solve −𝑐𝑅𝑢𝑟𝑒𝑙,𝑁= 𝑢𝑟𝑒𝑙,𝑁 +𝑁𝑇𝐾𝑇 𝑁 − 𝜇𝑘𝑇 𝑗𝑛 to find 
𝑗𝑛 before applying 𝑗 = 𝑁 − 𝜇𝑘𝑇 𝑗𝑛



Question #3

LONG FORM:
• Summarize rigid body collision handling.
• Answer short form question below.

SHORT FORM:
• Give an example of using collisions between rigid 

bodies for a game.



Fracture



Fracture



Fracture
• Suppose a rigid body fractures into n pieces with 

masses 𝑚1, , 𝑚2 …𝑚𝑛, velocities 𝑣1, 𝑣2… . 𝑣𝑛, inertia 
tensors 𝐼1, 𝐼2, … 𝐼𝑛 and angular velocities 𝜔1, 𝜔2, …𝜔𝑛

• The mass and inertia tensor of each new piece can be 
computed based on the geometry

• What can we say about the fractured pieces?
– M𝑣 = σ𝑚𝑖𝑣𝑖
– 𝐼𝜔 = σ(𝑟𝑖

∗𝑚𝑖𝑣𝑖 + 𝐼𝑖𝜔𝑖)

• To ensure this:
– Assign each rigid body the velocity its newly created center 

of mass had before fracturing i.e. 𝑣𝑖 = 𝑣 + 𝜔 × 𝑟𝑖
• where 𝑟𝑖 points from the center of mass of the original rigid body to 

the center of mass of the i-th child

– Angular momentum is then conserved by setting 𝜔𝑖 = 𝜔


