APPLIED ARCHITECTURAL STRUCTURES:

STRUCTURAL ANALYSIS AND SYSTEMS

DR. ANNE NICHOLS FALL 2013

lecture seven

rigid frames: analysis & design

Rigid Frames 1 **ARCH 631**

F2009ahn

Rigid Frames

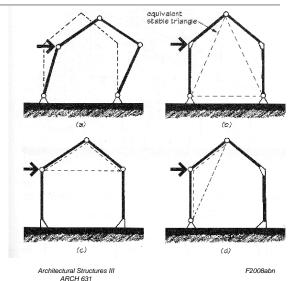
- composed of linear elements
- member geometry fixed at joints
 - no relative rotation
- statically indeterminate
- see
 - shear
 - axial forces
 - bending moments

Rigid Frames 2 Lecture 7

Architectural Structures III ARCH 631

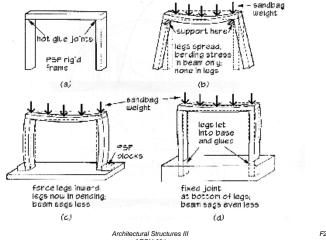
F2008abn

Rigid Frames


rigidity

Lecture 7

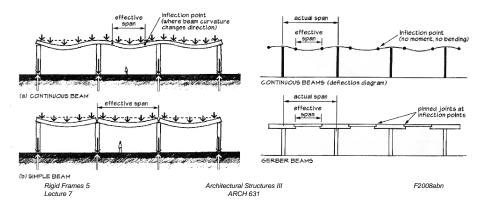
- end constraints
- smaller horizontal members
- larger vertical members


Rigid Frames 3

Lecture 7

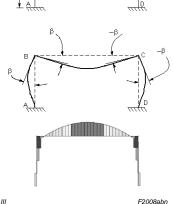
Rigid Frames

behavior


Rigid Frames 4 Lecture 7

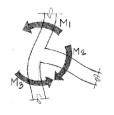
ARCH 631

F2008ahn


Rigid Frames

- moments get redistributed
- deflections are smaller
- effective column lengths are shorter

Rigid Frame Analysis


- members see
 - shear
 - axial force
 - bending
- V & M diagrams
 - plot on "outside"

1=51.

Rigid Frames

- resists lateral loadings
- shape depends on stiffness of beams and columns
- 90° maintained

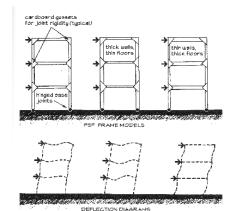
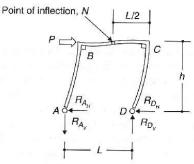
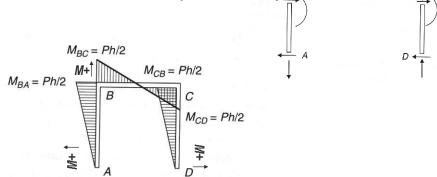



Figure 9.19: Model demonstration of the effects of varying the stiffness of beams and columns when a building frame is subjected to lateral loads.

Rigid Frames 6 Lecture 7 Architectural Structures III ARCH 631 F2008abn

Rigid Frame Analysis

- need support reactions
- free body diagram each member
- end reactions are equal and opposite on next member
- "turn" memberlike beam
- draw V & M



Rigid Frames 8 Lecture 7 Architectural Structures III ARCH 631 F2008abn

Rigid Frames 7 Lecture 7 Architectural Structures III ARCH 631

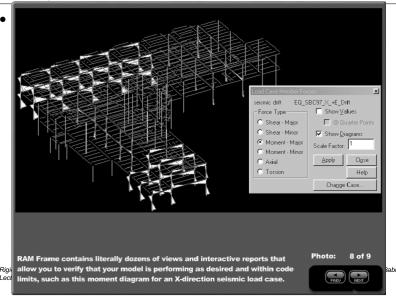
Rigid Frame Analysis

- FBD & M
 - opposite end reactions at joints

Rigid Frames 9 Lecture 7 Architectural Structures III ARCH 631 F2008abn

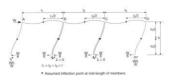
Analysis Methods

- computer-based
 - matrix analysis or finite element analysis
 - equilibrium
 - support conditions
 - joint locations
 - relative stiffness of members
 - output
 - deflections
 - member forces



Rigid Frames 10

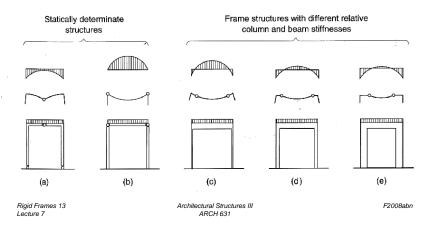
Architectural Structures III
ARCH 631


F2008abr

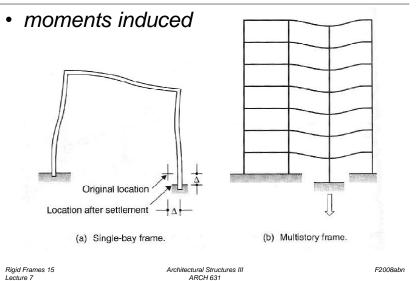
Analysis Methods

Analysis Methods

- approximate methods
 - presume where <u>inflection points</u> occur in deformed shape
 - these points have zero moment
 - "portal method"
 - hinge is placed at the center of each girder
 - hinge is placed at the center of each column
 - shear at interior columns is twice that of exterior columns

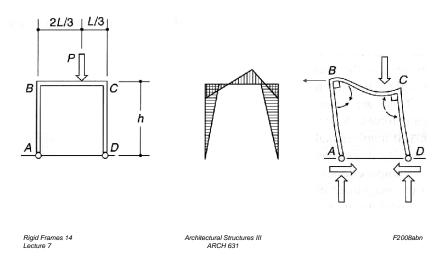


Rigid Frames 12 Lecture 7 Architectural Structures III
ARCH 631


F2009abr

Rigid Frames

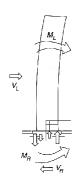
- · member sizes do affect behavior
- location of inflection points critical



Support Settlements

Sidesway

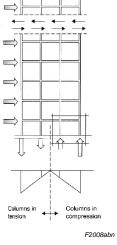
translation with vertical load


Multistory Frame Analysis

- cantilever method (approximate)
 - point of inflection at midspan of each beam
 - point of inflection at midheight of each column
 - axial force in each column
 proportional to the horizontal
 distance of that column from the
 centroid of all columns in the story
 - centroids are "average" locations

Rigid Frames 16 Lecture 7 Architectural Structures III ARCH 631 F2009abn

Multistory Frame Analysis


cantilever method (approximate)

Architectural Structures III ARCH 631

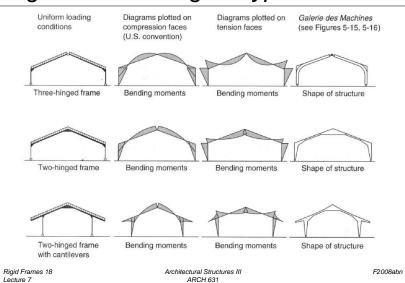
Rigid Frame Design

materials

Rigid Frames 17

Lecture 7

- steel
- monolithic concrete
- laminated wood
- forms
 - small


• single story, gabled frame, portal, hinged...

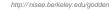
- large - multistory

Architectural Structures III
ARCH 631

F2009abn

Rigid Frame Design - Types

Rigid Frame Design

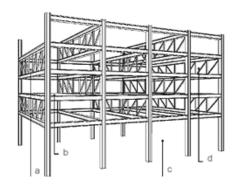

forms

Rigid Frames 20

Lecture 7

- small
- large

nup.// nisee.berkeley.edu/god


Architectural Structures III F2008abn ARCH 631

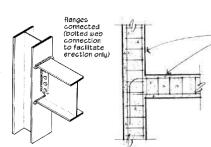
5

Rigid Frame Design

- staggered truss
 - rigidity
 - clear stories

Rigid Frames 21

Architectural Structures III


F2008abn

F2008abn

Rigid Frame Design connections

- steel

- concrete

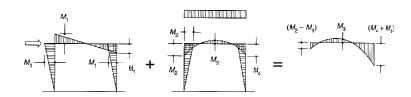
http://nisee.berkeley.edu/godden

Rigid Frames 22

MOMENT CONNECTION

Architectural Structures III ARCH 631

F2008abn

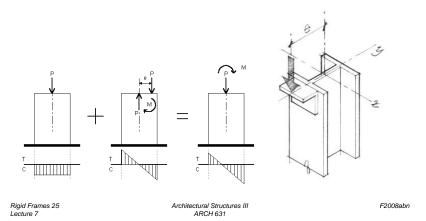

Rigid Frame Design

- considerations
 - need frame?
 - minimize moment (affects member size)
 - increasing stiffness
 - redistributes moments
 - · limits deflections
 - joint rigidity
 - support types

Rigid Frame Design

- load combinations
 - worst case for largest moments...
 - wind direction can increase moments

Architectural Structures III

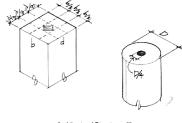

Rigid Frames 24

Architectural Structures III ARCH 631

F2008abn

Combined Stresses

- beam-columns have moments at end
- often due to eccentric load

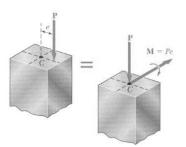


Eccentric Loading

- find e such that the minimum stress = 0

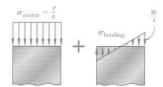
$$f_{\min} = \frac{P}{A} - \frac{(Pe)c}{I} = 0$$

- area defined by e from centroid is the kern



Rigid Frames 27 Architectural Structures III F2008abr.
Lecture 7 ARCH 631

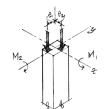
Combined Stresses & Design


– axial + bending

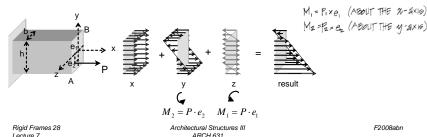
$$f_{\text{max}} = \frac{P}{A} + \frac{Mc}{I}$$
$$M = P \cdot e$$

- design

$$f_{\max} \le F_{cr} = \frac{f_{cr}}{F.S.}$$


Rigid Frames 26 Lecture 7 Architectural Structures III ARCH 631 F2008abn

Biaxial Bending

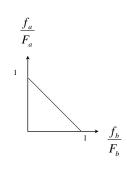

- when there is moment in two directions

$$M_1 = P \cdot e_1 \qquad M_2 = P \cdot e_2$$

$$f_{\text{max}} = \frac{P}{A} + \frac{M_1 y}{I} + \frac{M_2 z}{I}$$

biaxial bending

7


Stress Limit Conditions

- ASD interaction formula

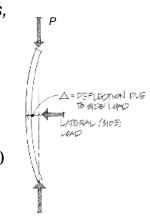
$$\frac{f_a}{F_a} + \frac{f_b}{F_b} \le 1.0$$

- with biaxial bending

$$\frac{f_a}{F_a} + \frac{f_{bx}}{F_{bx}} + \frac{f_{by}}{F_{by}} \le 1.0$$

Rigid Frames 29 Lecture 7

Architectural Structures III ARCH 631


F2008abr

Stress Limit Conditions

- in reality, as the column flexes, the moment increases

- P-∆ effect

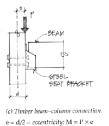
$$\frac{f_a}{F_a} + \frac{f_b \times (Magnification\ factor)}{F_b} \le 1.0$$

Rigid Frames 30 Lecture 7

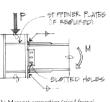
Architectural Structures III ARCH 631

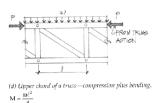

F2008abr

Design for Combined Stress

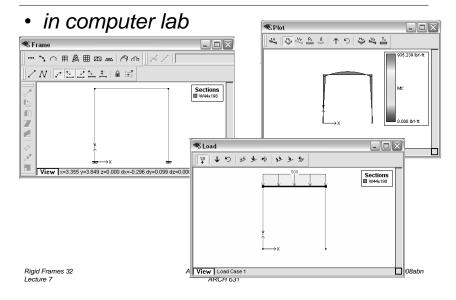

- satisfy
 - strength
 - stability
- pick

Lecture 7


section


(a) Framed beam (shear) connection. e = Eccentricity; M = P × e

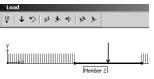
Rigid Frames 31 Architectural Structures III ARCH 631



(b) Moment connection (rigid frame).

F2008abn

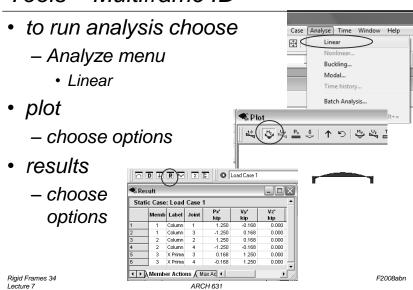
Tools – Multiframe4D


Tools - Multiframe4D

- frame window
 - define frame members
 - or pre-defined frame
 - select points, assign supports
 - select members, assign <u>section</u>

[ZN]

- load window
- select point or member, add point or distributed loads



F2008abn

用品圖四四 个小

Rigid Frames 33 Architectural Structures III
Lecture 7 ARCH 631

Tools - Multiframe4D

