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Abstract: We consider a variety of nearest-neighbor spin models defined on the d-dimensional hy-
percubic lattice Zd. Our essential assumption is that these models satisfy the condition of reflection
positivity. We prove that whenever the associated mean-field theory predicts a discontinuous transition,
the actual model also undergoes a discontinuous transition (which occurs near the mean-field transition
temperature), provided the dimension is sufficiently large or the first-order transition in the mean-field
model is sufficiently strong. As an application of our general theory, we show that for d sufficiently
large, the 3-state Potts ferromagnet on Zd undergoes a first-order phase transition as the temperature
varies. Similar results are established for all q-state Potts models with q ≥ 3, the r-component cubic
models with r ≥ 4 and the O(N)-nematic liquid-crystal models with N ≥ 3.
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1. INTRODUCTION

1.1 Motivation and outline.

Mean-field theory has traditionally played a seminal role for qualitative understanding of phase transi-
tions. In fact, most practical studies of complex physical systems begin (and sometimes end) with the
analysis of the corresponding mean field theory. The central idea of mean-field theory—dating back
to [15, 52]—is rather compelling: The ostensibly complicated interactions acting on a particular ele-
ment of the system are replaced by the action of an effective (or mean) external field. This field causes
a response at the point of question and its value has to be self-consistently adjusted so that the response
matches the effective field. The practical outcome of this procedure is a set of equations, known as the
mean-field equations. In contrast to the original, fully interacting system, the mean-field equations are
susceptible to direct analytical or numerical methods.

There is a general consensus that mean-field predictions are qualitatively or even quantitatively
accurate. However, for short-range systems, a mathematical foundation of this belief has not been
presented in a general context. A number of rigorous results have related various lattice systems
to their mean-field counterparts, either in the form of bounds on transition temperatures and critical
exponents, see [19, 20, 51] and references therein, or in terms of limits of the free energy [47] and
the magnetization [12, 40] as the dimension tends to infinity. In all of these results, the nature of the
phase transition is not addressed or the proofs require special symmetries which, as it turns out, ensure
that the transition is continuous. But, without special symmetries (or fine tuning) phase transitions are
typically discontinuous, so generic short-range systems have heretofore proved elusive. (By contrast,
substantial progress along these lines has been made for systems where the range of the interaction
plays the role of a large parameter. See, e.g., [10, 11, 14, 46].)

In this paper we demonstrate that for a certain class of nearest-neighbor spin systems, namely those
that are reflection positive, mean-field theory indeed provides a rigorous guideline for the order of the
transition. In particular, we show that the actual systems undergo a first-order transition whenever the
associated mean-field model predicts this behavior, provided the spatial dimension is sufficiently high
and/or the phase transition is sufficiently strong. Furthermore, we give estimates on the difference be-
tween the values of parameters of the actual model and its mean-field counterpart at their corresponding
transitions and show that these differences tend to zero as the spatial dimension tends to infinity. In
short, mean field theory is quantitatively accurate whenever the dimension is sufficiently large.

The main driving force of our proofs is the availability of the so called infrared bound [18, 22–24],
which we use for estimating the correlations between nearest-neighbor spins. It is worth mentioning
that the infrared bound is the principal focus of interest in a class of rigorous results on mean-field
critical behavior of various combinatorial models [13, 31–33, 38, 39] and percolation [29, 30, 34–37]
based on the technique of the lace expansion. However, in contrast to these results (and to the hard
work that they require), our approach is more reminiscent of the earlier works on high-dimensional
systems [1–3], where the infrared bound is provided as an input. In particular, for our systems this
input is a consequence of reflection positivity. (As such, some of our results can also be extended to
systems with long-range forces; the relevant modifications will appear in a separate publication [9].)

The principal substance of this paper is organized as follows: We devote the remainder of Sec-
tion 1 to a precise formulation of the general class of spin systems that we consider, we then develop
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some general mean-field formalism and, finally, state our main theorems. Section 2 contains a discus-
sion of three eminent models—Potts, cubic and nematic—with specific statements of theorems which
underscore the first-order (and mean-field) nature of the phase transitions for the large-d version of
these models. In Section 3 we develop and utilize the principal tools needed in this work and provide
proofs of all statements made in Section 1. In Section 4, we perform detailed analyses and collect
various known results on the mean-field theories for the specific models mentioned above. When these
systems are “sufficiently prepared,” we apply the Main Theorem to prove all of the results stated in
Section 2. Finally, in Section 5, we show that for any model in the class considered, the mean-field
theory can be realized by defining the problem on the complete graph.

1.2 Models of interest.

Throughout this paper, we will consider the following class of spin systems on the d-dimensional
hypercubic lattice Zd: The spins, denoted by Sx, take values in some fixed set Ω, which is a subset of
a finite dimensional vector space EΩ. We will use (· , ·) to denote the (positive-definite) inner product
in EΩ and assume that Ω is compact in the topology induced by this inner product. The spins are
weighted according to an a priori Borel probability measure µ whose support is Ω. An assignment
of a spin value Sx to each site x ∈ Zd defines a spin configuration; we assume that the a priori joint
distribution of all spins on Z

d is i.i.d. Abusing the notation slightly, we will use µ to denote the joint a
priori measure on spin configurations and use 〈−〉0 to denote the expectation with respect to µ.

The interaction between the spins is described by the (formal) Hamiltonian

βH = − J

2d

∑

〈x,y〉

(Sx,Sy) −
∑

x

(b,Sx). (1.1)

Here 〈x, y〉 denotes a nearest-neighbor pair of Z
d, the quantity b, playing the role of an external field, is

a vector from EΩ and β, the inverse temperature, has been incorporated into the (normalized) coupling
constant J ≥ 0 and the field parameter b.

The interaction Hamiltonian gives rise to the concept of a Gibbs measure which is defined as fol-
lows: Given a finite set Λ ⊂ Zd, a configuration S = (Sx)x∈Λ in Λ and a boundary condition
S′ = (S ′

x)x∈Zd\Λ in Zd \ Λ, we let βHΛ(S|S ′) be given by (1.1) with the first sum on the right-
hand side of (1.1) restricted to 〈x, y〉 such that {x, y} ∩ Λ 6= ∅, the second sum restricted to x ∈ Λ,
and Sx for x 6∈ Λ replaced by S ′

x. Then we define the measure ν(S′)
Λ on configurations S in Λ by the

expression

ν
(S′)
Λ (dS) =

e−βHΛ(S|S′)

ZΛ(S′)
µ(dS), (1.2)

where ZΛ(S′) is the appropriate normalization constant which is called the partition function. The
measure in (1.2) is the finite-volume Gibbs measure corresponding to the interaction (1.1).

In statistical mechanics, the measure (1.2) describes the thermodynamic equilibrium of the spin
system in Λ. To address the question of phase transitions, we have to study the possible limits of
these measures as Λ expands to fill in Z

d. In accord with the standard definitions, see [26], we say
that the spin model undergoes a first-order phase transition at parameter values (J, b) if there are
at least two distinct infinite-volume limits of the measure in (1.2) arising from different boundary
conditions. We will call these limiting objects either infinite-volume Gibbs measures or, in accordance



4 MAREK BISKUP AND LINCOLN CHAYES

with mathematical-physics nomenclature, Gibbs states. We refer the reader to [26,51] for more details
on the general properties of Gibbs states and phase transitions.

We remark that, while the entire class of models has been written so as to appear identical, the
physics will be quite different depending on the particulars of Ω and µ, and the inner product. Indeed,
the language of magnetic systems has been adapted only for linguistic and notational convenience.
The above framework can easily accommodate any number of other physically motivated interacting
models such as lattice gases, ferroelectrics, etc.

1.3 Mean-field formalism.

Here we will develop the general formalism needed for stating the principal mean-field bounds. The
first object of consideration is the logarithmic moment generating function of the distribution µ,

G(h) = log

∫

Ω

µ(dS) e(S,h). (1.3)

Since Ω was assumed compact, G(h) is finite for all h ∈ EΩ. Moreover, h 7→ G(h) is continuous and
convex throughout EΩ.

Every mean-field theory relies on a finite number of thermodynamic functions of internal responses.
For the systems with interaction (1.1), the object of principal interest is the magnetization. In general,
magnetization is a quantity taking values in the closed, convex hull of Ω, here denoted by Conv(Ω). If
m ∈ Conv(Ω), then the mean-field entropy function is defined via a Legendre transform of G(h),

S(m) = inf
h∈EΩ

{
G(h)− (m,h)

}
. (1.4)

(Strictly speaking, (1.4) makes sense even for m 6∈ Conv(Ω) for which we simply get S(m) = −∞.)
In general, m 7→ S(m) is concave and we have S(m) ≤ 0 for all m ∈ Conv(Ω). From the perspective
of the large-deviation theory (see [16,19]), the mean-field entropy function is (the negative of) the rate
function for the probability that the average of many spins is near m.

To characterize the effect of the interaction, we have to introduce energy into the game. For the
quadratic Hamiltonian in (1.1), the (mean-field) energy function is given simply by

EJ,b(m) = −1

2
J |m|2 − (m, b), (1.5)

where |m|2 = (m,m). On the basis of physical considerations, a state of thermodynamic equilibrium
corresponds to a balance between the energy and the entropy. The appropriate thermodynamic function
characterizing this balance is the free energy. We therefore define the mean-field free-energy function
by setting ΦJ,b(m) = EJ,b(m)− S(m), i.e.,

ΦJ,b(m) = −1

2
J |m|2 − (m, b)− S(m). (1.6)

The mean-field (Gibbs) free energyFMF(J, b) is defined by minimizingΦJ,b(m) over all m ∈ Conv(Ω).
Assuming a unique minimizer, this and (1.4-1.5) give us a definition of the mean-field magnetization,
entropy and energy. A more interesting situation occurs when there is more than one minimizer of ΦJ,b.
The latter cases are identified as the points of phase coexistence while the former situation is identified
as the uniqueness region.
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For the sake of completeness, it is interesting to observe that every minimizer of ΦJ,b(m) (in fact,
every stationary point) in the relative interior of Conv(Ω) is a solution of the equation

m = ∇G(Jm + b), (1.7)

where∇ denotes the (canonical) gradient in EΩ. This is the mean-field equation for the magnetization,
which describes the self-consistency constraint that we alluded to in Section 1.1. The relation between
(1.7) and the stationarity of ΦJ,b is seen as follows: ∇ΦJ,b(m) = 0 implies that Jm+b+∇S(m) = 0.
But h = −∇S(m) is equivalent to m = ∇G(h), and stationarity therefore implies (1.7).

We conclude with a claim that an immediate connection of the above formalism to some statistical
mechanics problem is possible. Indeed, if the Hamiltonian (1.1) is redefined for the complete graph
on N vertices, then the quantity ΦJ,b(m) emerges as the rate function in a large-deviation principle
for magnetization and hence F (J, b) is the free energy in this model. A precise statement and a proof
will appear in the last section (Theorem 5.1 in Section 5); special cases of this result have been known
since time immemorable, see e.g. [19].

1.4 Main results.

Now we are in a position to state our general results. The basic idea is simply to watch what happens
when the value of the magnetization in an actual system (governed by (1.1)) is inserted into the associ-
ated mean-field free-energy function. We begin with a general bound which relies only on convexity:

Theorem 1.1 Consider the spin system on Z
d with the Hamiltonian (1.1) and let νJ,b be an infinite-

volume Gibbs measure corresponding to the parameters J ≥ 0 and b ∈ EΩ in (1.1). Suppose that νJ,b

is invariant under the group of translations and rotations of Zd. Let 〈−〉J,b denote the expectation with
respect to νJ,b and let m? be the magnetization of the state νJ,b defined by

m? = 〈S0〉J,b, (1.8)

where 0 denotes the origin in Z
d. Then

ΦJ,b(m?) ≤ inf
m∈Conv(Ω)

ΦJ,b(m) +
J

2

[〈
(S0,Sx)

〉
J,b
− |m?|2

]
, (1.9)

where x denotes a nearest neighbor of the origin.

Thus, whenever the fluctuations of nearest-neighbor spins have small correlations, the physical mag-
netization almost minimizes the mean-field free energy. The bound (1.9) immediatelly leads to the
following observation, which, to the best of our knowledge, does not appear in the literature:

Corollary 1.2 Let νJ,b and 〈−〉J,b be as in Theorem 1.1 and let m? be as in (1.8). Then
〈
(Sx,Sy)

〉
J,b
≥ |m?|2 (1.10)

for any pair of nearest-neighbors x, y ∈ Z
d. In particular, for any model with interaction (1.1),

the nearest-neighbor spins are positively correlated in any Gibbs state which is invariant under the
translations and rotations of Z

d.

Our next goal is to characterize a class of Gibbs states for which the correlation term on the right-
hand side of (1.9) is demonstrably small. However, our proofs will make some minimal demands on
the Gibbs states themselves and it is therefore conceivable that we may not be able to access all the ex-
tremal magnetizations. To define those values of magnetization for which our proofs hold, let F (J, b)
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denote the infinite-volume free energy per site of the system on Zd, defined by taking the thermody-
namic limit of− 1

|Λ|
logZΛ, see e.g. [49]. (Note that the existence of this limit follows automatically by

the compactness of Ω.) The function F (J, b) is concave and, therefore, has all directional derivatives.
Let K?(J, b) be the set of all pairs [e?,m?] such that

F (J + ∆J, b + ∆b)− F (J, b) ≤ e?∆J + (m?,∆b) (1.11)

holds for all numbers ∆J and all vectors ∆b ∈ EΩ. By a well-known result (see the discussion of the
properties of subdifferential on page 215 of [50]), K?(J, b) is a convex set; we let M?(J, b) denote the
set of all values m? such that [e?,m?] is an extreme point of the set K?(J, b) for some value e?.

Our Main Theorem is then as follows:

Main Theorem. Let d ≥ 3 and consider the spin system on Z
d with the Hamiltonian (1.1). Let n

denote the dimension of EΩ. For J ≥ 0 and b ∈ EΩ, let m? ∈ M?(J, b). Then

ΦJ,b(m?) ≤ inf
m∈Conv(Ω)

ΦJ,b(m) + Jn
κ

2
Id, (1.12)

where κ = maxS∈Ω(S,S) and

Id =

∫

[−π,π]d

ddk

(2π)d

[1− D̂(k)]2

D̂(k)
(1.13)

with D̂(k) = 1− 1
d

∑d
j=1 cos(ky).

The bound (1.12) provides us with a powerful method for proving first-order phase transitions on
the basis of a comparison with the associated mean-field theory. The key to our whole program is that
the “error term”, Jnκ

2
Id, vanishes in the d→∞ limit; in fact,

Id =
1

2d

(
1 + o(1)

)
as d→∞, (1.14)

see [12]. For d sufficiently large, the bound (1.12) thus forces the magnetization of the actual system to
be near a value of m that nearly minimizes ΦJ,b(m). Now, recall a typical situation of the mean-field
theory with a first-order phase transition: There is a JMF such that, for J near JMF, the mean-field free-
energy function has two nearly degenerate minima separated by a barrier of height ∆(J), see Figure 1.
If the barrier ∆(J) always exceeds the error term in (1.12), i.e., if ∆(J) > Jn κ

2
Id, some intermediate

values of magnetization are forbidden and, as J increases through JMF, the physical magnetization
undergoes a jump at some Jt near JMF. See also Figure 2.

The Main Theorem is a direct consequence of Theorem 1.1 and the following lemma:

Key Estimate Let J ≥ 0 and b ∈ EΩ and let m? ∈ M?(J, b). Let n, κ and Id be as in the Main
Theorem. Then there is an infinite-volume Gibbs state νJ,b for interaction (1.1) such that

m? = 〈S0〉J,b (1.15)

and 〈
(Sx,Sy)

〉
J,b
− |m?|2 ≤ nκId, (1.16)

for any nearest-neighbor pair x, y ∈ Z
d. Here 〈−〉J,b denotes the expectation with respect to νJ,b.
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FIGURE 1. The mean-field free energy as a function of a scalar magnetization m(J) for the
typical model undergoing a first-order phase transition. In an interval of values of J , there are
two local minima which switch their order at J = JMF. If the “barrier” height ∆(J) always
exceeds the error term from (1.12), there is a forbidden interval of scalar magnetizations and
m(J) has to jump as J varies. The actual plot corresponds to the 3-state Potts model for J

taking the values (a) 2.73, (b) 2.76, (c) 2.77 and (d) 2.8. See Section 2.1 for more details.

The Key Estimate follows readily under certain conditions; for instance, when the parameter val-
ues J and b are such that there is a unique Gibbs state. Under these circumstances, the bound (1.16) is
a special case of the infrared bound which can be derived using reflection positivity (see [18, 22–24])
and paying close attention to the “zero mode.” Unfortunately, at the points of non-uniqueness, the
bound in (1.16) is also needed. The restriction to extreme magnetizations is thus dictated by the need
to approximate the magnetizations (and the states which exhibit them) by states where the standard
“RB, IRB” technology can be employed.

The Key Estimate and Theorem 1.1 constitute a proof of the Main Theorem. Thus, a first-order
phase transition (for d� 1) can be established in any system of the form (1.1) by detailed analysis of
the full mean-field theory. Although this sounds easy in principle, in practice there are cases where this
can be quite a challenge. But, ultimately, the Main Theorem reduces the proof of a phase transitions
to a problem in advanced calcuclus where (if desperate) one can employ computers to assist in the
analysis.

1.5 Direct argument for mean-field equation.

We have stated our main results in the context of the mean-field free energy. However, many practical
calculations focus immediately on the mean-field equation for magnetization (1.7). As it turns out, a



8 MAREK BISKUP AND LINCOLN CHAYES

J

m

FIGURE 2. The solutions of the mean-field equation for the scalar order parameter m as a
function of J for the 10-state Potts model. The solid lines indicate the local minima, the dashed
lines show the other solutions to the mean-field equation. The portions of these curves in the
regions where m is sufficiently close to zero or one can be (rigorously) controlled using pertur-
bative calculations. These alone prove that the mean-field theory “does not admit continuous
solutions” and, therefore, establish a first order transitions for d � 1. The shaded regions show
the set of allowed magnetizations for the system on Zd when Id ≤ 0.002. In addition to mani-
festly proving a discontinuous transition, these provide tight numerical bounds on the transition
temperature and reasonable bounds on the size of the jump.

direct study of the mean-field equation provides us with an alternative (albeit existential) approach to
the results of this paper. The core of this approach is the variance bound for the magnetization stated
as follows:

Lemma 1.3 Let d ≥ 3 and consider the spin system on Z
d with the Hamiltonian (1.1). Let n and Id be

as in the Main Theorem. For J ≥ 0 and b ∈ EΩ, let m? ∈ M?(J, b). Then there is an infinite-volume
Gibbs state νJ,b for the interaction (1.1) such that m? = 〈S0〉J,b and

〈∣∣∣ 1

2d

∑

x : |x|=1

Sx −m?

∣∣∣
2〉

J,b
≤ nJ−1Id, (1.17)

where 〈−〉J,b denotes the expectation with respect to νJ,b.

Here is how the bound (1.17) can be used to prove that mean-field equations are accurate in suffi-
ciently large dimensions: Conditioning on the spin values at the neighbors of the origin and recalling
the definition of G(h), the expectation 〈S0〉J,b can be written as

〈S0〉J,b =

〈
∇G

(
J

2d

∑

x : |x|=1

Sx + b

)〉

J,b

. (1.18)

Since the right-hand side of (1.17) tends to zero as d → ∞, the (spatial) average of the spins neigh-
boring the origin—namely 1

2d

∑
x : |x|=1 Sx—is, with high probability, very close to m?. Using this in

(1.18), we thus find that m? approximately satisfies the mean-field equation (1.7). Thus, to demon-
strate phase coexistence (for d � 1) it is sufficient to show that, along some curve in the parameter
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space, the solutions to the mean-field equations cannot be assembled into a continuous function. In
many cases, this can be done dramatically by perturbative arguments.

While this alternative approach has practical appeal for certain systems, the principal drawback is
that it provides no clue as to the location of the transition temperature. Indeed, as mentioned in the
paragraph following the Main Theorem, secondary minima and other irrelevant solutions to the mean-
field equations typically develop well below J = JMF. Without the guidance of the free energy, there
is no way of knowing which solutions are physically relevant.

2. RESULTS FOR SPECIFIC MODELS

In this section we adapt the previous general statements to three models: the q-state Potts model, the
r-component cubic model and the O(N)-nematic liquid crystal model. For appropriate ranges of the
parameters q, r andN and dimension sufficiently large, we show that these models undergo a first-order
phase transition as J varies. The relevant results appear as Theorems 2.1, 2.3 and 2.6.

2.1 Potts model.

The Potts model, introduced in [48], is usually desribed as having a discrete spin space with q states,
σx ∈ {1, 2, . . . , q}, with the (formal) Hamiltonian

βH = −J
∑

〈x,y〉

δσx,σy . (2.1)

Here δσxσy is the usual Kronecker delta and J = J
2d

. To bring the interaction into the form of (1.1), we
use the so called tetrahedral representation, see [53]. In particular, we let Ω = {v̂1, . . . , v̂q}, where v̂α

denote the vertices of a (q − 1)-dimensional hypertetrahedron, i.e., v̂α ∈ R
q−1 with

v̂α · v̂β =

{
1, if α = β,

− 1
q−1

, otherwise.
(2.2)

The inner product is proportional to the usual dot product in R
q−1. Explicitly, if Sx ∈ Ω corresponds

to σx ∈ {1, . . . , q}, then we have

(Sx,Sy) =
q − 1

q
Sx · Sy = δσx,σy −

1

q
. (2.3)

(The reason for this rescaling the dot product is to maintain coherence with existing treatments of the
mean-field version of this model.) The a priori measure µ gives a uniform weight to all q states in Ω.

Let us summarize some of the existing rigorous results about the q-state Potts model. The q = 2
model is the Ising model, which in mean-field theory as well as real life has a continuous transition. It
is believed that the Potts model has a discontinuous transition for all d ≥ 3 and q ≥ 3 (see, e.g., [53]).
In any d ≥ 2, it was first proved in [44] that for q sufficiently large, the energy density has a region
of forbidden values over which it must jump discontinuously as J increases. On the basis of FKG
monotonicity properties, see [4], this easily implies that the magnetization is also discontinuous. Such
results have been refined and improved; for instance in [43, 45], Pirogov-Sinai type expansions have
been used to show that there is a single point of discontinuity outside of which all quantities are ana-
lytic. However, for d ≥ 3, the values of q for which these techniques work are “astronomical,” and,
moreover, deteriorate exponentially with increasing dimension.
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Let m?(J) and e?(J) denote the the actual magnetization and energy density, respectively. These
quantities can be defined using one-sided derivatives of the physical free energy:

m?(J) =
∂

∂b
F (J, bv̂1)

∣∣∣
b=0+

and e?(J) =
∂

∂J ′
F (J ′, 0)

∣∣∣
J ′=J+

, (2.4)

or, equivalently, by optimizing the expectations 〈(v̂1,S0)〉, resp., 1
2
〈(S0,Sx)〉, where “0” is the origin

and x is its nearest neighbor, over all Gibbs states that are invariant under the symmetries of Z
d.

Recalling the Fortuin-Kasteleyn representation [4, 21, 27, 28], let P∞(J) be the probability that, in the
associated random cluster model with parameters p = 1 − e−J/2d and q, the origin lies in an infinite
cluster. Then m?(J) and P∞(J) are related by the equation

m?(J) =
q − 1

q
P∞(J). (2.5)

As a consequence, the magnetization m?(J) is a non-decreasing and right-continuous function of J .
The energy density e?(J) is non-decreasing in J simply by concavity of the free energy. The availabil-
ity of the graphical representation allows us to make general statements about the phase-structure of
these systems. In particular, in any d ≥ 2 and for all q under consideration, there is a Jc = Jc(q, d) ∈
(0,∞) such thatm?(J) > 0 for J > Jc whilem?(J) = 0 for J < Jc, see [4,28]. Wheneverm?(Jc) > 0
(which, by the aforementioned results [43–45], is known for q � 1), there are at least q + 1 distinct
extremal, translation-invariant Gibbs states at J = Jc.

The mean-field free energy for the model without external field is best written in terms of compo-
nents of m: If (x1, . . . , xq) is a probability vector, we express m as

m = x1v̂1 + · · ·+ xqv̂q. (2.6)

The interpretation of this relation is immediate: xk corresponds to the proportion of spins in the k-th
spin-state. In terms of the variables in (2.6), the mean-field free-energy function is (to within a constant)
given by

ΦJ(m) =

q∑

k=1

(
−J

2
x2

k + xk log xk

)
. (2.7)

In (2.7) we have for once and all set the external field b to zero and suppressed it from the notation.
It is well-known (see [40, 53] and also Lemma 4.4 of the present paper) that, for each q ≥ 3,

there is a JMF ∈ (2, q) such that ΦJ has a unique global minimizer m = 0 for J < JMF, while for
J > JMF, there are q global minimizers which are obtained by permutations of single (x1, . . . , xq)
with x1 > x2 = · · · = xq. To keep the correspondence with m?(J), we define the scalar mean-
field magnetization mMF(J) as the maximal Euclidean norm of all global minimizers of the mean-
field free energy ΦJ(m). (In this parametrization, the asymmetric global maxima will be given by
x1 = 1

q
+ mMF(J) and x2 = · · · = xq = 1

q
− 1

q−1
mMF(J).) Then mMF(J) is the maximal positive

solution to the equation
q

q − 1
m =

eJ q
q−1

m − 1

eJ q

q−1
m + q − 1

. (2.8)

In particular, J 7→ mMF(J) is non-decreasing. We note that the explicit values of the coupling con-
stant JMF and the magnetization mc = mMF(JMF) at the mean-field transition are known:

JMF = 2
q − 1

q − 2
log(q − 1) and mc =

q − 2

q
, (2.9)
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see e.g. [53]. Thus, the mean-field transition is first-order for all q > 2.

Our main result about the Potts model is then as follows:

Theorem 2.1 (Potts model) Consider the q-state Potts model on Zd and let m?(J) be its scalar
magnetization. For each q ≥ 3, there exists a Jt = Jt(q, d) and two numbers ε1 = ε1(d, J) > 0
and ε2 = ε2(d) > 0 satisfying ε1(d, J) → 0, uniformly on finite intervals of J , and ε2(d) → 0 as
d→∞, such that the following holds:

m?(J) ≤ ε1 for J < Jt (2.10)

and

|m?(J)−mMF(J)| ≤ ε1 for J > Jt. (2.11)

Moreover,

|Jt − JMF| ≤ ε2. (2.12)

In particular, both the magnetization m?(J) and the energy density e?(J) undergo a jump at J = Jt

whenever d is sufficiently large.

The jump in the energy density at Jt immediately implies the existence of at least q + 1 distinct
extremal Gibbs measures at J = Jt. However, the nature of our proofs does not permit us to conclude
that m?(J) = 0 for J < Jt nor can we rule out that m?(J) undergoes further jumps for J > Jt.
(Nonetheless, the jumps for J > Jt would have to be smaller than 2ε2(d).) Unfortunately, we can
say nothing about the continuous-q variant of the Potts model—the random cluster model—for non-
integer q. In this work, the proofs lean to heavily on the spin representation. Furthermore, for non-
integer q, ths use of our principal tool, reflection positivity, is forbidden; see [8].

We also concede that, despite physical intuition to the contrary, our best bounds on ε2(d) and ε1(d, J)
deteriorate with increasing q. This is an artifact of the occurrence of the single-spin space dimension
on the right-hand side of (1.12). (This sort of thing seems to plague all existing estimates based on
reflection positivity.) In particular, we cannot yet produce a sufficiently large dimension d for which
the phase transition in all (q ≥ 3)-state Potts models would be provably first order.

2.2 Cubic model.

Our second example of interest is the r-component cubic model. Here the spins Sx are the unit vectors
in the coordinate directions of Rr, i.e., if êk are the standard unit vectors in Rr, then

Ω = {±êk : k = 1, . . . , r}. (2.13)

The Hamiltonian is given by (1.1), with the inner product given by the usual dot product in Rr and
the a priori measure given by the uniform measure on Ω. As in the last subsection, we set b = 0 and
suppress any b-dependence from the notation. We note that the r = 1 case is the Ising model while the
case r = 2 is equivalent to two uncoupled Ising models.

The cubic model was introduced (and studied) in [41, 42] as a model of the magnetism in rare-earth
compounds with a cubic crystal symmetry. There it was noted that the associated mean-field theory
has a discontinuous transition for r ≥ 4, while the transition is continuous for r = 1, 2 and 3. The
mean field theory is best expressed in terms of the collection of parameters ȳ = (y1, . . . , yr) and
µ̄ = (µ1, . . . , µr), where yk stands for the fraction of spins that take the values ±êk and µkyk is the
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magnetization in the direction êk. In this language, the magnetization vector can be written as

m = y1µ1ê1 + · · ·+ yrµrêr. (2.14)

To describe the mean-field free-energy function, we define

K
(r)
J (ȳ, µ̄) =

r∑

k=1

(
yk log yk + yk Θ2Jyk

(µk)
)
, (2.15)

where ΘJ(µ) denotes the standard Ising mean-field free energy with bias µ; i.e., the quantity in (2.7)
with q = 2, x1 = 1

2
(1 + µ) and x2 = 1

2
(1 − µ). Then ΦJ(m) is found by minimizing K(r)

J (ȳ, µ̄) over
all allowed pairs (ȳ, µ̄) such that (2.14) holds.

As in the case of the Potts model, the global minimizer of ΦJ(m) will be a permutation of a highly-
symmetric state. However, this time the result is not so well known, so we state it as a proposition:

Proposition 2.2 Consider the r-component cubic model. For each J ≥ 0, the only local minima
of ΦJ are m = 0 or m = ±mMF êk, k = 1, . . . , r, where mMF = mMF(J) is the maximal positive
solution to the equation

m =
sinhJm

r − 1 + coshJm
. (2.16)

Furthermore, there is a JMF ∈ (0,∞) such that the only global minimizers of ΦJ(m) are m = 0 for
J < JMF and m = ±mMF(J)êk, k = 1, . . . , r, for J > JMF.

For a system on Zd, the scalar magnetization is most conveniently defined as the norm of 〈S0〉J , opti-
mized over all translation-invariant Gibbs states for the coupling constant J . The energy density e?(J)
is defined using the same formula as for the Potts model, see (2.4).

Our main result about the cubic model is then as follows:

Theorem 2.3 (Cubic model) Consider the r-state cubic model on Zd and let m?(J) be its scalar
magnetization. Then for every r ≥ 4, there exists a Jt = Jt(q, d) and two numbers ε1 = ε1(d, J) > 0
and ε2 = ε2(d) > 0 satisfying ε1(d, J) → 0, uniformly on finite intervals of J , and ε2(d) → 0 as
d→∞, such that the following holds:

m?(J) ≤ ε1 for J < Jt (2.17)

and

|m?(J)−mMF(J)| ≤ ε1 for J > Jt. (2.18)

Moreover,

|Jt − JMF| ≤ ε2. (2.19)

In particular, both the magnetization m?(J) and the energy density e?(J) undergo a jump at J = Jt

whenever d is sufficiently large.

As in the case of the Potts model, our technique does not allow us to conclude that Jt is the only
value of J where the magnetization undergoes a jump. In this case, we do not even know that the
magnetization is a monotone function of J ; the conclusions (2.17–2.18) can be made because we
know that the energy density is close to 1

2
m?(J)2 and is (as always) a non-decreasing function of J .

Finally, we also cannot prove that, in the state with large magnetization in the direction ê1, there will be
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no additional symmetry breaking in the other directions. Further analysis, based perhaps on graphical
representations, is needed.

2.3 Nematic liquid-crystal model.

The nematic models are designed to study the behavior of liquid crystals, see the monograph [25] for
more background on the subject. In the simplest cases, a liquid crystal may be regarded as a suspension
of rod-like molecules which, for all intents and purposes, are symmetric around their midpoint. For the
models of direct physical relevance, each rod (or a small collection of rods) is described by an three-
dimensional spin and one considers only interactions that are (globally) O(3)-invariant and invariant
under the (local) reversal of any spin. The simplest latticized version of such a system is described by
the Hamiltonian

βH(s) = − J

2d

∑

〈x,y〉

(sx · sy)
2, (2.20)

with sx a unit vector in R3 and x ∈ Zd with d = 2 or d = 3. We will study the above Hamitonian,
but we will consider general dimensions d (provided d ≥ 3) and spins that are unit vectors in any R

N

(provided N ≥ 3).
The Hamiltonian (2.20) can be rewritten into the form (1.1) as follows [25]: Let EΩ be the space of all

tracelessN×N matrices with real coefficients and let Ω be the set of those matrices Q = (Qα,β) ∈ EΩ

for which there is a unit vector in v = (vα) ∈ R
N such that

Qαβ = vαvβ −
1

N
δαβ, α, β = 1, . . . , N. (2.21)

Writing Qx for the matrix arising from the spin sx via (2.21), the interaction term becomes

(sx · sy)
2 = Tr(QxQy) +

1

N
. (2.22)

Now EΩ is a finite-dimensional vector space and (Q,Q′) = Tr(QQ′) is an inner product on EΩ, so
(2.20) indeed takes the desired form (1.1), up to a constant that has no relevance for physics.

The a priori measure on Ω is a pull-back of the uniform distribution on the unit sphere in R
N . More

precisely, if v is uniformly distributed on the unit sphere in R
N , then Q ∈ Ω is a random variable

arising from v via (2.21). As a consequence, the a priori distribution is invariant under the action of
the Lee group O(N,R) given by

Qx 7→ g−1Qxg, g ∈ O(N,R). (2.23)

The parameter signaling the phase transition, the so called order parameter, is “tensor” valued. In
particular, it corresponds to the expectation of Q0. The order parameter can always be diagonal-
ized. The diagonal form is not unique; however, we can find a rotation that puts the eigenvalues in
a decreasing order. Thus the order parameter is effectively an N -vector λ = (λ1, . . . , λN ) such that
λ1 ≥ λ2 ≥ · · · ≥ λN . We note that, since each Qx is traceless,

∑
k λk = 0.

The previous discussion suggests the following definition of the scalar order parameter: For J ≥ 0,
we let λ?(J) be the value of the largest non-negative eigenvalue of the matrix 〈Q0〉J , optimized over
all translation-invariant Gibbs states for the coupling constant J . As far as rigorous results about the
quantity λ?(J) are concerned, we know from [6] that (in d ≥ 3) λ?(J) > 0 once J is sufficiently
large. On the other hand, standard high-temperature techniques (see e.g. [5, 7, 17]) show that if J is
sufficiently small then there is a unique Gibbs state. In particular, since this state is then invariant under
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the action (2.23) of the full O(N,R) group, this necessitates that λ?(J) ≡ 0 for J small enough. The
goal of this section is to show that λ?(J) actually undergoes a jump as J varies.

The mean-field theory of the nematic model is formidable. Indeed, for any particular N it does
not seem possible to obtain a workable expression for ΦJ(λ), even if we allow that the components
of λ have only two distinct values (which is usually assumed without apology in the physics litera-
ture). Notwithstanding, this simple form of the vector minimizer and at least some of the anticipated
properties can be established:

Proposition 2.4 Consider the O(N)-nematic model for N ≥ 3. Then every local minimum of ΦJ(λ)
is a rotation of the matrix λ = diag(λ,− λ

N−1
, . . . ,− λ

N−1
), where λ is a non-negative solution to the

equation

λ =

∫ 1

0

dx (1− x2)
N−3

2 e
JNλ
N−1

x2(
x2 − 1

N

)

∫ 1

0

dx (1− x2)
N−3

2 e
JNλ
N−1

x2

. (2.24)

In particular, there is an increasing and right-continuous function J 7→ λMF(J) such that the unique
minimizer of ΦJ(λ) is λ = 0 for J < JMF, while for any J > JMF, the function ΦJ(λ) is minimized by
the rotations of

λ = diag
(
λMF(J),−λMF(J)

N − 1
, . . . ,−λMF(J)

N − 1

)
, (2.25)

At the continuity points of λMF : (JMF,∞) → [0, 1], these are the only global minimizers of ΦJ .

Based on the pictorial solution of the problem by physicists, see e.g. [25], we would expect that
J 7→ λMF(J) is continuous on its domain and, in fact, corresponds to the maximal positive solution
to (2.24). (This boils down to showing certain convexity-concavity property of the function on the
right-hand side of (2.24).) While we could not establish this fact for all N ≥ 3, we were successful at
least for N sufficiently large. The results of the large-N analysis are summarized as follows:

Proposition 2.5 Consider the O(N)-nematic model for N ≥ 3 and let λ(N)
MF (J) be the maximal

positive solution to (2.24). Then there exists an N0 ≥ 3 and, for each N ≥ N0, a number JMF =
JMF(N) ∈ (0,∞) such that for each N ≥ N0, the unique minimizer of ΦJ(λ) is λ = 0 for J < JMF,
while for any J > JMF, the function ΦJ(λ) is minimized only by the rotations of (2.25).

The function J 7→ λ
(N)
MF (J) is continuous and strictly increasing on its domain and has the following

large-N asymptotics: For all J ≥ 2,

lim
N→∞

λ
(N)
MF (JN) =

1

2

(
1 +

√
1− 4J−2

)
. (2.26)

Moreover, there exists a J (∞)
MF (with J (∞)

MF ≈ 2.455) such that

lim
N→∞

JMF(N)

N
= J

(∞)
MF . (2.27)

Now we are ready to state our main theorem concerning O(N)-nematics:

Theorem 2.6 (Nematic model) Consider the O(N)-nematic model with the Hamiltonian (2.20) and
J ≥ 0. For each N ≥ 3, there exists a strictly positive function J 7→ λ?

MF(J), a constant Jt = Jt(N, d)
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and two numbers ε1 = ε1(d, J) > 0 and ε2 = ε2(d) > 0 satisfying ε1(d, J) → 0, uniformly on finite
intervals of J , and ε2(d) → 0 as d→∞, such that the following holds:

For all J ≥ 0, the matrix λ = diag(λ?
MF(J),−λ?

MF(J)

N−1
, . . . ,−λ?

MF(J)

N−1
) is a local minimum of ΦJ .

Moreover, we have the bounds

λ?(J) ≤ ε1 for J < Jt (2.28)

and

|λ?(J)− λ?
MF(J)| ≤ ε1 for J > Jt. (2.29)

Furthermore,

|Jt − JMF| ≤ ε2. (2.30)

In particular, λ?(J) ≥ κ > 0 for all J > Jt and all N ≥ 3 and both the order parameter and the
energy density e?(J) undergo a jump at J = Jt, provided the dimension is sufficiently large.

The upshot of the previous theorem is that the high-temperature region with λ = 0 and the low-
temperature region with λ 6= 0 (whose existence was proved in [6]) are separated by a first-order
transition. However, as with the other models, our techniques are not sufficient to prove that λ is
exactly zero for J < Jt, nor, for J > Jt, that all states are devoid of some other additional breakdown
of symmetry. Notwithstanding, general theorems about Gibbs measures guarantee that, a jump of
J 7→ λ?(J) at J = Jt implies the coexistence of a “high-temperature” state with various symmetry-
broken “low-temperature” states.

3. PROOFS OF MEAN-FIELD BOUNDS

3.1 Convexity estimates.

In order to prove Theorem 1.1, we need to recall a few standard notions from convexity theory and
prove a simple lemma. Let A ⊂ R

n be a convex set. Then we define the affine hull of A by the formula

affA =
{
λx+ (1− λ)y : x, y ∈ A, λ ∈ R

}
. (3.1)

(Alternatively, affA is an smallest affine subset of R
n containing A.) This concept allows us to define

the relative interior, riA, of A as the set of all x ∈ A for which there exists an ε > 0 such that

y ∈ affA & |y − x| ≤ ε ⇒ y ∈ A. (3.2)

It is noted that this definition of relative interior differs from the standard topological definition. For us
it is important that the standard (topological) closure of riA is simply the standard closure of A. We
refer to [50] for more details.

Lemma 3.1 For each m ∈ ri {m′ ∈ EΩ : S(m′) > −∞}, there exists an h ∈ EΩ such that
∇G(h) = m.

Results of this sort are well known; e.g., with some effort this can be gleaned from Lemma 2.2.12
in [16] combined with the fact that the so called exposed points of S(m) can be realized as∇G(h) for
some h. For completeness, we provide a full derivation which exploits the particulars of the setup at
hand.
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Proof. Let C abbreviate {m′ ∈ EΩ : S(m′) > −∞} and let m ∈ riC. Let us define the set V =
{m′ − m : m′ ∈ affC}. It is easy to see that V is in fact the affine hull of the shifted set C − m

and, since 0 ∈ V, it is a closed linear subspace of EΩ. First we claim that the infimum in (1.4) can be
restricted to h ∈ V. Indeed, if h,a ∈ EΩ, then the convexity of h 7→ G(h) gives

G(h + a)− (h + a,m) ≥ G(h)− (h,m) +
(
a,∇G(h)−m

)
(3.3)

for any m. This implies that∇G(h) has a finite entropy, i.e., ∇G(h) ∈ C for any h ∈ EΩ. Now let m

be as above and a ∈ V
⊥. Then an inspection of the definition of V shows that the last term in (3.3)

identically vanishes. Consequently, for the infimum (1.4), we will always be better off with h ∈ V.
Let hk ∈ V be a minimizing sequence for S(m); i.e., G(hk) − (hk,m) → S(m) as k → ∞. We

claim that hk contains a subsequence tending to a finite limit. Indeed, if on the contrary hk = |hk| →
∞ we let τ k be defined by hk = hkτ k and suppose that τ k → τ (at least along a subsequence), where
|τ | = 1. Now since m ∈ riC and τ ∈ V, we have m+ ετ ∈ affC for all ε and, by (3.2), m+ ετ ∈ C
for some ε > 0 sufficiently small. But we also have

G(hk)− (hk,m + ετ ) = G(hk)− (hk,m)− εhk(τ k, τ ), (3.4)

which tends to the negative infinity because (τ k, τ ) → 1 and hk → ∞. But then S(m + ετ ) = −∞,
which contradicts that m + ετ ∈ C. Thus hk contains a converging subsequence, hkj

→ h. Using
that h is an actual minimizer of G(h)− (h,m), it follows that ∇G(h) = m. �

Now we are ready to prove our principal convexity bound:

Proof of Theorem 1.1. Recall that FMF(J, b) denotes the infimum of ΦJ,b(m) over all m ∈ Conv(Ω).
As a first step, we will prove that there is a constant C < ∞ such that for any finite Λ ⊂ Zd and any
boundary condition S ′

∂Λ, the partition function obeys the bound

ZΛ(S′
∂Λ) ≥ e−|Λ|FMF(J,b)−C|∂Λ|, (3.5)

where |Λ| denotes the number of sites in Λ and |∂Λ| denotes the number of bonds of Z
d with one end

in Λ and the other in Z
d \ Λ. (This is an explicit form of the well known fact that the free energy is

always lower than the associated mean-field free energy, see [19, 51].)
To prove (3.5), let MΛ denote the total magnetization in Λ,

MΛ =
∑

x∈Λ

Sx, (3.6)

and let 〈−〉(Λ)
0,h be the a priori state in Λ tilted with a uniform magnetic field h, i.e., for any measurable

function f of the configurations in Λ,

〈f〉(Λ)
0,h = e−|Λ|G(h)〈fe(h,MΛ)〉0. (3.7)

Fix an h ∈ EΩ and let mh = ∇G(h). By inspection, ∇G(h) = 〈Sx〉(Λ)
0,h for all x ∈ Λ. Then

ZΛ(S′
∂Λ) = e|Λ|G(h)

〈
e−(h,MΛ)−βHΛ(SΛ|S

′

∂Λ
)
〉(Λ)

0,h
, (3.8)

which using Jensen’s inequality gives

ZΛ(S′
∂Λ) ≥ exp

{
|Λ|

(
G(h)− (h,mh)

)
−

〈
βH(SΛ|S ′

∂Λ)
〉
0,h

}
. (3.9)
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To estimate the expectation of βH(SΛ|S ′
∂Λ), we first discard (through a bound) the boundary terms

and then evaluate the contribution of the interior bonds. Since the number of interior bonds in Λ is
more than d|Λ| − |∂Λ|, this gets us

−
〈
βH(SΛ|S ′

∂Λ)
〉

0,h
≥ −J

2
|mh|2 − C|∂Λ|. (3.10)

Now G(h)− (h,mh) ≥ S(mh), so we have ZΛ(S′
∂Λ) ≥ e−|Λ|ΦJ,b(mh)−C|∂Λ|. But Lemma 3.1 guaran-

tees that each m with S(m) > −∞ can be approximated by a sequence of mh with h ∈ EΩ, so the
bound (3.5) follows by optimizing over h ∈ EΩ.

Next, let νJ,b be an infinite volume Gibbs state and let 〈−〉J,b denote expectation with respect to νJ,b.
Then we claim that

e|Λ|G(h) =
〈
e(h,MΛ)+βHΛ(SΛ|S∂Λ)ZΛ(S∂Λ)

〉
J,b
. (3.11)

(Here SΛ, resp. S∂Λ denote the part of the same configuration S inside, resp., outside Λ. Note that the
relation looks trivial for h = 0.) Indeed, the conditional distribution in νJ,b given that the configuration

outside Λ equals S ′ is ν(S′)
Λ , as defined in (1.2). But then (1.2) tells us that

∫
e(h,MΛ)+βHΛ(SΛ|S

′)ZΛ(S ′) ν
(S′)
Λ (dSΛ) =

∫
e(h,MΛ)µ(dSΛ) = e|Λ|G(h). (3.12)

The expectation over the boundary condition S ′ then becomes irrelevant and (3.11) is proved.
Now suppose that νJ,b is the Z

d-translation and rotation invariant Gibbs measure in question and
recall that m? = 〈S0〉J,b, where 〈−〉J,b denotes the expectation with respect to νJ,b. To prove our
desired estimate, we use (3.5) on the right-hand side of (3.11) and apply Jensen’s inequality to get

e|Λ|G(h) ≥ exp
{〈

(h,MΛ) + βHΛ

〉
J,b

}
e−|Λ|FMF(J,b)−C|∂Λ|. (3.13)

Using the invariance of the state νJ,b with respect to the translations and rotations of Zd, we have
〈
(h,MΛ)

〉
J,b

= |Λ|(h,m?) (3.14)

while

〈βHΛ〉J,b ≥ −|Λ|J
2

〈
(S0,Sx)

〉
J,b
− |Λ|(b,m?)− C ′|∂Λ|, (3.15)

where C ′ is a constant that bounds the worst-case boundary term and where x stands for any neighbor
of the origin. By plugging these bounds back into (3.13) and passing to the thermodynamic limit, we
conclude that

−G(h) + (h− b,m?)−
J

2

〈
(S0,Sx)

〉
J,b
≤ FMF(J, b). (3.16)

Now optimizing the left-hand side over h ∈ EΩ allows us to replace −G(h) + (h,m?) by −S(m?).
Then the bound (1.9) follows by adding and subtracting the term J

2
|m?|2 on the left-hand side. �

3.2 Infrared bound.

Our proof of the Key Estimate (and hence the Main Theorem) requires the use of the infrared bounds,
which in turn are derived from reflection positivity. The connection between infrared bounds and
reflection positivity dates back (at least) to [18, 22–24]. However, the present formulation (essentially
already contained in [12, 24, 40]) emphasizes more explicitly the role of the “k = 0” Fourier mode of
the two-point correlation function by subtracting the square of the background average.
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Reflection positivity is greatly facilitated by first considering finite systems with periodic boundary
conditions. If it happens that there is a unique Gibbs state for parameter values J and b then the proof
of the Key Estimate is straightforward—there is no difficulty with putting the system on a torus and
taking the limit. In particular, the Key Estimate amounts (more or less) to Corollary 2.5 in [24]. But
when there are several infinite-volume Gibbs states, we can anticipate trouble with the naive limits
of the finite-volume torus states. Fortunately, Gibbsian uniqueness is not essential to our arguments.
Below we list two properties of Gibbs states which allow a straightforward proof of the desired infrared
bound. Then we show that in general we can obtain the infrared bound for states of interest by an
approximation argument.

Property 1 An infinite-volume Gibbs measure νJ,b (not necessarily extremal) for the interaction (1.1)
is called a torus state if it can be obtained by a (possibly subsequential) weak limit as L → ∞ of the
Gibbs states in volume [−L,L]d ∩ Z

d, for the interaction (1.1) with periodic boundary conditions.

Given J and b, we let M(J, b) denote the subset of Conv(Ω) containing all magnetizations achieved
by infinite-volume translation-invariant Gibbs states for the interaction (1.1). Next, recall the nota-
tion MΛ from (3.6) for the average magnetization in Λ ⊂ Z

d.

Property 2 An infinite-volume Gibbs measure νJ,b (not necessarily extremal) for the interaction (1.1)
is said to have block-average magnetization m if

lim
Λ↗Zd

MΛ

|Λ| = m, νJ,b-almost surely. (3.17)

Here the convergence Λ ↗ Z
d is along the net of all the finite boxes Λ ⊂ Z

d with partial order induced
by set inclusion. (See [26] for more details.)

Our first goal is to show that every torus state with a deterministic block-average magnetization
satisfies the infrared bound. Suppose d ≥ 3 and let D−1 denote the Fourier transform of the inverse
lattice Laplacian with Dirichlet boundary condition. In lattice coordinates, D−1 has the representation

D−1(x, y) =

∫

[−π,π]d

ddk

(2π)d

1

D̂(k)
eik(x−y), x, y ∈ Z

d, (3.18)

where D̂(k) = 1− 1
d

∑d
j=1 cos(kj). Note that the integral converges by our assumption that d ≥ 3.

Lemma 3.2 Let d ≥ 3 and suppose that νJ,b is a Gibbs state for interaction (1.1) satisfying Prop-
erties 1 and 2. Let 〈−〉J,b denote the expectation with respect to νJ,b and let m denote the value of
magnetization in νJ,b. Then for all (vx)x∈Zd such that vx ∈ R and

∑
x∈Zd |vx| <∞,

∑

x,y∈Zd

vxvy

〈
(Sx −m,Sy −m)

〉
J,b
≤ nJ−1

∑

x,y∈Zd

vxvy D
−1(x, y). (3.19)

Here n denotes the dimension of EΩ.

Proof. Let ΛL = [−L,L]d ∩ Z
d and let ν(L)

J,b be the finite-volume Gibbs state in ΛL for the interaction
(1.1) with periodic boundary conditions. Let Λ?

L = {( 2π
2L+1

n1, . . . ,
2π

2L+1
nd) : − L ≤ ni ≤ L} denote

the reciprocal lattice. Let (wx)x∈ΛL
be a collection of vectors from EΩ satisfying that wx 6= 0 for only

a finite number of x ∈ Z
d and

∑
x∈ΛL

wx = 0. Let 〈−〉(L)
J,b denote the expectation with respect to ν (L)

J,b .
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Then we have the infrared bound [22–24],
∑

x,y∈ΛL

〈
(wx,Sx)(wy,Sy)

〉(L)

J,b
≤ J−1

∑

x,y∈ΛL

(wx,wy)D
−1
L (x, y) (3.20)

where

D−1
L (x, y) =

1

|Λ?
L|

∑

k∈Λ?
Lr{0}

1

D̂(k)
eik(x−y). (3.21)

Now, let ê1, . . . , ên be an orthogonal basis in EΩ and choose wx = wxê`, where (wx)x∈Zd is such that
wx 6= 0 only for a finite number of x ∈ Zd and

∑

x∈Zd

wx = 0. (3.22)

Passing to the limit L→∞ in such a way that ν (L)
J,b converges to the state νJ,b, and then summing over

` = 1, . . . , n gets us the bound
∑

x,y∈Zd

wxwy

〈
(Sx,Sy)

〉
J,b
≤ nJ−1

∑

x,y∈Zd

wxwy D
−1(x, y). (3.23)

So far we have (3.23) only for (wx) with a finite support. But, using that fact that both quanti-
ties D−1(x, y) and 〈(Sx,Sy)〉J,b are uniformly bounded, (3.23) is easily extended to all absolutely-
summable (wx)x∈Zd (i.e., those satisfying

∑
x∈Zd |wx| <∞) which obey the constraint (3.22).

Let (vx) be as specified in the statement of the Lemma and let a =
∑

x∈Zd vx. Fix K, let ΛK be as

above and define (w
(K)
x ) by

w(K)
x = vx −

a

|ΛK|
1{x∈ΛK}. (3.24)

Clearly, these (w
(K)
x ) obey the constraint (3.22). Our goal is to recover (3.19) from (3.23) in the

K → ∞ limit. Indeed, plugging this particular (w
(K)
x ) into (3.23), the left hand side opens into four

terms. The first of these is the sum of vxvy〈(Sx,Sy)〉J,b, which is part of what we want in (3.19). The
second and the third terms are of the same form and both amount to

a
∑

x,y

vx1{x∈ΛK}

〈
(Sx,Sy)

〉
J,b

= a
〈∑

x

vx

(
Sx,

1

|ΛK|
∑

y∈ΛK

Sy

)〉
J,b
. (3.25)

By our assumption of a sharp block-average magnetization in νJ,b, the average of the spins in ΛK can
be replaced, in the K →∞ limit, by m. Similarly, we claim that

lim
K→∞

1

|ΛK |2
∑

x,y∈ΛK

〈
(Sx,Sy)

〉
J,b

= |m|2, (3.26)

so, recalling the definition of a, the left hand side is in a good shape.
As for the right-hand side of (3.23) with (wx) = (w

(K)
x ), here we invoke the fact that (for d ≥ 3)

lim
K→∞

1

|ΛK|
∑

x∈ΛL

D−1(x, y) = 0, (3.27)

uniformly in y ∈ Zd. The claim therefore follows. �

Next we show that for any parameters J and b, and any m? ∈ M?(J, b), we can always find a state
with magnetization m? that is a limit of states satisfying Properties 1 and 2.
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Lemma 3.3 For all J > 0, all b ∈ EΩ and all m? ∈ M?(J, b), there are sequences (Jk), (bk)
and (mk) with Jk → J , bk → b, mk → m? and M(Jk, bk) = {mk}. In particular, there is
a sequence (νJk,bk

) of infinite-volume Gibbs measures satisfying Properties 1 and 2, which weakly
converge (possibly along a subsequence) to a measure νJ,b with magnetization m?.

Proof. The proof uses a little more of the convexity theory, let us recapitulate the necessary background.
Let f : R

n → (−∞,∞) be a convex and continuous function. Let (·, ·) denote the inner product in
Rn. For each x ∈ Rn, let S(x) be the set of all possible limits of the gradients ∇f(xk) for sequences
xk ∈ D such that xk → x as k → ∞. Then Theorem 25.6 of [50] says that the set of all subgradients
∂f(x) of f at x,

∂f(x) =
{
a ∈ R

n : f(y)− f(x) ≥ (y − x, a), y ∈ R
n
}
, (3.28)

can be written as

∂f(x) = Conv(S(x)) (3.29)

where Conv(S(x)) is the closed, convex hull of S(x). (Here we noted that since the domain of f is all
of Rn, the so called normal cone is empty at all x ∈ Rn.) But S(x) is closed and thus Conv(S(x)) is
simply the convex hull of S(x). Now, by Corollary 18.3.1 of [50], we also know that if S ⊂ Rn is a
bounded set of points and C is its convex hull (no closure), then every extreme point of C is a point
from S. Thus, we conclude: every extreme point of ∂f(x) lies in S(x).

Now we can apply the above general facts to our situation. Let F (J, b) be the infinite-volume free
energy of the model in (1.1). Noting that F (J, b) is defined for all J ∈ R and all b ∈ EΩ, the domain
of F is R× EΩ. By well known arguments, F is continuous and concave. Moreover, a comparison of
(1.11) and (3.29) shows that K?(J, b) is—up to a sign change—the subdifferential of F at (J, b). As
a consequence of the previous paragraph, every extreme point [e?,m?] ∈ K?(J, b) is given by a limit
limk→∞[ek,mk], where [ek,mk] are such that K?(Jk, bk) = {[ek,mk]} for some Jk → J and bk → b.
But m? ∈ M?(J, b) implies that [e?,m?] is an extreme point of K?(J, b) for some e?, so the first part
of the claim follows.

To prove the second part, note that any infinite-volume limit of the finite-volume Gibbs state with
periodic boundary condition and parameters Jk and bk must necessarily have energy density ek and
magnetization mk. By compactness of the set of all Gibbs states (which is ensured by compactness
of Ω), there is at least one (subsequential) limit 〈−〉J,b of the torus states as Jk → J and bk → b, which
is then a translation-invariant Gibbs state with parameters J and b such that

e? =
〈
(Sx,Sy)

〉
J,b

and m? = 〈Sx〉J,b, (3.30)

where x and y is any pair of nearest neighbors of Z
d. However, the block-average values of both

quantities must be constant almost-surely, because otherwise 〈−〉J,b could have been decomposed into
at least two ergodic states with distinct values of energy-density/magnetization pair, which would in
turn contradict that [e?,m?] is an extreme point of K?(J, b). �

We note that the limiting measure is automatically Zd-translation and rotation invariant and, in ad-
dition, satisfies the block-average property. But, in the cases that are of specific interest to the present
work (i.e., when M?(J, b) contains several elements), there is little hope that such a state is a torus
state. Nevertheless, we can prove:
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Corollary 3.4 Let J ≥ 0 and b ∈ EΩ. Then for any m? ∈ M?(J, b), there exists a state νJ,b with
(block-average) magnetization m? for which the infrared bound (3.19) holds. Moreover, the state νJ,b

is Z
d-translation and rotation invariant.

Proof. For J = 0 we obviously have a unique Gibbs state and the claim trivially holds. Otherwise, all
of this follows from the weak convergence of the νJk,bk

discussed above. �

3.3 Proof of Main Theorem.

Now we have all the ingredients ready to prove Lemma 1.3:

Proof of Lemma 1.3. Fix m? ∈ M?(J, b) and let νJ,b be the state described in Corollary 3.4. To prove
our claim, it just remains to choose (vx) as follows:

vx =

{
1
2d
, if |x| = 1,

0, otherwise,
(3.31)

and recall the definition of Id from (1.13). �

Having established Lemma 1.3, we are ready to give the proof of the Key Estimate:

Proof of Key Estimate. Let J ≥ 0 and b ∈ EΩ. Let m? ∈ M?(J, b) and let 〈−〉J,b be the state satisfying
(1.15) and (1.17). Our goal is to prove the bound (1.16). To that end, let m0 = m0(S) denote the
spatially averaged magnetization of the neighbors of the origin. The rotation symmetry of the state
〈−〉J,b then implies 〈

(Sx,S0)
〉

J,b
=

〈
(m0,S0)

〉
J,b
. (3.32)

Next, conditioning on the spin configuration in the neighborhood of the origin, we use the DLR condi-
tion for the state 〈−〉J,b which results in

〈
(m0,S0)

〉
J,b

=
〈
(m0,∇G(Jm0 + b))

〉
J,b
. (3.33)

Finally, a simple calculation, which uses the fact that m? = 〈S0〉J,b = 〈m0〉J,b = 〈∇G(Jm0 + b)〉J,b,
allows us to conclude that

〈
(m0,∇G(Jm0 + b))

〉
J,b
− |m?|2

=
〈(

m0 −m?,∇G(Jm0 + b)−∇G(Jm? + b)
)〉

J,b
. (3.34)

To proceed with our estimates, we need to understand the structure of the double gradient of func-
tion G(h). Recall the notation 〈−〉0,h for the single-spin state tilted by the external field h. Explicitly,
for each measurable function f on Ω, we have 〈f(S)〉0,h = e−G(h)〈f(S)e(h,S)〉0. Then the components
of the double gradient correspond to the components of the covariance matrix of the vector-valued ran-
dom variable S. In formal vector notation, for any a ∈ EΩ,

(a,∇)2G(h) =
〈
(a,S − 〈S〉0,h)2

〉
0,h
. (3.35)

Pick h0,h1 ∈ EΩ. Then we can write

(
h1 − h0,∇G(h1)−∇G(h0)

)
=

∫ 1

0

dλ
〈(

h1 − h0,S − 〈S〉0,hλ

)2
〉

0,hλ

, (3.36)
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where hλ = (1− λ)h0 + λh1. But the inner product on the right-hand side can be bounded using the
Cauchy-Schwarz inequality, and since

〈
|S − 〈S〉0,hλ

|2
〉
0,hλ

≤ max
S∈Ω

(S,S) = κ, (3.37)

we easily derive that
(
h1 − h0,∇G(h1)−∇G(h0)

)
≤ κ|h1 − h0|2. (3.38)

This estimate in turn shows that the right-hand side of (3.34) can be bounded by κJ〈|m0 −m?|2〉J,b.
But for this we have the bound from Lemma 1.3: 〈|m0 −m?|2〉J,b ≤ nJ−1Id. Putting all the previous
arguments together, (1.16) follows. �

Proof of Main Theorem. This now follows directly by plugging (1.16) into (1.9). �

4. PROOFS OF RESULTS FOR SPECIFIC MODELS

By and large, this section is devoted to the specifics of the three models described in Section 2.
Throughout the entire section, we will assume that b = 0 and henceforth omit b from the notation. We
begin with some elementary observations which will be needed in all three cases of interest but which
are also of some general applicability.

4.1 General considerations.

4.1.1 Uniform closeness to global minima. We start by showing that, for the systems under study,
the magnetization is uniformly close to a mean-field magnetization. Let MMF(J) denote the set of all
local minima of ΦJ . Obviously, if we know that the actual magnetization comes close to minimizing
the mean-field free energy, in must be close to a minimum or a “near-minimum” of this function. A
useful measure of this closeness is the following: For J ∈ [0,∞] and ϑ > 0, we let

DJ(ϑ) = sup
{

dist
(
m,MMF(J)

) ∣∣∣ m ∈ Conv(Ω), ΦJ(m) < FMF(J) + ϑ
}
, (4.1)

where FMF(J) denotes the absolute minimum of ΦJ . However, to control the “closeness” we will have
to make some assumptions about the behavior of the (local) minima of ΦJ . An important property
ensuring the desired uniformity in all three models under study is as follows:

Uniformity Property If J ≥ 0 and if m ∈ Conv(Ω) is a global minimum of ΦJ , then there is an
ε > 0 and a continuous function m] : [J − ε, J + ε] → Conv(Ω) such that limJ ′→J m](J ′) = m

and m](J ′) is a local minimum of ΦJ ′ for all J ′ ∈ [J − ε, J + ε].

In simple terms, the Uniformity Property states that every global minimum can be extended into
a one-parameter family of local minima. Based on the Uniformity Property, we can state a lemma
concerning the limit of DJ(ϑ) as ϑ ↓ 0:

Lemma 4.1 Suppose that ΦJ satisfies the above Uniformity Property. Then for all J0 > 0,

lim
ϑ↓0

sup
0≤J≤J0

DJ(ϑ) = 0. (4.2)
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Proof. This is essentially an undergraduate exercise in compactness. Indeed, if the above fails, then for
some ε > 0, we could produce a sequence ϑk ↓ 0 and Jk ∈ [0, J0] such that

DJk
(ϑk) ≥ 6ε. (4.3)

This, in turn, implies the existence of mk ∈ Conv(Ω) such that

dist
(
mk,MMF(Jk)

)
≥ 3ε while ΦJk

(mk) < FMF(Jk) + ϑk. (4.4)

Let us use J and m to denote the (subsequential) limits of the above sequences. Using the continuity
of ΦJ(m), to the right of the while we would have ΦJ(m) = FMF(J) and m is thus a global minimum
of ΦJ . By our hypothesis, for each k sufficiently large, there is a local minimum m](Jk) of ΦJk

with
m](Jk) converging to m as k →∞. Since mk is also converging to m, the sequences mk and m](Jk)
will eventually be arbitrary close. But that contradicts the bound to the left of the while. �

4.1.2 Monotonicity of mean-field magnetization. For spin systems with an internal symmetry (which,
arguably, receive an inordinate share of attention), the magnetization usually serves as an order pa-
rameter. In the context of mean-field theory, what would typically be observed is an interval [0, JMF]
where m = 0 is the global minimizer of ΦJ , while for J > JMF, the function ΦJ is minimized by
a non-zero m. This is the case for all three models under consideration. (It turns out that whenever
〈S〉0 = 0, the unique global minimum of ΦJ for J sufficiently small is m = 0.)

In order to prove the existence of a symmetry-breaking transition, we need to prove that the models
under considerations have a unique point where the local minimum m = 0 ceases the status of a global
minimum. This amounts to showing that, once the minimizer of ΦJ has been different from zero, it
will never jump back to m = 0. In the mean-field theory with interaction (1.1), this can be proved
using the monotonicity of the energy density; an analogous argument can be used to achieve the same
goal for the corresponding systems on Z

d.

Lemma 4.2 Let J1 < J2 and let m1 be a global minimizer of ΦJ1
and m2 a global minimizer of ΦJ2

.
Then |m1| ≤ |m2|. Moreover, if J 7→ m(J) is a differentiable trajectory of local minima, then

d
dJ

ΦJ

(
m(J)

)
= −1

2

∣∣m(J)
∣∣2. (4.5)

Proof. The identity (4.5) is a simple consequence of the fact that, if m is a local minimum of ΦJ ,
then ∇ΦJ(m) = 0. To prove the first part of the claim, let J, J ′ ≥ 0 and let m be a minimizer of ΦJ .
Let FMF(J) be the mean-field free energy. First we claim that

FMF(J)− FMF(J
′) ≥ −J − J ′

2
|m|2. (4.6)

Indeed, since FMF(J) = ΦJ(m), we have from the definition of ΦJ that

FMF(J) = −J − J ′

2
|m|2 + ΦJ ′(m). (4.7)

Then the above follows using that ΦJ ′(m) ≥ FMF(J
′). Let J1 < J2 and m1 and m2 be as stated. Then

(4.6) for the choice J = J2, J ′ = J1 and m = m2 gives

FMF(J2)− FMF(J1)

J2 − J1
≥ −1

2
|m2|2. (4.8)
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while (4.6) for the choice J = J1, J ′ = J2 and m = m1 gives

FMF(J1)− FMF(J2)

J1 − J2
≤ −1

2
|m1|2. (4.9)

Combining these two bounds, we have |m1| ≤ |m2| as stated. �

4.1.3 One-dimensional mean-field problems. Often enough, the presence of symmetry brings along
a convenient property that the multidimensional mean-field equation (1.7) can be reduced to a one-
dimensional problem. Since this holds for all cases under consideration and we certainly intend to use
this fact, let us spend a few minutes formalizing the situation.

Suppose that there is a non-zero vector ω ∈ EΩ such that ∇G(hω) is colinear with ω (and not-
identically zero) for all h. As it turns out, then also ∇S(mω) is colinear with ω, provided mω ∈
Conv(Ω). Under these conditions, let us restrict both h and m to scalar multiples of ω and introduce
the functions

g(h) = |ω|−2G(hω) and s(m) = |ω|−2S(mω). (4.10)

The normalization by |ω|−2 ensures that s(m) is given by the Legendre transform of g(h) via the
formula (1.4). Moreover, the mean-field free-energy function ΦJ(mω) equals the |ω|2-multiple of the
function

φJ(m) = −1

2
Jm2 − s(m). (4.11)

The mean-field equation (1.7) in turn reads

m = g′(Jm). (4.12)

In this one-dimensional setting, we can easily decide about whether a solution to (4.12) is a local
minimum of φJ or not just by looking at the stability of the solutions under iterations of (4.12):

Lemma 4.3 Let m be a solution to (4.12) and suppose φJ is twice continuously differentiable in a
neighborhood of m. If

Jg′′(Jm) < 1 (4.13)

then m is a local minimum of φJ . Informally, only “dynamically stable” solutions to the (on-axis)
mean-field equation can be local minima of φJ .

We remark that the term “dynamically stable” stems from the attempt to find solutions to (4.12) by
running the iterative scheme mk+1 = g′(Jmk).

Proof. Let h and m be such that g′(h) = m, which is equivalent to h = s′(m). An easy calculation
then shows that g′′(h) = −(s′′(m))−1. Suppose now that m is a solution to (4.12) such that (4.13)
holds. Then h = Jm and from (4.13) we have

s′′(m) = −
(
g′′(Jm)

)−1
< −J. (4.14)

But that implies
φ′′J(m) = −J − s′′(m) > −J + J = 0, (4.15)

and, using the second derivative test, we conclude that m is a local minimum of φJ . �

With Lemmas 4.1, 4.2 and 4.3 established, out account of the general properties is concluded and
we can start discussing particular models.
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4.2 Potts model.

In order to prove Theorem 2.1, we need to establish (rigorously) a few detailed properties of the mean-
field free-energy function (2.7). In the view of (2.6) we will interchangeably use the notations m and
(x1, . . . , xq) to denote the same value of the magnetization.

Lemma 4.4 Consider the q-state Potts model with q ≥ 3. Let ΦJ be the mean-field free-energy
function as defined in (2.7). If m ∈ Conv(Ω) is a local minimum of ΦJ then the corresponding
(x1, . . . , xq) is a permutation of the probability vector (x?

1, . . . , x
?
q) such that

x?
1 ≥ x?

2 = · · · = x?
q. (4.16)

A complete proof of the claims in Lemma 4.4 was, to our best knowledge, first provided in [40].
(Strictly speaking, in [40] it was only shown that the global minima of ΦJ take the above form; how-
ever, the proof in [40] can be adapted to also accommodatelocal minima.) We will present a nearly
identical proof but with a different interpretation of the various steps. The advantage of our reinterpre-
tation is that it is easily applied to the other models of interest in this paper.

Proof of Lemma 4.4. If m corresponds to the vector (x1, . . . , xq), we let Φ(q)
J (x1, . . . , xq) be the quan-

tity ΦJ(m). Suppose that (x1, . . . , xq) is a local minimum. It is easy to verify that (x1, . . . , xq) cannot
lie on the boundary of Conv(Ω), so xk > 0 for all k = 1, . . . , q. Pick any two coordinates—for sim-
plicity we assume that our choice is x1 and x2—and let y = 1 − (x3 + · · · + xq), z1 = x1/y and
z2 = x2/y. (Note that y = x1 + x2 and, in particular, y > 0.) Then we have

Φ
(q)
J (x1, . . . , xq) = −1

2
Jy2(z2

1 + z2
2) + y(z1 log z1 + z2 log z2) +R

(q)
J (x3, . . . , xq), (4.17)

whereR(q)
J (x3, . . . , xq) is independent of z1 and z2. Examining the form of the free energy, we find that

the first two terms are proportional to the mean-field free-energy function of the Ising (q = 2) system
with reduced coupling Jy:

Φ
(q)
J (x1, . . . , xq) = y Φ

(2)
Jy (z1, z2) +R

(q)
J (x3, . . . , xq). (4.18)

Since the only z-dependence is in the first term, the pair (z1, z2) must be a local minimum of Φ(2)
Jy

regardless of what x3, . . . , xq look like. But this reduces the problem to the Ising model, about which
much is known and yet more can easily be derived. The properties of Φ(2)

J (z1, z2) we will need are:

(i) Jc = 2 is the critical coupling. For J ≤ Jc, the free-energy function Φ(2)
J (z1, z2) is lowest when

z1 = z2, while for J > Jc, the free-energy function Φ(2)
J (z1, z2) is lowest when ρ = |z1 − z2| is

the maximal (non-negative) solution to ρ = tanh( 1
2
Jρ).

(ii) Whenever J > Jc, the maximal solution to ρ = tanh( 1
2
Jρ) satisfies J(1 − ρ2) < 2, which

implies that either Jz1 > 1 and Jz2 < 1 or vice versa.
(iii) For all J and z1 ≥ z2, the mean-field free-energy function Φ(2)

J (z1, z2) monotonically decreases
as ρ = z1 − z2 moves towards the non-negative global minimum.

All three claims are straightforward to derive, except perhaps (ii), which is established by noting that,
whenever ρ > 0 satisfies the (Ising) mean-field equation, we have

1

2
J(1− ρ2) =

J

2 cosh(1
2
Jρ)2

=
Jρ

sinh(Jρ)
< 1. (4.19)
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Hence, if J > Jc and z1 > z2, then Jz2 = 1
2
J(1 − ρ) < 1

2
J(1 − ρ2) < 1 and thus Jz1 > 1 because

J(z1 + z2) = J > Jc = 2.
Based on (i-iii), we can draw the following conclusions for any pair of distinct indices xj and xk: If

J(xj + xk) ≤ 2, then xj = xk, because the (k, j)-th Ising pair is subcritical, while if J(xj + xk) > 2
then, using our observation (ii), either Jxk > 1 and Jxj < 1 or vice versa. But then we cannot have
Jxk > 1 for more than one index k, because if Jxk > 1 and Jxj > 1, we would have J(xj + xk) > 2
and the (k, j)-th Ising pair would not be at a local minimum. All the other indices must then be equal
because the associated two-component Ising systems are subcritical. Consequently, only one index
from (x1, . . . , xq) can take a larger value; the other indices are equal. �

Proposition 4.5 Consider the q-state Potts model with q ≥ 3. Let ΦJ be the mean-field free-energy
function as defined in (2.7). There there exist J1 and J2 = q with J1 < J2 such that

(1) m = 0 is a local minimum of ΦJ provided J < J2.
(2) m = x?

1v̂1 + · · · + x?
q v̂1 with x?

1 > x?
2 = · · · = x?

q is a local minimum of ΦJ provided that
J > J1 and x?

1 = 1
q

+m, where m is the maximal positive solution to the equation (2.8).
(3) For all J ≥ 0, there are no local minima except as specified in (1) and (2).

Moreover, if JMF is as in (2.9), then the unique global minimum of ΦJ is as in (1) for J < JMF while
for J > JMF the function ΦJ has q distinct global minimizers as described in (2) .

Proof of Proposition 4.5. Again, most of the above stated was proved in [40] but without the leeway for
local minima. (Of course, the formulas (2.8) and (2.9) date to an earlier epic, see e.g. [53].) What is not
either easily derivable or already proved in [40] amounts to showing that if m is a “dynamically stable”
solution to (2.8), the corresponding m = x?

1v̂1 + · · ·+ x?
q v̂1 as described in (2) is a local minimum for

the full ΦJ(m). The rest of this proof is spent proving the latter claim.
We first observe that for the set

U(x) =
{
m = (x, x2, . . . , xq) : Jxk ≤ 1, k = 2, . . . , q

}
(4.20)

the unique (strict) global minimum of ΦJ occurs at

m(x) =
(
x, 1−x

q−1
, . . . , 1−x

q−1

)
. (4.21)

Indeed, otherwise we could further lower the value of ΦJ by bringing one of the (j, k)-th Ising pairs
closer to its equilibrium, using the properties (ii-iii) above. Now, suppose that m satisfying (2.8) is
“dynamically stable” in the sense of Lemma 4.3. By the argument in Lemma 4.4 we have that the
corresponding x?

1 = 1
q

+ m satisfies Jx?
1 > 1 while the common value of x?

k for k = 2, . . . , q is
such that Jx?

k < 1. Suppose that the corresponding m is not a local minimum of the full ΦJ . Then
there exists a sequence (mk) tending to m such that ΦJ(mk) < ΦJ(m). But then there is also a
sequence m′

k such that ΦJ(m′
k) < ΦJ(m) where each m′

k now takes the form (4.21). This contradicts
that the restriction of ΦJ to the “diagonal,” namely the function φJ(m), has a local minimum at m. �

Now we are ready to prove our main result about the q-state Potts model.

Proof of Theorem 2.1. By well known facts from the FK representation of the Potts model, the quan-
tities e?(J) and m?(J) arise from the pair [ew

? ,m
w
? ] corresponding to the state with constant boundary

conditions (the wired state). Therefore, [ew
? ,m

w
? ] is an extreme point of the convex set K?(J) and

mw
? ∈ M?(J) for all J . In particular, the bound (1.12) for mw

? can be used without apology.
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Let δd be the part of the error bound in (1.12) which does not depend on J . Explicitly, we have
δd = 1

2q
(q − 1)2Id, because κ = (q − 1)/q and dim EΩ = q − 1. Since Id → 0 as d → ∞, we have

δd → 0 as d→∞. Let us define

ε1 = ε1(d, J) = sup
0≤J ′≤J

DJ ′(Jδd), (4.22)

where DJ is as in (4.1). It is easy to check that the Uniformity Property holds. Lemma 4.1 then
guarantees that every (extremal) physical magnetization m? ∈ M?(J) has to lie within ε1 from a local
minimum ΦJ . Since the asymmetric minima exist only for J > J1 > 0 while m = 0 is a local
minimum only for J < J2 = q, we have m?(J) ≤ ε1 for J ≤ J1, while |m?(J) −mMF(J)| ≤ ε1 for
J > J2. But from the FKG properties of the random cluster representation we know that J 7→ m?(J)
is non-decreasing so there must be a point, Jt ∈ (J1, J2], such that (2.10–2.11) hold.

It remains to show that |Jt − JMF| tends to zero as d → ∞. For J ∈ (J1, J2), let ϕS(J), resp.,
ϕA(J) denote the value of ΦJ at the symmetric, resp., asymmetric local minima. The magnetization
corresponding to the asymmetric local minimum exceeds some κ > 0 throughout (J1, J2). Integrating
(4.5) with respect to J and using that ϕS(JMF) = ϕA(JMF) then gives us the bound

∣∣ϕS(J)− ϕA(J)
∣∣ ≥ 1

2
κ

2|J − JMF|. (4.23)

However, in the ε1-neighborhood US(ε1) of the symmetric minimum, we will have
∣∣ΦJ(m)− ϕS(J)

∣∣ ≤ ε1K, (4.24)

where K is a uniform bound on the derivative of ΦJ(m) for m ∈ US(ε1) and J ∈ (J1, J2). Since the
asymmmetric minima are well separated from the boundary of Conv(Ω) for J ∈ (J1, J2), a similar
bound holds for the ε1-neighborhood of the asymmetric minimum. Comparing (4.23–4.24) and (1.12),
we find that if

1

2
κ

2|J − JMF| − 2ε1K > Jδd, (4.25)

no value of magnetization in the ε1-neighborhood of the local minima with a larger value of ΦJ is
allowed. In particular, |Jt − JMF| ≤ ε2 where ε2 = ε2(d) tends to zero as d→∞. �

4.3 Cubic model.

Our first goal is to prove Proposition 2.2. We will begin by showing that the local minima of ΦJ

and K(r)
J are in one-to-one correspondence. Let us introduce the notation

X =
{

(ȳ, µ̄) : |µj| ≤ 1, yj ≥ 0,
r∑

j=1

yj = 1
}

(4.26)

and let X(m) denote the subspace of X where m = y1µ1 + · · ·+ yrµr.

Lemma 4.6 Let m ∈ Conv(Ω) be a local minimum of ΦJ . Then there exists a (ȳ, µ̄) ∈ X(m) which
is a local minimum of K(r)

J (as defined in (2.15)).

Proof. Let m be a local minimum of ΦJ . Since X(m) is compact and K(r)
J is continuous on X , the

infimum
ΦJ(m) = inf

(ȳ,µ̄)∈X(m)
K

(r)
J (ȳ, µ̄) (4.27)
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is attained at some (ȳ, µ̄) ∈ X(m). We claim that this (ȳ, µ̄) is a local minimum of K (r)
J . Indeed, if

the opposite is true, there is a sequence (ȳk, µ̄k) ∈ X converging to (ȳ, µ̄) such that

K
(r)
J (ȳk, µ̄k) < K

(r)
J (ȳ, µ̄) = ΦJ(m). (4.28)

Now, (ȳ, µ̄) was an absolute minimum of K (r)
J on X(m), so (ȳk, µ̄k) 6∈ X(m) and the magnetiza-

tion mk corresponding to (ȳk, µ̄k) is different from m for all k. Noting that

ΦJ(mk) ≤ K
(r)
J (ȳk, µ̄k) (4.29)

and combining (4.28–4.29), we thus have ΦJ(mk) < ΦJ(m) for all k. But mk tends to m in Conv(Ω),
which contradicts the fact that m is a local minimum of ΦJ . �

Lemma 4.6 allows us to analyze the local minima in a bigger, simpler space:

Lemma 4.7 Let K(r)
J (ȳ, µ̄) be the quantity in (2.15). Then each local minimum of K (r)

J (ȳ, µ̄) is an
index-permutation of a state (ȳ, µ̄) with y1 ≥ y2 = · · · = yr and µ2 = · · · = µr = 0. Moreover, if
y1 > y2, then µ1 6= 0.

Proof. Let (ȳ, µ̄) be a local minimum of K (r)
J such that y1 ≥ y2 ≥ · · · ≥ yr and fix a k between 1

and r. We abbreviate y = yk + yk+1 and introduce the variables z1 = yk/y, z2 = yk+1/y, ν1 = µk and
ν2 = µk+1. Then

K
(r)
J (ȳ, µ̄) = y K

(2)
Jy (z̄, ν̄) +R, (4.30)

where K(2)
Jy (z̄, ν̄) is the mean-field free energy of an r = 2 cubic model with coupling constant Jy,

and R is a quantity independent of (z̄, ν̄). As was mentioned previously, the r = 2 cubic model is
equivalent to two decoupled Ising models. Thus,

K
(2)
Jy (z̄, ν̄) = ΘJy(ρ1) +ΘJy(ρ2), (4.31)

where ρ1 and ρ2 are related to z1, z2, ν1 and ν2 via the equations

z1 = 1
2
(1 + ρ1ρ2), z1ν1 = 1

2
(ρ1 + ρ2),

z2 = 1
2
(1− ρ1ρ2), z2ν2 = 1

2
(ρ1 − ρ2).

(4.32)

Now, the local minima of ΘJ(ρ) occur at ρ = ±ρ(J), where ρ(J) is the largest non-negative solution
to the equation ρ = tanh( 1

2
Jρ). Moreover, by the properties (i-iii) from the proof of Lemma 4.4 we

know that ρ(J) = 0 for J ≤ 2 while 1
2
J(1−ρ(J)2) < 1 once J > 2. From these observations we learn

that if yk = yk+1, then Jy ≤ 2 and µk = µk+1 = 0. On the other hand, if yk > yk+1, then Jy > 2,
yk = 1

2
y(1 + ρ(Jy)2) and yk+1 = 1

2
y(1 − ρ(Jy)2) so, in particular, Jyk > 1 > Jyk+1. However, that

forces that k = 1, because otherwise we would also have Jyk−1 > 1 and J(yk−1 + yk) > 2, implying
that (ȳ, µ̄) is not a local minimum of K (r)

J in the (k − 1, k)-th sector. Hence, y2 = · · · = yr and
µ2 = · · · = µr = 0, while if y1 > y2, then µ1 = ±ρ(J)/z1 6= 0. �

The proof of Lemma 4.7 gives us the following useful observation:

Corollary 4.8 Let m = (m1,m2, . . . ,mr) be contained in Conv(Ω) and suppose that m1,m2 6= 0.
Then one of the four vectors

(m1 ±m2, 0, . . . ,mr), (0,m2 ±m1, . . . ,mr) (4.33)

corresponds to a magnetization m′ ∈ Conv(Ω) with ΦJ(m′) < ΦJ(m).
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Proof. Since m is in the interior of Conv(Ω), there exists (ȳ, µ̄) where the infimum (4.27) is achieved.
Let z1, z2, ν1 and ν2 be related to y1, y2, µ1 and µ2 as in (4.30–4.32). Now by (4.31) the free energy of
the corresponding sector of (ȳ, µ̄) equals the sum of the free energies of two decoupled Ising models
with biases ρ1 and ρ2. Without loss of generality, suppose that ρ1 > ρ2 ≥ 0. Recalling the property (iii)
from the proof of Lemma 4.4, ρ 7→ ΘJ(ρ) decreases when ρ ≥ 0 gets closer to the non-negative local
minimum. Thus, if ρ1 is nearer to the local minimum of ΘJy than ρ2, by increasing ρ2 we lower the
free energy by a non-trivial amount. Similarly, if ρ2 is the one that is closer, we decrease ρ1.

By inspection of (4.32), the former operation produces a new quadruple z ′1, z′2, ν ′1 and ν ′2, with ν ′2 = 0
and z′1ν

′
1 = ρ1. But that corresponds to the magnetization vector (m′

1,m
′
2,m3, . . . ,mr) where

m′
1 = ρ1y = m1 +m2 and m′

2 = 0, (4.34)

which is what we stated above. The other situations are handled analogously. �

Now we are finally ready to establish the claim about local/global minima of ΦJ :

Proof of Proposition 2.2. By Lemma 4.6, every local minimum of ΦJ corresponds to a local minimum
of K(r)

J . Thus, using Lemma 4.7 we know that all local minima m of ΦJ will have at most one non-
zero component. Writing ω = (1, 0, . . . , 0), h = hω and m = mω, we can use the formalism from
Section 4.1. In particular, the on-axis moment generating function g(h) is given by

g(h) = − log(2r) + log(r − 1 + coshh). (4.35)

Differentiating this expression, (4.12) shows that every local minimum m has to satisfy the equa-
tion (2.16). Now, for r > 2, a little work shows that h 7→ g ′(h) is convex for

(r − 1)2 − (r − 1) coshh+ 2 > 0 (4.36)

and concave otherwise. In particular, for r > 3, the equation (2.16) has either one non-negative
solution m = 0 or three non-negative solutions, m = 0, m = m−(J) and m = m+(J), where
0 ≤ m−(J) ≤ m+(J). However, m+(J) is “dynamically stable” and, using Lemma 4.3, m−(J) never
corresponds to a local minimum.

To finish the proof we need to show that m = (m+(J), 0, . . . , 0) is a local minimum of the full ΦJ .
If the contrary were true, we would have a sequence mk tending to m such that ΦJ(mk) < ΦJ(m).
Then an (r − 1)-fold use of Corollary 4.8 combinded with the symmetry of ΦJ implies the existence
of a sequence m′

k = (mk, 0, . . . , 0) tending to m and satisfying ΦJ(m′
k) ≤ ΦJ(mk) for all k. But

that contradicts that m+(J) is a local minimum of the on-axis mean-field free energy function. So m

was a local minimum of ΦJ after all. The existence of a unique mean-field transition point JMF is a
consequence of Lemma 4.2 and the fact that m = 0 ceases to be a local minimum for J ≥ r. �

Proof of Theorem 2.3. The proof is basically identical to that of Theorem 2.1, so we will be rather
sketchy. First we note that m?(J) is achieved at some extremal translation-invariant state whose mag-
netization m? is an element of M?(J). Let δd = 1

2
rId and define ε1 as in (4.22). Then m? has to be

within ε1 from a local minimum of ΦJ . While this time we cannot proclaim that J 7→ m?(J) is non-
decreasing, all the benefits of monotonicity can be achieved by using the monotonicity of the energy
density e?(J). Indeed, J 7→ e?(J) is non-decreasing and, by Corollary 1.2 and the Key Estimate, we
have ∣∣∣ e?(J)− 1

2
m?(J)2

∣∣∣ ≤ J

2
rId = Jδd. (4.37)
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But then e?(J) must undergo a unique large jump at some Jt from values e?(J) ≤ 2Jδd to values near
1
2
mMF(J)2 by less than 2Jδd. So m?(J) has to jump at J = Jt as well, in order to obey (4.37). The

width of the “transition region” is controlled exactly as in the case of the Potts model. �

4.4 Nematic model.

The nematic models present us with the difficulty that an explicit formula for ΦJ(m) seems impossible
to derive. However, the situation improves in the dual Legendre variables. Indeed, examining (1.4–
1.6), it is seen that the stationary points of ΦJ(m) are in one-to-one correspondence with the stationary
points of the (Gibbs) free-energy function

ΨJ(h) =
1

2J
|h|2 −G(h), (4.38)

via the relation h = Jm. (In the case at hand, h takes values in EΩ which was defined as the space of
all N ×N traceless matrices.) Moreover, if m = ∇G(h), then we have

ΨJ(h)− ΦJ(m) =
1

2J
|h− Jm|2 (4.39)

so the values ΨJ(m) and ΦJ(h) at the corresponding stationary points are the same. Furthermore,
some juggling with Legendre transforms shows that if m is a local minimum of ΦJ , then h = Jm is
a local minimum of ΨJ . Similarly for local maxima and saddle points of ΦJ .

Lemma 4.9 Each stationary point of ΨJ(h) on EΩ is a traceless N × N matrix h with eigenvalues
that can be reordered to the form h1 ≥ h2 = · · · = hN .

Proof. The claim is trivial forN = 2 so letN ≥ 3. Without loss of generality, we can restrict ourselves
to diagonal, traceless matrices h. Let h = diag(h1, . . . , hN ) be such that

∑
α hα = 0 and let vα, with

α = 1, . . . , N , be the components a unit vector in R
N . Let 〈−〉0 be the expectation with respect to the

a priori measure µ on Ω and let 〈−〉h be the state on Ω tilted by h. Explicitly, we have

〈f〉h = e−G(h)

∫
µ(dv)f(v) exp

{ N∑

α=1

hαv
2
α

}
(4.40)

for any measurable function f on the unit sphere in R
N .

As in the case of the Potts and cubic models, the proof will be reduced to the two-component
problem. Let h be a stationary point of ΨJ and let α and β be two distinct indices between 1 and N .
The relevant properties of 〈−〉h are then as follows:

(i) If J〈v4
α + v4

β〉h > 3, then hα 6= hβ.
(ii) If hα > hβ, then J〈v4

α〉h > 3
2
> J〈v4

β〉h.

The proof of these facts involves a non-trivial adventure with modified Bessel functions, In(x), where n
is any non-negative integer and In(x) = 1

π

∫ π

0
dθ ex cos θ cos(nθ). To keep the computations succinct, we

introduce the polar coordinates, vα = r cos θ and vβ = r sin θ, where θ ∈ [0, 2π) and r ≥ 0. Let 〈−〉α,β

denote the expectation with respect to the r-marginal of the state 〈−〉h′ where h′ = diag(h′1, . . . , h
′
N ) is

related to h via h′α = h′β = 1
2
(hα + hβ), while h′γ = hγ for γ 6= α, β. Explicitly, if f̄(r, θ) corresponds
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to f(vα, vβ) via the above change of coordinates, then

〈
f(vα, vβ)

〉
h

=

〈∫ 2π

0
dθ er2∆cos(2θ) f̄(r, θ)

〉
αβ〈∫ 2π

0
dθ er2∆cos(2θ)

〉
αβ

, (4.41)

where ∆ = 1
2
(hα − hβ).

We begin by deriving several identities involving modified Bessel functions. First, a straightforward
calculation shows that

〈v2
α − v2

β〉h = Aαβ(∆)
〈
r2I1(r

2∆)
〉

αβ
, (4.42)

where Aαβ(∆)−1 = 〈I0(r2∆)〉αβ. Similarly we get

〈v2
αv

2
β〉h = Aαβ(∆)

〈
1
8
r4

(
I0(r

2∆)− I2(r
2∆)

)〉
αβ
. (4.43)

But I0(x)− I2(x) = (2/x)I1(x), whereby we have the identity

2(hα − hβ)〈v2
αv

2
β〉h = 〈v2

α − v2
β〉h. (4.44)

A similar calculation using trigonometric formulas shows that

〈v4
α〉h = Aαβ(∆)

〈
r4

(
3
8
I0(r

2∆) + 1
2
I1(r

2∆) + 1
8
I2(r

2∆)
)〉

αβ
, (4.45)

〈v4
β〉h = Aαβ(∆)

〈
r4

(
3
8
I0(r

2∆)− 1
2
I1(r

2∆) + 1
8
I2(r

2∆)
)〉

αβ
. (4.46)

In particular, since I0(0) = 1 while I1(0) = I2(0) = 0, we have

hα = hβ ⇒ 〈v4
α〉h = 〈v4

β〉h = 3〈v2
αv

2
β〉h. (4.47)

The identities (4.43–4.47) will now allow us to prove (i-ii).
First we note that he fact that h was a stationary point of ΨJ implies that hγ − hγ′ = J〈v2

γ − v2
γ′〉h

for all γ, γ ′ = 1, . . . , N . Using this in (4.44), we have the following dichotomy

either hα = hβ or 2J〈v2
αv

2
β〉h = 1. (4.48)

To establish (i), suppose that J〈v4
α + v4

β〉h > 3 but hα = hβ. Then (4.47) gives us 2J〈v2
αv

2
β〉h > 1,

in contradiction with (4.48). Hence, (i) must hold. To prove (ii), assume that hα > hβ and note that
then ∆ > 0. Applying that I1(x) > 0 and I2(x) > 0 for x > 1 in (4.45), we easily show using (4.45)
that 〈v4

α〉h > 3〈v2
αv

2
β〉h. Similarly, the bound I1(x) > I2(x) for x > 0, applied in (4.46), shows that

〈v4
β〉h < 3〈v2

αv
2
β〉h. From here (ii) follows by invoking (4.48).

Now we are ready to prove the desired claim. Let h be a stationary point. First let us prove that there
are no three components of h such that hα > hβ > hγ. Indeed, if that would be the case, (i-ii) leads
to a contradiction, because hα > hβ would require that J〈v4

β〉h < 3/2 while hβ > hγ would stipulate
that J〈v4

β〉h > 3/2! Thus, any stationary point h of ΨJ can only have two values for 〈v4
α〉h. However,

if (say) both 〈v4
1〉h and 〈v4

2〉h take on the larger value (implying that h1 = h2), then J〈v4
1 + v4

2〉h > 3
and h cannot be a stationary point. From here the claim follows. �

The symmetry of the problem at hand allows us to restrict ourselves to the on-axis formalism from
Section 4.1. In particular, we let ω = diag(1,− 1

N−1
, . . . ,− 1

N−1
), h = hω and λ = λω and define

the functions g(h), s(λ) and φJ(λ) as in (4.10–4.11). Lemma 4.9 in turn guarantees that all local
minimizers of ΦJ appear within the domain of φJ . What remains to be proved is the converse. This
can be done using some of the items established above.
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Lemma 4.10 Suppose that λ is a stationary point of the scalar free energy φJ satisfying Jg′′(Jλ) < 1.
Then λ = λω, with ω = diag(1,− 1

N−1
, . . . ,− 1

N−1
), is a local minimizer of ΦJ .

Proof. To simplify the analysis, throughout this proof we will regard all matrices as vectors. This
causes no loss of generality both ΦJ and ΨJ depend only on the diagonal form of their arguments.

Again we are forced to work with the dual variables. To that end, let ψJ(h) be the quantity
|ω|−2ΨJ(hω). Clearly, the relation between ψJ and φJ is as for ΨJ and ΦJ . First, let us demonstrate
that every stationary point of the scalar free energy ψJ represents a stationary point of the full ΨJ .
Indeed, let K be the orthogonal complement of vector ω in RN . As a simple computation shows, any
k ∈ K has a zero first component. If k = (0, k2, . . . , kN) ∈ K is small, then

G(hω + k) = G(hω) +
〈∑

β

kβ v
2
β

〉
hω

+ O
(
|k|2

)
, (4.49)

where 〈−〉h is as in (4.40). Now 〈v2
β〉hω is the same for all β = 2, . . . , N , and in the view of the fact

that
∑

β kβ = 0, the expectation vanishes. Hence, ∇ΨJ(hω) has all components corresponding to the
subspace K equal to zero. Now if h is a stationary point of ψJ , we know that (ω,∇ΨJ(hω)) = 0 and
thus ∇ΨJ(hω) = 0 as claimed.

To prove the desired claim, it now suffices to show that the Hessian of ΨJ is positive definite at h =
h?ω when h? satisfies Jg′′(h?) < 1. (Recall that the corresponding stationary points of ψJ and φJ

are related by h = Jλ.) This in turn amounts to showing that ∇∇G(hω) is dominated by the J−1-
multiple of the unit matrix. Although we must confine ourselves to EΩ, it is convenient to consider the
Hessian of G(h) in a larger space which contains the constant vector and restrict our directional probes
to vectors from EΩ. In general, the entries of the Hessian are given in terms of truncated correlation
functions: (

Hess(G)
)

αβ
= 〈v2

αv
2
β〉h − 〈v2

α〉h〈v2
β〉h. (4.50)

For the problem at hand, there are only four distinct entries:

Hess(G) =




A B . . . . . . B
B C D . . . D
... D

. . . . . .
...

...
...

. . . C D
B D . . . D C



. (4.51)

Clearly, ω itself is an eigenvector of Hess(G) with the eigenvalue A− B. On the other hand, if k ∈ K,
then the first row and column of Hess(G) are irrelevant. Writing the remaining (N − 1) × (N − 1)
block in the form (C− D)1 + C S, where S is the matrix with all entries equal to one, it follows easily
that all of K is an eigenspace of Hess(G) with eigenvalue C− D.

It remains to show that these eigenvalues are strictly smaller than J−1. The first one, namely, A− B
is less than J−1 by our assumption that Jg′′(h?) < 1. As to the other eigenvalue, C− D, we note that

C− D = 〈v4
α〉h − 〈v2

αv
2
β〉h, α > β > 1. (4.52)

Now, equation (4.47) tells us that, under our conditions, 〈v2
αv

2
β〉h equals 1

3
〈v4

α〉h. So we need that
2
3
〈v4

α〉h is less than J . But since h1 = h? > hα, that is exactly the condition (ii) derived in the proof of
Lemma 4.9. �
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Now we are ready to establish our claims concerning the local minima of ΦJ :

Proof of Proposition 2.4. Let ω be as above and note that |ω|2 = N/(N−1). Then the on-axis moment
generating function from (4.10) becomes

g(h) =
N − 1

N
log

∫
πN (dv) eh N

N−1
(v2

1−
1

N
), (4.53)

where πN is the uniform probability measure on the unit sphere in R
N and v1 is the first component

of v. An argument involving the N -dimensional spherical coordinates then shows that

πN (v1 ∈ dx) = C(N) (1 − x2)
N−3

2 dx, (4.54)

where C(N) is the ratio of the surfaces of the unit spheres in R
N−1 and R

N . By substituting this into
(4.53) and applying (4.12), we easily find that, in order for λ = λω to be a local minimum of ΦJ , the
scalar λ has to satisfy the equation (2.24).

A simple analysis of (2.24) shows that for J � 1, the only solution to (2.24) is λ = 0, while
for J & N2, the solution λ = 0 is no longer perturbatively stable. Since Lemma 4.2 guarantees
that the norm of all global minimizers increases with J , there must be a unique JMF ∈ (0,∞) and a
non-decreasing function J 7→ λMF(J) such that λMF(J) solves (2.24) and that every global minimizer
of ΦJ at any J > JMF which is a continuity point of J 7→ λMF(J) corresponds to λ = λMF(J). (At
any possibile point of discontituity of J 7→ λMF(J), the λ corresponding to any global minimizer is
sandwiched between limJ ′↑J λMF(J

′) and limJ ′↑J λMF(J
′).) The claim is thus proved. �

In order to prove the large-N part of our statements concerning the mean-field theory of the nematic
model, we will need to establish the following scaling propety:

Lemma 4.11 Let Φ(N)
J denote the free-energy function of the O(N)-nematic Hamiltonian. Introduce

the matrix ω = diag(1,− 1
N−1

, . . . ,− 1
N−1

) and define the normalized mean-field free-energy function

φ
(N)
J (λ) =

1

N
|ω|−2Φ

(N)
JN (λω), λ < 1. (4.55)

Then, asN →∞, the function λ 7→ φ
(N)
J (λ) converges, along with all of its derivatives, to the function

φ
(∞)
J (λ) = −J

2
λ2 +

1

2
log

1

1− λ
. (4.56)

Proof. The proof is a straightforward application of Laplace’s method to the measure on the right-hand
side of (2.24). Indeed, for any h ≥ 0, consider the measure ρh,N on [0, 1] defined by

ρh,N(dx) =
(1− x2)

N−3

2 ehNx2

∫ 1

0
dx (1− x2)

N−3

2 ehNx2
dx. (4.57)

Noting that the function x 7→ (1− x2)
1

2 ehx2

has a unique maximum at x = xh, where

x2
h = max

{
0, 1− 1

2h

}
, (4.58)

we easily conclude that

lim
N→∞

ρh,N(·) = δxh
(·), (4.59)
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where δa(·) denotes the Dirac point mass at x = a. Here the limit taken in the sense of weak conver-
gence on the space of all bounded continuous functions on [0, 1]. The proof of this amounts to standard
estimates for the Laplace method; we leave the details to the reader.

Let gN (h) denote the function g(hN) where g is as in (4.53). Since any derivative of gN(h) can
be expressed as a truncated correlation function of measure ρh,N , we easily conclude that h 7→ gN (h)
converges, along with all of its derivatives, to the function

g∞(h) = lim
N→∞

gN (h) = max
{

0, h− 1

2
− 1

2
log(2h)

}
, (4.60)

for all h ≥ 0. Now, the function sN (λ) = 1
N
|ω|−2S(λω)—where S(·) is the entropy of the O(N)-

nematic model—is the Legendre transform of gN , so we also get

s∞(λ) = lim
N→∞

sN (λ) = −1

2
log

1

1− λ
. (4.61)

(Again, the convergence extends to all derivatives, provided λ < 1.) From here the claim follows by
noting that φ(N)

J (λ) = −J
2
λ2 − sN (λ), which tends to φ(∞)

J (λ) in the desired sense. �

Proof of Proposition 2.5. By Lemma 4.11, the scaled mean-field free-energy function φ(N)
J is, along

with any finite number of its derivatives, uniformly close to φ(∞)
J on compact subsets of [0, 1), pro-

vided N is sufficiently large. Now the local minima of φ(∞)
J will again satisfy a mean-field equation,

this time involving the function g∞ from (4.60). Since

g′(h) =

{
1− 1

2h
, if h > 1

2
,

0, otherwise,
(4.62)

there are at most two perturbatively stable solutions to the mean-field equation: One at λ = 0 and the
other at

λ =
1

2

(
1 +

√
1− 4J−2

)
. (4.63)

Moreover, these local minima interchange the role of the global minimum at some finite and non-
zero J (∞)

MF , which is a solution of a particular transcendental equation. For J near J (∞)
MF , the second

derivative of φ(∞)
J is uniformly positive around both local minima.

The convergence stated in Lemma 4.11 ensures that all of the previously listed facts will be (at least
qualitatively) satisfied by φ(N)

J forN large as well. Thus, φ(N)
J has at most one positive local minimum,

which immediately implies that J 7→ λ
(N)
MF (J) is continuous whenever it is defined. Moreover, since the

local minima of φ(N)
J converge to those of φ(∞)

J , we also easily recover the asymptotic statements (2.26–
2.27). This finishes the proof. �

Proof of Theorem 2.6. The proof is similar to that of the Potts and cubic models; the only extra
impediment is that now we cannot take for granted that there is only one non-zero local minimum.
As before, most of the difficulties will be resolved by invoking the monotonicity of the energy den-
sity e?(J), which is defined e.g. by optimizing 1

2
〈(Q0,Qx)〉J over all Gibbs states invariant under the

lattice translations and rotations.
In the present case, κ and n in the Main Theorem are given by κ = (N −1)/N and n = 1

2
N(N −1).

Thus, letting δd = 1
4
(N − 1)2Id, the quantity Jδd is the corresponding error term on the right-hand
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side of (1.12). Define ε1 by the formula (4.22). Then Lemma 4.9 guarantees that the diagonal form λ

of 〈Q0〉J for any Gibbs state is an index permutation of a vector of the type
(
λ + a1,−

λ

N − 1
+ a2, . . . ,−

λ

N − 1
+ aN

)
, (4.64)

where
∑

i ai = 0,
∑

i a
2
i ≤ ε21 and λ corresponds to a local minimum of ΦJ . If λ is the physical

magnetization giving rise to λ?(J), we let λ?
MF(J) be a value of λ, corresponding to a local minimum

of ΦJ , for which λ takes the form (4.64). Then Corollary 1.2 and the Key Estimate give
∣∣∣e?(J)− 1

2

N

N − 1
λ?

MF(J)2
∣∣∣ ≤ 2Jδd. (4.65)

Now for J ≤ J0 � 1, we know the only local minimum is for λ?
MF(J) = 0, while for J ≥ J1 & N2,

the zero vector is no longer a local minimum and hence λ?
MF(J) exceeds some κ′ > 0. But J 7→ e?(J)

is non-decreasing so there must be a Jt ∈ [J0, J1] where e?(J) jumps by at least κ
′ − 2Jtδd, which is

positive once d is sufficiently large. The fact that Jt must be close to JMF for large enough d is proved
exactly as for the Potts and cubic models. �

5. MEAN-FIELD THEORY AND COMPLETE-GRAPH MODELS

Here we will show that the mean-field formalism developed in Section 1.2 has a very natural inter-
pretation for the model on a complete graph. An important reason for the complete graph picture is
to provide a tangible physical system to motivate some of the physical arguments. The forthcoming
derivation is a rather standard exercise in large-deviation theory [16,19], so we will keep it rather brief.

We will begin by a precise definition of the problem. Let GN be a complete graph on N vertices and
consider a spin system on GN with single-spin space Ω and the Hamiltonian

βHN(S) = − J

N

∑

1≤x<y≤N

(Sx,Sy)−
N∑

x=1

(b,Sx). (5.1)

(Recall that Ω is a compact subset of a finite-dimensional vector space EΩ with inner product denoted as
in the previous formula.) Let µ denote the a priori spin measure and let 〈−〉0 denote the corresponding
expectation. For each configuration S, introduce the empirical magnetization by the formula

mN(S) =
1

N

N∑

x=1

Sx. (5.2)

If m ∈ Conv(Ω) and ε > 0, let Uε(m) denote the ε-neighborhood of m in Conv(Ω) in the metric
induced by the inner product on EΩ. Then we have:

Theorem 5.1 For each m ∈ Conv(Ω),

lim
ε↓0

lim
N→∞

1

N
log

〈
e−βHN (S)1{mN (S)∈Uε(m)}

〉
0

= −ΦJ,b(m), (5.3)

where ΦJ,b(m) is as defined in Section 1.2. Moreover, if νN denotes the Gibbs measure obtained by
normalizing e−βHN (S) and if FMF(J, b) denotes the infimum of ΦJ,b(m) over m ∈ Conv(Ω), then

lim
N→∞

νN

(
ΦJ,b(mN (S)) ≥ FMF(J, b) + ε

)
= 0 (5.4)
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for every ε > 0.

Proof. By our assumption, EΩ is a finite-dimensional vector space. Moreover, Ω is compact and thus
the logarithmic generating function G(h) defined in (1.3) exists for all h ∈ EΩ. As a consequence of
Cramér’s Theorem for i.i.d. random variables on Rn, see Theorem 2.2.30 in [16], the measures

µN(·) = µ
(
mN (S) ∈ ·

)
(5.5)

satisfy a large-deviation principle on R
d with rate function (1.4). In particular,

lim
ε↓0

lim
N→∞

1

N
log µN

(
Uε(m)

)
= S(m), m ∈ Conv(Ω). (5.6)

Now βHN can be written as follows

βHN = NEJ,b

(
mN (S)

)
− J

N

∑

x=1

(Sx,Sx). (5.7)

Since the second term is bounded by a non-random constant almost surely and since m 7→ EJ,b(m) is
uniformly continuous throughout Conv(Ω), (5.3) follows by inspecting the definition of ΦJ,b(m). �

REFERENCES

[1] M. Aizenman, Geometric analysis of ϕ4 fields and Ising models. I, II., Commun. Math. Phys. 86 (1982) 1–48.
[2] M. Aizenman and R. Fernández, On the critical behavior of the magnetization in high-dimensional Ising models

J. Statist. Phys. 44 (1986) 393–454.
[3] M. Aizenman, D.J. Barsky and R. Fernández, The phase transition in a general class of Ising-type models is sharp,

J. Statist. Phys. 47 (1987) 343–374.
[4] M. Aizenman, J.T. Chayes, L. Chayes and C.M. Newman, Discontinuity of the magnetization in one-dimensional

1/|x− y|2 Ising and Potts models, J. Statist. Phys. 50 (1988), no. 1-2, 1–40.
[5] K.S. Alexander and L. Chayes, Non-perturbative criteria for Gibbsian uniqueness, Commun. Math. Phys. 189

(1997), no. 2, 447–464.
[6] N. Angelescu and V.A. Zagrebnov, A lattice model of liquid crystals with matrix order parameter, J. Phys. A 15

(1982) no. 11, L639–L643.
[7] J. van den Berg and C. Maes, Disagreement percolation in the study of Markov fields, Ann. Probab. 22 (1994), no. 2,

749–763.
[8] M. Biskup, Reflection positivity of the random-cluster measure invalidated for non-integer q, J. Statist. Phys. 92

(1998) 369–375.
[9] M. Biskup and L. Chayes, Mean-field driven first-order phase transitions in systems with long-range interactions, in

preparation.
[10] A. Bovier and M. Zahradnı́k, The low-temperature phase of Kac-Ising models, J. Statist. Phys. 87 (1997) 311–332.
[11] A. Bovier and M. Zahradnı́k, Cluster expansions and Pirogov-Sinai theory for long-range Ising systems, submitted.
[12] J. Bricmont, H. Kesten, J.L. Lebowitz and R.H. Schonmann, A note on the Ising model in high dimensions, Commun.

Math. Phys. 122 (1989) 597–607.
[13] D. Brydges and T. Spencer, Self-avoiding walk in 5 or more dimensions, Commun. Math. Phys. 97 (1985) 125–148.
[14] M. Cassandro and E. Presutti, Phase transitions in Ising systems with long but finite range interactions, Markov

Process. Related Fields 2 (1996) 241–262.
[15] P. Curie, Propriétés magnétiques des corps a diverses températures, Ann. de Chimie et Physique 5 (1885) 289;

reprinted in Œuvres de Pierre Curie, Gauthier-Villars, Paris, 1908, pp. 232–334.
[16] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Springer Verlag, Inc., New York, 1998.
[17] R. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity,

Theor. Prob. Appl. 13 (1968) 197-224.



PHASE TRANSITIONS AND MEAN-FIELD THEORY 37

[18] F.J. Dyson, E.H. Lieb and B. Simon, Phase transitions in quantum spin systems with isotropic and nonisotropic
interactions, J. Statist. Phys. 18 (1978) 335–383.

[19] R.S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, Grundlehren der Mathematischen Wissenschaften,
vol. 271, Springer-Verlag, New York, 1985.
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[27] H.-O. Georgii, O. Häggström and C. Maes, The random geometry of equilibrium phases, In: C. Domb and

J.L. Lebowitz (eds), Phase Transitions and Critical Phenomena, vol. 18, pp. 1-142, Academic Press, New York,
1999.

[28] G. Grimmett, The stochastic random-cluster process and the uniqueness of random-cluster measures, Ann. Probab.
23 (1995), no. 4, 1461–1510.

[29] T. Hara, R. van der Hofstad and G. Slade. Critical oriented percolation above 4 + 1 dimensions, in preparation.
[30] T. Hara, R. van der Hofstad, and G. Slade. Critical two-point functions and the lace expansion for spread-out high-

dimensional percolation and related models, in preparation.
[31] T. Hara and G. Slade, Self-avoiding walk in five or more dimensions. I. The critical behaviour, Commun. Math.

Phys. 147 (1992) 101–136.
[32] T. Hara and G. Slade, The lace expansion for self-avoiding walk in five or more dimensions, Rev. Math. Phys. 4

(1992) 235–327.
[33] T. Hara and G. Slade, Mean-field behaviour and the lace expansion, In: G. Grimmett (ed), Probability and phase

transition (Cambridge, 1993), pp. 87–122, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 420, Kluwer Acad.
Publ., Dordrecht, 1994.

[34] T. Hara and G. Slade, Mean-field critical behaviour for percolation in high dimensions, Commun. Math. Phys., 128
(1990) 333–391.

[35] T. Hara and G. Slade, The incipient infinite cluster in high-dimensional percolation, Electron. Res. Announc. Amer.
Math. Soc., 4 (1998) 48–55.

[36] T. Hara and G. Slade, The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical
exponents, J. Statist. Phys. 99 (2000) 1075–1168.

[37] T. Hara and G. Slade, The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated
super-Brownian excursion, J. Math. Phys. 41 (2000) 1244–1293.

[38] R. van der Hofstad, F. den Hollander and G. Slade, A new inductive approach to the lace expansion for self-avoiding
walks, Probab. Theory Rel. Fields 111 (1998) 253–286.

[39] R. van der Hofstad and G. Slade, A generalised inductive approach to the lace expansion, Probab. Theory Rel.
Fields 122 (2002) 389–430.

[40] H. Kesten and R. Schonmann, Behavior in large dimensions of the Potts and Heisenberg models, Rev. Math. Phys. 1
(1990) 147-182.

[41] D. Kim, P.M. Levy and L.F. Uffer, Cubic rare-earth compounds: Variants of the three-state Potts model, Phys.
Rev. B 12 (1975) 989–1004.

[42] D. Kim and P.M. Levy, Critical behavior of the cubic model, Phys. Rev. B 12 (1975) 5105–5111.
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