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Abstract

The Rijndael cipher was chosen as the Advanced Encryption Standard (AES) in

August 1999. Its internal structure exhibits unusual properties such as a clean and

simple algebraic description for the S-box. In this research, we construct a scalable

family of ciphers which behave very much like the original Rijndael. This approach

gives us the opportunity to use computational complexity theory. In the main result,

we generate a candidate one-way function family from the scalable Rijndael family.

We note that, although reduction to one-way functions is a common theme in the

theory of public-key cryptography, it is rare to have such a defense of security in the

private-key theatre.

In this thesis a plan of attack is introduced at the circuit level whose aim is

not break the cryptosystem in any practical way, but simply to break the very bold

Rijndael security claim. To achieve this goal, we are led to a formal understanding of

the Rijndael security claim, juxtaposing it with rigorous security treatments. Several

of the questions that arise in this regard are as follows: “Do invertible functions

represented by circuits with very small numbers of gates have better than worst

case implementations for their inverses?” “How many plaintext/ciphertext pairs are

needed to uniquely determine the Rijndael key?”
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Chapter 1

Introduction

Cryptography has been used almost since people had some written object to obscure.

However, modern cryptography had expanded its field by covering related problems

and goals. Those new goals require more than keeping privacy of communications;

such as digital signatures or digital cash. Moreover, it became an important issue

to authenticate parties communicating with each other. The creation of randomness

is another topic related to modern cryptography. Not only these, but also modern

cryptography shifted the focus from the art of the cryptography to the science of it.

This discipline mainly remained an art before Claude Shannon pointed out the

science in his famous work [Sh49]: “As a first step in the mathematical analysis of

cryptography, it is necessary to idealize the situation suitably, and to define in a

mathematically acceptable way what we shall mean by a secrecy system.”

1
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Shannon distinguishes two types of security: (1) Theoretical and (2) Practical.

Theoretical security, which is named as ‘unconditional’, is the one against an adver-

sary who has unlimited time and computational resources. Practical (computational)

security is resistance to an attack using a specified limited amount of time and com-

putational resources. Although it requires a mathematical theory for cryptography to

ensure provably computationally-secure systems, to the best of our knowledge there is

not much progress to ensure secrecy of systems ‘in a mathematically acceptable way’.

To quote James L. Massey [Ma04a]: “Today almost everyone plies the art of cryptog-

raphy, generating more and more schemes that nobody can prove are computationally

secure.”

1.1 Public Key vs. Private Key

Private key cryptography is the most commonly used method to communicate se-

curely. In this scheme, the sender and receiver ensure secrecy by use of a private key

on which they agree before the communication starts. The sender encrypts the mes-

sage with this secret key and sends it via an some insecure channel which is subject

to attack by an adversary. The receiver is able to decrypt the transmitted message

with the same secret key. The security of the scheme is based on its resistance to an

adversary who knows the cryptosystem (by Kerckhoff’s principle) and who has the

ability to eavesdrop on the insecure channel.
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Symmetric key (private key) ciphers can be grouped broadly into block ciphers

and stream ciphers. A block cipher operates on a group of bits, in contrast to a stream

cipher, which encrypts one bit at a time. Stream ciphers are generally faster than

block ciphers in hardware, and have less complex hardware circuits. However, block

ciphers are the fundamental and the most prominent elements since they support

message authentication techniques, data integrity and cryptographic hash functions.

The problem in the symmetric key setting is that the key must be exchanged in a

secure way, and not by the means of normal communication. In 1976, Whitfield Diffie

and Martin Hellman developed the concept of asymmetric public-key cryptography

[DiHe76] to handle this problem. In this scheme, there are two keys used; public-

key and private-key, with public key for encryption and private key for decryption.

These keys are mathematically related to each other but it is hard to derive either

key from the other. The public key can be sent out over an insecure channel, and

any message directed to the owner of this public key can be encrypted by using this

publicly known key. However, since it’s hard to find the private key, only the owner

is able to decrypt transmitted messages. In fact, the private key is kept by the owner

of the corresponding public-key to decrypt messages.

In this way, one could send a secret message without ever meeting with the re-

ceiver, and only the intended receiver will understand the content of the message.

Therefore, it is also easy to handle key-distribution problem, since one doesn’t have
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to agree on a secret key before the communication itself. All the sender does is just

look up some information, which is publicly known to anybody else, and then use this

information to encrypt any message.

1.2 Security Issues

The goal of a security system is that an adversary should not be able to learn anything

about the plaintext if he is given a ciphertext. However, there is not a formal way

to understand what that means, in other terms we do not have a ‘mathematically

acceptable way’ to define secrecy. For example, in the symmetric key system, the

length of key is n bits, then we have a probability of at least 1/2n to find the correct

key (just by random selection), and to get all the information on the channel unless

the key is changed. This doesn’t make the scheme bad, but it doesn’t either show

that the scheme is secure.

From Shannon’s ideas to today’s security concerns, it is believed that the best

way to design a cipher is to construct it in such a way that breaking the cipher turns

out to solve a difficult problem. This belief is also basic assumption in the provable

security treatment, about which we gave introductory detail in Section 2.3.

Since it is so much important to find difficult problems, the question of hardness

is another issue which cryptographers have to come with ‘mathematically acceptable

way’. Public-key cryptosystems are usually based on ‘hard’ problems on the avarage
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case. Computational complexities of problem sets and complexity classes are therefore

central to the discussion of public key security. However, symmetric setting, mainly

block ciphers have different security concerns.

First of all, it is not natural to use computational complexity theory, since this

discipline doesn’t cover the instances of problem sets such as secrecy of a block cipher.

On the other hand, all we have on security of block ciphers are just fixed lists of attack

strategies and the claims regarding the resistance of ciphers against these strategies.

So, basically we have a game of ad hoc cryptanalysis on the security of block ciphers.

Chapter 2 enhances the discussion on security of block ciphers.

1.3 AES Competition

Approved in 1977, Data Encryption Standard(DES) was an early standard for private-

key cryptography. On January of 1997, National Institute of Standards and Tech-

nology (NIST) called for cryptographers to propose a new standard block cipher for

United States Government use in non-classified but sensitive applications. The Ad-

vanced Encryption Standard (AES) was supposed to replace Triple-DES which is a

slight modification of the original DES. The main reasons for this major change were

the DES itself was vulnerable to the exhaustive search and Triple-DES was relatively

slow in software.

The winner of the contest, where the whole crypto community was invited to
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evaluate candidates, would become the standard for NIST, ISO, IETF and IEEE.

After a long process, in August 1999, five finalists were announced. The NIST’s fact

sheet explains why the Rijndael Cipher of Vincent Rijmen and Joan Daemen was

chosen out of those finalists: “When considered together, Rijndael’s combination of

security, performance, efficiency, ease of implementation, and flexibility makes it an

appropriate selection for the AES. Specifically, Rijndael appears to be consistently a

very good performer in both hardware and software across a wide range of computing

environments regardless of its use in feedback or non-feedback modes.”

1.4 Contribution of the Thesis

In this thesis, a plan of attack on the Rijndael circuit is introduced. To make progress

on this plan, a broad range of discussions are made about the gate complexity theory

and the block cipher security. All of the work explained in this thesis is motivated by

the belief that a mathematical theory of cryptography should be possible.

Since the aim of this attack plan is to break the Rijndael security claim (RSC),

a formal understanding of the RSC is sought. We indicated that it is reasonable to

relate the RSC to being finite pseudorandom permutation family (FPRP) which was

introduced by Mihir Bellare and Phillip Rogaway.

We have claimed that the proposal of Rijndael allows a well-defined block cipher

family which behaves like the original Rijndael. Hence, a scalable Rijndael family is
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specified to provide a circuit level cryptanalysis by use of computational complexity

theory.

One of the most significant contributions of this thesis is generating a one-way

function family from the scalable Rijndael family. This conclusion holds true if the

RSC is proven for block ciphers in the family, whose parameters are sufficiently large.

Remark that, although reduction to one-way functions is a common theme in the

theory of public-key cryptography, it is rare to have such a defense of security in the

private-key theatre. This is mainly the consequence of the Rijndael proposal which

supports block cipher family.

The above discussion deals with topics related to the attack plan. The main step of

the attack plan, introduced in the thesis, is seeking answers for the questions arised in

this regard: “Do invertible functions represented by circuits with very small numbers

of gates have better than worst case implementations for their inverses?” “How many

plaintext/ciphertext pairs are needed to uniquely determine the Rijndael key?” In

this thesis, a methodology is given to elaborate on the gate complexity theory, about

which James L. Massey believes that it helps to determine the difficulty of a problem

as part of a mathematical theory of cryptography for computational security.
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1.5 Outline of the Thesis

Chapter 2 discusses the security concerns of block ciphers in great detail. Further-

more, it explains the Rijndael Security Claim and the conditions under which the

cipher fails to satisfy this claim. According to our mathematical analysis, we need a

formal notion what is meant by RSC, so in this chapter we also describe the provable

security treatment and relate its assumptions to the RSC.

Chapter 3 starts with introducing our motivations on defining scalable Rijndael

family and motivations on circuit level cryptanalysis. It continues with a possible

attack on the RSC. In this chapter, we will clearly introduce the main steps of such

an attack and the implications of success.

The following four chapters are reserved for the main steps of our attack plan.

Chapter 4 introduces a scalable Rijndael family along with its gate complexity. Chap-

ter 5 questions the existence of poly-sized plaintext-ciphertext pairs to determine the

key. Also, we will generate one-way function family which is directly dependent on

the proof of RSC. Chapter 6 is about inverting circuits and the question whether

small circuits have relatively small inverse circuits.

Finally, in Chapter 7 a summary of work that has been done is given with possible

future research on this topic.



Chapter 2

Rijndael Security Claim

Symmetric encryption allows two parties to communicate securely by use of a private

key. The bits transmitted between parties are produced by processing data as a func-

tion of this shared key. The encryption scheme also specifies a decryption algorithm

to retrieve the original data from the transmitted one.

Block ciphers are the most popular and the easiest way of achieving symmetric en-

cryption. As an example, we could name the Data Encryption Standard (DES) which

was used from 1974 until recently. It is being replaced by the Advanced Encryption

Standard, namely Rijndael, which is already in widespread use.

A block cipher is an encryption function E : {0, 1}k × {0, 1}n → {0, 1}n that

takes two inputs, a k-bit key K and an n-bit plaintext M and returns an n-bit

ciphertext C = E(K, M). For each key K ∈ {0, 1}k we let EK : {0, 1}n → {0, 1}n

9
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be the function defined by EK(M) = E(K, M). For any block cipher and any key

K, the function EK is a permutation on {0, 1}n. Since it is a permutation, we let

E−1 : {0, 1}k × {0, 1}n → {0, 1}n be defined by E−1(K, C) = E−1
K (C), which is the

decryption function.

Demonstrating existence of a key recovery attack, with all possible modes of access

for the adversary (known/chosen/adaptively chosen plaintext/ciphertext, known/chosen/

adaptively chosen key relations) is a way to show that a given block cipher fails to

be secure. Any secure block cipher must be strong enough such that it shouldn’t be

possible to find a key-recovery attack. But this is not all that we seek from a secure

encryption scheme.

Consider an encryption scheme E that uses AES as an internal algorithm: E :

{0, 1}128 × {0, 1}256 → {0, 1}256 defined by EK(M1, M2) = (M1 ⊕ M2, AESK(M1 ⊕

M2)). Key recovery is as hard as it is for AES, but the scheme leaks information

when an adversary is given the ciphertext. This encryption scheme is not acceptable,

since M1 ⊕M2 is leaked.

This example shows the insufficiency of defining security in terms of key-recovery

alone. So what makes a symmetric encryption system secure? This question has on

occasion led to the proposal of huge lists of security conditions to be satisfied by a

scheme, many of which are practically impossible to check.

Historically, there seem to be few attempts to give a methodology for checking



CHAPTER 2. RIJNDAEL SECURITY CLAIM 11

security. There are some common attack strategies on block ciphers, and the designers

of a cipher usually come up with conjectures on how their encryption scheme is secure

against well-known attack strategies. We see that Rijndael’s authors wanted to fill

that gap practically in their AES proposal in 1999. Their security treatment, which

will be explored later, is a clever and easy way of claiming security. However, they

did not provide rigorous statements to specify what they mean.

Since 1994, the work of Phillip Rogaway and Mihir Bellare on provable security

has answered the theoretical issues in security and has specified almost theoretically

complete security treatment for symmetric encryption schemes. Their 2003 RSA Con-

ference Award in mathematics for their work on practice-oriented provable security

suggests that their security treatment is accepted by the community and promises

extended use for the future.

In this chapter, we want to give an outline of the Rijndael encryption algorithm,

referring the reader to AES Proposal ([DR99]), the book “The Design of Rijndael”

([DR01]), official publication standard from NIST ([NIST01]) and a paper ([Gl02])

of Brian Gladman written to revise AES proposal for more specification of Rijndael.

Then we will briefly discuss the Rijndael security claim (RSC). After introducing

RSC, we want to juxtapose it with rigorous concepts of security.
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2.1 Rijndael Specification

Rijndael operates on a 4 × 4 array of bytes, termed the state (versions of Rijndael

with a larger block size have additional columns in the state). For encryption, each

round of Rijndael (except the last round) consists of four stages.

Following Figure 2.1 is the schematic representation of Rijndael:

2.1.1 The SubBytes Transformation

We took the description of SubBytes transformation from [NIST01]:

The SubBytes() transformation is a non-linear byte substitution that

operates independently on each byte of the state using a substitution table

(S-box). This S-box, which is invertible, is constructed by composing two

transformations:

1. Take the multiplicative inverse in the finite field GF (28) modulo the

irreducible polynomial m(x) = x8 + x4 + x3 + x + 1; the element 00

is mapped to itself.

2. Apply the following affine transformation (over GF (2)):

b′i = bi ⊕ b(i+4)mod8 ⊕ b(i+5)mod8 ⊕ b(i+6)mod8 ⊕ b(i+7)mod8 ⊕ ci

for 0 ≤ i < 8, where bi is the ith bit of the byte, and ci is the ith bit

of a byte c with the value {63} or {01100011}. Here and elsewhere,
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Figure 2.1: [LNCP]Rijndael Cipher
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a prime on a variable (e.g., b′) indicates that the variable is to be

updated with the value on the right.

Figure 2.2 illustrates the effect of the SubBytes() transformation on

the state.

Figure 2.2: [NIST01]SubBytes() applies the S-box to each byte of the state

We describe inverse operation as [DR01] explains:

Inverse Operation: The inverse operation of SubBytes is called InvSub-

Bytes. It is a bricklayer permutation consisting of the inverse S-box S−1
RD

applied to the bytes of the state. The inverse S-box S−1
RD is obtained by

applying the inverse of the affine transformation followed by taking the

multiplicative inverse in GF (28).
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2.1.2 The ShiftRows Transformation

The definition of Shiftrows transformation and its inverse are directly taken from

[DR01]:

The ShiftRows step is a byte transposition that cyclically shifts the

rows of the state over different offsets. Row 0 is shifted over C0 bytes,

row 1 over C1 bytes, row 2 over C2 bytes and row 3 over C3 bytes, so that

the byte at position j in row i moves to position (j−Ci) (mod Nb). The

shift offsets C0, C1, C2 and C3 depend on the value of Nb.

Figure 2.3 illustrates the effect of the ShiftRows step on the state.

Figure 2.3: [NIST01]ShiftRows cyclically shifts the last three rows in the state.



CHAPTER 2. RIJNDAEL SECURITY CLAIM 16

Inverse Operation: The inverse operation of ShiftRows is called In-

vShiftRows. It is a cyclic shift of the 3 bottom rows over Nb − C − 1,

Nb − C2 and Nb − C3 bytes respectively so that the byte at position j in

row i moves to position (j + Ci) (mod Nb).

2.1.3 The MixColumns Transformation

The definition of MixColumns transformation and its inverse are directly taken from

[DR01]:

The MixColumns step is a bricklayer permutation operating on the

state column by column. The columns of the state are considered as poly-

nomials over GF (28) and multiplied modulo x4+1 with a fixed polynomial

c(x). The polynomial c(x) is given by (+ and · are arithmetic operations

in GF):

c(x) = 03 · x3 + 01 · x2 + 01 · x + 02

This polynomial is coprime to x4 + 1 and therefore invertible. The mod-

ular multiplication with a fixed polynomial can be written as a matrix

multiplication. Let b(x) = c(x) · a(x) (mod x4 + 1). Then
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b0

b1

b2

b3


=



02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02


×



a0

a1

a2

a3


Figure 2.4 illustrates the effect of the MixColumns step on the state.

Figure 2.4: [NIST01]MixColumns operates on the state column-by-column.

Inverse Operation: The inverse operation of MixColumns is called In-

vMixColumns. It is similar to MixColumns. Every column is transformed

by multiplying it with a fixed multiplication polynomial d(x), defined by

(03 · x3 + 01 · x2 + 01 · x + 02).d(x) ≡ 01 (mod x4 + 1)

it is given by

d(x) = 0B · x3 + 0D · x2 + 09 · x + 0E.
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Written as a matrix multiplication, InvMixColumns transforms the columns

in the following way:

b0

b1

b2

b3


=



0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E


×



a0

a1

a2

a3


2.1.4 XorRoundKey Transformation

The definition of XorRoundKey transformation is directly taken from [DR01]:

The key addition is denoted XorRoundKey. In this transformation,

the state is modified by combining it with a round key with the bitwise

XOR operation. A round key is denoted by ExpandedKey[i], 0 ≤ i ≤ Nr.

The array of round keys ExpandedKey is derived from the cipher key by

means of the key schedule. the round key length is equal to the block

length. The XorRoundKey transformation is illustrated in Figure 2.5.

XorRoudKey is its own inverse.

2.1.5 The Key Schedule

The following description of Key Schedule is directly taken from [Gl02]:
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Figure 2.5: [NIST01]XorRoundKey XORs each column of the state with a word from

the key schedule.

The round keys are derived from the cipher key by means of a key

schedule with each round requiring Nc words of key data which, with

an additional set, makes a total of Nc(Nr + 1) or as a two dimensional

array k[n,c] of Nr + 1 round keys, each or which individually consists of a

sub-array of Nc words.

The expansion of the input key into the key schedule proceeds ac-

cording to the following pseudo code. The function SubWord(x) gives an

output word for which the S-box substitution has been individually ap-

plied to each of the four bytes of its input x. The function RotWord(x)

converts an input word [b3, b2, b1, b0] to an output [b0, b3, b2, b1]. The word

array Rcon[i] contains the values [0, 0, 0, xi−1] with xi−1 being the powers
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of x in the field GF (256).

KeyExpansion(byte key[4*Nk], word k[Nr+1, Nc], Nc, Nk, Nr)

begin

i=0

while (i < Nk)

k[i] = word [key[4*i+3], key[4*i+2],key[4*i+1],key[4*i] ]

i = i+1

end while

i = Nk

while (i < Nc * (Nr+1))

word temp = k[i-1]

if (i mod Nk = 0)

temp = SubWord(RotWord(temp)) xor Rcon[i / Nk]

else if ((Nk > 6) and (i mod Nk=4))

temp = SubWord(temp)

end if

k[i] = k[i - Nk] xor temp

i = i+1

end while

end
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2.1.6 The Decryption Function

In description of each transformation, we already gave how inverse operation works.

In this section we provide following pseudo code for the decryption function from

[Gl02]:

InvCipher(byte in[4*Nc], byte out[4*Nc], word k[Nr+1, Nc], Nc, Nr)

Begin

byte state[4, Nc]

state = in

XorRoundKey(state, k[Nr*Nc..(Nr+1)*Nc-1], Nc)

for round =Nr-1 step -1 to 1

InvShiftRows(state, Nc)

InvSubBytes(state, Nc)

XorRoundKey(state, k[round*Nc..(round+1)*Nc-1])

InvMixColumns(state, Nc)

end for

InvShiftRows(state, Nc)

InvSubBytes(state, Nc)

XorRoundKey(state, k[0..Nc-1])

out = state

end
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2.2 Rijndael Security Claim

To understand the strength of a block cipher, comparing it with majority of ciphers

is a nice idea. This comparison is the basis of the security criteria introduced by Joan

Daemen and Vincent Rijmen [DR01].

To understand this criterion let’s determine the number of all possible block ci-

phers of dimensions nb (block length) and nk (key length). If the key is fixed then

the number of inputs is 2nb , so the cipher behaves as one of the 2nb ! permutations. If

this is the case for each key, then the number of all possible block ciphers is 2nb !2
nk .

This notion of security seems based om the assumption that the majority of ciphers

are not vulnerable to an exploitable weaknesses since the possible block ciphers in the

same dimension cover all permutation families. Otherwise it would be impossible to

talk about secure encryption schemes. Indeed, this must be what motivates definitions

of K-secure and hermetic as security criteria in [DR01].

Definition 2.2.1 (DR01) A block cipher is K-secure if all possible attack strate-

gies for it have the same expected work factor and storage requirements as for the

majority of possible block ciphers with the same dimensions. This must be the case

for all possible modes of access for the adversary (known/chosen/adaptively chosen

plaintext/ciphertext, known/chosen/adaptively chosen key relations . . . ) and for any

a priori key distribution.
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This definition is very strong in terms of security. So according to [DR01], if one

finds any key-recovering attack faster than the exhaustive search, symmetry proper-

ties, non-negligible class of weak keys or related-key attacks, then the cipher fails to

satisfy this criteria. Here are some brief explanations about these kind of attacks:

1. Existence of a key-recovering attack faster than exhaustive search:

There is a finite set of possible keys in a block cipher system. One can go

through all these possible keys which is called as exhaustive search. Because

of the exponential complexity of block cipher, this kind of brute force attack is

impractical. So an opponent seeks out better key-recovery attacks. According

to Kerckhoff’s principle, we assume that the opponent knows the cryptosystem

being used. Following are the most common types of attack schemas, for classi-

fying attacks based on resources available to the attacker, discussed in [Sti95]:

• Ciphertext-only: The opponent possesses a string of ciphertext, y.

• Known plaintext: The opponent possesses a string of plaintext, x, and the

corresponding ciphertext y.

• Chosen plaintext: The opponent has obtained temporary access to the

encryption machinery. Hence he can choose a plaintext string, x, and

construct the corresponding ciphertext string, y.

• Chosen ciphertext: The opponent has obtained temporary access to the
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decryption machinery. Hence he can choose a ciphertext string, y, and

construct the corresponding plaintext string, x.

2. Finding symmetry properties: The behavior of a block cipher may exhibit

some symmetries. Those kind of symmetries give some strength to opponent.

Consider such an extreme property for virtually all plaintexts: if the corre-

sponding ciphertext of any plaintext x is the binary complement of the cipher-

text corresponding to binary complement of x, then at least, one can define an

attack with at most half the complexity of exhaustive search.

3. Finding non-negligible class of weak keys: Weak keys are secret keys for

which the block cipher exhibits certain regularities. For example in DES there

are four keys for which encryption is exactly the same as decryption. This

means that if one were to encrypt twice with one of these weak keys, then the

original plaintext would be recovered. For IDEA, there is a class of keys for

which cryptanalysis is easy to recover key. For any block cipher, there might

as well be a large set of weak keys (perhaps even with the weakness exhibiting

itself in a different way) for which the chance of picking a weak key is too large

for comfort. In such a case, the presence of weak keys would have an obvious

impact on the security of the block cipher.

4. Related-key attacks: In this kind of attack scenario, the attacker knows (or
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chooses) a relation between several keys and he can access to the encryption

function using such related keys. The goal of the attacker is to find the keys

themselves. The scenario of the attack is very powerful in terms of the attacker’s

capabilities and thus quite unrealistic in practice.

Sometimes while a given cipher is K-secure, if you use it as a component in a

larger scheme, any weakness in the cipher may cause troubles to the larger scheme.

This motivates the following definition:

Definition 2.2.2 (DR01) A block cipher is hermetic if it does not have weaknesses

that are not present for the majority of block ciphers with the same block and key

length.

The security claims of Rijndael are that the Rijndael cipher is K-secure and her-

metic.

2.3 Juxtaposition Of Claim

In the previous section, we explained the Rijndael Security claim and elaborated on

the authors’ understanding of security with their definitions. Most of the time, it

becomes an easy question to answer what makes a block cipher fail to be secure in-

stead of showing how secure it is. This is the reason why the authors of the Rijndael

focused on “security failure”. In this section we want to briefly introduce provable



CHAPTER 2. RIJNDAEL SECURITY CLAIM 26

security, then juxtapose the Rijndael’s security claim with the basic concepts of prov-

able security.

The idea of provable security was introduced in the pioneering work of Goldwasser

and Micali [GoMi84]. They developed it in the particular context of asymmetric

encryption, but it affected the understanding of security, as well as, security failure

and was soon applied to other tasks. However, with appropriate paradigm shifts, the

idea of provable security is made useful for some other applications, such as block

cipher security.

I refer the reader to [Be98] for an outline of provable security. But simply put,

the goal of provable security is proving that the only way to defeat a cryptographic

protocol is to break its underlying atomic primitive. Some examples of atomic primi-

tives are those belonging to block ciphers or the RSA problem or the NTRU problem.

The distinction between protocols and atomic primitives is that in their purest and

rawest state, atomic primitives don’t solve any cryptographic problem we actually

care about. The goal of provable security is achieved by a proper reduction from the

security of an atomic primitive to the security of a protocol.

The idea of reduction works similar to the one we know from the theory of NP-

completeness. For example, there may be a reduction from one-wayness of the RSA

encryption function to the security of a protocol that uses this RSA function as a

primitive. If there is a program P that breaks the protocol, then existence of reduc-
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tion allows us to construct a program P ′ that provably breaks the RSA encryption

function.

With Bellare’s sentences, an important part of this framework is that in order to

enable a reduction, one must also have a formal notion of what is meant by the security

of the underlying atomic primitive? This is the part where work on provable security

contributes to the formalization of security treatments, especially the formalization

of symmetric encryption security.

There is enough information on the introduction of notions, or definitions that

enable us to think about atomic primitives in a systematic way, in a set of papers

authored by Bellare and Rogaway [BeRo93, 94, 97]. Lack of a rigorous framework

can seem to be a big obstacle in understanding security; this became apparent to the

author as he tried to work on the Rijndael security claim. Absence of a formal notion

in the Rijndael security claim makes it difficult to work systematically on it. It is not

an easy task to prove or disprove the reliability of any cryptosystem or to come up

with strong implementable design criteria without formal notions of security.

However, this wasn’t a big problem with cryptosystems directly relying on the

strength of candidate one-way functions in which complexity-theoretic approaches

could be applied. But in practice, block ciphers, the most popular atomic primitives

especially for private key cryptography, were lack of any security treatment. Then

one may agree that the best thing to say about security (without any formalization)
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would be the one Rijndael authors already said on being K-secure and hermetic.

Now I will discuss Bellare and Rogaway’s formalization for block ciphers and show

the relationship between their notions and the Rijndael Security Claim.

According to Bellare and Rogaway an “ideal” encryption, which is secure in the

strongest possible natural sense, would be as: “An angel took the message M from

the sender and delivered it to the receiver in some magical way”. The adversary

would see nothing at all, and in particular, no partial information would leak. By

contrast, if we appey to Kerchoff’s principle, in any cryptosystem, the block length

is known to the adversary a priori.

Formally modeling block ciphers to achieve ideal encryption leads Bellare and

Rogaway to model a block cipher as a finite pseudorandom permutation (FPRP)

family [BeRo94]. Note that the fundamental notion of a pseudorandom function

family is due to Goldreich, Goldwasser and Micali [GoMiGo86]. Loosely speaking the

model requires that as long as you don’t know the underlying key, the input-output

behavior of a block cipher closely resembles that of a random permutation.

To check the randomness of a given block cipher, these authors came up with

the idea of indistinguishability and different types of security notions such as left-

or-right, real-or-random indistinguishability. They introduced a totally impractical

but theoretically useful random oracle model. Leaving the details in [BeRo93, 94,

97], the basic idea behind indistinguishability (in particular real-or-random indistin-
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guishability) is to consider an adversary who chooses a message to be processed by a

random oracle. The oracle either responds with an encryption of this message under a

randomly chosen key or responds with an output of a random function. The scheme

is considered secure if the adversary has a hard time telling which alternative the

random oracle responds with.

This basic idea can be extended by allowing more queries to be sent to the oracle

or by changing the game for different kind of oracles (such as left-or-right oracle). In

any of the notions defined by Bellare and Rogaway, there are two worlds where the

adversary doesn’t know in which world it is playing. The goal of the adversary is

to guess in which world it is playing. The advantage of adversary is defined as the

measurement of how much better than 1/2 it does at guessing which world it is in,

namely the excess over 1/2 of the adversary’s probability of guessing correctly.

It is better now to touch on concrete treatment of security captured by the above

formalization. Rather than proving asymptotic results about the infeasibility of dis-

tinguishing the block cipher from a FPRP family, one can easily define the advantage

as a function of concrete and exact parameters of the game. For example, it is pos-

sible to say “Let A be an adversary that runs in time at most t and asks at most q

queries, these totaling at most σ 128-bit blocks, then A has an advantage of smaller

than c1 · t
2128 + c2 · q

2128 .”

The idea of indistinguishability is very strong in terms of covering security ac-
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cording to the proposers of this idea. To quote from [LeComp]: “Our thesis is that

we should consider an encryption scheme to be “secure” if and only if it is IND-CPA

(indistinguishable under chosen plaintext) secure (i.e. the advantage is negligible),

meaning that the above formalization captures our intuitive sense of privacy, and

the security requirements that one might put on an encryption scheme can be boiled

down to this one.”

Remember that before the proposal of Rijndael this theory was well-designed and

it seems that Rijndael security claims were inspired by this treatment and they sup-

port the design criterion of being FPRP to be a secure block cipher. Recall the

definition of K-security: “A block cipher is K-secure if all possible attack strate-

gies for it have the same expected work factor and storage requirements as for the

majority of possible block ciphers with the same dimensions. This must be the case

for all possible modes of access for the adversary (known/chosen/adaptively chosen

plaintext/ciphertext, known/chosen/adaptively chosen key relations . . . ) and for any

a priori key distribution.” Not only this, but RSC includes that Rijndael is hermetic

which means that it doesn’t have weaknesses that are not present for the majority of

block ciphers with the same block and key length (Definition 2.2.2).

Regarding the above definitions, we would say that if a block cipher is K-secure

and hermetic, then it is quite reasonable to believe that this block cipher behaves

as a randomly chosen block cipher or, as a FPRP family. To justify this belief, let’s
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assume that there is an attack strategy of any kind requires not same expected work

factor and storage requirements as for the majority of block ciphers (contrary to

being K-secure), then this attack strategy definitely distinguishes this block cipher

from a FPRP family by a game of indistinguishability conceptualized by Bellare and

Rogaway. However, not always such a game distinguishes a block cipher from a FPRP

family, although the block cipher may not look like random.

As an example, consider a block cipher that has pairs of keys for which the en-

cryption is the same. Any kind of Indistinguishability Game defined and formalized

under the theory of provable security may not be able to distinguish this block cipher

from a FPRP family. If one can not specify an Indistinguishability game, then it is

not possible to come up with a fast attack strategy compared to the majority of block

ciphers. However, this block cipher still has a weakness (pairs of keys giving same

encryption) that is not present for the majority of block ciphers which contradicts to

be a FPRP family. Thus, if the block cipher is not hermetic although it is K-secure,

then it is still not a FPRP family.

So basically, if the advantage of an adversary attacking a block cipher in any kind

of Indistinguishability Game defined and formalized under the theory of provable

security is not negligible, then this block cipher is not K-secure, and vice versa. If

there is no such an attack strategy, but it exhibits such property that fails to satisfy

being hermetic, then this block cipher is not a FPRP family. Furthermore, if it is
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hermetic and K-secure then it behaves as a randomly chosen block cipher, or simply

this block cipher is FPRP family.

After now we prefer to use formalization of provable security when we need a rig-

orous understanding of K-security and hermetic as they pertain to the RSC. However

as I will elaborate our plan of attack in Chapter 3, we are not restricting ourselves to

concrete security treatment and prefer to define a Scalable Rijndael Function Family.



Chapter 3

A Possible Attack Strategy

In this section, we want to give a complete description of a strategy to attack the

Rijndael Security Claim (RSC). Each step we will identify contains concrete, well-

defined questions. We want to investigate topics around those questions to get a better

understanding of computational complexity as it relates to block cipher security, and

to Rijndael in particular. We also believe that most of these questions can be attacked

without need to analyze Rijndael’s detailed structure. This plan of attack gives us at

least basic knowledge of Rijndael circuit level analysis. On the other hand any small

progress on one of the open steps would be an important result in either computational

complexity or in block cipher security.

Russell Impagliazzo and Michael Luby stressed that one-way functions are essen-

tial for complexity-based cryptography [ImLu89]. In our work related to our plan of

33
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attack, we will arrive at these same ideas, but in a very concrete way. Informally,

constructing a secure block cipher, according to Rijndael Security criteria, implies

the existence of one-way functions. One should beware that this plan of attack is

strictly specified for Rijndael, but also can be generalized by appropriate changes if

the definition of addressed block cipher allows.

3.1 Motivation

The RSC essentially says that the Rijndael block cipher behaves like a finite pseudo-

random permutation family (FPRP). Existence of a meaningful attack to distinguish

the block cipher from a FPRP which is better than exhaustive search is good enough

to break this claim. So we are looking for exponential improvement although it may

be negligible to practitioners. If the block length is n, an attack with O(2n(1−c)) com-

plexity where c is a constant (such as c = 0.001) is an exponential improvement. Its

practical strength depends on constant c, but is not immediate concern to us.

Recall that the RSC compares Rijndael with all possible block ciphers in the

same dimension. The idea of concrete security also suggests this kind of treatment.

However, we want to interpret the Rijndael security claim via a complexity-theoretic

approach. The main reason is that we are not practitioners who need numbers: “How

many cycles of adversary computation can the scheme withstand?” Also Rijndael is

not as other block ciphers who do not allow such a complexity theoretic approach.
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Rijndael’s structure allows one to generate a scalable cipher family which behaves like

the original block cipher.

So basically, here are our primary reasons on the ideas presented in this work:

(i) Our goal is not cryptanalysis per se, but a better understanding of block

ciphers in general. We are skeptical of RSC at the theoretical level.

(ii) We seek a fresh approach with potential to uncover weaknesses not addressed

by standard cryptanalysis.

(iii) We find Rijndael appealing in its easy scalability which is a rare opportunity

to consider asymptotics as key length goes to infinity.

To interpret the Rijndael security claim in complexity-theoretic language we need

a scalable cipher family. We have two more reasons to construct a scalable family.

(1) Security claims often include non-existence of inverting algorithms “Significantly

faster than exhaustive search”. For any fixed length the speed-up is constant. So we

can only make this phrase precise by looking at key lengths going to infinity. We are

looking for exponential improvement which is also made precise by having a scalable

cipher family. (2) It seems a natural requirement for block cipher proposals with such

bold security claims to include scalability of the proposal.

Assume that we have a scalable cipher family F parameterized by n, and for

sufficiently large n’s, the ciphers of the family F behaves like a FPRP family so that

they are not distinguishable from any other block cipher in the same dimension. Then
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it is possible to say that “For sufficiently large n’s; let A be an adversary for F that

runs in time at most t(n) and asks at most q(n) queries, these totaling at most σ(n)

n-bit blocks, then A has an advantage smaller than f(n) where f(n) is a negligible

function.”

We will give the technical details about our plan of attack after repeating our

understanding of security one more time. As a formal notion we are saying that a

block cipher should behave as a finite pseudorandom permutation family; which is also

the underlying meaning of being K-secure and hermetic. So after now, when we need

to question the security of any block cipher family, we will try to distinguish family

members’ behavior from a random permutation with same dimensions by playing the

games conceptualized under provable security. We will also seek out special structure

that is not present in a “majority of block ciphers”.

Our attack plan is based on circuit level analysis. Cryptographers beware that

each encryption algorithm has a boolean circuit implementing this algorithm, so there

should be an inverse circuit somehow related to key-recovery. This is a true fact but

doesn’t appeal theoreticians to search for an inverse circuit. In most of the cases

the problem is believed to be turned into the SAT problem which is a blind alley for

theoretical computer analysis. The reason for no interest can be understood when we

examine the attacks at the circuit level.

The first way of attacking is writing block cipher as a boolean circuit, and then
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translating the circuit to a set of equations with one equation per boolean gate. This

gives us a system of equations but not a closed algebraic formula. This would be like

an instance of SAT, for which no efficient algorithm is known.

Another idea is to rewrite the formula in disjunctive or conjunctive normal forms.

If one can get this simple form, the structure of the circuit would be easier to analyze.

But the problem with this method is that in order to get the direct evaluation, you

have to know entire plaintext/ciphertext mapping which is impossible.

Consequently, there is a series lack of literature investigating the problem from this

angle. In fact, for us, this lack of circuit-level analysis in the literature is somewhat

encouraging. Although we think that it is unlikely, our investigation may lead us to

the SAT problem as well. On the other hand, the Rijndael circuit is very special and

very fast, so it looks nothing like the general case. Moreover, it seems that we will

derive from the main problem a number of interesting combinatorial challenges. Even

if we are not successful in solving the challenges, it is likely that we will introduce new

open problems and we will have the opportunity to address their hardness. In this

way we hope to introduce new relationships between any block cipher (because our

approach can be applicable to any block cipher) and such combinatorial challenges.

There is one more reason to focus on circuit level analysis. We are mostly in-

terested with gate complexity. A gate is a boolean function of two variables. The

gate complexity of a boolean function f(x1, x2, ..., xn) is the smallest number of gates
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in an acyclic gate network that computes this function. To have a rigorous provable

security treatment we need to use a complexity measure that captures the complexity

of individual instances of a function. According to Massey [Ma04a], gate complexity

seems to be the most useful such measure at this time. Not only by Massey, but

recently gate complexity is seen to be an alternative way of quantifying security by

information theoreticians. Massey argues that a mathematical theory of cryptography

for computational security is not possible with the methods of number theory or the-

oretical computer science, but there is a chance with the methods of gate complexity

(See also [Ma04b]).

We now present another argument justifying our approach using Boolean circuits.

While Turing machines have by far received more attention in the computer science

literature, we feel that boolean circuits are a more appropriate choice for cryptanalytic

considerations. Recall that, in the non-uniform model of boolean circuit complexity,

our adversary is permitted any exponential amount of precomputation so long as the

results of this computation can be encoded in polynomial-sized circuits.

Let’s elaborate on the above explanation. In the Turing machine model, there

is a constant-sized machine processing on all input lengths n. The time complexity

of the corresponding decision problem is defined as the computation time of this

Turing machine on given input string. We say a Turing machine is poly-time if the

computation time is bounded by some fixed polynomial of the input length. There
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are some cases even though Turing machine is not poly-time but the machine could

decide in polynomial time if the input length is given as an auxiliary input. That

means there exists poly-time Turing machine family described independently for each

input length. This is the non-uniform model of the Turing machine and each machine

can be represented by poly-sized boolean circuit family.

In the non-uniform model of boolean circuit complexity it is possible that it takes

a large amount of computation to find the hint (auxiliary), but once the hint is

given it is possible to decide in polynomial time, since the circuit has polynomial

gate complexity. Indeed, in a real-world situation involving a block cipher, a fixed

ciphertext length is often known to the adversary, who can then perform a large

amount of computation by knowing only the system and this block length, before

attacking any specific uses of the cipher.

3.2 Attack Plan

It is now time to go further and specifically describe our plan of attack. Here are

some definitions and a lemma we will use later:

Definition 3.2.1 Let n be the block length of the Rijndael block cipher, P ⊆ F n
2 be

the set of all possible plaintexts, C ⊆ F n
2 the set of all possible ciphertexts and K ⊆ F n

2

the set of all possible keys.
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Definition 3.2.2 Let F denote the Rijndael encryption function. If p ∈ P is a

plaintext and the ciphertext under the encryption of key k is c where k ∈ K and c

∈ C, then we will write Fp(k) = c.

Lemma 3.2.1 For any specified key value k and two different plaintexts p1 and p2;

Fp1(k) 6= Fp2(k)

Proof: Assume the conclusion is false. Then there is at least one ciphertext c,

such that there is no plaintext which gives us this ciphertext. But if we decrypt this

ciphertext under the decryption key which corresponds to the encryption key k, then

we will have a plaintext p, which Fp(k) = c holds. So we can say that F is invertible.

♣

Definition 3.2.3 If P ⊆ P is a collection of plaintexts then let’s define GP : K −→

C|P |. So if k ∈ K then GP (k) = {(p,Fp(k)) | p ∈ P}.

Consider specified collection of plaintexts P, and the function GP over this set. If

for all k1 and k2, there is at least one p ∈ P such that Fp(k1) 6= Fp(k2), then function

G over the set P is invertible. That means, if one gives ciphertexts corresponding to

all plaintexts in P, there is exactly one key value which generates all these plaintext-

ciphertext pairs. However, we are not aware of any plaintext set so that G is invertible

over this set. Formally we can define invertibility as follows:
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Definition 3.2.4 For a given plaintext collection P, if GP : K −→ P×C is invertible

(one-to-one) even though GP is never onto, then we will write G−1
P : P ×C −→ K and

say G−1
P exists.

An immediate question arises about the size of plaintext collection P. As we will

elaborate later, we seek a polynomial number of plaintexts to have a meaningful at-

tack. For now, assume that there is such a set of plaintext P with a polynomial

number, O(nk
b ), of elements so that G is invertible over this set. Then the boolean

circuit, which implements the corresponding ciphertexts in set P, obviously has poly-

nomial gate complexity which we will describe it in detail. Then the question is about

the gate complexity of inverse G−1 function. If the inverse complexity is not “too bad”

(this is what we will work on) then the circuit structure of Rijndael is not in the ma-

jority of block ciphers. So it does not satisfy RSC. Due to Muller’s argument (It is

given in Theorem 6.1), we know that virtually all functions have optimal circuits with

exponential gate complexity. But if the complexity of inverse circuit is exponential as

for the majority of block ciphers, then we may claim family of Boolean functions with

exponential gate complexity. In any case, the result is amazing that it’s an progress

on either computational circuit complexity or on block cipher security.

We now specifically outline our potential plan of attack which may disprove the

Rijndael Security claim.
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We want to determine the key when we are given polynomial number of plaintext-

ciphertext pairs. In definition 3.2.4 we define inverse function G−1 for this purpose.

Remember that we are working the problem at the circuit level so we have to design

the inverse circuit G−1.

If we don’t ignore the knowledge of what all these gates are doing, then our

analysis wouldn’t be at the circuit level. Looking into the structural details of what

Rijndael is processing on input, and making up a circuit as a later step is not what

we are looking for. So now we have a big circuit and there should be an inverse of this

circuit. Under all these assumptions, we will give a concise summary of our attack

plan followed by the comments on each of the steps:

(i) Determine the circuit complexity of Fp(k) where F is an instance of the scalable

Rijndael family.

(ii) Determine if there exists a poly-sized plaintext collection P which identifies

the key value for given ciphertexts corresponding to the plaintexts in P .

(iii) Decide if small circuits has ‘not too bad’ inverse circuits.

1. What is the circuit complexity of GP where P has only one plaintext? As

a reason that the function G works independently on elements of P, if we can

answer this question, we might upperbound the circuit complexity of GP for any

plaintext collection P. We are mainly interested with asymptotic complexity.

For this purpose we want to define a family of boolean functions simulating
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Rijndael in different scales. Smaller scales would also help us to question our

doubts in the next steps.

2. Referred to previous discussions and definitions, is there a set of plaintext P

such that GP is invertible over this set. And how big is P? What if there is

no such a polynomial-sized plaintext collection P? In this step we will also

question the relationship between one-way functions and the Rijndael Security

Claim.

3. If there is such a collection P, and the boolean circuit of invertible GP has

polynomial gate complexity, then what would the gate complexity of the inverse

circuit be? If we can show that, in general, each small circuit has inverse with

not “too bad” gate complexity, then our work would be done. To be clear, we

do not need a polynomial bound on the gate complexity of inverse in order to

disprove the Rijndael security claim. On the other hand each speculation on

inverse circuit size gives us very important information.



Chapter 4

Scalable Rijndael Family

In this section we will elaborate on the first step of our attack plan.

The function GP where P has only one element p, evaluates the encryption of

message p. We can say GP (k) = Fp(k) = c, so the circuit of GP is exactly same

as the Rijndael implementation circuit. Recall our interest of scalable Rijndael like

encryption functions. Based on these encryption functions, GP can be defined as in

ally Definition 3.2.3. So asymptotic bounds on the circuit complexity of GP basicly

depend on how we define this family of boolean functions.

Let us parameterize the basic elements of Rijndael. These basic elements are the

length of byte, the length of word and lengths of 3 different block sizes along with the

GF which has characteristic 2. After we construct appropriate round transformations

for these parameterized Rijndael family, we want to give complexity analysis of one

44



CHAPTER 4. SCALABLE RIJNDAEL FAMILY 45

encryption. Table 4.1 shows how we parameterize the Rijndael family. For m=2, we

definitely have AES, and let’s call Baby Rijndael to the function parameterized by

m=1.

Rijndael(m) Rijndael(1) Rijndael(2) Rijndael(3) Rijndael(m)

GF (2?) 24 28 212 24m

length of byte 4 8 12 4m

length of word 4 · 2 = 8 8 · 4 = 32 12 · 6 = 72 4m · 2m = 8m2

length of block 8 · 2 32 · 4 72 · 6 8m2 · 2m = 16m3

length of block 8 · 2 · 1.5 32 · 4 · 1.5 72 · 6 · 1.5 8m2 · 2m · 1.5 = 16m3 · 1.5

length of block 8 · 2 · 2 32 · 4 · 2 72 · 6 · 2 8m2 · 2m · 2 = 16m3 · 2

number of rounds 5 10 25 5 ·m

Table 4.1: Parameterization of scalable Rijndael family

We want reader to be aware that Rijndael(m) has polynomial parameters. In order

to consider a sequence of instances, one usually has a fairly dense set, or at least a set

of instances parameterized by polynomials which is absolutely matching with our case.

Recall our aim of having such scalable family; we are mostly interested in claims on

family of functions rather than only one example. Also this parameterization helps us

to have asymptotic bounds on our explicit problems. In following discussion we give

the design of each transformation in round function of Rijndael(m). For simplicity

let us take the first block length in the Table 4.1 to answer complexity issues.
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1. SubBytes Transformation: There are two steps in SubBytes transformation

which operate independently on each byte of the state. These steps are first

taking multiplicative inverse in the finite field GF (24m) modulo some irreducible

polynomial, and then applying affine transformation over GF(2). What we

should decide is mainly the irreducible polynomial p(x) =
∑4m

k=0 ak · xk where

ak ∈ 0, 1. For AES we have p(x) = x8+x4+x3+x+1, and for Baby Rijndael we

can choose p(x) = x4 + x + 1. For large cases where m > 3 one can pick any of

the irreducible polynomials in GF (24m). Regarding the complexity issues there

is no difference what we choose as irreducible polynomial. And for the affine

transformation let’s have the following equation to update byte value:

b′i = bi ⊕
2m−1⊕
k=0

b(i+2m+k) (mod 4m) ⊕ ci

for 0 ≤ i < 4m, where bi is the ith bit of the byte, and ci is the ith bit of

a byte c. If m=1 then c has the value {0011}, If m=2 then c has the value

{01100011}, else it has the value m times concatenation of {3} (i.e {0011}).

Here and elsewhere, a prime on a variable(e.g., b′) indicates that the variable is

to be updated with the value on the right. One can check that the definition

given above is consistent with the original AES where m is 2.

Complexity Issues: There are various estimations for inversion in GF (2k),

most of them are very efficient but under some circumstances. We are not

looking for the optimal solution. The trivial way to take multiplicative inverse
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is direct inversion, which is simply equivalent to solving k × k system of linear

equations. We can figure out the problem as this:

We are seeking multiplicative inverse of A ∈ GF (2k) where we are given irre-

ducible polynomial p(x). Then we know that A ·B = 1modp(x) for an element

B of GF (2k). One can extract a system of k×k linear equations whose solution

gives us the polynomial B. Gaussian eliminiation is the way to solve this linear

equations system which costs complexity of O(k3).

Regarding to the affine transformation, without any treatment the obvious com-

plexity is O(k2) which is fine. So totally one s-box substitution has O(m3)

complexity where the length of byte is 4m(i.e. transformation is held on Ri-

jndael(m)). The block length is 16m3, so we have 4m2 number of bytes, then

SubBytes transformation costs O(m5) on the overall. That trivial complexity

estimation is better than quadratic since we consider the block length.

2. ShiftRows Transformation: Recall that ShiftRows step is a byte transpo-

sition that cyclically shifts the row of the state over different offsets. For Ri-

jndael(m), there are 2m number of rows which totally constructs each word of

the block. So row number i from 0 to 2m − 1 is shifted over Ci bytes, and we

can simply say that Ci = i. These offsets values are told for the first block

length specified in the Table 4.1, for different block lengths we can design them

without disturbing the consistency with AES.
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Complexity Issues: Loosely speaking the complexity is O(m3) which is linear

with block length and so better than the complexity of SubBytes transformation.

3. MixColumns Transformation: Recall that MixColumns step is a permu-

tation operating on the state column by column. Regarding the parameters

of Rijndael(m), the columns of the state are considered as polynomials over

GF (24m) and multiplied modula some poynomial q(x) having degree 2m with a

fixed polynomial c(x). So what we should choose is those q(x) and c(x). Recall

that for AES q(x) = x4 + 1 and c(x) = 03 · x3 + 01 · x2 + 01 · x + 02. For

Baby Rijndael let’s say q(x) = x2 + 1 and c(x) = 01 · x + 02. And one can

choose any coprime two polynomials q(x) and c(x) to satisfy MixColumns step

for larger scales of Rijndael(m). In the real spesification of AES, there are some

criteria of choosing these polynomials to have security resistance against known

cryptanalysis. But for our case, we really don’t care how one chooses q(x) and

c(x).

Complexity Issues: The modular multiplication with a fixed polynomial can

be written as a matrix multiplication. So to determine each byte of the column

we apply 2m multiplication over GF (24m) by using the irreducible polynomial of

SubBytes transformation. Totally it costs 2m ·(4m)2 = 32 ·m3 to determine one

byte of the column. There are 4 ·m2 number of bytes which means MixColumns

transformation costs O(m5).
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4. Key Addition and Complexity of Rijndael(m): Key addition layer costs

linear in terms of block length. Therefore round function of Rijndael(m) has

O(m5) + O(m5) complexity. There are 5 · m number of rounds which makes

the complexity O(m6), recall that block length was 16 ·m3, so one can say that

Rijndael(m) including AES has overall quadratic circuit complexity.



Chapter 5

Poly-sized Plaintext-Ciphertext

Collections

In this section we will elaborate on the second step of our attack plan.

Recall specified P (collection of plaintext), and function G over this set. If for all

k1 and k2 there exists at least one p ∈ P such that Fp(k1) 6= Fp(k2), then function

G over the set P is invertible. That means, if one gives ciphertexts corresponding to

the plaintexts in P, there is exactly one key value which generates all these plaintext-

ciphertext pairs. Or in other terms, this plaintext collection P and its corresponding

ciphertext collection determine the key.

However, it is possible that there are two key values for which the entire encryp-

tion is the same. That implies even non-existence of an exponential sized plaintext

50
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collection which determines the key. In contrast with that, regarding our plan of

attack, we are looking for the inverse function G−1
P where the size of P is polynomial

in the length of the plaintext. Because of this potential difficulty we will explore

variations of the above problem so that we will be able to continue with our plan of

attack. The variations of the problem led us to a theorem of Luby and Impagliazzo.

We will also try to say that one-way functions are essential for secure block cipher

families in a more concrete way. To obtain a precise meaning of “poly-sized plaintext

collection”, we are looking at such collections for the whole Rijndael Cipher Family

and not only for the individual instances such as the AES Cipher.

It is quite reasonable to believe that there exists even a constant-sized plaintext

collection, which determines the key. Recall that, an ideal encryption algorithm has

the following assumption: as long as you don’t know the underlying key, the input-

output behavior of a block cipher closely resembles that of a random permutation.

Under this assumption, fixed plaintext encryption of different key values should be-

have as a random function. Therefore, basically, there is a high probability that there

exist two keys encrypting the same way because of the birthday paradox. However,

increasing the number of plaintexts in the collection ensures that we could determine

the key from the given plaintext-ciphertext pairs. This basic observation leads us to

perform small experiments with Baby Rijndael.

The parameters for Baby Rijndael are given in Chapter 4. The block length and
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the key length are 16, and the S-boxes are operating on 4 bits. Our example consists

of encrypting the message 016 where we say GP (k) = F016(k). And the result is not

surprising; the GP (k) function was a permutation, and thus totally invertible.

Despite having this example, it is better to be safe by searching for a mathematical

proof for the existence of such GP (k) function. However, it seems that it is infeasible

to show the existence explicitly. On the other hand, only two key values having the

same encryption ends all our discussion but doesn’t harm the block cipher security.

Because of these 2 reasons (i.e infeasibility and same encryption argument), we would

prefer to be more flexible and discuss some variations of the above problem.

In constructing the boolean circuit of a function, one is allowed to use the “don’t

care” label which is denoted by ‘d’ in addition to output values ‘0’ and ‘1’. Specifically,

if the output of an input is ‘d’, this means that the circuit could be constructed such

that it evaluates either ‘0’ or ‘1’ for this input, whereas it evaluates correct outputs

for any other given input.

Consider that we have some plaintext collection P such that A denotes the image

of the function GP (). Then for each element E ∈ A (a |P |-tuple of ciphertexts), there

exists a k ∈ K such that GP (k) = E. As long as the size of A is not small, it is

possible to construct a circuit which determines the correct key with high (|A|/|K|)

probability by the use of the ‘don’t care’ trick. This construction is possible if we

specify exactly one of the k ∈ K satisfying GP (k) = E for each E ∈ A. Moreover, for
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any other tuple of ciphertext not in the image set A, the constructed circuit outputs

any key value by the use of ‘don’t care’.

‘Don’t care’ has also some other uses for our plan of attack which we prefer to

explain in the next chapter. Simply put, even if we have some very big inverse circuit

determining the key, whatever the ciphertext collection is, we could construct smaller

circuits by the use of ‘don’t care’ idea such that this smaller circuit evaluates the

correct key most of the time. In fact, we gave up trying to find the correct key on

some occasions with the intention to make the circuit smaller.

In both of the above approaches we understood that GP () may not be invertible,

but it should have a ‘not small’ image set. With such flexibility, we want to show

that there should be some polynomial-sized plaintext collection P where the image

set A of GP () is big enough. This is a basic observation allows us to decrease our

expectations without harming our plan of attack.

Consider an instance (any cipher) of the Rijndael block cipher family. Let nb be

the block length. Then call the following procedure with parameters nb and K (the

set of all possible keys).

beginProcedure(m, K0):

1. if there exists a P so that GP is invertible on K0 where the size of plaintext-
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collection P is m2. (That means for any k1, k2 ∈ K0, GP (k1) 6= GP (k2))

return(P, K0); else continue with following items.

2. Thus, we know that for any plaintext-collection P of size m2 there exists k1 and

k2 such that GP (k1) = GP (k2).

3. There are
(

2m

m2

)
possible choices for the m2-tuple P . Each gives a pair (k1, k2)

out of
(

2m

2

)
different pairs. Then by the pigeonhole principle there exists a

key pair (k1, k2) for which at least
(

2m

m2

)
/
(

2m

2

)
of these plaintext collections are

encrypted identically. Let Y denote this full set of plaintexts appearing in any

one of these m2-tuples for this fixed key pair (k1, k2).

4. Then
(
|Y |
m2

)
≥

(
2m

m2

)
/
(

2m

2

)

5. So |Y | ≥ 2m

22m/m2 = 2m− 2
m which means for this k1 and k2 there exists a plaintext-

collection Y with |Y | ≥ 2m− 2
m such that GY (k1) = GY (k2).

6. K1 = K0 − {k1, k2}

7. return(Procedure(m, K1));

endProcedure

After starting with Procedure(nb, K0) where K0 = K is the set of all possible keys,

it will return a set Ki and if it is not empty then there would be a plaintext-collection

P of size n2
b such that GP is invertible on Ki. (That means for any k1, k2 ∈ Ki,
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GP (k1) 6= GP (k2)) And for all of the possible keys not in the set Ki we could get pairs

of keys giving the same ciphertext for virtually all plaintexts (i.e. same encryption).

Let’s speculate on the size of Ki and its complement. If the latter has an exponen-

tial size, then the cipher exhibits a weakness. In fact, there would be exponentially

many key pairs giving almost the same encryption. If Ki has exponential size, then we

would be satisfied since we had been looking for such a poly-sized plaintext collection

which gives us an opportunity to determine the key most of the time. On the other

hand, one of them should be exponential, since their union set is set of all possible

keys which has exponential size

We remark that although the above procedure uses very little about the existence

of a poly-sized plaintext collection which determines the key most of the time, non-

existence of a restricted version of P (i.e. the size of P is exactly square of the block

length) shows a weakness in the cipher. We believe that more careful analysis on

encryption of poly-sized fixed plaintext collection leads us to stronger conclusions.

On the other hand, the above weakness is enough to discuss the relationship between

the security of block cipher family and the existence of one-way functions.

The state of the art regarding the relationship between block ciphers and one-way

functions is currently as follows: Since any block cipher is one particular instance of

an encryption scheme, it isn’t directly possible to relate it to one-way functions. In

[ImLu89] Impagliazzo and Luby first showed that any secure private key encryption
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algorithm can be used to construct a pseudo-random generator. Moreover, the con-

struction of a pseudo-random generator is equivalent to the existence of a one-way

function.

However, the Rijndael proposal led us to define a scalable block cipher family.

So we are now able to relate the security of the Rijndael cipher family directly to

the existence of one-way functions. The impact of this shouldn’t be underestimated.

Because claiming the RSC in terms of Rijndael’s authors is now equivalent to claiming

a well-defined and implementable one-way function family. The following theorem

gives a simple and basic sketch of the relationship. This theorem is applicable to any

block cipher family. Rn denotes the Rijndael-like cipher parameterized by n.

Theorem 5.1 Suppose there exists an integer n0 such that Rn is K-secure and her-

metic for all n ≥ n0. Then there exist plaintext collections Pn(n > 0) of polynomial

size such that for all probabilistic poly-time algorithms A and for any positive polyno-

mial p(n) there exists n1 such that following holds for all n > n1:

PrU [A(GP (U)) ∈ G−1
P (GP (U))] ≤ 1

p(n)

In other words, if the Rijndael family function is K-secure and hermetic for all suf-

ficiently large n, then one may find a one-way family function GP which is constructed

by use of parameterized-Rijndael encryption.

Remark: That would definitely imply P 6= NP . The above definition for one-way

function family is taken from Goldreich [Go01].
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Proof: Our proof is by contradiction. Assume n0 exists. Yet assume that the

conclusion is false. That is, assume for all poly-sized plaintext collections P , there

is some algorithm A and some positive polynomial p(n) such that for all n, there is

some m > n with:

PrU [A(GP (U)) ∈ G−1
P (GP (U))] >

1

p(m)
(5.1)

In other words, if we are given the output of function GP for any polynomial-sized

plaintext collection, there exists a probabilistic polynomial-time algorithm that would

give us one of the pre-images of this output with probability at least 1/p(m).

By our assumption, with n = mi and mi+1 > mi being chosen to satisfy 5.1,

we obtain a sequence of mi going to infinity for which any plaintext-collection P of

size m2
i , for example, there exists a probabilistic polynomial-time algorithm A and a

polynomial p() for which inequality 5.1 holds. (**)

For each mi, i ≥ 1, trace the procedure we gave early in this section until it

returns.

After starting with Procedure(mi, K0) where K0 is set of all possible keys, for each

mi we get a set Ki and if it is not empty then there would be a plaintext-collection

Pmi
of size m2

i such that GPmi
is invertible on Ki (That means for any k1, k2 ∈ Ki,

GPmi
(k1) 6= GPmi

(k2)) and for all of the possible keys not in the set Ki we could

get pairs of keys giving the same ciphertext for virtually all plaintexts (i.e. same
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encryption).

If there is a subseries of Ki going to infinity such that for any polynomial t(n),

|Ki| ≥ (2mi− 2mi

t(mi)
) eventually holds and GPmi

is invertible on Ki, then for all n0 there

exists mi > n0 such that Rmi
is not K-secure. This holds because from (**) there is a

probabilistic polynomial-time algorithm A which determines one of the pre-keys with

probability greater than 1/p(mi). Now choose t(n) = 2p(n). We know that there is a

set of Ki on which GPmi
is invertible and |Ki| ≥ (2mi − 2mi

2·p(mi)
), so the number of keys

not in the set Ki is smaller than 2mi

2·p(mi)
. Therefore, with at least 1

2·p(mi)
probability,

algorithm A strictly determines the key if it determines one of the pre-keys.

So there exists a polynomial t(n) for which |Ki| < (2mi− 2mi

t(mi)
) for sufficiently large

values of mi. For such mi, the number of pairs of keys with the same encryption is

greater than (2mi − (2mi − 2mi

t(mi)
))/2 = 2mi−1

t(mi)
. That means with very high probability

a randomly chosen key has an equivalent one giving almost the same encryption.

That definitely contradicts the hermetic property of Rmi
(according to our previous

discussions in Section 2.3) and there would be an mi > n0 whatever the value of n0

is. ♣

In the proof, we assumed the claim of Daemen and Rijmen that the existence of

key-finding algoritm faster than exhaustive search is a violation of K-security. But to

be careful, perhaps we should allow for “generic” key-recovery attack algorithms. By

this, we mean a probabilistic polynomial time key-recovery attack which applies to a
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majority of block ciphers of a given length.

It is important to note that the above analysis is not particular to Rijndael but

gives information when applied to infinite sequence {Bn} of block ciphers. For ex-

ample, suppose there exists an infinite sequence {Bn} of block ciphers which are all

K-secure and hermetic. Note that we do not assume any uniform description for these

ciphers. Applied to this sequence, the theorem gives one of three outcomes:

1. For any polynomial f(n) the key length of Bn is eventually greater than f(n).

2. One-way functions exist.

3. There exist infinitely many key lengths suspectible to a generic key-recovery

attack algorithm.



Chapter 6

Inverting Circuits

In this chapter, we want to elaborate on the third step of our attack plan.

Recall specified P (collection of plaintext), and function GP over this set. If for

all k1 and k2 there exists at least one p ∈ P such that Fp(k1) 6= Fp(k2), then the

function GP defined over the set P is invertible. That means, if one gives ciphertexts

corresponding to the plaintexts in P, there is exactly one key value which generates all

these plaintext-ciphertext pairs. In other words, this plaintext collection P determines

the key.

In the third step of our attack plan, we assume that G−1
P exists for some set P

of plaintexts where | P |= poly(nb). We seek to investigate the circuit complexity of

G−1
P . Finding any meaningful upper or lower bound on this special circuit complexity

would be of interest in computational complexity and in the security of block ciphers.

60
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On the other hand, regarding the discussions in the previous chapter about our plans’

success, it is possible to be flexible by seeking an inverse circuit which determines the

key most of the time. This flexibility has two aspects. One aspect covers the case in

which there is no poly-sized P . Then we are allowed to modify some GP to make it

invertible but inverse of this modified one should determine the key most of the time.

The other aspect gives us opportunity to modify the inverse circuit although GP is

invertible since it would be satisfactory to determine the key with high probability as

long as the modified inverse circuit has small complexity.

Although we have such flexibilities to break the Rijndael security claim (RSC),

we want to concentrate on the pure and rawest question about the gate complexity

of inverse circuits. So, in this chapter we will deal with mostly the inverse circuit of

any invertible GP .

To make a clear organization of thoughts on this specific problem, first we prefer to

mention our motivations. Then we want to interpret existing theory on complexity of

circuits along with known results on inverse circuits. This discussion will be followed

by some examples on inverting small permutation circuits. We will try to give some

methodology for future research.

The problem in our research outline is to find the upper bound for circuit com-

plexity of G−1
P . Existence of any circuit with poly(nb) ·2nb(1−c) gates, where nb is block

length and c is constant (such as c = 0.0001), constitutes an exponential improve-
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ment on the circuit complexity. Therefore, this circuit allows us to apply an attack

on the Rijndael which is better than exhaustive search. Although drawing bounds

on explicit problems in computational complexity, as we will mention later, is a very

hard task, we know that even the hardest NP-complete problems have exponential

improvements at the algorithmic level. Recent papers on the SAT problem give exam-

ples of exponential improvements ( [DaHiWo04], [PaPu98], [DaWo04]). Thus there

seems to be a good chance for finding an exponential improvement, which is clearly

contrary to the Rijndael security claim; this is one of the main motivations of this

outlined research.

Our second motivation is based on the comparison of circuit complexity and its

inverse complexity. It is quite reasonable to believe that small circuits do not have

‘very bad’ inverse circuits. And as we show in Chapter 4, the Rijndael block cipher

family has at most quadratic gate complexity.

Computational complexity tries to give lower bounds on the inherent computa-

tional difficulty of certain problems. In his famous paper [Sh49], Shannon suggested

the size of Boolean circuits as a measure of computational difficulty. Among compu-

tational models, the circuit model has a simple definition so it is more appropriate

for combinatorial analysis, but unfortunately, despite much intensive work on circuit

complexity only very weak lower bounds on circuit size are known, and only for very

few decision problems.
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This discipline is mostly concerned with explicit problems. But by using counting

arguments, it is not hard to establish bounds on nonexplicit problems. Probabilistic

methods are mostly used for finding average bounds on general version of decision

problems. According to bounds probabilistically found by Muller [Mu56] based on

Shannon’s argument [Sh49], the following is dramatically true:

Theorem 6.1 (Muller, 1956) Almost every Boolean function of n variables re-

quires circuits of size Ω(2n/n).

In other words, there exist a c > 0 such that if f is a randomly chosen boolean

function of n variables, then with probability approaching 1 as n goes to infinity, any

circuit computing f has at least c(2n/n) gates.

Despite the importance of lower bounds on the circuit complexity of explicit prob-

lems, the best bounds known are only linear. Therefore, although we know that many

exponential-sized boolean functions exist, nobody has been able to come up with a

natural family of Boolean functions that requires more than a linear number of gates

to compute. To state the problem more clearly, we can say there is no specific opti-

mum circuit whose behavior isn’t random and whose gate complexity is more than

linear. Blum [Bl84] proved a 3n− o(n) lower bound for such that, we could construct

a family of Boolean functions with this lower bound.

In this part of our attack plan, we are questioning computational asymmetry

between circuit and its inverse circuit. In terms of circuit complexity, unconditional
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secrecy would be possible with any invertible function with great computational asym-

metry.

Let Tn be the set of permutations on {0, 1}n (i.e., the set of invertible functions

from n bits to n bits) Basically, there has not been much progress on finding one-

way functions in Tn, i.e., invertible functions with great computational asymmetry.

Finding such a function would seem to be a great step on the way to a theory of

cryptography for computational security.

Alain Hiltgen holds the current world record for computational asymmetry for

constructive functions in Tn. He could, for every n, construct a function whose inverse

requires twice as many gates as the function itself! [Hi93] Moreover, Massey has the

following proposition:

Proposition 6.1 (Massey, 1996) For all n ≥ 6, virtually all functions in Tn have

gate complexity that differs by a factor of less than 2.5 from the gate complexity of

their inverse function.

We refer the reader to [Ma96] for a proof of above proposition as well as more

information on gate complexity. At first look, it seems that this proposition would

solve all our problems. However, there is a simple trick on the above proposition and

this trick do not apply for our case and for functions with small circuit complexity.

Simply put, for all n ≥ 6 virtually all functions have circuit complexity of Θ(2n/n),

stronger than Theorem 6.1 which results that virtually all functions have the gate
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complexity that differs by a constant factor from the gate complexity of their inverse

function.

Alain Hiltgen and Jurg Ganz also found the first ever computationally asymmet-

ric permutation for the gate complexity measure; that is in T4. According to their

exhaustive search on functions that are more difficult to invert than to compute, T1,

T2 and T3 are computationally symmetric. Here is the asymmetric permutation in T4

(Note that ⊕ represents ‘xor’ and • represents ‘and’ operation):

y1 = x1 ⊕ x2, y2 = x2 ⊕ [(x1 ⊕ x2) • x4], y3 = x3 ⊕ [(x1 ⊕ x2) • x4], y4 = x4

The gate complexity of the above function is 5, and its inverse, which has gate

complexity of 6, is as follows:

x1 = [(y1 ⊕ y3)⊕ y2] • y4 ⊕ (y1 ⊕ y3), x2 = [(y1 ⊕ y3)⊕ y2] • y4 ⊕ y2

x3 = [(y1 ⊕ y3)⊕ y2] • y4 ⊕ y3, x4 = y4

Now, we want to talk on the methodology for solving the problem of whether

small circuits with sufficient diffusion has ‘not big’ inverse circuits. Circuit level

analysis is not an easy job, best explicit constructions on ‘big circuits’ (recall we have

3n−o(n) lower bound on circuit complexity) and on functions of great computational

asymmetry (recall we have only Alain’s function) exhibits the hardness of the problem.

We want to deal with functions having diffusion. Diffusion is the main requirement

for a block cipher proposal. That’s the reason why we want to restrict our analysis
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on functions in Tn which at least suffice this requirement. Basically, if a function has

diffusion, then each output bit is dependent on each input bit as well as every input

bit influences every output bit. Considering a function with sufficient diffusion leads

us to the following proposition on the gate complexity of this function:

Proposition 6.2 Any function in Tn with sufficient diffusion requires at least linear

gate complexity.

Proof: The proof simply relies on the fact that each output bit should be an output

of a gate, since we have diffusion. However, different output bits have different end

gates, because the function is in Tn, so two output bits can not be same all the time.♣

To analyze the problem of inverting circuits, one categorizes the circuit sizes of

functions and tries to ask one by one. So at first, it is reasonable to ask the gate com-

plexity of inverse circuits of functions having linear complexity. On the other hand,

it is not possible to invert functions independently for each different gate complexity

classes. Mainly, we believe that at some point getting an answer for functions having

linear gate complexity becomes equivalent to getting an answer for functions having

quadratic or even greater polynomial gate complexity. This belief can be observed by

the following two claims.

Proposition 6.3 Given any invertible circuit C : {0, 1}log m → {0, 1}log m with O((log m)2)

gates, there exists an invertible circuit C ′ : {0, 1}m → {0, 1}m with O(m) gates and
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sufficient diffusion which contains C and whose inverse gate complexity is somehow

related to inverse gate complexity of C.

Proof: Take an invertible circuit D : {0, 1}m → {0, 1}m with O(m) gates and

sufficient diffusion. In addition its inverse D−1 must have gate complexity of O(m).

On input x, the circuit C ′ first applies circuit C on its last log m bits, then applies

circuit D to all its bits. Therefore, C ′(x1, x2) = D(x1, C(x2)) where |x1| = m− log m

and |x2| = log m. A possible inverse circuit for C ′ is the one first applies inverse

D−1 and then C−1. So the optimal inverse circuit of C ′ has complexity of less than

O(m) + Comp(C−1) where Comp(C−1) denotes the optimal gate complexity of C−1

(1). On the other hand, to invert C, one can first pad more information to input so

that he has a string of length m. Then applies D to it, now he has an possible output

for circuit C ′. If he applies inverse circuit of C ′, the last log m bits of resulting string

denotes the inverse for C. So the optimal inverse circuit of C has complexity of less

than O(m) + Comp(C ′−1) where Comp(C ′−1) denotes the optimal gate complexity

of C ′−1 (2). By combining the results (1) and (2), the inverse gate complexity of C ′

changes linear with the inverse gate complexity of C. ♣

We could modify the above claim to get a similar claim, but its implications would

be different than the above one. The proof of the following claim is the same as the

previous one.

Proposition 6.4 Given any invertible circuit C : {0, 1}m → {0, 1}m with O(mk)
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gates, there exists an invertible circuit C ′ : {0, 1}mk → {0, 1}mk
with O(mk) gates and

sufficient diffusion which contains C and whose inverse gate complexity is somehow

related to inverse gate complexity of C.

In regards to both observations, although there exists an invertible C ′ related to

the C, it doesn’t harm the fact that functions with linear complexities may have ‘not

big’ inverse circuits. Even if C has a ‘very bad’ inverse circuit, C ′ still has the inverse

circuit which doesn’t look like the random case and its inverse is exponentially better

than the worst case. However, these simple observations point out the fact that it is

not an easy job to categorize functions with different gate complexities and to solve

them independent from each other.

We had been trying to find ‘one-way functions’ in terms of gate complexity. How-

ever, the nature of the problem and existing weak results on circuit complexity demon-

strates that this has been an open problem since Massey first mentioned in 1996. Even

we have limited knowledge on one-way functions in uniform model of computation.

But recall our main quest on RSC, so we are looking for the inverse of the GP function

which is not any circuit and exhibits lots of specialties. After now, we will concentrate

on inverting GP , and on seeking the gate complexity of G−1
P .

Naively considering the circuit complexity of G−1
P , one immediately recalls Muller’s

theorem (Theorem 6.1). If G−1
P behaves like a random function, any circuit represent-

ing it requires an exponential number of gates. Although the input size of G−1
P is m·nb,
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we can say Muller’s argument works for m independent group of nb bits. That ob-

servation is important, otherwise average circuit complexity of G−1
P is Ω(2m·nb/m ·nb)

which is bad news for us. Neither G−1
P nor GP is a random function working on m ·nb.

Each output bit of GP is absolutely determined by only nb bits because it is an en-

cryption function. Similarly any output (length of nk) bit of G−1
P is evaluated by only

nb bits. We need m independent group of nb bits to determine the output uniquely.

So random G−1
P function has m·nb ·Ω(2nb/nb) = m·Ω(2nb) gate complexity which is

at least Ω(2nb). However neither GP nor G−1
P is random. GP has simple structure with

a polynomial number of gates as mentioned in Chapter 4. So G−1
P is not something

completely out of control.

Let’s note what security claim (Rijndael cipher is K-secure and hermetic) tells

about the circuit complexity of G−1
P . Informally speaking, any attack on a K-secure

block cipher has the same expected work on virtually all block ciphers. Recall the

number of all block ciphers in Section 2.2, that is (2nb !)2nk . The number of block

ciphers having invertible GP for plaintext collection P with polynomial number of

elements is obviously smaller than (2nb !)2nk . Among these, virtually all inverse G−1
P

function has exponential circuit complexity (Ω(2nb)) according to Muller’s argument.

So it is quite reasonable to believe that being hermetic implies the fact that this

inverse G−1
P function has Ω(2nb) gate complexity.

In this chapter, we first mentioned the theoretical results on inverting any circuit,
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we tried to point its hardness by talking about the methodology to solve such a

problem. However, we simply saw that we are more comfortable to break RSC, since

the Rijndael block cipher family is not chosen random and it’s small enough.



Chapter 7

Conclusions

Our main motivation for starting this research was to introduce a fresh strategy to

attack the Rijndael security claim (RSC). We were skeptical of RSC at the theoret-

ical level. Aiming to break the very bold Rijndael security claim, we gave a formal

understanding of RSC juxtaposing it with rigorous security treatments.

The main steps of our attack strategy are summarized as follows:

(i) Determine the circuit complexity of the encryption function F where F is an

instance of the scalable Rijndael family.

(ii) Determine if there exists a poly-sized plaintext collection P which identifies

the key value for given ciphertexts corresponding to the plaintexts in P .

(iii) Decide if small circuits have ‘not too bad’ inverse circuits.

To answer the questions above, we constructed a scalable family of ciphers which

71
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behave very much like the original Rijndael. This construction gave us the opportu-

nity to generate a candidate one-way function family. However, this endeavor totally

depended on the second step of our attack strategy. Basically, we argued the existence

of poly-sized plaintext collection by relating RSC to its non-existence. Therefore, we

proved that if there is no such poly-sized collection, then RSC fails. On the other

hand its existence directs us to the generation of a candidate one-way function family.

We noted that the Rijndael proposal allows a reduction to one-way functions; it

is rare to have such a defense of security in the private-key theatre.

Regarding the 3rd step of attack strategy we explored the theoretical results on

inverting any circuit. We introduced some propositions which address the hardness

of the question.

7.1 Future Research

We believe that in the non-uniform model of boolean circuit complexity, an adversary

of a cipher would determine the key by any exponential amount of precomputation so

long as the results of this computation can be encoded in polynomial-sized circuits.

Specifically, Rijndael-like iterated block ciphers have better than worst-case inverse

circuits which somehow related to key-recovery. In particular, invertible functions

represented by circuits with very small numbers of gates have better than worst case

implementations for their inverses. However, the research in cryptography which



CHAPTER 7. CONCLUSIONS 73

accepts gate complexity as a measure of security is still at an early stage. Possible

directions to future research on this topic are listed below:

1. It seems a natural requirement for block cipher proposals with such bold security

claims (i.e. RSC) to include scalability of the proposal. Rijndael proposal

is the first well-known block cipher that supports scalability. Computational

complexity techniques are now available to attack such bold security claims.

2. We proved existence of poly-sized plaintext collection which determines the key

implicitly by saying that its non-existence implies the failure of RSC. However,

we believe that a constant-sized plaintext collection determines key. Finding

such poly-sized plaintext collection explicitly would be an interesting result,

and this progress would explore some information on block cipher security.

3. There should be an inverse circuit somehow related to key-recovery where the

encryption circuit has small number of gates. Therefore the following question

in its purest state is helpful to answer: “Do invertible functions represented by

circuits with very small numbers of gates have better than worst case imple-

mentations for their inverses?”

4. Rijndael-like iterated block ciphers are not like any small invertible circuit, their

circuit level description contains much more information. There may be some

promising properties that allow inverting a circuit by precomputing exponential



CHAPTER 7. CONCLUSIONS 74

amount of time so long as the results of this computation can be encoded in

polynomial-sized circuits.
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