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Abstract— Programming robots is complicated due to the
lack of ‘plug-and-play’ modules for skill acquisition. Virtual-
izing deployment of deep learning models can facilitate large-
scale use/re-use of off-the-shelf functional behaviors. Deploying
deep learning models on robots entails real-time, accurate
and reliable inference service under varying query load. This
paper introduces a novel Robot-Inference-and-Learning-as-a-
Service (RILaaS) platform for low-latency and secure inference
serving of deep models on robots. Unique features of RILaaS
include: 1) low-latency and reliable serving with gRPC under
dynamic loads by distributing queries over multiple servers on
Edge and Cloud, 2) SSH based authentication coupled with
SSL/TLS based encryption for security and privacy of the
data, and 3) front-end REST API for sharing, monitoring
and visualizing performance metrics of the available mod-
els. We report experiments to evaluate the RILaaS platform
under varying loads of batch size, number of robots, and
various model placement hosts on Cloud, Edge, and Fog for
providing benchmark applications of object recognition and
grasp planning as a service. We address the complexity of
load balancing with a Q-learning algorithm that optimizes
simulated profiles of networked robots; outperforming several
baselines including round robin, least connections, and least
model time with 68.30% and 14.04% decrease in round-trip
latency time across models compared to the worst and the next
best baseline respectively. Details and updates are available at:
https://sites.google.com/view/rilaas

I. INTRODUCTION

Robot programming has evolved from low level coding
to more intuitive methods. Common ways of programming
robots include use of a teaching pendant to playback a
set of via-points, offline programming with a simulator,
programming by demonstration such as kinesthetic teach-
ing, and/or programming by exploration for trial and error
learning of the desired task. Despite the variety of interfaces,
teaching a new task to a robot requires skilled personnel
for data collection, labeling and/or learning a control policy
from hundreds of hours of robot training [1]. Instead of
retraining a skill for every new situation, we advocate the
need of a programming-by-abstraction approach where
high-level skills such as grasping and object recognition etc.
can be acquired in a ‘plug-and-play’ manner to facilitate
programming of new skills.

Recent advancements in deep learning have led to a rise
of robotic applications that rely on computationally expen-
sive models such as deep neural networks for perception,
planning and control. Typical usage of a deep learning
model involves: training, adaptation and/or inference. The
training stage involves estimation of model parameters on
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Fig. 1: RILaaS uses a hierarchy of resources in the Cloud-Edge continuum
to distribute inference/prediction serving of deep learning models such as
grasp planning and object recognition on a fleet of robots. Users can manage
robots and models with a front-end API that interacts with the inference loop
through a metrics server, authorization cache, and a Docker repository.

large scale data, adaptation is the process of transferring/fine-
tuning the model to a new environment, while inference
requires predicting the model output for a given input. While
training and adaptation are computationally and resource
intensive, inference decouples model from applications and
must be done in real-time to meet the performance require-
ments of the application. As an example, training a deep
object recognition model on ImageNet-1k may last for days,
adaptation may take hours, but the inference time is often
less than 100 milliseconds.

Robots are increasingly linked to the network and thus
not limited by the onboard resources for compute, storage
and networking with Cloud and Fog Robotics [2], [3]. By
offloading the computational and storage requirements over
the network, the robots can share training, adaptation and
inference of deep learning models and reduce the burden
of collecting and labelling massive data for programming
a separate model for each robot. Once trained, the models
can be deployed to an inference serving system to meet
the performance requirements of the application such as
bandwidth, latency, accuracy and so on. To our surprise, there
is very little research on how to use/re-use and deploy such
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models once they are trained. The focus of this paper is
on scalable inference serving of deep models on networked
robots.

In this paper, we introduce a novel Robot-Inference-and-
Learning-as-a-Service (RILaaS) platform to meet the service
level objectives in inference serving of deep models on
robots. RILaaS abstracts away applications from the training
phase with virtualized computing and storage of models and
datasets, thereby, removing hardware and software depen-
dencies on custom middleware. It allows users to easily
upload, test, share, monitor and deploy trained models on
robots for querying the service ubiquitously. The service
optimizes for low latency and scalable inference across
a fleet of robots by distributing queries over Cloud and
Edge using an adaptive load balancing strategy (see Fig. 1).
We observe that using reinforcement learning to optimize
the load profiles of networked robots outperforms several
baselines including round robin, least connections, and least
model time. We show the application of RILaaS to deep
object recognition and grasp planning, where a fleet of robots
send RGB and/or depth images of the environment over a
wireless network as input, and retrieve the object locations
and/or grasp configurations as output.

A. Contributions

This paper makes three contributions:
1) We present RILaaS: a novel user-based low-latency in-

ference serving platform to facilitate large-scale use/re-
use of deep models for robot programming.

2) We provide examples of deep object recognition and
grasp planning as a service with RILaaS and benchmark
their performance with varying number of robots, batch
sizes and dynamic loads.

3) We optimize the round-trip latency times for scalable
inference serving by distributing queries over Cloud and
Edge servers with a reinforcement learning algorithm
that outperforms several baselines under simulated dy-
namic loads by at least 14.04% reduction in round-trip
latency time compared to the next best least-connections
strategy.

II. RELATED WORK

A. Cloud and Fog Robotics

Cloud Robotics provides on-demand availability of con-
figurable resources to support robots’ operations [2]. The
centralized Cloud approach alone often limits the latency
and throughput of data than deemed feasible for many
robotics applications. Fog Robotics distributes the resource
usage between the Cloud and the Edge in a federated
manner to mitigate the latency, security/privacy, and net-
work connectivity issues with the remote Cloud data cen-
ters [4], [3], [5]. Popular cloud robotics platforms include
RoboEarth [6] – a world-wide web style database to store
knowledge generated by humans and robots accessed via
Rapyuta platform; KnowRob [7] – a knowledge processing
system for grounding the knowledge on a robot; RoboBrain
[8] – a large scale computational system that learns from

publicly available resources over internet; rosbridge [9] – a
communication package between the robot and the Robot
Operating System (ROS) over Cloud; while Dex-Net as a
Service (DNaaS) [10] are recent efforts to provide Cloud-
based services for analytical grasp planning.

To the best of our knowledge, RILaaS is the first user-
based data-driven general purpose inference serving platform
for programming robots. We provide grasp planning and
single-shot object recognition services as an example where
the robots send RGB and/or depth images of the environment
and retrieve the recognized objects and the grasp locations
for robotic manipulation.

B. Inference Serving

Inference serving is emerging as an important part of a
machine learning pipeline for deploying deep models. The
growing demand of machine learning based services such
as image recognition, speech synthesis, recommendation
systems etc. is resulting in tighter latency requirements and
more congested networks. Large tech companies have built
their private model serving infrastructure to handle scaling,
performance, and life cycle management in production, how-
ever, their adoption in a wider machine learning and robotics
community is rather limited.

A simple way to deploy a trained model is to make a
REST API using Flask. Although simple and quick, it often
causes scale, performance, and model life cycle management
issues in production. Tensorflow-serving uses SavedModels
to package the trained models for scaling and sharing of
the deployed models [11]. The serving, however, does not
support arbitrary pre-processing and post-processing of the
data which limits a range of applications. Clipper supports
a wide variety of frameworks including Caffe, Tensorflow
and Scikit-learn for inference serving in the Cloud. Addi-
tionally, it uses caching and adaptive batching to improve the
inference latency and throughput [12]. InferLine combines a
planner and a reactive controller to continuously monitor and
optimize the latency objectives of the application [13]. Rafiki
optimizes for model accuracy with a reinforcement learning
algorithm subject to service level latency constraints [14].
INFaaS automatically navigates the decision space on behalf
of users to meet user-specified objectives [15]. Recently, a
number of companies have entered the model serving space
with Amazon Apache MXNet, Nvidia TensorRT, Microsoft
ONNX and Intel OpenVino to satisfy the growing application
demands. All these services are typically optimized to serve
specific kinds of models in the Cloud only. Moreover,
creation or updating of the models at the back end is manual
and cumbersome. In comparison to these services, RILaaS
allows users to upload trained deep models, share with other
users and/or make them publicly available for others to test
models with custom data and easily deploy on new robots
for querying the trained models. It distributes the queries
over Cloud and Edge to satisfy more stringent service level
objectives than possible with inference serving in the Cloud
only.



C. Inference Optimization

Deploying deep learning models is not just about setting
up the web server API, but ensuring that the service is
scalable and the requests are optimized for service level
objectives. The Cloud provides auto-scalable resources for
compute and storage, whereas resources at the Edge of the
network are limited. Edge and Fog Computing brings Cloud-
inspired computing, storage, and networking closer to the
robot where the data is produced [16], [17]. Quality of
service provisioning depends upon a number of factors such
as communication latency, energy constraints, durability, size
of the data, model placement over Cloud and/or Edge,
computation times for learning and inference of the deep
models, etc [18]. Nassar and Yilmaz [19] and Baek et al. [20]
allocate resources in the Fog network with a reinforcement
learning based load balancing algorithm. Chinchali et al.
use a deep reinforcement learning strategy to offload robot
sensing tasks over the network [21].

RILaaS takes a distributed approach to inference serv-
ing where a load-balancer receives inference requests from
nearby robots/clients at the Edge and learns to decide
whether to process the requests on Cloud or Edge servers
based on their resource consumption. We show its application
to vision-based grasping and object recognition and investi-
gate the inference scaling problem by simulating increasing
number of requests in the network.

III. PROBLEM FORMULATION AND CHALLENGES

Consider a multi-agent setting of M robots 〈r1 . . . rM 〉
each having access to a set of trained models or policies
〈π1 . . . πD〉 that are deployed on a set of N servers. Each
model may be deployed on one or more servers, and the
location of each server is fixed either on Cloud, Edge or
anywhere along the continuum. The m-th robot observes the
state of the environment as {ξ(m)

t }TB
t=1 in a mini-batch of

size TB , sends the request asynchronously to the inference
service and receives the response {y(m)

t }TB
t=1. The job of

the inference service is to compute the responses {y(m)
t =

πd(ξ
(m)
t )}TB

t=1 for the requested d-th model such that the
round-trip latency time t(rtt) is optimized in communication
with the set of robots, while preserving the privacy and
security of the data. Note that we do not consider the transfer
problem of adapting the model output to new environments in
this work, and only address the scalability issues in inference
serving of deep models on a fleet of robots.

To this end, we introduce a novel user-based inference
serving platform for deploying deep learning models on
robots, and apply reinforcement learning for optimizing the
round-trip latency times under dynamic loads. Next, we
describe the specific challenges in developing the general
purpose inference serving platform and discuss the RILaaS
methodology to address the outlined issues.

Model Support: Prominent machine learning frameworks
such as PyTorch, Tensorflow, Spark, Caffe are widely used
for training and adaptation of deep models. Deploying these
multiple frameworks on a robot or a set of inference servers

is complex because of conflicting dependencies between each
framework. RILaaS accepts any arbitrary model for deploy-
ment by using Docker containers to allow each framework
to exist independently of the other. Each container can be
customized to the requirements of a particular framework.
The containers accept inputs of Map<name, numeric
array> and return outputs of the same form, where the
map function adapts the model inputs and outputs to the
RILaaS format.

Rapidly Deployable: RILaaS abstracts away applications
from models to facilitate ease of deployment on custom hard-
ware with varying specifications. It only requires the public
SSH key of the robot for authenticating and subscribing to
the required models, after which the robot can readily access
model outputs over a network call.

Security and Privacy: Inference serving by transmitting
sensitive data over untrusted wireless networks (such as
images of private locations) is vulnerable to data infiltration
and cyber attacks. Additionally, targeted Denial of Service
(DoS) attacks can be a bottleneck to meet the bandwidth
requirements of time-sensitive applications [22]. Hosting
models on the Edge of the network can keep data private and
the network secure, but it comes at the cost of developing
and maintaining a heterogeneous Edge infrastructure. RILaaS
uses a Fog robotics approach to place models on the Cloud
and the Edge servers depending upon the security require-
ments specified by the user. This allows access to the auto-
scalable compute and storage capacity of the Cloud for low-
sensitivity models while using secure but less powerful Edge
infrastructure for private data. Moreover, RILaaS’s front end
allows easy management of access controls on a per-robot
per-model basis.

Scalable Workloads: Robots may have to trade-off be-
tween doing fast inference on a remote server using hard-
ware accelerators such as a GPU while incurring additional
network overhead or doing slow inference locally. Latency
times need be optimized to deal with dynamic application
dependent workloads. RILaaS optimizes the inference serv-
ing latency for each individual model by using reinforcement
learning to distribute queries over the Cloud and the Edge
servers according to their resource consumption.

Performance Monitoring: Monitoring the inference ser-
vice is useful to evaluate the empirical accuracy and latency
characteristics in comparison to the service level objectives
of the application. RILaaS allows users to specify and log
metrics for each model and each robot over a front-end.

IV. RILAAS ARCHITECTURE

RILaaS is divided into four modules: 1) Front-end, 2)
Management Server, 3) Inference Server and 4) Request
Interceptor. The front-end provides a simple interface to
upload trained models and deploy them on robots. The
management server is responsible for storing the autho-
rization policies and deploying the containerized models
on requested servers. The inference server computes the
response of the incoming queries using specified models. The
request interceptor authorizes the use of specified models,



Fig. 2: Front-end API snapshots (not shown to scale): (top) Users can
upload, share and visualize models and datasets, (botom-left) interface to
upload new models and set access control policies, (bottom-right) interface
to deploy available models on robots.

while the load-balancer hosted on the request interceptor
learns to distribute queries over multiple inference servers.
Additionally, the monitoring server collects metrics about the
model and the robot performance. The user first uploads or
chooses a publicly shared model over the front-end where
it is containerized and deployed on the inference server.
Robots are added by specifying their public SSH key and
subscribing to the desired models. Robots can then query
the deployed models over the network using a minimalist
client library. The monitoring server runs in the background
to log the desired metrics for visualization via the front-end.
The overall architecture is summarized in Fig. 1.

A. User End: Front-End and Management Server

RILaaS provides a user-facing REST API that interacts
with the Django management server to create, view and
update models, datasets, robots and metrics (see Fig. 2 for
front-end snapshots). The front-end is a user-based platform
that provisions for:

Model Creation: Users upload the model folder contain-
ing the pre-trained model weights and specify the input,
output types and optional pre-processing and post-processing
modules. The management server containerizes the model
automatically and uploads the image in a docker repository
hosted on AWS. We package each model in a separate
Docker container to resolve system conflicts between models
and prevent over-utilization of system resources.

Model Sharing: Users can make their models private,
public or share with other users on the platform to facilitate
re-usability of models across applications.

Robot Creation: Users deploy the uploaded models on
robot(s) by adding their public SSH key for authentication.
Note that all publicly available models are automatically
made available to any robot registered with the service.

Dataset Creation: The front-end allows users to upload
test datasets for querying the uploaded models and visual-
izing the model outputs. The test datasets can similarly be
made public for other users to test the models. This allows
users to ensure the functioning of their deployed models
before querying them from the robot.

Metrics Viewer: A flexible query interface through
Prometheus allows users to view metrics about their mod-
el/robot such as requests sent/received and the round-trip
communication latency times. Additional end-points for met-
rics can be added via a dedicated endpoint that is asyn-
chronously monitored by the management server.

B. Robot End: Request Interceptor and Inference Server

Request Interceptor receives the incoming requests from
the networked robots and distributes them to the inference
servers. The request interceptor may be deployed on the
robot itself or centrally at the Edge of the network for
a fleet of robots. Note that multiple request interceptors
can also be deployed for the same application. The request
interceptor is responsible for SSH based authentication of
the robots and authorizing access control for the models.
Authentication and authorization policies prevent misuse of
compute resources by intruders. Authentication is done using
JSON Web Tokens (JWT) signed with private SSH key of the
robot, while authorization policies are stored in a database
in the management server. Naively fetching model access
policies from remote databases for every request can slow
down inference, thereby, these access policies are stored on
a local Redis cache to minimize network calls to a remote
database for each robot query. The cache is updated using an
event-triggered system that maintains the most recent version
of access control policies from the management server.
The request interceptor subsequently directs the authorized
queries to the inference servers using a user-specified load
balancing strategy to optimize the round-trip latency times.

Inference Servers deploy the containerized models on
provisioned servers to process the incoming requests. The
servers may be placed on Cloud, Edge and/or anywhere along
the continuum depending upon the application requirements.
Modular resource placement allows the robots to access
resources from the Edge and seamlessly switch to the Cloud
for scalability if Edge resources are not sufficient to meet
the service level objectives. Moreover, non-critical models
can also be rate limited on a per-robot basis in order to
prevent DoS attacks from occurring at the Edge and ensure
high availability of important models.

C. Inference Query Life Cycle

RILaaS abstracts away the hardware and software depen-
dencies required for inference of deep robot models. Once
a model has been deployed on the RILaaS platform, a robot
or a fleet of robots can readily access the deep models by



. . .

❏
❏
❏

. . .

. . .

❏
❏
❏

Fig. 3: Inference optimization with adaptive load-balancing: A Q-Learning
algorithm adapts the distribution of the incoming requests between the Cloud
and the Edge resources to optimize the round-trip latency time.

a simple network call after installing the minimalist RILaaS
client python package. As shown in the code snippet below,
the RobotClient object contains the necessary parameters
for authentication and authorization of the robot and the
required deep model. The robot specifies the target address
of the request interceptor, the model name and the model
version for inference, the private SSH key of the robot
for inference and the SSL certificate location. The SSL
certificate encrypts the communication between the robot and
the servers. The robot communicates with the servers using
gRPC, an open source Remote Procedure Call library built
on HTTP/2. Once it is created, the RobotClient object
is used to make predictions with a simple function call.

from client import RobotClient
rc = RobotClient(

TARGET_IP ,

MODEL_NAME ,

MODEL_VERSION ,

PRIVATE_SSH_KEY_PATH ,

SSL_CERTIFICATE_LOCATION
)

outputs = rc.predict(inputs)

V. INFERENCE OPTIMIZATION WITH ADAPTIVE
LOAD-BALANCING

The inference requests from a robot or a fleet of robots
can be optimized for large-scale serving of deep models.
A-priori estimation of querying rate of the model and the
round-trip inference time of the model provide a useful
criteria for inference optimization. Ensemble modeling is
also useful to deploy multiple models of the same task and
optimize the inference times. Appropriate model selection
among ensembles provides a trade-off between accuracy and
latency to satisfy the service level objectives [12], [14].
Optimizing the placement and use of resources can also
increase the overall system efficiency. For example, simple
application profiling may be used for resource placement in
a constrained network where there are many CPUs and few
GPUs. Finding an appropriate balance for performance and
cost, however, is challenging when the application demands
and the availability of resources keeps changing over time,
making continuous re-evaluation necessary [23].

Load balancing across multiple servers is useful for op-
timizing resource utilization, reducing latency and ensuring

fault-tolerant configurations [24]. Traditional load balancing
strategies supported in RILaaS include,

Round Robin: Requests are distributed in a cyclic order
regardless of the load placed on each server.

Least Connections: The next request is assigned to the
server with the least number of active connections.

Least Model Time: Requests are assigned based on
running estimate of average round-trip latency for each
model. To prevent choosing a single server for extended
periods of time, we randomize the server selection with a
small probability to explore all available resources.

We use nginx [25] for load-balancing with round robin
or least connections. The nginx load balancing strategies
naively assume homogeneity of servers, i.e., each request
takes a similar amount of time to process on available re-
sources. Moreover, the heuristics used in these strategies are
not suitable for handling dynamic loads where the number of
requests vary over time. In this work, we seek to optimize the
inference times under dynamic loads by distributing queries
over a set of non-homogeneous servers between the Edge
and the Cloud (see Fig. 3 for an overview).

We formulate the adaptive load-balancing as a reinforce-
ment learning problem to minimize the expected round-trip
latency for each request in a given time horizon on a per-
model basis. We assign an ‘agent’ to each model to distribute
the incoming queries, i.e., the number of agents scale linearly
with the number of models used. Each agent keeps an
estimate of each server in a Markov decision process tuple
〈S,A,R〉 where st ∈ S is the state representation of the
server at time t, at ∈ A is the action of sending request to
one of the N servers which results in transition to a new
state s′t ∈ S ′ along with the reward r(st,at) ∈ R as an
estimate of the round-trip latency, i.e.,

st =


pt,1 , qt,1
pt,2 , qt,2

...
pt,N , qt,N

 , at =


1
2
...
N

 , rt = − (1 + L(st,at))
2
,

(1)
where pt,i is the number of requests of a model on server i
at time t, qt,i represents the total number of active requests
of all models on server i at time t, and L(st,at) ∈ R is
the round-trip latency of inference query cycle, i.e., time
required to send the request and receive the response from the
service. Note that the reward function penalizes the increase
of latency times in a quadratic manner. The agent learns to
choose the server by taking action at such that the expected
latency in a given time horizon is minimized from inference
request load profiles of networked robots. The expected
latency is estimated by the Q-function Q(st,at) ∈ R,

Q(st,at) = E

[
T∑

t=0

γtr(st,at)

]
, at = argmax

at=1...N
Q(st,at),

(2)
where γ ∈ R is the discount factor of future rewards.
The Q-function is recursively updated using the Bellman
equation [26]. With a small probability, a server is randomly



1 5 10

Number of Users

0

1

2

3

4

M
ea

n
L

at
en

cy
Edge

Batch Size

1

2

4

8

1 5 10

Number of Users

M
ea

n
L

at
en

cy

Cloud

Batch Size

1

2

4

8

Object Detection
(s

)

(s
)

Robots Robots

1 5 10

Number of Users

0

20

40

60

80

100

M
ea

n
L

at
en

cy

Edge

Batch Size

1

2

4

8

1 5 10

Number of Users

M
ea

n
L

at
en

cy

Cloud

Batch Size

1

2

4

8

Grasp Planner

(s
)

(s
)

Robots Robots

Fig. 4: Comparison of the average round-trip latency times in seconds of the object recognition model on (left) and the grasp planning model on (right)
with the use of Edge or Cloud resources (same latency scale is used for both resources). We make two observations: 1) the round-trip communication time
scales sub-linearly with increasing batch size and number of robots across both models, 2) the difference between the Edge and the Cloud latency times is
dominant when the computation time is less than the communication time as for the object recognition model in comparison to the grasp planning model.

objects,
grasps

RGBD
Image

RILaaS

Fig. 5: Vision-based decluttering application where the robots send the
RGBD image of the environment to the inference service and retrieves the
object categories and bounding boxes, along with their grasp locations to
put the objects in their corresponding bins.

chosen to encourage exploration of the state and action space.
The agent continuously optimizes the action selection to
drive down the latency times for each model based on the
observed load profiles from the networked robots. Note that
we assume the location and the number of servers to be fixed
and each model is deployed on all servers without loss of
generality. In case the number of servers change as in starting
additional Cloud instances on performance drop, the adaptive
load-balancing policy needs to be retrained.

VI. EXPERIMENTS AND RESULTS

We now present experiments for evaluating the RILaaS
platform to serve deep models of object recognition and
grasp planning on a large scale. We empirically investigate
the effect of varying batch size, number of robots and
resource placement, followed by the adaptive load-balancing
experiments to optimize simulated dynamic load profiles
with a fleet of robots. We use the Amazon EC2 (East)
p2.1xlarge instance with 1 Tesla K80 GPU in Northern
Virginia (us-east-1) for Cloud compute and use Amazon S3
buckets for Cloud storage. The Edge infrastructure comprises
of a workstation with 1 NVidia V100 GPU located at a
nearby data center.

A. Application Workloads

We consider real-world application scenarios where RI-
LaaS is used to provide object recognition and grasp planning
as a service for vision-based robot decluttering, building
upon our previous work in [3], [27].

Object Recognition: We use the MobileNet-Single Shot
MultiBox Detector (SSD) model with focal loss and feature
pyramids as the base model for object recognition. The input
RGB image is fed to a pre-trained VGG16 network, followed
by feature resolution maps and a feature pyramid network,
before being fed to the output class prediction and box
prediction networks. The model is trained on 12 commonly
used household and machine shop object categories using a
combination of synthetic and real images of the environment.

Grasp Planning: Grasping diversely shaped and sized
novel objects has a wide range of applications in indus-
trial and consumer markets. Robots in homes, factories or
warehouses require robust grasp plans in order to interact
with objects in their environment. We use an adaptation
of the Dex-Net grasp planning model to plan grasps from
the depth images of the environment. The model samples
antipodal grasp pairs from a depth image and feeds them
to a convolutional neural network to predict the probability
of successful grasp as determined by the wrench resistance
metric. The sampled grasps are successively filtered with
a cross-entropy method to return the most likely grasp.
Note that the pre-processing step of sampling many different
grasps requires CPU usage, whereas predicting the grasp
success requires GPU resources for efficient grasp planning.

Vision-Based Decluttering: We sequentially pipeline the
object recognition and grasp planning models together for
vision-based surface decluttering [3]. The robot sends RGBD
images of the environment, where the RGB image is used
for object recognition and the cropped depth image from
the output bounding box of the object recognition model is
used by the grasp planning model to output the top ranked
grasp for the robot to pick and place the object into its
corresponding bin (see Fig. 5).
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Fig. 6: Inference optimization of varying test load profiles for object recognition on (left) and grasp planning on (right). For each model, top row shows
the round-trip latency of load-balancing strategies, second and third row shows the Q-learning and least connections policy output in allocating Edge or
Cloud resources, fourth row shows the requests rate profile. Q-learning scales better with increasing loads than other load-balancing strategies by optimally
figuring out how to use Edge resources more frequently to reduce the average round-trip latency times.

TABLE I: Computation time for inference t(inf) vs round trip commu-
nication time t(rtt) (in milliseconds) for inference over Edge and EC2-East
Cloud. Results are averaged across 6 trials. Communication time dominates
the computation time and increases as the distance to the server increases.

Location t(inf) t(rtt)

Object Detection
EC2-East 42.79± 0.41 483.82± 70.87

Edge 36.03± 3.18 172.77± 43.55

Grasp Planner
EC2-East 1501.61± 12.76 2051.48± 22.684

Edge 1386.95± 22.92 1515.59± 26.16

B. Scalability of RILaaS

We deploy the trained models on the RILaaS platform
to receive images from the robot, perform inference, and
send back the output results to the robot. We measure the
round-trip time t(rtt), i.e., time required for communication
to/from the server and the inference time t(inf), i.e., time
required to compute the model response for a given input.
We experiment with two hosts for the inference service: EC2
Cloud (East), and Edge with GPU support.

Resource Placement with Cloud vs Edge: Results in
Table I show that the communication time is a major
component of the overall round-trip latency time. Deploy-
ing the inference service on the Edge significantly reduces
the round-trip inference time and the timing variability in
comparison to hosting the service on Cloud, while incurring
a communication overhead of around 100 milliseconds only.
The difference in resource placement is less pronounced for
the grasp planning model where CPU computation time in
sampling grasp pairs is a dominant factor. Moreover, the
authentication time only takes 1 millisecond on average
with Redis cache in comparison to 630 milliseconds with
a relational database on AWS.

Effect of Batch Size and Number of Robots: We next
vary the batch size and number of robots making concurrent
requests to the service. Fig. 4 suggests that the average
round-trip latency grows sub-linearly with the batch size and
the number of robots querying the service. Moreover, deploy-
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Fig. 7: A comparison between mean latency of tensorflow Serving and
RILaaS for the object detection model at the Edge. RILaaS performs on par
with tensorflow serving and the gap closes further with more robots.

ing models on Edge yields lower round-trip latency times
across both models, but the difference is more pronounced
for the object recognition model with lower inference time
than the grasp planning model.

Comparison with Tensorflow Serving: Fig. 7 suggests
that RILaaS gives comparable results to tensorflow-serving
for the object recognition model deployed at the Edge.
Note that the tensorflow-serving does not provide out-of-
the-box pre-processing/post-processing, authentication, au-
thorization and metrics viewing for models that it supports.
Consequently, the grasp planning model cannot be hosted
on tensorflow-serving as it iterates over preprocessing and
inference. RILaaS supports a tensorflow-serving backend
while providing the aforementioned features to make it
feasible for deploying a wide variety of models.

C. Inference Optimization under Dynamic Loads

We next simulate time-varying requests of different pro-
files to evaluate the performance of inference optimization
with adaptive load-balancing. We query the object recogni-
tion and the grasp planning model alternatively at specified
rates to simulate the decluttering setup, and compare the
Q-learning based adaptive load-balancing with round robin,
least connections and least model time strategies. The request
profiles include: 1) uniform loads of 1, 2, 4, 8 requests per



second, 2) step-wise increasing loads of 1, 2, 3, 4 requests
per second, 3) spiked loads where nominal load of 2
requests per second is augmented with 13 requests per
second for up to 2 seconds, 4) Poisson distributed loads
where requests follow the Poisson process with arrival rate
of 1, 2, 4, 8 requests per second, 5) sinusoidal loads with
varying amplitudes and frequencies of 0.05, 0.01, 0.08 Hz.
The first 4 types of load profiles are used for both training
and testing, while the sinusoidal load profiles are only used
for testing of the optimal inference serving policy.

Fig. 6 shows the plots of the object recognition and grasp
planning model for various request profiles. It can be seen
that the Q-learning strategy outperforms the commonly used
load-balancing strategies. Least-connections performance is
better among the fixed load-balancing strategies and its per-
formance is similar to Q-learning for lighter workloads. The
inference serving policy reveals that the Q-learning is able to
decrease the average latency times by more frequently using
the Edge resource as compared to the Cloud. Overall, the
adaptive load-balancing strategy with Q-learning for object
recognition gives 15.76% and 70.7% decrease in round-trip
latency time compared to the next best least connections and
worst performing round-robin baseline. Similarly, the grasp
planning model shows 12.32% and 65.91% decrease in the
round-trip latency time with Q-learning in comparison to
least connections and round-robin strategies.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

Virtualizing robot storage, compute and programming is a
key enabler for large-scale learning and inference of deep
models for robotic applications. In this paper, we have
introduced RILaaS as a novel user-based inference serving
platform for deploying deep learning models on robots that
satisfies heterogeneous model support, rapid deployment,
security and privacy, and low latency requirements of the
applications. We used reinforcement learning for scalable
inference serving that adapts better with dynamic loads
than commonly used load balancing strategies. We provide
deep object recognition and grasp planning as a service and
showed its application to vision-based decluttering of objects
from the floor and depositing them in target bins. To the
best of our knowledge, RILaaS is the first of its kind user
based inference serving platform of deep models for robotic
applications.
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