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 1.1.Rings 

 A ring (R,+, ・) is a set R, together with two binary operations + 
and ・ on R satisfying the following axioms. For any elements a, 
b, c ∈ R, 

(i) (a + b) + c = a + (b + c). (associativity of addition) 

(ii) a + b = b + a. (commutativity of addition) 

(iii) there exists 0 ∈ R, called the zero, such that 

   a + 0 = a. (existence of an additive identity) 

(iv) there exists (−a) ∈ R such that  a + (−a) = 0.(existence of an 
additive inverse) 

(v) (a ・ b) ・ c = a ・ (b ・ c). (associativity of multiplication) 
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(vi) there exists 1 ∈ R such that 

1・ a = a ・ 1 = a. (existence of multiplicative identity) 

(vii)    a ・ (b + c) = a ・ b + a ・ c     

and  (b + c)・ a = b ・ a + c ・ a.(distributivity) 

 Axioms (i)–(iv) are equivalent to saying that (R,+) is an 
abelian group. 

 The ring (R,+, ・) is called a commutative ring if, in 
addition, 

 (viii) a ・ b = b ・ a for all a, b ∈ R. (commutativity of 
multiplication) 

5 
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 The integers under addition and multiplication satisfy all of the 

axioms above,so that (Z,+, ・) is a commutative ring. Also, (Q, +,・), 

(R,+, ・), and (C,+, ・) are all commutative rings. If there is no 

confusion about the operations, we write only R for the ring (R,+, ・). 

Therefore, the rings above would be referred to as Z,Q,R, or C. Moreover, if 

we refer to a ring R without explicitly defining its  operations, it can be 

assumed that they are addition and multiplication. 

 Many authors do not require a ring to have a multiplicative identity, 

and most of the results we prove can be verified to hold for these 

objects as well. We must show that such an object can always be 

embedded in a ring that does have a multiplicative identity. 
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 Example 1.1.1. Show that (Zn,+, ・) is a commutative ring, where 
addition and multiplication on congruence classes, modulo n, are 
defined by the equations 

    [x] + [y] = [x + y] and [x] ・ [y] = [xy]. 

 Solution. It iz well know that (Zn,+) is an abelian group. 

   Since multiplication on congruence classes is defined in terms of 
representatives, it must be verified that it is well defined. Suppose that 
[x] = [x’] and [y] = [y’], so that x ≡ x’ and y ≡ y’ mod n. This implies 
that x = x’ + kn 

    and y = y '+ ln for some k, l ∈ Z. Now x ・ y = (x’ + kn) ・ (y’ + ln) 
= x ・ y + (ky’ + lx’ + kln)n, so x ・ y ≡ x’ ・ y’ mod n and hence [x 
・ y] = [x’ ・ y’]. This shows that multiplication is well defined. 

7 



1. Rings, Integral Domains and Fields 

8 

  The remaining axioms now follow from the definitions of addition 

and multiplication and from the properties of the integers. The 

zero is [0], and the unit is [1]. The left distributive law is true, for 

example, because 

  [x] ・([y] + [z]) = [x] ・ [y + z] = [x ・ (y + z)] 

  = [x ・ y + x ・ z] by distributivity in Z 

   = [x ・ y] + [x ・ z] = [x] ・ [y] + [x] ・ [z]. 
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 Example 1.1.2. Show that (Q(√2),+, ・) is a commutative 
ring where Q(√2) ={a + b√2 ∈ R|a, b ∈ Q}. 

   Solution. The set Q(√2) is a subset of R, and the addition and 
multiplication is the same as that of real numbers. First, we 
check that + and ・ are binary operations on Q(√2). If a, b, 
c, d ∈ Q, we have 

    (a + b√2) + (c + d√2) = (a + c) + (b + d)√2 ∈ Q(√2) 

    since (a + c) and (b + d) ∈ Q. Also, 

   (a + b√2) ・ (c + d√2) = (ac + 2bd) + (ad + bc)√2 ∈ 
Q(√2)  since (ac + 2bd) and (ad + bc) ∈ Q. 
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 We now check that axioms (i)–(viii) of a commutative ring are 
valid in Q(√2). 

(i) Addition of real numbers is associative. 

(ii) Addition of real numbers is commutative. 

(iii) The zero is 0 = 0 + 0√2 ∈ Q(√2). 

 (iv) The additive inverse of a + b√2 is (−a) + (−b)√2 ∈ Q(√2), since 
(−a) and (−b) ∈ Q.  

 (v) Multiplication of real numbers is associative. 

 (vi) The multiplicative identity is 1 = 1 + 0√2 ∈ Q(√2). 

 (vii) The distributive axioms hold for real numbers and hence hold  
for  elements of Q(√2). 

 (viii) Multiplication of real numbers is commutative. 
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 1.2. Integral Domains and Fields 

 One very useful property of the familiar number systems is the fact that 
if ab = 0, then either a = 0 or b = 0. This property allows us to cancel 
nonzero elements because if  

    ab = ac and a  0, then a(b − c) = 0, so b = c. However, this property 
does not hold for all rings. For example, in Z4, we have [2] ・ [2] = [0], 
and we cannot always cancel since  

     [2] ・ [1] = [2] ・ [3], but [1][3]. 

 If (R,+, ・) is a commutative ring, a nonzero element a ∈ R is called a 
zero divisor if there exists a nonzero element b ∈ R such that a ・ b = 0. 
A nontrivial  commutative ring is called an integral domain if it has no 
zero divisors.  

11 
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A field is a ring in which the nonzero elements form an 
abelian group under multiplication. In other words, a 
field is a nontrivial commutative ring R satisfying the 
following extra axiom. 

   (ix) For each nonzero element a ∈ R there exists a−1 ∈ R 
such that a ・ a−1 = 1. 

The rings Q,R, and C are all fields, but the integers do 
not form a field. 

Proposition 1.2.1. Every field is an integral domain; that 
is, it has no zero divisors.  
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 Theorem 1.2.2. A finite integral domain is a field. 

 Proof. Let D = {x0, x1, x2, . . . , xn} be a finite integral domain 

with x0 as 0 and x1 as 1. We have to show that every nonzero 

element of D has a multiplicative  inverse. 

     If xi is nonzero, we show that the set xiD = {xix0, xix1, xix2, . . . , 

xixn} is the same as the set D. If xixj = xixk, then, by the 

cancellation property, xj = xk.Hence all the elements xix0, xix1, 

xix2, . . . ,xixn are distinct, and xiD is a subset of D with the same 

number of elements. Therefore, xiD = D. But then there is some 

element, xj , such that xixj = x1 = 1.  

    Hence xj = xi 
-1, and D is a fiel 
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 Theorem 1.2.3. Zn is a field if and only if n is prime. 

 Proof. Suppose that n is prime and that [a] ・ [b] = [0] in Zn. 
Then n|ab. So n|a or n|b by Euclid’s Lemma . 

     Hence [a] = [0] or [b] = [0], and Zn is an integral domain. 

Since Zn is also finite, it follows from Theorem 1.2.2 that Zn 

is a field. 

    Suppose that n is not prime. Then we can write n = rs, 

where r and s are integers such that 1 < r < n  and         1 < 

s < n. Now [r] = [0] and [s] = [0] but [r] ・ [s] = [rs] = [0]. 

Therefore, Zn has zero divisors and hence is not a field. 
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Example 2.1.2. Is (Q(√2),+, ・) an integral domain or a field? 
Solution. From Example 1.1.2 we know that Q(√2) is a 
commutative ring. Let a + b√2 be a nonzero element, so that at 
least one of a and b is not zero. Hence a − b√2  0 (because √2 
is not in Q), so we have 

This is an element of Q(√2), and so is the inverse of a + b√2. 
Hence Q(√2)   is a field (and an integral domain). 
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 1.3.SUBRINGS AND MORPHISMS OF RINGS 

 If (R,+, ・) is a ring, a nonempty subset S of R is called a subring 

of R if for all a, b ∈ S: 

     (i) a + b ∈ S. 

     (ii) −a ∈ S. 

     (iii) a ・ b ∈ S. 

     (iv) 1 ∈ S. 

 Conditions (i) and (ii) imply that (S,+) is a subgroup of (R,+) and 

can be  replaced by the condition a − b ∈ S. 

16 
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 For example, Z,Q, and R are all subrings of C. Let D be the set of n 

× n real diagonal matrices. Then D is a subring of the ring of all n × n 

realmatrices, Mn(R), because the sum, difference, and product of two 

diagonal matrices is another diagonal matrix. Note that D is 

commutative even though Mn(R) is not. 

 Example1.3.1. Show that Q(√2) = {a + b√2|a, b ∈ Q} is a subring 

of  R .Solution. Let a + b√2, c + d√2 ∈ Q(√2). Then 

    (i) (a + b√2) + (c + d√2) = (a + c) + (b + d)√2 ∈ Q(√2). 

    (ii) −(a + b√2) = (−a) + (−b)√2 ∈ Q(√2). 

    (iii) (a + b√2) ・ (c + d√2) = (ac + 2bd) + (ad + bc)√2 ∈ Q(√2). 

     (iv) 1 = 1 + 0√2 ∈ Q(√2). 
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 A homomorphism between two rings is a function between their 
underlying sets that preserves the two operations of addition and 
multiplication and also the element 1. Many authors use the term 
morphism instead of  homomorphism. 

 More precisely, let (R,+, ・) and (S,+, ・) be two rings. The function  

     f :R → S is called a ring morphism if for all a, b ∈ R: 

    (i) f (a + b) = f (a) + f (b). 

   (ii) f (a ・ b) = f (a) ・ f (b). 

   (iii) f (1) = 1. 

 A ring isomorphism is a bijective ring morphism. If there is an 
isomorphism  between the rings R and S, we say R and S are isomorphic 
rings and write R  S. 
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 Example 1.3.2. Show that f :Z24 → Z4, defined by f ([x]24) = 
[x]4 is a ring morphism. 

 Proof. Since the function is defined in terms of representatives  of  
equivalence  classes, we first check that it is well defined. If [x]24 
= [y]24, then x ≡ y mod 24 and 24|(x − y). Hence 4|(x − y) and 
[x]4 = [y]4, which shows that f is well defined. 

    We now check the conditions for f to be a ring morphism. 

     (i) f ([x]24 + [y]24) = f ([x + y]24) = [x + y]4 = [x]4 + [y]4. 

     (ii) f ([x]24 ・ [y]24) = f ([xy]24) = [xy]4 = [x]4 ・ [y]4. 

    (iii) f ([1]24) = [1]4 
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 2.1.Polynomial Rings 

 If R is a commutative ring, a polynomial p(x) in the indeterminate x over the ring R 
is an expression of the form  

    p(x) = a0 + a1x + a2x
2 + ・・ ・+anx

n, where a0, a1, a2, . . . , an ∈ R and n ∈ 
N. The element ai is called the coefficient of xi in p(x). If the coefficient of xi is 
zero, the term 0xi may be omitted, and 

     if the coefficient of xi is one, 1xi may be written simply as xi . 

    Two polynomials f (x) and g(x) are called equal when they are identical, that is, 
when the coefficient of xn is the same in each polynomial for every n  . 

     In particular, 

     a0 + a1x + a2x
2 + ・・ ・+anx

n = 0 

    is the zero polynomial if and only if a0 = a1 = a2 = ・ ・ = an = 0 
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 If n is the largest integer for which an  0, we say that p(x) 

has degree n and write degp(x) = n. If all the coefficients of 

p(x) are zero, then p(x) is called the zero polynomial, and its 

degree is not defined. The set of all polynomials in x with 

coefficients from the commutative  ring R is denoted by 

R[x]. That is, 

    R[x] = {a0 + a1x + a2x
2 + ・・ ・+anx

n|ai ∈ R, n ∈ N}. 

 This forms a ring (R[x],+, ・) called the polynomial ring with 
coefficients from R when addition and multiplication of the 

polynomials 
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 For example, in Z5[x], the polynomial ring with coefficients 

in the integers  modulo 5, we have 

   (2x3 + 2x2 + 1) + (3x2 + 4x + 1) = 2x3 + 4x + 2 

   and 

   (2x3 + 2x2 + 1) ・ (3x2 + 4x + 1) = x5 + 4x4 + 4x + 1. 

   When working in Zn[x], the coefficients, but not the 

exponents, are reduced 

 Proposition 2.2.2 If R is an integral domain and p(x) and q(x) 

are nonzeropolynomials in R[x], then 

   deg(p(x) ・ q(x)) = deg p(x) + deg q(x) 
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 2.2. Euclidean Rings 

 An integral domain R is called a Euclidean ring if for each 
nonzero element a ∈ R, there exists a nonnegative integer δ(a) 
such that: 

   (i) If a and b are nonzero elements of R, then δ(a)   δ(ab). 

   (ii) For every pair of elements a, b ∈ R with b  0, there exist 
elements q, r ∈ R such that 

    a = qb + r where r = 0 or δ(r) < δ(b). (division algorithm) 

    Ring Z of integers is a euclidean ring if we take  δ(b) = |b|, the 
absolute value of b, for all b ∈ Z. A field is trivially a euclidean 
ring when δ(a) = 1 for all nonzero elements a of the field.  

     Ring of polynomials, with coefficients in a field, is a euclidean 
ring when we take δ(g(x)) to be the degree of the polynomial 
g(x). 
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 EUCLIDEAN ALGORITHM 

 The division algorithm allows us to generalize the concepts of divisors and 
greatest common divisors to any euclidean ring. Furthermore, we can produce 
a euclidean algorithm that will enable us to calculate greatest common divisors. 

 If a, b, q are three elements in an integral domain such that a = qb, we say that 
b divides a or that b is a factor of a and write b|a. For example, (2 + i)|(7 + i) in 
the gaussian integers, Z[i], because  

      7 + i = (3 − i)(2 + i). 

     Proposition 2.2.1. Let a, b, c be elements in an integral domain R. 

     (i) If a|b and a|c, then a|(b + c). 

     (ii) If a|b, then a|br for any r ∈ R. 

     (iii) If a|b and b|c, then a|c. 
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 By analogy with Z, if a and b are elements in an integral domain 

R, then the element g ∈ R is called a greatest common divisor of a 

and b, and is written g = gcd(a, b), if the following hold: 

      (i) g|a and g|b. 

      (ii) If c|a and c|b, then c|g. 

     The element l ∈ R is called a least common multiple of a and b, and 

is written l = lcm(a, b), if the following hold: 

     (i) a|l and b|l. 

     (ii) If a|k and b|k, then l|k. 
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  Euclidean Algorithm.  

    Let a, b be elements of a euclidean ring  R and let b be nonzero. 
By repeated use of the division algorithm, we can write 

     a = bq1 + r1 where δ(r1) < δ(b) 

     b = r1q2 + r2 where δ(r2) < δ(r1) 

     r1 = r2q3 + r3 where δ(r3) < δ(r2) 

     ... 

     ... 

    rk−2 = rk−1qk + rk where δ(rk) < δ(rk−1) 

    rk−1 = rkqk+1 + 0. 

    If r1 = 0, then b = gcd(a, b); otherwise, rk = gcd(a, b). 
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   Furthermore, elements s, t ∈ R such that gcd(a, b) = sa + tb can be 
found by starting with the equation rk = rk−2 − rk−1qk and successively 
working up the sequence of equations above, each time replacing ri in 
terms of ri−1 and ri−2. 

 Example 2.1.1. Find the greatest common divisor of 713 and 253 in Z 
and find two integers s and t such that 

    713s + 253t = gcd(713, 253).  

    Solution. By the division algorithm,  

     we have(i) 713 = 2 · 253 + 207 a = 713, b = 253, r1 = 207 

     (ii) 253 = 1 · 207 + 46 r2 = 46 

     (iii) 207 = 4 · 46 + 23 r3 = 23 

            46 = 2 · 23 + 0. r4 = 0 
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 The last nonzero remainder is the greatest common divisor. 
Hence 

    gcd(713, 253) = 23. 

    We can find the integers s and t by using equations (i)–(iii). We 
have 

     23 = 207 − 4 · 46 from equation (iii) 

          = 207 − 4(253 − 207) from equation (ii) 

          = 5 · 207 − 4 · 253 

          = 5 · (713 − 2 · 253) − 4 · 253 from equation (i) 

          = 5 · 713 − 14 · 253. 

 Therefore, s = 5 and t = −14. 
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 Example 2.2.2. Find the inverse of [49] in the field Z53  

 Solution. Let [x] = [49]−1 in Z53. Then [49] · [x] = [1]; that is, 

49x ≡ 1 mod 53. We can solve this congruence by solving the 

equation 49x − 1 = 53y, where y ∈ Z. By using the 

euclidean algorithm we have 

    53 = 1 · 49 + 4 and 49 = 12 · 4 + 1. 

    Hence  

   gcd(49, 53) = 1 = 49 − 12 · 4 = 49 − 12(53 − 49)  

                             = 13 · 49 − 12 · 53. 

   Therefore, 13 · 49 ≡ 1 mod 53 and [49]−1 = [13] in Z53. 
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 3.1. Ideals. 

   A nonempty subset I of a ring R is called an ideal of R if the 

following  conditions are satisfied for all x, y ∈ I and r ∈ R: 

 (i) x − y ∈ I . 

 (ii) x ・ r and r ・ x ∈ I . 

    Condition (i) implies that (I,+) is a subgroup of (R,+). In 

any ring R, R itself  is an ideal, and {0} is an ideal. 

 Proposition 3.1.1. Let a be an element of commutative   ring R. 

The set {ar|r ∈ R} of all multiples of a is an ideal of R called the 

principal ideal generated by a. This ideal is denoted by (a). 
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 For example, (n) = nZ, consisting of all integer multiples of n, is 
the principal ideal generated by n in Z. 

 The set of all polynomials in Q[x] that contain x2 − 2 as a factor is 
the principal ideal (x2 − 2) = {(x2 − 2) ・ p(x)|p(x) ∈ Q[x]} 
generated by x2 − 2 in Q[x].  

 The set of all real polynomials that have zero constant term is the 
principal ideal (x) = {x ・ p(x)|p(x) ∈ R[x]} generated by x in 
R[x]. It is also the set of real polynomials with 0 as a root. 

 The set of all real polynomials, in two variables x and y, that have 
a zero constant term is an ideal of R[x, y]. However, this ideal is 
not principal 
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 However, every ideal is principal in many commutative rings; 

these are called principal ideal rings. 

 Theorem 3.1.1. A euclidean ring is a principal ideal ring. 

 Corollary 3.1.2. Z is a principal ideal ring, so is F[x], if F is a 

field.  

 Proposition 3.1.3. Let I be ideal of the ring R. If I contains the 

identity 1, then I is the entire ring R. 
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 3.2. Quotient rings. 

 Theorem 3.2.1. Let I be an ideal in the ring R. Then the set of cosets 

forms a ring (R/I,+, ・) under the operations defined by  

   (I + r1) + (I + r2) = I + (r1 + r2) 

    and 

   (I + r1)(I + r2) = I + (r1r2). 

   This ring (R/I,+, ・) is called the quotient ring (or factor ring) of  R 
by I 
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Example 3.2.1. If I = {0, 2, 4} is the ideal generated by 2 in 

Z6, find the tables  for the quotient ring Z6/I . 

Solution. There are two cosets of Z6 by I: namely,  

 I = {0, 2, 4} and I + 1 =  {1, 3, 5}. Hence 

  Z6/I = {I, I + 1}. 

The addition and multiplication tables given in Table 10.1 

show that the quotient   ring Z6/I is isomorphic to Z2. 



3.Ideals and quotient rings 
 Theorem 3.2.2. Morphism Theorem for Rings. If f :R → S is a ring 

morphism, then R/Kerf is isomorphic to Imf . 

 This result is also known as the first isomorphism theorem for 
rings. 

 Proof. Let K = Kerf . It follows from the morphism theorem for 
groups, that ψ: R/K → Imf, defined by  

    ψ(K + r) = f (r), 

    is a group  isomorphism. Hence we need only prove that ψ is a 
ring morphism. We have 

     ψ{(K + r)(K + s)} = ψ{K + rs} = f (rs) = f (r)f(s) 

     = ψ(K + r)ψ(K + s 

37 



3.Ideals and quotient rings 
 Example 3.2.1. Prove that Q[x]/(x2 − 2)  Q(√2). 

 Solution. Consider the ring morphism ψ:Q[x] → R defined by 
ψ(f (x)) = f (√2)  . The kernel is the set of polynomials containing 
x2 − 2 as a factor, that is, the principal ideal  

   (x2 − 2). The image of ψ is Q(√2) so by the morphism theorem for 
rings, Q[x]/(x2 − 2)  Q(√2).  

 In this isomorphism, the element  

    a0 + a1x ∈ Q[x]/(x2 − 2)  

    is mapped to a0 + a1√2 ∈ Q(√2). Addition and multiplication of 
the elements a0 + a1x and  b0 + b1x in Q[x]/(x2 − 2) correspond 
to the addition and multiplication of the  real numbers a0 + a1√2 
and  b0 + b1√2. 
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