
RISC-V CPU Control, Pipelining
Instructor: Nick Riasanovsky



Agenda

• Datapath Review

• Control Implementation

• Administrivia

• Performance Analysis

• Pipelined Execution

• Pipelined Datapath
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“Upper Immediate” instructions

• Has 20-bit immediate in upper 20 bits of 
32-bit instruction word

• One destination register, rd
• Used for two instructions

– LUI – Load  Upper Immediate (add to zero)
– AUIPC – Add Upper Immediate to PC
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Implementing lui
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Implementing auipc
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All Immediates
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Single-Cycle RISC-V RV32I Datapath
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Single-Cycle RISC-V RV32I Datapath
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When not in use, parts of the datapath cease 
to carry a value.

(A)

Adding the instruction lbu will not change 
the datapath.

(B)

All control signals will be don’t care (‘X’) in at 
least one instruction.

(C)

Adding the instruction bge will not change 
the datapath.

(D)

9

Question: Which statement is TRUE about our 
RV32I ISA?
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Agenda

• Quick Datapath Review

• Control Implementation

• Administrivia

• Performance Analysis

• Pipelined Execution

• Pipelined Datapath
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Control Logic Truth Table (incomplete)

Lecture 12: Control & Performance 13

Inst[31:0] BrE
q

BrLT PCSel ImmSe
l

BrU
n

ASel BSel ALUSel MemR
W

RegWE
n

WBSel

add * * +4 * * Reg Reg Add Read 1 ALU

sub * * +4 * * Reg Reg Sub Read 1 ALU

(R-R 
Op)

* * +4 * * Reg Reg (Op) Read 1 ALU

addi * * +4 I * Reg Imm Add Read 1 ALU

lw * * +4 I * Reg Imm Add Read 1 Mem

sw * * +4 S * Reg Imm Add Write 0 *

beq 0 * +4 B * PC Imm Add Read 0 *

beq 1 * ALU B * PC Imm Add Read 0 *

bne 0 * ALU B * PC Imm Add Read 0 *

bne 1 * +4 B * PC Imm Add Read 0 *

blt * 1 ALU B 0 PC Imm Add Read 0 *

bltu * 1 ALU B 1 PC Imm Add Read 0 *

jalr * * ALU I * Reg Imm Add Read 1 PC+4

jal * * ALU J * PC Imm Add Read 1 PC+4

auipc * * +4 U * PC Imm Add Read 1 ALU



RV32I, a nine-bit ISA!

14

Not in CS61C

Instruction type encoded using only 9 bits 
inst[30],inst[14:12], inst[6:2]

inst[30] inst[14:12] inst[6:2]
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Control Realization Options

•ROM
− “Read-Only Memory”
−Regular structure
− Can be easily reprogrammed

▪ fix errors
▪ add instructions

− Popular when designing control logic manually

•Combinatorial Logic
− Today, chip designers use logic synthesis tools to 

convert truth tables to networks of gates
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ROM-based Control
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Single-Cycle RISC-V RV32I Datapath
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ROM Controller Implementation
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Agenda

• Quick Datapath Review

• Control Implementation

• Administrivia

• Performance Analysis

• Pipelined Execution

• Pipelined Datapath
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Administrivia
• Regrade requests are due tonight

• Homework 3/4 due 7/16! (NOT 7/13, oops)

• Project 2-2 due Friday

• Project 3 released on Thurs, will rely on lab 6, 
so make sure you’re caught up on labs!

• Guerilla session tomorrow night 7/11

• HW Grades
– Make sure edx/instructional account emails 

match!
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Agenda

• Quick Datapath Review

• Control Implementation

• Administrivia

• Performance Analysis

• Pipelined Execution

• Pipelined Datapath
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Instruction Timing

IF ID EX MEM WB Total

I-MEM Reg 
Read

ALU D-ME
M

Reg W

200 ps 100 ps 200 ps 200 ps 100 ps 800 ps
227/10/2018



Instruction Timing

• Maximum clock frequency 
− f

max
 = 1/800ps = 1.25 GHz

• Most blocks idle most of the time
− E.g. f

max,ALU
 = 1/200ps = 5 GHz!

− How can we keep ALU busy all the time?

− 5 billion adds/sec, rather than just 1.25 billion?

− Idea: Factories use three employee shifts - equipment is always busy!

Instr IF = 200ps ID = 100ps ALU = 200ps MEM=200ps WB = 
100ps

Total

add X X X X 600ps

beq X X X 500ps

jal X X X 500ps

lw X X X X X 800ps

sw X X X X 700ps
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Performance Measures
•“Our” RISC-V executes instructions at 1.25 GHz
−1 instruction every 800 ps

•Can we improve its performance?
−What do we mean with this statement?
−Not so obvious:

▪ Quicker response time, so one job finishes faster?
▪More jobs per unit time (e.g. web server returning pages)?
▪ Longer battery life?
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Transportation Analogy

Sports Car Bus

Passenger Capacity 2 50

Travel Speed 200 mph 50 mph

Gas Mileage 5 mpg 2 mpg

25

Sports Car Bus

Travel Time 15 min 60 min

Time for 100 passengers 750 min 120 min

Gallons per passenger 5 gallons 0.5 gallons

50 Mile trip:
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Computer Analogy
Transportation Computer

Trip Time Program execution time: 
e.g. time to update display

Time for 100 passengers Throughput: 
e.g. number of server requests 
handled per hour

Gallons per passenger Energy per task*: 
e.g. how many movies you can 
watch per battery charge or
energy bill for datacenter

26

* Note: power is not a good measure, since low-power CPU might run for 
a long time to complete one task consuming more energy than 
faster computer running at higher power for a shorter time
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“Iron Law” of Processor Performance

27

      Time     =   Instructions         Cycles            Time

   Program         Program     *  Instruction   *  Cycle
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Instructions per Program

Determined by
• Task
• Algorithm, e.g. O(N2) vs O(N)
• Programming language
• Compiler
• Instruction Set Architecture (ISA)
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(Average) Clock cycles per 
Instruction

Determined by
• ISA
• Processor implementation (or microarchitecture)
• E.g. for “our” single-cycle RISC-V design, CPI = 1
• Complex instructions (e.g. strcpy), CPI >> 1
• Superscalar processors, CPI < 1 (next lecture)
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Time per Cycle (1/Frequency)

Determined by
• Processor microarchitecture (determines critical path 

through logic gates)

• Technology (e.g. transistor size)

• Power budget (lower voltages reduce transistor speed)
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Speed Tradeoff Example

•For some task (e.g. image compression) …

31

Processor A Processor B

# Instructions 1 Million 1.5 Million

Average CPI 2.5 1

Clock rate f 2.5 GHz 2 GHz

Execution time 1 ms 0.75 ms

Processor B is faster for this task, despite executing more 
instructions and having a lower clock rate!
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Energy per Task

32

     Energy    =    Instructions         Energy      

   Program            Program     *  Instruction

     Energy    α    Instructions    *    C   V2

   Program            Program       

“Capacitance” depends on
technology, 
processor features
e.g. # of cores

Supply voltage, 
e.g. 1V

Want to reduce capacitance and voltage to reduce energy/task
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Energy Tradeoff Example

•“Next-generation” processor
− C (Moore’s Law): -15 %

− Supply voltage, V
sup

: -15 %

− Energy consumption: 1 - (1-0.85)3 = -39 %

•Significantly improved energy efficiency thanks to
− Moore’s Law AND
− Reduced supply voltage

•We will cover Moore’s Law later in the course
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Energy “Iron Law”

  Performance =         Power      *   Energy Efficiency
(Tasks/Second)  (Joules/Second)     (Tasks/Joule)

• Energy efficiency (e.g., instructions/Joule) is key metric in all 
computing devices

• For power-constrained systems (e.g., 20MW datacenter), need 
better energy efficiency to get more performance at same power

• For energy-constrained systems (e.g., 1W phone), need better 
energy efficiency to prolong battery life
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End of Scaling

• In recent years, industry has not been able to reduce supply 
voltage much, as reducing it further would mean increasing 
“leakage power” where transistor switches don’t fully turn 
off (more like dimmer switch than on-off switch)

• Also, size of transistors and hence capacitance, not shrinking 
as much as before between transistor generations

• Power becomes a growing concern – the “power wall”

• Cost-effective air-cooled chip limit around ~150W

CS 61c Lecture 12: Control & Performance 35



Agenda

• Quick Datapath Review

• Control Implementation

• Administrivia

• Performance Analysis

• Pipelined Execution

• Pipelined Datapath
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Pipeline Analogy: Doing Laundry

• Damon, Emaan, Nick, and Steven
each have one load of clothes to 
wash, dry, fold, and put away

– Washer takes 30 minutes

– Dryer takes 30 minutes

– “Folder” takes 30 minutes

– “Stasher” takes 30 minutes to put 
clothes into drawers

37

D E N S
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Sequential Laundry

• Sequential laundry takes 8 hours for 4 loads
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Pipelined Laundry

• Pipelined laundry takes 3.5 hours for 4 loads! 
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Pipelining Lessons (1/2)

• Pipelining doesn’t help latency 
of single task, just throughput 
of entire workload

• Multiple tasks operating 
simultaneously using different 
resources

• Potential speedup = number  
of pipeline stages

• Speedup reduced by time to 
fill and drain the pipeline:
8 hours/3.5 hours or 2.3X 
v. potential 4X in this example

40
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Pipelining Lessons (2/2)
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• Suppose new Washer 
takes 20 minutes, new 
Stasher takes 20 
minutes. How much 
faster is pipeline?
– Pipeline rate limited by 

slowest pipeline stage

– Unbalanced lengths of 
pipeline stages reduces 
speedup



Agenda

• Quick Datapath Review

• Control Implementation

• Administrivia

• Performance Analysis

• Pipelined Execution

• Pipelined Datapath

427/10/2018 CS61C Su18 - Lecture 12



Pipelining with RISC-V

43
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Pipeline Performance

• Use T
c
 (“time between completion of 

instructions”) to measure speedup

–  

– Equality only achieved if stages are balanced 
(i.e. take the same amount of time)

• If not balanced, speedup is reduced

• Speedup due to increased throughput
– Latency for each instruction does not decrease
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Pipelining with RISC-V

45
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Sequential vs Simultaneous

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3

t
cycle

= 200 ps
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u
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sw t0, 4(t3)

lw t0, 8(t3)

addi t2, t2, 1

What happens sequentially, what happens simultaneously?
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Instruction Level Parallelism (ILP)

• Pipelining allows us to execute parts of 
multiple instructions at the same time using 
the same hardware!
– This is known as instruction level parallelism

• Later: Other types of parallelism
– DLP:  same operation on lots of data (SIMD)

– TLP:  executing multiple threads “simultaneously” 
(OpenMP)
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Pipelined Control
• Control signals derived from instruction

− As in single-cycle implementation
− Information is stored in pipeline registers for use by later stages

CS 61c 48



Question:  Assume the stage times shown below.
Suppose we remove loads and stores from our 
ISA.  Consider going from a single-cycle 
implementation to a 4-stage pipelined version.

1) The latency will be 1.25x slower.
2) The throughput will be 3x faster.

F F(A)
F T(B)
T F(C)
T T(D)

1 2

49

Instr 
Fetch Reg Read ALU Op Mem Access Reg Write

200ps 100 ps 200ps 200ps 100 ps
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Instr 
Fetch Reg Read ALU Op Mem Access Reg Write

200ps 100 ps 200ps 200ps 100 ps

No mem access
throughput: 
1/(IF+ID+EX+WB) = 1/600 → 
4/(4*max_stage) = 1/200
1/200*600/1 = 3x faster
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Instr 
Fetch Reg Read ALU Op Mem Access Reg Write

200ps 100 ps 200ps 200ps 100 ps

No mem access
latency: 
IF+ID+EX+WB = 600 → 
4*max_stage = 800
800/600 = 1.33x slower!
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Instr 
Fetch Reg Read ALU Op Mem Access Reg Write

200ps 100 ps 200ps 200ps 100 ps
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Summary
• Implementing controller for your datapath

– Take decoded signals from instruction and generate 
control signals

• Pipelining improves performance by exploiting 
Instruction Level Parallelism
– 5-stage pipeline for RV32I:  IF, ID, EX, MEM, WB

– Executes multiple instructions in parallel

– Each instruction has the same latency

– Be careful of signal passing (more on this next lecture)
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