

RISK ASSESSMENT OF NANOCARBONS: USE OF ANALYTICAL HIERARCHY AND CONTROL BANDING APROACHES FOR SAFETY MANAGEMENT

Guilherme Frederico B. Lenz e Silva ^[1,2] Robert Hurt ^[2]

[1] – University of São Paulo - USP, Polytechnic School - Department of Metallurgy and Materials Engineering, São Paulo, SP/Brazil

[2] – Brown University, School of Engineering, LEHN - Laboratory for Environmental and Health Nanoscience, Providence, RI/USA

Highlights

- Introduction
- Risks, reports and HSEnano website
- Multicriteria methods: control banding and AHP (Analytical Hierarchy Process)
- Nanocarbons & ranking using pairwise comparisons from judgment matrices
- Conclusions
- Acknowledgements

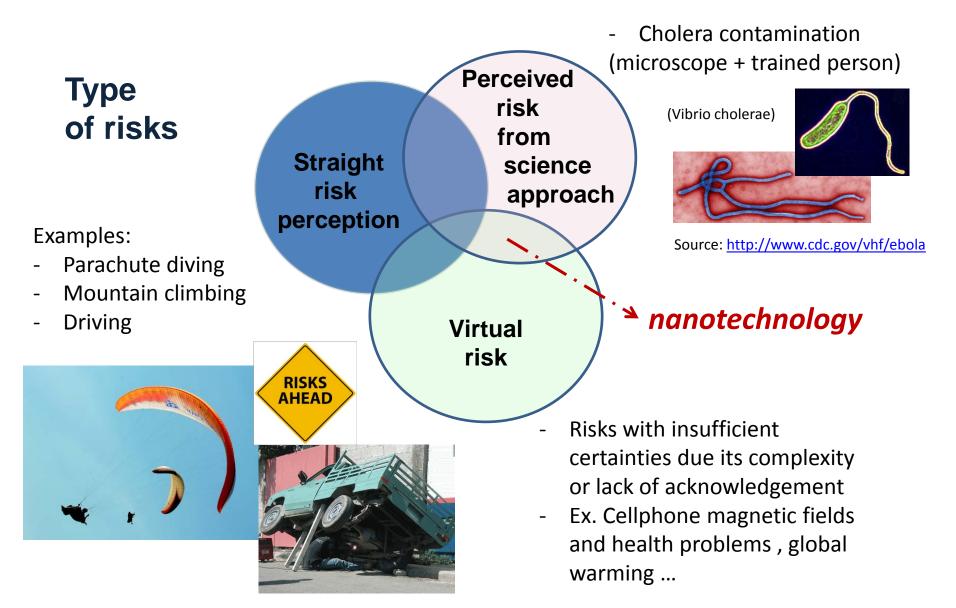
What is risk?

From Wikipedia ... 8 basic definitions ...

Oxford English Dictionary: (Exposure to) the possibility of loss, injury, or other adverse or unwelcome circumstance; a chance or situation involving such a possibility. (1655 AC)

Workplace: Product of the consequence and probability of a hazardous event or phenomenon. For example, the risk of developing cancer is estimated as the incremental probability of developing cancer over a lifetime as a result of exposure to potential carcinogens (cancer-causing substances).

It came from Italian word: "riscare" that means:


navigate between hazardous rocks

Risk perceptions

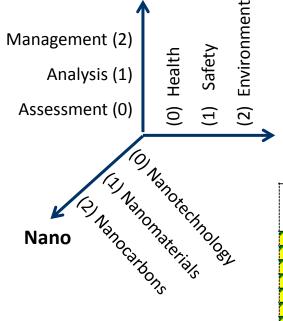
NIOSH 10 critical topics ...

National Institute of Occupational Safety & Health

NIOSH has identified 10 critical topic areas to guide in addressing knowledge gaps, developing strategies, and providing recommendations.

Each topic provides a brief description of the research that NIOSH is conducting in the area of nanotechnology and the applications and implications of nanomaterials in the workplace.

	 Toxicity and Internal Dose 	
•	Risk Assessment	
	Epidemiology & Surveillance	
	Engineering Controls and PPE	
	Measurement Methods	
	Exposure Assessment	
	Fire and Explosion Safety	
•	Recommendations & Guidance	NOT COOR OF TRANSING PRODUCT OF TRANSING PRODU
	Global Collaborations	THE COLOR OF
	Applications	
		PROCESS


Source: <u>http://www.cdc.gov/niosh/topics/nanotech/critical.html</u>

Possible **Permutations: (6)**

R-N-H / H-N-R R-H-N / N-H-R H-R-N 💋

HSE	(0) : lower level (1) : central level (2) : higher level									
	N	<u>- R -</u>	H							
	NANO	RISK	HSE	Google	YAHOO!					
000	Nanotechnology	Risk assessment	Health	5.190.000	440.000					
010	Nanotechnology	Risk analysis	Health	3.430.000	992.000					
020	Nanotechnology	Risk management	Health	3.590.000	1.250.000					
001	Nanotechnology	Risk assessment	Safety	1.630.000	244.000					
011	Nanotechnology	Risk analysis	Safety	2.900.000	320.000					
021	Nanotechnology	Risk management	Safety	2.550.000	472.000					
002	Nanotechnology	Risk assessment	Environment	5.120.000	316.000					
012	Nanotechnology	Risk analysis	Environment	4.150.000	805.000					
022	Nanotechnology	Risk management	Environment	2.910.000	1.040.000					
100	Nanomaterials	Risk assessment	Health	296.000	80.800					
110	Nanomaterials	Risk analysis	Health	501.000	80.400					
120	Nanomaterials	Risk management	Health	213.000	82.900					
101	Nanomaterials	Risk assessment	Safety	261.000	61.600					
111	Nanomaterials	Risk analysis	Safety	361.000	54.100					
121	Nanomaterials	Risk management	Safety	190.000	60.500					
102	Nanomaterials	Risk assessment	Environment	312.000	55.500					
112	Nanomaterials	Risk analysis	Environment	447.000	63.200					
122	Nanomaterials	Risk management	Environment	229.000	56.800					
200	Nanocarbons	Risk assessment	Health	48.100	52.900					
210	Nanocarbons	Risk analysis	Health	125.000	29.400					
220	Nanocarbons	Risk management	Health	36.400	30.700					
201	Nanocarbons	Risk assessment	Safety	94.200	1.620					
211	Nanocarbons	Risk analysis	Safety	172.000	29.300					
221	Nanocarbons	Risk management	Safety	35.500	29.200					
202	Nanocarbons	Risk assessment	Environment	116.000	49.300					
212	Nanocarbons	Risk analysis	Environment	198.000	65.200					
222	Nanocarbons	Risk management	Environment	40.200	61.300					

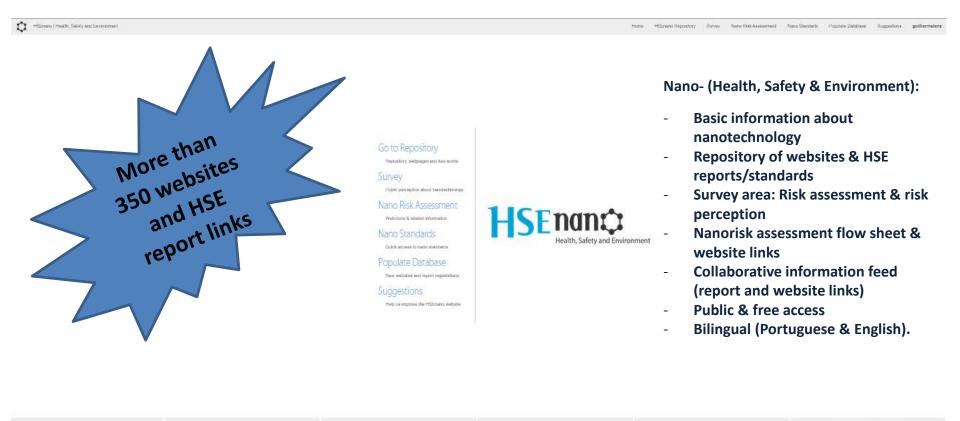
DOE (Design Of Experiments): Type: 3^k

Words search (permutations using different databases and search engines)

Date: 11-1	vlav-2014			Google	YAHOO!	WEB OF SCIENCE*		ACESSO LIVRE	EIBRARY OF CONGRESS	C.	BROWN UNIVERSITY LIBRARY
				Google results	Yahoo rasul t s	Web of Science results	EBSCO Hart (Providence	Capor (Brazil)	Library of Congress (USA)	European Commission	Brown university (Library)
n	Word31	Word\$2	Word#3	Resultados (Gongle)	Rosultados (Yahoo)	Rorultad ar (Wob of Science)	Public Library) (*) EBSCO (Bibliotoca Pública	Dirotária do Poriádicar	Biblioto ca da Cangressa das EVA	Comirsão Europeia	Universidade Brown (Sirtema-Bibliotoca)
	Palavra #1	Palavra#2	Palavra#3	http://www.google.com	http://www.yahoo.com	http://appr.uebofknouledge.co	do Providence/RI) (*)	Caper/Braril http://www.perindicar.caper		http://oc.ouropa.ou/goninfo	Live different formen ded
				nttp:rruuu.qooqio.com	neep:rruuu.yanoo.com	nttp:rrappr.weedrkndwleage.co mł	ch-databaror-0	.qov.brf	ncep:rrcatalog.loc.qovr	tqueryfindex.do?swlang-en	nttp:rriibrary.brown.oaur
				Google	Yahoo	Veb of Science	EBESCO	Periódicos Capes	Library of Congress	European Comission	Brown University (Library)
	RISK	NANO	HSE	Google	Yahoo	Veb of Science	EBSCO	Periódicos Capes	Library of Congress	European	Brown Unibersity
•	Risk assessment	11/110	HOL	97.900.000	34,500,000	254.305	332.877	1,224,868	4.601	Comission 38.194	39.457
b	Risk assessment Risk analysis			398.000.000	60.700.000	623.680	517.982	2.544.910	2.386	28.621	70.798
	Risk analysis Risk management			332.000.000	91.500.000	260.147	240.812	1.584.042	6.837	42.806	40.065
d	rios management	Nanotechnology		104.000.000	7.920.000	37.457	45.384	213.560	2.054	2.463	102.353
e		Nanomaterials		17.600.000	2.050.000	42.718	11.989	65.740	356	1.148	43,586
e f		Nanocarbons		205.000	124.000	350	30	826	2	19	120.018
q		radiocarbolis	Health	1.050.000.000	478.000.000	1.641.971	3.881.796	8.471.335	>10.000	34.477	2.769.988
9			Safety	765.000.000	6.360.000.000	1.165.117	632.057	2.397.770	> 10.000	53.137	1.043.730
			Environment	340.000.000	205.000.000	2.156.425	1.022.598	4.237.318	≥10.000	101.287	2.454.946
1	Risk assessment	Nanotechnology	Health	2.240.000	455.000	215	338	3.632	0	511	4,435
2	Risk assessment	Nanotechnology	Safety	1.620.000	254.000	154	213	2.661	12	440	3.471
3	Risk assessment	Nanotechnology	Environment	5.540.000	313.000	135	202	3.229	7	388	4.647
4	Risk assessment	Nanomaterials	Health	298.000	65.300	279	316	2.098	8	484	2.798
5	Risk assessment	Nanomaterials	Safety	262.000	64.000	172	187	1.621	8	414	2.037
6	Risk assessment	Nanomaterials	Environment	313.000	65.800	216	237	1.897	4	362	2.780
7	Risk assessment	Nanocarbons	Health	46.400	31.200	0	0	41	0	2	27
8	Risk assessment	Nanocarbons	Safety	91.900	1.590	0	0	24	0	1	22
9	Risk assessment	Nanocarbons	Environment	110.000	31.200	0	0	38	0	2	25
10	Risk Analysis	Nanotechnology	Health	12.700.000	804.000	94	154	5.047	4	284	6.475
11	Risk Analysis	Nanotechnology	Safety	3.450.000	310.000	50	36	3.342	6	193	4.661
	Risk Analysis	Nanotechnology	Environment	4.020.000	596.000	59	119	4.803	3	230	7.055
13	Risk Analysis	Nanomaterials	Health	403.000	82.600	118	154	2.419	1	177	3.661
14	Risk Analysis	Nanomaterials	Safety	361.000	55.300	60	82	1.760	2	151	2.518
15	Risk Analysis	Nanomaterials	Environment	445.000	62.800	90	148	2.441	1	152	3.886
16	Risk Analysis	Nanocarbons	Health	112.000	33.400	0	0	54	0	2	35
17	Risk Analysis	Nanocarbons	Safety	170.000	1.810	0	0	35	0	1	28
18	Risk Analysis	Nanocarbons	Environment	195.000	76.900	0	0	56	0	2	37
19	Risk Management	Nanotechnology	Health	2.970.000	1.250.000	32	160	3.326	5	389	3.300
20	Risk Management	Nanotechnology	Safety	2.250.000	430.000	59	119	2.363	5	306	2.584
21	Risk Management	Nanotechnology	Environment	5.710.000	963.000	46	127	3.018	3	354	3.515
22	Risk Management	Nanomaterials	Health	217.000	83.100	84	100	1.010		288	1.430
23	Risk Management	Nanomaterials	Safety	192.000	66.000	50	89	1.019	2	250	1.168
24	Risk Management	Nanomaterials	Environment	233.000	57.700	42	100	1.106		248	1.460
25	Risk Management	Nanocarbons	Health	35.200	31.100	0	0	20	0	2	9
26	Risk Management	Nanocarbons	Safety	34.300	1.630	0	0	13	0	2	10
27	Risk Management	Nanocarbons	Environment	38.700	1.720	0	0	21	0	2	9
- 12	rash management	riano carbons	Lawrent	00.100		U V	· ·	L 21	· ·		, v

Bibliographic review: focussing on reports ~ last 10 years

- Using DOE planning (Design of Experiments choosing key words and its combinations and permutations) and internet searching tools :
- University databases : journals impact factor; citations, etc.
- Words: risk, assessment, toxicology, nanotechnology, nanocarbons (graphene, CNT, SWNT, MWNT, DWNT, graphene, fullerene, carbon black, few layers graphene, etc.) ...;
- Agencies and countries: ILO-UN, US-OSHA, US-EPA, UN, EU, HSE/UK, Australia, Japan, Swiss, Netherlands, etc.


http://www.hsenano.org;

www.hsenano.com

www.hsenano.info

(registered website domain under construction and evaluation)

National Institute of Science and Technology: Carbon Nanomaterials

METMAT Department of Metallurgy and Materials Engineering University of Sao Paulo

Christian Doppler Laboratory for Advanced Ferrolc Oxides Sheffield Hallam University

Dackemen Support Pertners How to Use HSEmero What is nanotechnology/* Nerotechnology importance 🚺 📑

How big is the nanomaterial risk issue problem?

A division of the American Chemical Society **8 8, 2 9 5, 6 9 7** ORGANIC AND INORGANIC SUBSTANCES TO DATE

A global team of scientists is continually adding substance information from the world's disclosed chemistry to the CAS REGISTRYSM, the gold standard for chemical substance information.

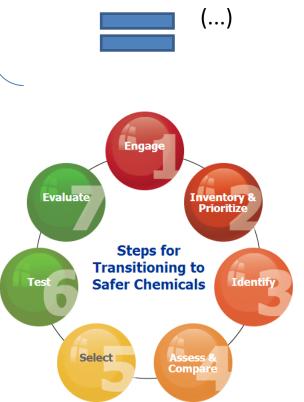
Chemical Abstracts Service

Date: 05/23/2014 - 19:33pm

workers suffer more than 190,000 illnesses and 50,000 deaths annually related to chemical exposures.

Source: https://www.osha.gov/dsg/safer_chemicals/index.html

OSHA Transitioning to safer chemicals (OSHA: Occupational Safety & Health Administration)



Nanotech

Nano-functionalization

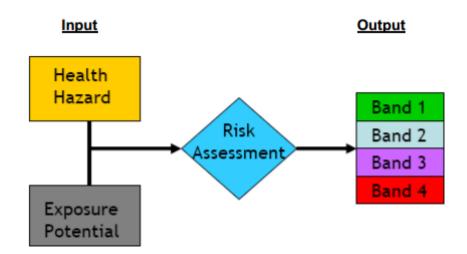
Combinations of chemicals in new products

New materials , "new" risks ... we need new approaches to deal with them !

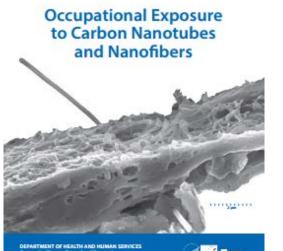
http://2020science.org/2011/08/09/what-was-worrying-us-about-nanotechnology-safety-seven-years-ago

What is Control Banding (CB) and how it works

IAHA (The American Industrial Hygiene Association): **Control banding is a complementary approach to protecting worker health** by utilizing finite resources to identify and implement exposure controls. Given the reality that appropriate occupational exposure limits cannot be established for every chemical in use, a **chemical is assigned to a "band" for control measures**, based on **its hazard classification** according to international criteria, the amount of chemical in use, and its volatility/dustiness

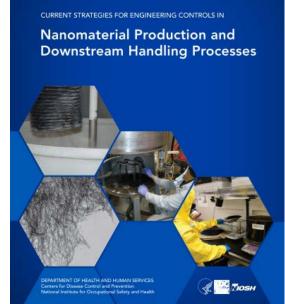

There is no single such thing or methodology defined as "control banding"

Frequently evaluation = air sampling Take a measurement & compare it to the exposure limit.


```
if > PEL than fix it !
if < PEL: "not a problem"
if no PEL: ????...</pre>
```

Thousands of chemicals, only 500 with PELs

(*) PEL: Permissible Exposure Limits



CURRENT INTELLIGENCE BULLETIN 65

PRATMENT OF HEALTH AND HUMAN SERVICES eters for Disease Control and Prevention tional Institute for Occupational Safety and Health

🕺 🏄 Тюзн

April 2013

According to NIOSH, due to some residual risk at the **REL (recommended exposure limit)** and the uncertainty related to chronic health effects, **exposures to CNT and CNF should be reduced** "as much as possible"— below 1 μ g/m³ of respirable elemental carbon as an 8 - hour TWA during a 40 - hour workweek.

November 2013

Currently (2014), there are **no established regulatory occupational exposure limits (OELs) for nanomaterials in the United States**; however, other countries have established standards for some nanomaterials, and some companies have supplied OELs for their products

University of São Paulo

Example Benchmark Particles & Risk-based Exposure Bands: Poorly-Soluble Inhaled Particles

Hazard Rank	Substance	Primary Particle Size	Occupational Exposure Band [*] (8-hr TWA, µg/m ³)
Low	Molybdenum oxide Titanium dioxide (F)	Fine	>1,000
Moderate	Carbon black Diesel exhaust particulate Titanium dioxide (UF)	Ultrafine	100 – 1,000
High	Nickel oxide	Fine	10 - 100
Very high	Nickel subsulfide Gallium arsenide	Fine	1–10

*Assignment based on working lifetime exposures associated with <1/1000 excess risk of lung cancer; 95% LCL estimates extrapolated from rat chronic inhalation studies by NTP [Kuempel et al 2012, JNR 14:1029].

Strategies for Occupational Exposure Limits for Engineered Nanomaterials

Source:

Eileen D Kuempel PhD, Vincent Castranova PhD, Charles L Geraci PhD, Paul A Schulte PhD National Institute for Occupational Safety and Health

Remark: MWCNT-7 ; Multiwall carbon nanotube from Mitsui/Japan.

Published Online October 31, 2014 http://dx.doi.org/10.1016/ S1470-2045(14)71109-X Just remember ! For CNT (US-NIOSH):

REL: $1\mu g/m^3$

As a whole, the Working Group acknowledged that the above mechanisms are all relevant to humans. However, a majority did not consider the mechanistic evidence for carcinogenicity—especially concerning chronic endpoints-to be strong for any specific CNT. Furthermore, the lack of coherent evidence across the various distinct CNTs precluded generalisation to other types of CNTs. Thus, MWCNT-7 was classified as possibly carcinogenic to humans (Group 2B); and SWCNTs and MWCNTs excluding MWCNT-7 were categorised as not classifiable as to their carcinogenicity to humans (Group 3).

The **British Standard Institute** has suggested benchmark exposure levels for four nanoparticle hazard types:

- For insoluble nanomaterials a general benchmark level of 0.066 × OEL of the corresponding microsized bulk material (expressed as mass concentration) is proposed;
- For fibrous nanomaterials the proposed benchmark level is 0.01 fibres/ml;
- For highly soluble nanomaterials a benchmark of 0.5 ×
 OEL is proposed;
- For substances classified as carcinogenetic, mutagenic, asthmagenic or reproductive (CMAR) in their coarse form, the same hazards will be considered for the nano form and the suggested benchmark level is 0.1 × OEL (mass concentration) of the corresponding microsized material.

OEL: Occupational Exposure Level

Multiplicative risk factors

PD 6699-2:2007

PUBLISHED DOCUMENT

Nanotechnologies -

Part 2: Guide to safe handling and disposal of manufactured nanomaterials

ICS 13.100; 71.100.99

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

Source: BSI/UK

The German Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA) has also developed recommendations for benchmark limits, using size and density of the nanoparticles as classification criteria. IFA proposed the following benchmark limits as increases over the background exposure to ultrafine particles during a 8-hour working shift, based upon its experience in measurement and the detection limits of the measurement methods currently employed:

- For metals, metal oxides and other biopersistent granular nanomaterials with a density of > 6,000 kg/m³, a particle number concentration of 20,000 particles/cm³ in the range of measurement between 1 and 100 nm should not be exceeded.
- For biopersistent granular nanomaterials with a density below 6,000 kg/m³, a particle number concentration of 40,000 particles/cm³ in the measured range between 1 and 100 nm should not be exceeded.

For carbon nanotubes (CNTs) for which no manufacturer's declaration is available that the CNTs have been tested as safe against asbestos-like effects, a provisional fiber concentration of 10,000 fibres/m³ is proposed for assessment, based upon the exposure risk ratio for asbestos.

Leitfaden

für das Risikomanagement von Nanomaterialien am Arbeitsplatz

> Günther Kittel PPM forschung + beratung Überarbeitete Version, Linz, November 2013

CONTROL BANDING

Das CB Nanotool ist in der Praxis nicht einfach einsetzbar. Beispielsweise orientieren sich die Wertbereiche an Forschungstätigkeiten; ihre Anpassung auf die Situation im Unternehmen oder aufgrund geänderter Kenntnisse über mögliche negative Wirkungen erfordert Expertenwissen und Expertenerfahrung (Zalk/Paik, 2010).

Eine zweite Version wird im Web zur Verfügung gestellt: CB Nanotool 2.0 www.controlbanding.net/Services.html

Dort stehen Leitfäden, Formblätter und Beispiele; praktische Beispiele finden sich auch in Paik et al. (2008) und vor allem in Zalk et al. (2009), wo die schwierige Gewichtung der verschiedenen Riskofaktoren diskutiert wird.

Weitere Beispiele für Nano-Control Banding auf Englisch:

- → Der Guidance der holländischen Sozialpartner (Cornelissen et al., 2011);
- → das C8-Werkzeug von ANSES aus Frankreich (ANSES, 2010; Riediker et al., 2011);
- → das C8-Konzept des internationalen Normeninstituts (ISO, 20012a und 2012b);
- → ein australisches CB-Tool (WHSQ, 2010a; SW 2010b).

→ THEMENBLATT: E

Control Banding Approaches for Nanomaterials

6 online/web tools

	Table 1. Sum	mary	of the	m	ost impo	rtant cha	racteristics of the	various C	B tools						
		Hazard	bandin	g			Exposure banding								Matrix
		Allocati system				Source do	mains/type of activitie	s*						Number of bands/levels	
	CB tool Short name	Binary	Score	N	Synthesis	Powder handling	Application ready- to-use products	Abrasion	Emission potential	Exposure potential	N	СВ	RL		
1	Precautionary Matrix	-	+	1	(+)	(+)	(+)	(+)	+	-	1	2	-		
2	NanoTool	-	+	4	+	+	-	-	+	-	4	4	-		
3	ANSES	+		5	(+)	+	+	+	+	-	4	5	-		
1	Stoffenmanager Nano	+	-	5	+	+	+	(+)	-	+	4	-	3		
5	NanoSafer	+	+	4	-	+	-	-	-	+	5		5		
5	Guidance	+	-	3	+	+	+	+	+	-	3	3	-		
,	*Based on Schne	eider <i>et</i> i	<i>al</i> . (201	0).											
	1 Precautionary i	matrix d	loes not	dis	stinguish se	parate haza	ard and exposure band	ls.							
	N Number of ban	ds.													
	CB Control band														
	RL Risk level.														
	+ Used/addresse	ed by too	ol.												
	- Not used/addre	essed by	y tool.												
	(+) only implicitly	y addres	ssed by	too	ol.										

Control Banding Approaches for Nanomaterials

DERK H. BROUWER

Ann. Occup. Hyg., Vol. 56, No. 5, pp. 506–514, 2012 © The Author 2012. Published by Oxford University Press on behalf of the British Occupational Hygiene Society doi:10.1093/anhyg/mes039

Source:

FRANCE:

ANSES (French Agency for Food, Environmental and Occupational Health & Safety)

anses

		Band	les de pote	ntiel d'émis	ssion
		PE1	PE2	PE3	PE4
-	BD1	NM1	NM 1	NM 2	NM 3
ange	BD2	NM1	NM 1	NM 2	NM 3
de di	BD3	NM1	NM 1	NM 3	NM 4
Bandes de danger	BD4	NM 2	NM 2	NM 4	NM 5
Banc	BD5	NM 5	NM 5	NM 5	NM 5

NM 1 : Ventilation générale naturelle ou mécanique.

- NM 2 : Ventilation locale : hotte d'extraction, hotte à fente d'aspiration horizontale, bras d'aspiration, table aspirante, etc.
- NM 3 : Ventilation fermée : cabine ventilée, hotte de laboratoire, réacteur fermé avec ouverture fréquente.
- NM 4 : Confinement total : systèmes fermés en continu.
- NM 5 : Confinement total et examen par un spécialiste exigé : demander le conseil d'un expert.

Source: ANSES/ France

USA:

Sources: CDC/NIOSH and LLN laboratory

CDC (Centers for Disease Control and Prevention) NIOSH (National Institute for Occupational Safety and Health)

Lawrence Livermore National Laboratory **Qualitative Risk Characterization and Control Banding Nanotool:** Management of Occupational Hazards: Evaluation of a qualitative risk assessment method for the control of nanoparticulate exposures **Control Banding (CB)** A Literature Review and Critical Analysis **General Safe Practices for Working** with Engineered Nanomaterials in **Research Laboratories** Exposure Bound Potential Free / Duration Materials Release Unbound Hazard Group A (Known to be inert) 1 2 Shout 1 1 2 Medium 1 1 2 2 Long Hazard Group B (Understand reactivity/function) 2 2 Short 1 1 2 3 Medium Long 1 3 3 CDC Mosh 🚯 Statutes Hazard Group C (Unknown Properties) Short 2 2 3 DEPARTMENT OF HEALTH AND HUMAN SERVICES CDC NIOSH Medium 2 3 4 Centers for Disease Control and Prevention National Institute for Occupational Safety and Health 4 Long 2 4

Band 1: Use good industrial hygiene practice and general ventilation.

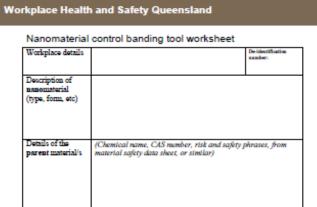
Band 2: Use an engineering control, typically local exhaust ventilation.

Band 3: Enclose the process.

Band 4: Seek expert advice.

Canada: The Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail

Legislation: Pest Control Products Act (PCPA)


* Including nanomaterials

Score	Generation rate bands			
	Probability of inhalation	Examples		
8.0	Very high	Uncontrolled aerosolization of the biological contaminant; proximity to emission sources; work in the emission plumes; medical procedures producing aerosols or other similar situations		
6.0	High	High aerosolization; decontamination work; care given to an infectious patient coughing or sneezing with mouth uncovered or other similar situations		
4.0	Moderate	Moderate aerosolization; contact with the biological contaminant; long distance from the source; infectious patient coughing or sneezing with mouth covered or other similar situations		
2.0	Low	Low aerosolization; personnel assigned to other care tasks		
0	None	No aerosolization		

Sources: IRSST and Council of Canadian Academies /Canada

Australia: Safe Work Australia Agency

www.worksafe.gld.gov.au

Production description	(e.g. vapour phase, solid phase, liquid phase techniques)
Task description	
Date	
Control banding team members	

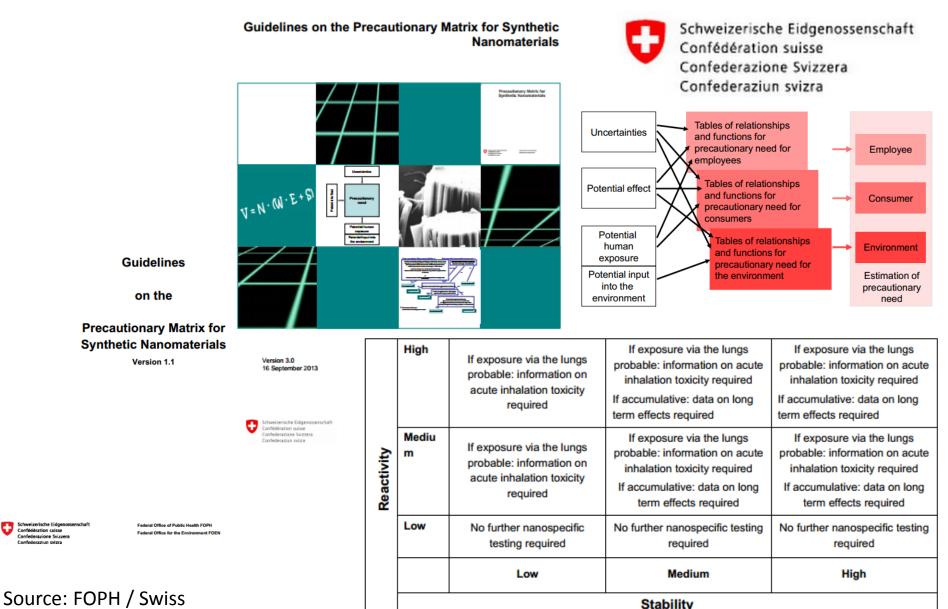
SAFE

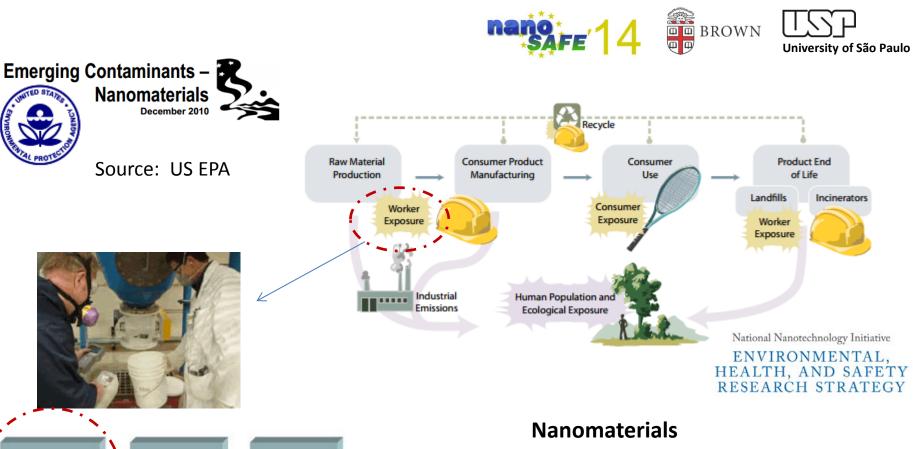
Table 3 – Matrix to Determine the Control Band (1-4)

Exposure Potential

Determining the exposure potential, and hence the recommended control band, based on the quantity of CNTs handled, and the likelihood that CNTs will become airborne.

	High Assessed Exposure	Moderately High Assessed Exposure	Moderately Low Assessed Exposure	Low Assessed Exposure
Quantity A	4	4	3	2
Quantity B	4	3	3	2
Quantity C	4	3	2	1
Quantity D	3	2	1	1


Source: Safe Work Australia


Switzerland: The Federal Office of Public Health (FOPH) - Federal Department of Home Affairs

BROWN

University of São Paulo

Improve the quality of hazards modeling: Quantitative control level

	Release Probability										
Environmental Hazard	Unlikely (1)		Low (2)	Likely(3)	Probable (4)						
	Very High or Unknown (D)	Control Level III	Control Level III	Control Level IV	Control Level IV						
	High (C)	Control Level II	Control Level II	Control Level III	Control Level IV						
	Medium (B)	Control Level I	Control Level I	Control Level II	Control Level III						
	Low (A)	Control Level I	Control Level I	Control Level I	Control Level II						

What is AHP and How it works?

The AHP (**A**nalytic **H**ierarchy **P**rocess) is a multicriteria method created by Thomas L. Saaty (University of Pittsburgh) in 1971. The AHP has the following approach:

- Decomposing a decision into smaller parts: one overall goal on the top level, several decision alternatives on the bottom level and several criteria contributing to the goal
- **Pairwise comparisons on each level; Comparing pairs** of alternatives with respect to each criterion *and* pairs of criteria with respect to the achievement of the overall goal.
- **Synthesizing judgments**.: Obtaining priority rankings of the alternatives with respect to each criterion and the overall priority ranking for the problem.

Pairwise comparisons:

to

A1

a₁₁

 a_{21}

a₃₁

(a) $a_{ii} = 1$

(b) $a_{ii} = 1$

A comparison of criterion i with itself:

equally important

 a_{ji} are reverse comparisons and must be the reciprocals of a_{ii}

Pairwise Comparison Matrix : $A = (a_{ij})$

Values for a_{ij} :

Alternative 1 (A1)

Alternative 2 (A2)

Alternative 3 (A3)

Numerical values	Verbal judgement of preferences
1	equally important
3	weakly more important
5	strongly more important
7	very strongly more important
9	absolutely more important

1 to 9 - scale

A2

a₁₂

 a_{22}

a₃₂

A3

a₁₃

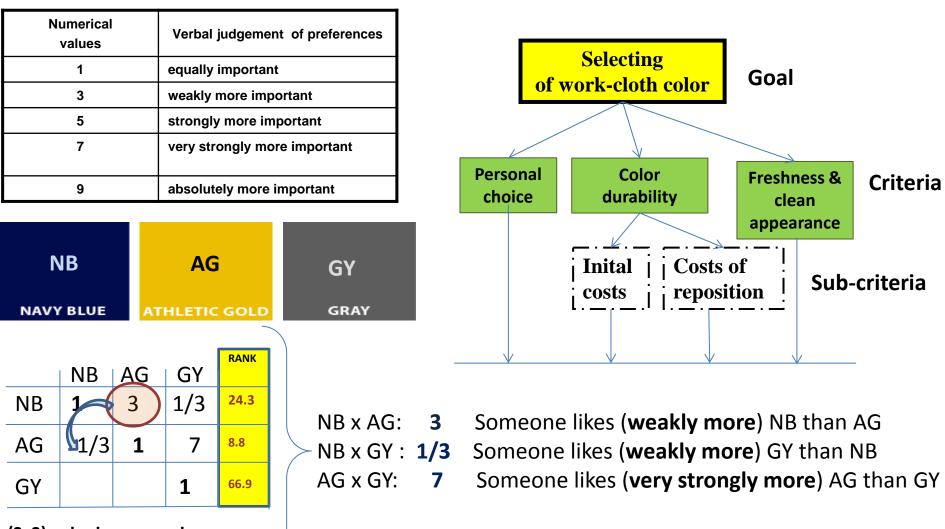
 a_{32}

a₃₃

2,4,6,8 => intermediate values

reciprocals => reverse comparisons

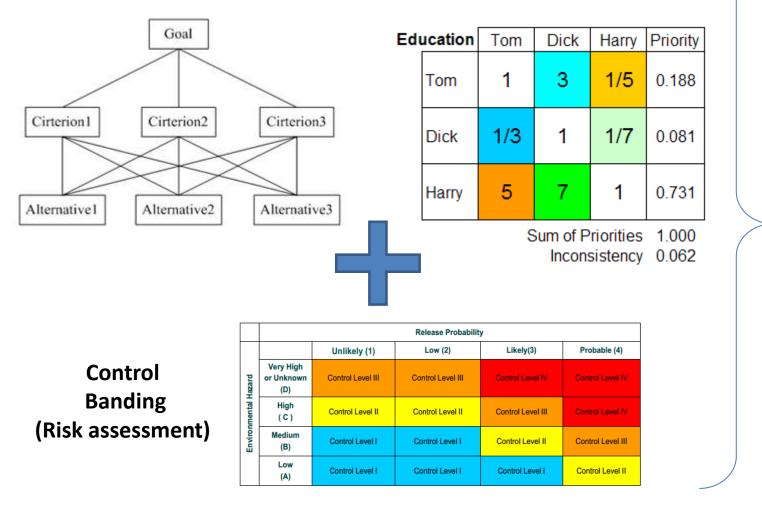
The human brain can deal only with 7 +/- 2 things at the same time !


If you increase the number of pairs to compare .. You will lose accuracy.

Weber-Fechner law: $M = a*\log s + b; a \neq 0$ M – sensation and s – stimuli.

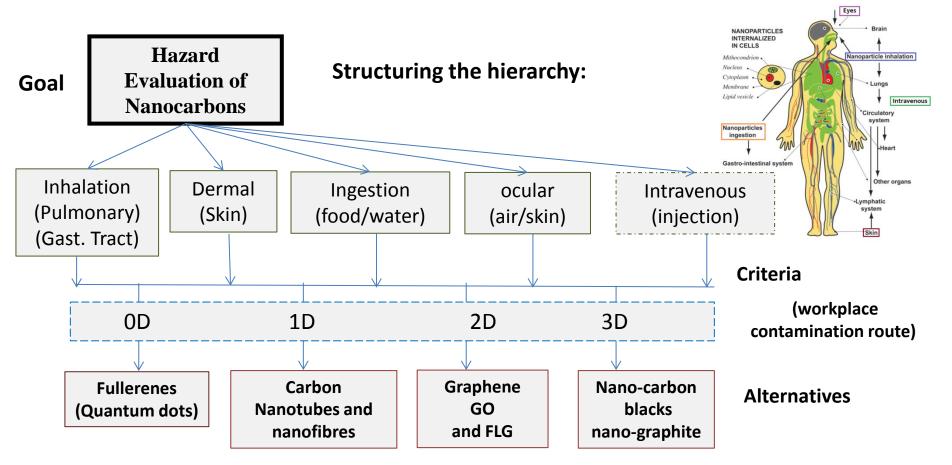
Structuring a hierarchy:

e.g. Let's create a scale (rank) of preferences between colors:



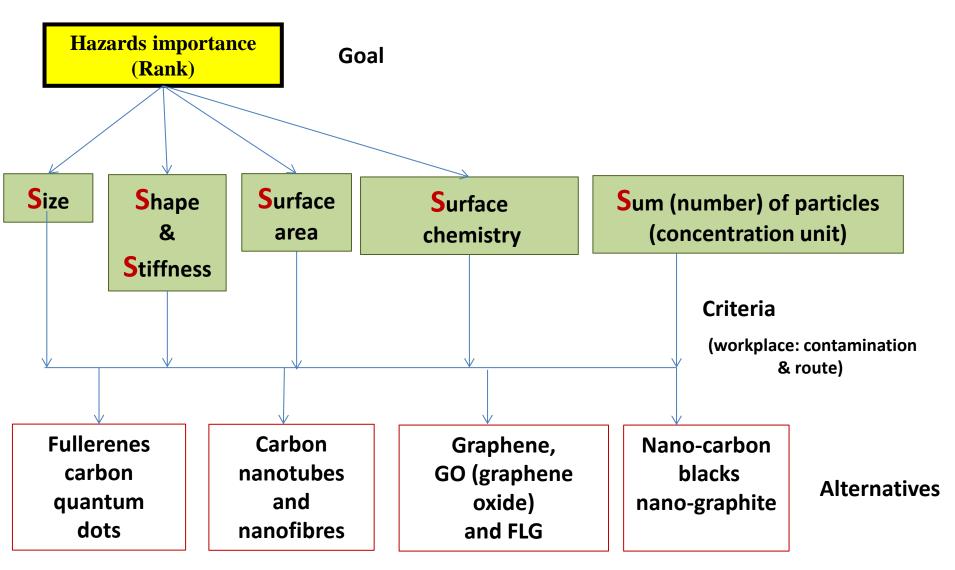
(3x3) pairwise comparison matrix, n = 3

Building a block diagram: risk assessment of carbon nanomaterials

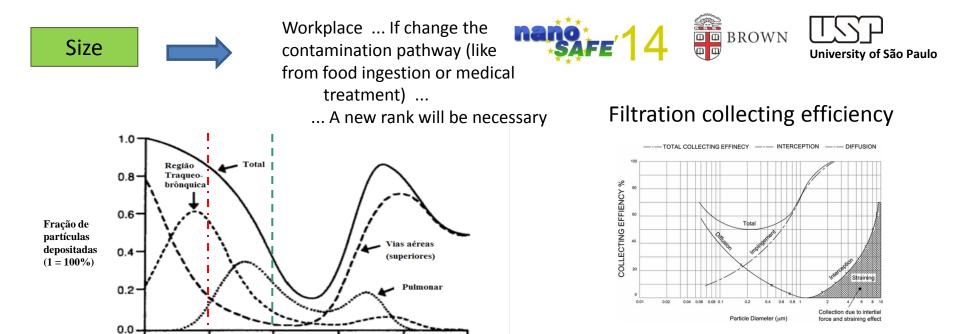

Multicriteria method: AHP (Analytical Hierarchy Process)

High quality (auditable) and simple as possible (not simpler) risk assessment model/tool.

AHP & CB: nanocarbons



AHP pairwise comparison matrix example (workplace)


Cont. route	Inhalation	Dermal (Skin)	Ingestion	Ocular (eyes)	Intravenous	Rank (%)
Inhalation	1	4	7	6	9	52.7
Dermal	1/4	1	7	5	8	25.5
Ingestion	1/7	1/7	1	1/3	9	8.1
Ocular	1/6	1/5	3	1	9	11.5
Intravenous	1/9	1/8	1/9	1/9	1	2.2

Structuring a hierarchy:

The **"S**" grouping multicriteria model.

100

http://www.tetisantesisat.com/air-filter-technology/air-filter-mechanisms

Size	<10 nm	10-100 nm	100-400 nm	400-1000 nm	>1000 nm	RANK (%)
<10 nm (TB), (AR) +(NPLR)	1	4	1/3	4	6	27.5
10-100 nm (NPLR)		1	1/5	3	5	13.0
100-400 nm			1	5	7	48.1
400 -1,000 nm				1	3	7.6
>1,000 nm					1	3.8

10

(Dp, µm)

0.01

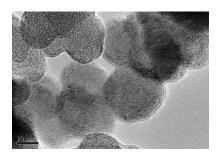
0.1

0.001

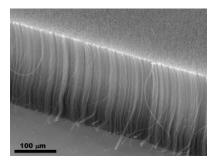
TB: tracheobronchial ; AR: alveolar region; NPLR: nasopharyngeal-laryngeal region.

Cell interaction with nanoparticles: the shape, size and stiffness aspects

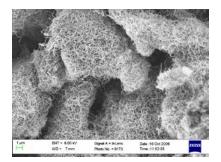
Carbon Materials:


Dimension	Size	Shape	Stiffness	Examples
0D	Nano	Spherical	Low to high	Carbon dots (*) Typically < 10 nm size materials
1D	Nano- millimeters	Linear Aligned (Cylindrical) bundles Spherical	High	Carbon Nanotubes (SWCNT, DWCNT, MWCNT) Carbon Fibers
2D	Nano- millimeters	Planar	Super-High	Graphene
3D	Nano- millimeters	Spherical, plates, etc.	Low to high	Nano-Graphite Nano-Carbon blacks

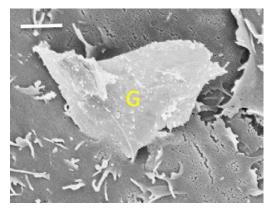
nano


BROWN

University of São Paulo


Size, Shape and Stiffness & Cells

http://www.intechopen.com/books/modern-surface-engineeringtreatments/coating-technology-of-nuclear-fuel-kernels-a-multiscale-view



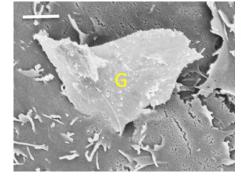
https://www.beilsteinjournals.org/bjnano/single/articleFullText.htm?publicId=2190-4286-4-14&vt=f&sso=C&tpn=2&bpn=authors

Cell x nanoparticle interaction

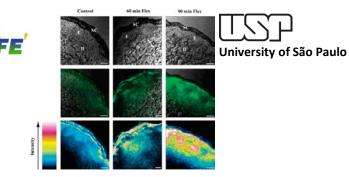
http://www.gizmag.com/graphene-bad-forenvironment-toxic-for-humans/31851/

http://journals.cambridge.org/action/displayFulltext?typ e=6&fid=8753679&jid=MRS&volumeId=37&issueId=12& aid=8753678&bodyId=&membershipNumber=&societyE TOCSession=&fulltextType=RA&fileId=S08837694120018 19#cjofig_fig4

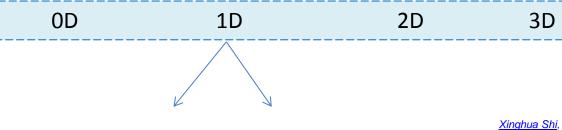
similarity,


however,

biological

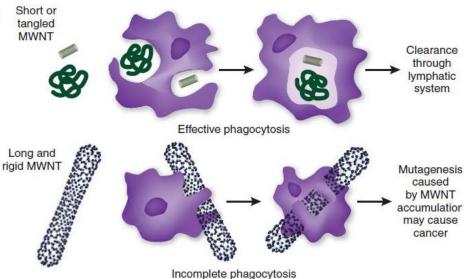

Shape: same length, same stiffness

but different shape/symmetry ... Promote a different biological response (frustrated phagocytosis).


Shape

http://www.gizmag.com/graphene-bad-forenvironment-toxic-for-humans/31851/

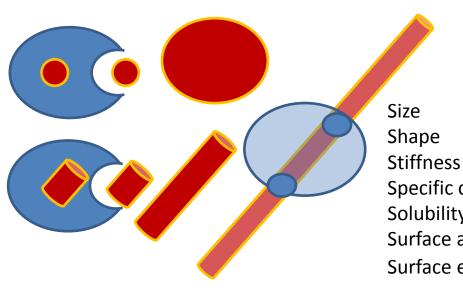
http://www.nanowerk.com/spotlight/spotid=1210.php

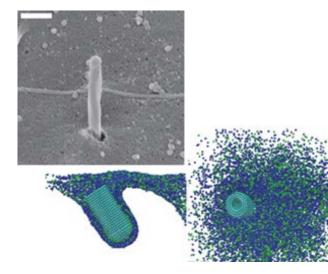


Aligned Non-Aligned

<u>Xinghua Shi</u>, <u>Annette von dem Bussche</u>, •<u>Robert H. Hurt</u>, <u>Agnes B. Kane</u> & <u>Huajian Gao</u> Nature Nanotechnology, 6, 714–719, (2011).

Shape	0D	1D (aligned)	1D (non-aligned)	2D	3D	Rank (%)
0D	1	1/7	1/3	1/3	6	8.3
1D (Aligned)		1	6	7	8	62.2
1D (Non-Aligned)			1	2	1/2	11.5
2D				1	4	12.8
3D					1	5.3





VOLUME 26 NUMBER 7 JULY 2008 NATURE BIOTECHNOLOGY

The long and short of carbon nanotube toxicity

Kostas Kostarelos

<u>Xinghua Shi, Annette von dem Bussche,</u> •<u>Robert H. Hurt, Agnes B. Kane & Huajian Gao</u> Nature Nanotechnology, 6, 714–719, (2011).

A better understanding of material properties and cell interaction is a very important aspect to predict toxicity of cells.

Specific chemical groups Solubility Surface area Surface electric charge, ...

	S ize	S hape	Surface area	Surface chemistry	Sum of particles (concentration unit)	Rank (%)	
Size	1	X ₁	X ₂	X ₃	X ₄	K ₁	
Shape	1/X ₁	1	Y ₂	Y ₃	Y ₄	K ₂	
Surface area	1/X ₂	1/Y ₂	1	Z ₃	Z ₄	K ₃	
Surface chemistry	1/X ₃	1/Y ₃	1/Z ₃	1	W ₄	K ₄	
Sum of particles (concentration unit) (*)	1/X ₄	1/Y ₄	1/Z ₄	1/W ₄	1	К ₅	
(*) e.g. mass/m²; mass/m³ , n	number of part	icles/h , etc.		Numerical values	Verbal judgement of preferences	of	
Decrease bias: - Multicultural				1	equally important		
- Multidisciplinary				3	weakly more important		
- Worldwide participation				5	strongly more important		
- Sample size, etc.	ηρατιστι			7	very strongly more important		
				9	absolutely more importa	ant	

Surface chemistry	Amount of oxygen (%)	Solubility	State of aggregation	ROS (Reactive Oxygen Species)	Rank (%)
Amount of oxygen (%)	1	X ₁	X ₂	X ₃	K ₁
Solubility	1/X ₁	1	Y ₂	Y ₃	K ₂
State of aggregation	1/X ₂	1/Y ₂	1	Z ₃	K ₃
ROS (Reactive Oxygen Species)	1/X ₃	1/Y ₃	1/Z ₃	1	K ₄

Decrease bias:

- Multicultural
- Multidisciplinary
- Worldwide participation
- Sample size, etc.

Numerical values	Verbal judgement of preferences
1	equally important
3	weakly more important
5	strongly more important
7	very strongly more important
9	absolutely more important

Provide good, free access, reliable information and guidance.

CONCLUSIONS

Building and using multicriteria decision tools based on AHP and CB could provide a new way to evaluate and improve the quality of risk assessment of nanomaterials, also it could:

- Improve the safety approach of laboratory and industry procedures;

- Help on design safer products and processes with a structured decisions strategy;

- Make/build a ranking of different types of nanocarbons (and confirm this ranking supported by previous toxicological studies or new studies);

- Integrate safety ranking with toxicological data from different nano raw materials;

- Integrate different and multiple point of view from worldwide participants using web-platforms;

CONCLUSIONS (Cont.)

-The sample size and expert judgment is a crucial point to incorporate different backgrounds and perspectives; -Systematic studies covering intrinsic mechanical properties of different carbon nanotubes and physic-chemical properties such as length, aspect ration, shape, surface chemistry, stiffness, etc. must be done to improve the boundary conditions of risk assessment models; -Worldwide participation is mandatory to decrease bias issues of decision model and create better mulicriteria risk assessment.

- Get involved !!!

- We would like to invite you to participate in this project.

- Please answer the survey and help us to improve the multicriteria risk assessment model and send us suggestions and comments !

Thanks Aloha Merci Gracias 谢谢 Danke Grazie Teşekkürler **Obrigado**

CONTACT:

Prof. Guilherme Lenz e Silva (guilhermelenz@usp.br) LM²C² PMT–POLI / University of São Paulo

Prof. Robert Hurt (robert hurt@brown.edu) **LEHN / Brown University**

ACKNOWLEDGEMENTS

Universidade de São Paulo

National Institute of Science and Technology **Carbon Nanomaterials**

