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Our research is motivated
by the idea that...

significant uncertainty surrounds cyber security investments
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/An organization considering
three investments currently

assess the value of different
/ safeguards, or to quantify cyber
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does not have a rigorous way to
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oreanizations use people sitng arouncs | Cyrrent methods are limiting

table’ to make decisions, or rely on hand-
wavy explanations from security vendors.
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rigorous, quantitative methods now exist
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Data Analysis Modeling
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( Significant data exists in [ R

L organizations! J Use dollars

Quantitative approaches lead to more insights

Risk Analysis

Use distributions, not averages

ious
Insider

Malic

Our method is data driven, uses dollars, and
uses distributions. Overall, we model the
frequency and impact of different cyber
attack categories and quantify risk
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Our work has been successful in
part because we’ve gotten access
to security incident data. These...

incident databases are treasure troves of intel
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We can analyze shellshock ShellShOCk attaCkS

attacks
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Incidents continued to occur
for several months
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We can also do a really good
job of quantifying the
frequency and impact of
cyber security incidents.

N J

frequency and impact of cyber incidents can be
quantified
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Most incidents take less than 100 hours to resolve

/Here we see 60,000 incidents that
occurred at one organization over
6 years. The cost is measured by
the time it takes to resolve an
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Lost devices: constant rate, decreasing impact

/“Incidents follow unique I Large incidents do not
patterns that are often occur after FDE is
consistent over time. Here, implemented

we find that lost devices
occur at a remarkably
\_constant rate over time. J
&

Change in rate is due to
reporting guidelines such as
recording more device types
(cellphones, tokens, etc.)

o Rate of lost devices is
° .‘ remarkably consistent
e ee we e @ over time

Cumulative number of Incidents
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Impact is constant

(heavy-tailed)
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decreases over time

/

Malware incidents are decreasing in frequency,
but have a consistent impact distribution that is
heavy-tailed. This turns out to be very important

Stanford

for a number of reasons shown at right.
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Malware: Decreasing rate, constant impact

f Large Events are NOT |

L outliers )

( , , )
No ‘average’ or

o

22

\‘typical’ cyber breach)

(" Standard deviations
and some risk

metrics (value at

\__risk) are not valid )

<

(Largest incident can
be more impactful
than all other
\_incidents combined! )
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Investigation is a major cost, and can be quantified
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Reputation damage uncertainty is modeled

Mars Global Surveyor

Failure: 2006

Cost:$154M to build, S65 to
launch, S20M per year to
operate

Description: Software update
error causes computer crash and
fried batteries

Mars Climate Orbiter
Failure: 1999
Cost:$193M

Description: metric and
standard units conversion
crashes the orbiter into
mars

w%Reputation damage has been a hurdle in tfﬂ vorer . Reputation Damage
©  past, but we explicitly model the uncertainty
of losses (seen at right). For a case study,
take chip manufacturer that stocks satellite
parts. We can look at failures of satellites
(that are cyber attack flavored, not attacks)
to estimate costs. Academic research shows 0.004 -
that stock prices only fall for 2 days after a

0.012 -

51 0.01f

52 0.008 -~

ct13 Jan 14 Apr'4 Jul 14

Density

0.006 -

0.002 -

breach, and we can look at Target, RSA, or |
K TARGET &)ny for other case studies. / R
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Direct costs are well understood

Probability Device Average Cost Cost Distribution

0.025; : : : : : : :
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Yearly Losses (Millions S)

Willingness-to-pay used for intellectual property losses
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1 @ -_ _ ~
s - We use a willingness-to-pay
Seal to elicit the cost of IP loss.
. Y We also use case studies like
0.1 s Solyndra and Cisco.
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rolling this information together, we can obtain
excellent risk assessments
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A case study demonstrates the method

[ Rate of spillage incidents ]
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A case study demonstrates the method

Losses from website
compromises are usually small...

1 S
...but every so
v often, losses from
> E / websites are huge
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O 0 B Theft and still does not = analysis that can save organizations
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Conclusions

Probabilistic risk analysis methods inform actionable
decisions.

Incident data is priceless.

{ | . Safeguards can be compared and prioritized.

;% W Monetary impacts help justify budgets and communicate
e A risk.
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