
Presented at ASU Dec 1, 2011

Risk Management of Portfolios by CVaR Optimization

Thomas F. Colemana

Dept of Combinatorics & Optimization

University of Waterloo

aOphelia Lazaridis University Research Chair

1



Presented at ASU Dec 1, 2011

Joint work with Yuying Li and Lei Zhu, Univ of Waterloo:

L. Zhu, T. F. Coleman, and Y. Li, Minmax robust and CVaR robust mean

variance portfolios, Journal of Risk, Vol 11, pp 55-85, 2009.
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Mean-Variance Optimization: Harry Markowitz, 1950

Assume asset returns are jointly normal:

� � �� � expected rate of returns

� � �-by-n covariance matrix
� � �� � percentage holdings

� � � � the risk aversion parameter
���

����
����� � � ����

s.t. ��� � �

� � �

where �� � ��� �� � � � � �	
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Measure Tail Risk: CVaR� (�: a confidence level)

If the return distribution is not normal, tail risk becomes crucial.

VaR 

Probability
1−β    

CVaR 

Loss Distribution 
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OUTLINE
� Sensitivity to estimation error in MV portfolio optimization

� Min-max robust MV portfolio optimization

� Performance of min-max robust optimal portfolios

– sensitivity to initial data

– asset diversification

� CVaR robust MV portfolio optimization

� Efficient CVaR optimal portfolio computation
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Assume that � and � are known.

The optimal portfolio �� is efficient: it has the minimum risk for the given

expected rate of return.

Let ��
�� denote the optimal MV portfolio for �.

The curve 

�

��
������
��� ����
���� � � �� forms an efficient

frontier.
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� In practice, only estimates ��� �� from a finite set of return samples are

available.
� The MV optimization problem based on estimates ��� �� is called a

nominal problem.

� Sensitivity of the optimal portfolio to mean returns: � � �

��� � �� � ����� ��� � �� � ����� ��� � �� � ����
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� Optimal portfolio ��
�� from estimates ��� �� may not perform well in

reality.

� Actual frontier (Broadie, 1993): the curve



�

��
������
��� �� ��
���, � � �, describes the actual performance

of optimal portfolios ��
�� from nominal estimates.
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A ten-asset example:

� (blue) true efficient frontier: computed using � and �

� (red) actual frontier: computed based estimates �� and �� using 100

return samples
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� Actual performance of the MV optimal portfolio from estimates can

be very poor.

� Smaller variation for the minimum risk portfolio (left end).

� Larger variation for the maximum return portfolio (right end), which

always concentrates on a single asset
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� The optimal MV solution is particularly sensitive to estimation error

in mean return.

� Mean return is notoriously difficult to estimate accurately.

� For a small number of assets, estimation error in covariance matrix is

relatively small.

In this talk, we focus on uncertainty in mean returns.
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Examples of research addressing estimation error in MV optimization:

� Incorporating additional views: Black-Litterman, 1992

� Robust optimization: Goldfarb and Iyengar (2003), Tütüncü and

Koenig (2003), Garlappi, Uppal and Wang (2007)
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Robust Optimization
� The notion of minmax robust has existed for a long time.

� Robust optimization offers a solution which has the best performance

for all possible realizations in some uncertainty sets of the uncertain

parameters.

� Minmax robust problems are typically semi-infinite programming

problems.

� Recent advancement in efficient computation of solutions to robust

(convex) optimization problems (semidefinite programming and

conic programming) has attracted attention to robust portfolio

selections.
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What about Min-Max Robust Solutions?

���
�

���

���������
����� �����

s.t. ��� � �

�����: uncertainty sets for � and �
Typical uncertainty sets:

� ellipsoidal uncertainty set: 
��� ����
��� �� � 	

� interval uncertainty set: �� � � � ��

Specification of uncertainty sets plays crucial role in robust solutions.
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A statistical result:

Assume that asset returns have a joint normal distribution and mean

estimate �� is computed from 
 samples of � assets. If the covariance

matrix � is known, then the quantity


 

 � ��



 � ���

��� ������
��� ��

has a 	�� distribution with � degrees of freedom.
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Garlappi, Uppal, Wang (2007) derive an explicit formula for the min-max

robust solution using the ellipsoidal uncertainty set for �, assuming � is

known and short selling is allowed, i.e., they consider
���

�

���
�

��
�
�� � � �
�
��

s.t. 	
�� ������	
�� �� � �

�
�
� � 
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With the no short selling constraint, the robust portfolio problem

becomes:
���

�

���
�

����� � � ����

s.t. 
��� ������
��� �� � 	

��� � �� � � �
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We show that a this min-max robust portfolio problem is equivalent to: is

a solution to the nominal problem:

���
�

������ �� � ����

subject to ��� � �� � � ��

with �� � �.

aL. Zhu, T. F. Coleman, and Y. Li, Minmax robust and CVaR robust mean variance port-

folios, Journal of Risk, Vol 11, pp 55-85, 2009.
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Min-max Robust Frontier vs Mean Variance Frontier
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(b) � � �
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(c) � � ��

Minmax robust frontier: a squeezed segment of the frontier of the

nominal problem.
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Interval uncertainty set: �� � � � ��

���
�

���

�������
����� � � ����

s.t. ��� � �� � � � �

The robust solution solves

���
�

� ��
��� � � ����

s.t. ��� � �� � � � �

�� Minmax robust portfolios are now sensitive to specification of ��!
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Uncertainty in parameter � is an estimation risk.

The statistical result for the mean estimation that

 

 � ��



 � ���

��� ������
��� ��

has a 	�� distribution with � degrees of freedom can be used to yield a

measure for the estimation risk.
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CVaR-Robust Mean Variance Portfolio

���
�

CVaR�
	
��
��� � � � ����

s.t. ��� � �� � � �

(1)

Assumption:


 

 � ��



 � ���

��� ������
��� ��

has a 	�� distribution with � degrees of freedom.
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CVaR Robust Actual Frontiers: the curve


�

��
������
��� �� ��
���, � � �, describes the actual performance of

the CVaR optimal portfolios ��
�� from CVaR robust formulation (1).
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(f) 30% confidence

�� is estimated from 100 return samples

10,000 Monte Carlo samples for �
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Note that the CVaR robust actual frontiers are different from actual

frontiers from nominal estimates.
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(g) � � ���
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(h) � � ���
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The confidence level can be interpreted as an estimation risk aversion

parameter:

� As � �� �, extreme loss due to uncertainty in � is emphasized. This

corresponds to increasingly strong aversion to estimation risk.

� As � �� �, average loss due to uncertainty in � is considered. This

corresponds to increasing tolerance to estimation risk.

25
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Composition Comparison: Min-max Robust and CVaR Robust

Portfolio expected return
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(k) CVaR robust (90%) portfolios

For CVaR robust formulation, The maximum return portfolio are often

diversified.
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Computing CVaR Robust Portfolios

By definition,

CVaR�
	
��
��� � ���




�
� 
�� ������
������ 	��
�

������ 	�
��	

� ���
����� � ��

CVaR robust portfolios: stochastic optimization

���
��



� 
�� ������
������ 	��� � � � �� ���

s.t. ��� � �� � � �

Min-max robust portfolios can be computed efficiently by solving a

convex programming problem with � variables.
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Computing CVaR Robust Portfolio by Solving a QP

Let ���� � � �� � � � ��	 be independent Monte Carlo samples from the
specified distribution for �.

CVaR robust portfolio can be computed by solving
���

����


�

�

�
�� ��
�

�
�
�� � � � �� ���

s.t. ��� � �� � � �� �

�� � � �

�� � ��� ��  � �� � � �� � � � �� �

� �
�� �� variables and �
�� �� constraints, e.g., � � ���,

� � ��� ���

� Computational cost can become prohibitive as � and � become large.
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Computing CVaR Robust Portfolio Can Be Expensive

CPU sec

# samples 8 assets 50 assets 148 assets

5000 0.39 1.75 7.06

10,000 0.77 4.25 10.38

25,000 2.56 10.83 34.97

CPU time for the QP approach when � � �: � � ����

To generate an efficient frontier, we need to solve QP for � � �.

Matlab 7.3 for Windows XP. Pentium 4 CPU 3.00GHz machine with 1GB RAM
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A Simple Smoothing Technique

Let ��
�� be defined as:

����
���

� if � � �

��
��
� �
�
� � �
�
� if� � � � � �

� otherwise.

For a given resolution parameter � � �,

� ��
�� is continuous differentiable, and approximates the piecewise

linear function ��	� � ���
�� ��

��
�� 
 ��	�
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Smooth Approximation: ���� � E� ��� � ����
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Computing CVaR Robust Portfolios Via Smoothing
���

��


�

�

�
�� ��
�

�
�
��
��
�

� �� � � � � �� ���

s.t. ��� � �� � � � �

� �
�� variables with �
�� constraints
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CPU Comparisons

MOSEK (CPU sec) Smoothing (CPU sec)

# samples 8 assets 50 assets 148 assets 8 assets 50 assets 148 assets

5000 0.39 1.75 7.06 0.42 0.34 1.98

10,000 0.77 4.25 10.38 0.75 0.50 4.13

25,000 2.56 10.83 34.97 1.77 1.36 10.25

� � �� � � ���
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Accuracy Comparisons (error in %): � � �� � � ���

# samples 50 assets 148 assets 200 assets

10000 -0.2974 -0.2236 -0.2234

25000 -0.0934 -0.0882 -0.0880

50000 -0.0504 -0.0454 -0.0466

� � �����
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For convergence properties of the smoothing method for a class of

stochastic optimization, see

Xu, H., D. Zhang. 2008. Smooth sample average approximation of

stationary points in nonsmooth stochastic optimization and applications.

Math. Programming., Ser. A. .
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Concluding Remarks

When mean return is uncertain for mean variance portfolio selection,

� minmax robust with ellipsoidal uncertainty set: squeezed frontiers

from MV based on nominal estimates

� minmax robust with interval uncertainty set: the maximum return

portfolio is never diversified

� CVaR robust:

– different frontiers from those based on nominal estimates

– maximum return portfolios are typically diversified into multiple

assets
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� Broadie, M. 1993. Computing efficient frontiers using estimated

parameters. Annals of Operations Research 45 21–58.

� A. Ben-Tal and A. Nemirovski. 1998. Robust convex programming.

Mathematics of Operations Research 23(1) 769–805.

� Goldfarb, D., G. Iyengar. 2003. Robust portfolio selection problems.

Mathematics of Operations Research 28(1) 1–38.

� Tütüncü, R. H., M. Koenig. 2004. Robust asset allocation. Annals of

Operations Research 132(1) 157–187.

� Alexander, S., T. F. Coleman, Yuying Li. 2006. Minimizing var and

cvar for a portfolio of derivatives. Journal of Banking and Finance

30(2) 583–605.
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