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Abstract

This article aims to understand if, and to what extent, business details about an organization can

help to assess a company’s risk in experiencing data breach incidents, as well its distribution of

risk over multiple incident types, in order to provide guidelines to effectively protect, detect, and re-

cover from different forms of security incidents. Existing work on prediction of data breach mainly

focuses on network incidents, and studies that analyze the distribution of risk across different inci-

dent categories, most notably Verizon’s latest Data Breach Investigations Report, provide recom-

mendations based solely on business sector information. In this article, we leverage a broader set

of publicly available business details to provide a more fine-grained analysis on incidents involving

any form of data breach and data loss. Specifically, we use reports collected in the VERIS

Community Database (VCDB), as well as data from Alexa Web Information Service (AWIS), the

Open Directory Project (ODP), and Neustar Inc., to train and test a sequence of classifiers/pre-

dictors. Our results show that our feature set can distinguish between victims of data breaches,

and nonvictims, with a 90% true positive rate, and 11% false positive rate, making them an effective

tool in evaluating an entity’s cyber-risk. Furthermore, we show that compared to using business

sector information alone, our method can derive a more accurate risk distribution for specific inci-

dent types, and allow organizations to focus on a sparser set of incidents, thus achieving the same

level of protection by spending less resources on security through more judicious prioritization.
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Introduction

Data are an important asset in every business; the valuable data of

an organization may include private information such as medical re-

cords, credit card numbers, private customer data stored on the

cloud, or even trade secrets, as well as public information such as

the website of an online commerce company. Any incident involving

such data, whether intentional (targeted attacks) or unintentional

(internal errors), can disrupt a business and inflict damage on its

assets and reputation. Therefore, a portion of an organization’s re-

sources should be dedicated to protecting itself from security inci-

dents; preventive measures include maintaining regular backups,

keeping software up to date, and employee education in order to re-

duce miscellaneous errors.

However, determining how to allocate resources in protecting

one’s assets, as well as choosing an optimal level of investment in

each preventive measure, is not a trivial task, as there is a wide var-

iety of ever-changing attack methods. To help identify common

forms of data incidents, a number of projects have been created to

collect information about incidents that involve some sort of data

loss. Some of these projects, such as [1] and [2], focus exclusively on

hacking attacks, while some (e.g. [3]) cover a broader range of inci-

dents, including human errors, and physical loss of data due to theft.
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Using these reports, organizations are able to identify prevalent inci-

dent vectors, and invest in self-protection in a more optimal way.

However, a point that should not be overlooked is that not all busi-

nesses should be treated the same, as each business is prone to differ-

ent forms of incidents. For instance, a cloud hosting company might

be more likely to suffer from hacking or denial of service attacks,

while a medical institution with a large number of personnel runs a

relatively higher risk of data loss through human error.

In this article, we aim to better understand how information

about a business is correlated with its risk of falling victim to differ-

ent forms of data incidents. Determining the overall risk of experi-

encing any form of data incident will help organizations decide on

an optimal level of security investment. Moreover, estimating the

distribution of risk among multiple incident types will allow us to

narrow down the recommendation on the most effective preventive

measures, depending on the types of incidents the organization is

most likely to face.

To this end, we use an incident dataset collected by the VERIS

community [3] reporting a broad class of data incidents; these re-

ports consist of detailed information about the incident itself (e.g.

type of attack, assets involved), as well as the victim organization

(e.g. business sector, number of employees). Furthermore, we select

a set of nonvictim organizations by randomly selecting network do-

mains from the Open Directory Project [4]. We combine these with

statistics obtained from Alexa Web Information Service (AWIS) [5]

about the websites of victim and nonvictim organizations, as well as

information about network assets of an organization obtained from

Neustar Inc. [6]. These features together constitute the “business de-

tails” of the organization. We then utilize this information to assess

its overall risk of experiencing a data breach. We are able to identify,

with 90% accuracy, victim organizations with the same attributes as

companies that have previously experienced a breach, while main-

taining a false positive rate of 11%. For victim organizations, we

further estimate the conditional distribution of risk for specific inci-

dent types by considering three different categorizations for the inci-

dents: (i) by type of data incident (e.g. error, hacking, etc.), (ii)

based on the source of the incident (external, internal, or partner)

and the motive behind it, and (iii) by considering the assets that

were involved in the incident (e.g. media, server, etc.). Our results

show that there is a clear correlation between each incident category

and the victim’s business details; this information can be used to

provide guidelines on how an organization with limited budget for

security should prioritize its security investment in allocating re-

sources to different forms of self-protection.

In our earlier work [7], we examined the use of a different type

of data, namely Internet measurement data on organizations’ secur-

ity posture (including malicious activities observed from hosts), to

predict future cyber-security incidents. In the present study, we

broaden our scope to include not only network/cyber incidents, but

also noncyber data incidents such as physical theft and loss, miscel-

laneous errors, etc.

We note that while correlation studies to identify prevalent at-

tack vectors have been done before, most notably see Verizon’s an-

nual Data Breach Investigations Report [8] using business sector

information, our goal is to use additional business information to

enable a more fine-grained study, whereby the incident type distri-

bution is quantified not just for an entire business sector, but for spe-

cific individual businesses based on other features such as employee

size, region of operation, etc. This allows us to generate sharper

(more highly concentrated) incident type distributions; i.e., with

more fine-grained definition of subsets within a sector, we are able

to see incidents concentrated over a smaller number of types. An

immediate consequence of this is that security investment and re-

source allocation decisions informed by such analysis are much

more targeted and effective. We show that on average an organiza-

tion can protect against 90% of all incidents by focusing on 70% of

incident types; in some cases the latter can be significantly lower.

Our results are derived and presented in two parts. First, an un-

conditional prediction of an organization falling victim to a data in-

cident, and second, prediction of the conditional distribution of

risks over different incident types given that an incident occurs; the

latter complements our estimation of the probability of an incident

happening in the former. In practice, the absolute risk of experienc-

ing an incident provides the organization with insight on the total

amount of resources that should be allocated to self-protection,

while the conditional risk can be used to decide the allotment of

these resources to different forms of preventive measures. By com-

bining these two results, one can also determine the absolute risk of

a given incident type. In addition, the current study can guide better

breach detection efforts. From this perspective, our study is aligned

with the growing “assume breach” mentality in the security commu-

nity [9]: everyone is a target hence all organizations should take

measures to prevent, detect, and respond to incidents, in the most ef-

fective way. Last but not least, these findings can be used as guide-

lines in the emerging cyber-insurance market. A study of the

distribution of risk among different forms of data incidents can help

insurance providers better assess the potential amount of loss which

in turn helps determine the contract terms, including premiums and

coverage levels.

Non-goals: Note that our main goal in this study is to reveal attributes

of a business that are correlated with experiencing a data breach inci-

dent, rather than to detect the manifestation of a breach. Examples of

such attributes include, for instance, hacking attacks target entities in

the information sector more often than other industries, and an organ-

ization with a large number of employees is inherently more prone to

data breach through human error. Detecting or forecasting a hacking

incident by finding security flaws would require probing an organiza-

tion’s internal network and devices, another nongoal of this study.

Furthermore, predicting incidents such as internal error, or employee

misuse through the vectors that cause them are even more challenging,

due to the presence of human elements. Therefore, when using the

terms “risk prediction,” or “risk forecasting” we are referring to “risk

assessment” by comparing an arbitrary organization’s attributes to

those of victims and nonvictims in our training samples, and not

uncovering vulnerabilities that directly cause a breach. However, this

does not imply that it is not possible to forecast cyber-security inci-

dents without observing security flaws in how an organization is oper-

ating. A correlation study on the impact of business features such as

sector and size on data breach incidents, can project how likely it is

for an organization to be successfully targeted by an attacker, or

suffer a data breach through human error, by determining how

often similar entities have experienced data breaches in the past.

Furthermore, even if a security flaw is detected in a system, the chance

of it turning into a data breach by an attacker targeting said vulner-

ability, is partly determined by how the data breach can be monetized

by the attacker, which is in turn influenced by the business features

utilized in this study.

The rest of the article is organized as follows. In Section 2, we

summarize existing work relevant to this study. In Section 3 we de-

scribe the datasets used in this article. In Section 4 we explain in de-

tail how we build our risk assessment model, and we discuss and

analyze the results in Sections 5 and 6. Section 7 concludes the

article.
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Related work

The main contribution of this study compared to existing literature

is an in-depth and quantitative analysis of the risk distribution over

security incident types for a given organization, which can help the

latter more strategically allocate resources for prediction, preven-

tion, and detection.

Data analysis
A relevant study to this article is Verizon’s annual Data Breach

Investigations Report (DBIR) [8]. The most recent report for 2015

contains detailed analysis on more than 79 000 security incidents

from multiple sources including VCDB. The report contains a de-

tailed analysis on statistics of the data including action types and

vectors, actor types and motives, as well as victim demographics and

industry. Moreover, starting from DBIR 2014 the authors identify

nine patterns describing 92% (96% for DBIR 2015) of the incidents

in their report. By categorizing the incidents into separate patterns,

it is possible to analyze the distribution of incident varieties within

each pattern and provide entities with more specific recommenda-

tions on how to invest in their security. The report also provides the

spread of attack patterns within each industry, to narrow down the

risk even more. For instance, it is pointed out that the main threat to

organizations providing accommodation services is through Point-

of-Sale (POS) intrusions, which describes 75% (91% for DBIR

2015) of the incident reports within this industry. Furthermore,

Thonnard et al. perform a similar analysis on spear phishing tar-

geted attacks in [10]. The authors identify risk factors at the organ-

ization level (industry sector and number of employees), and

individual level (job level and type, location, and number of

LinkedIn connections), that are positively or negatively correlated

with the risk of experiencing targeted attacks.

As mentioned earlier, compared to the DBIR, we aim to provide

a more fine-grained framework to give more specific guidance to or-

ganizations not only based on their industry, but utilizing a host of

other features available to us. This includes demographic informa-

tion, details about the size of the business and its popularity, and

business sector information. Moreover, we couple our conditional

risk distribution with the overall probability of breach in order to ar-

rive at a more realistic sense of risk. For instance, even though a typ-

ical business in the accommodation sector is more prone to POS

intrusions, their risk within that category might still be less than

businesses in other sectors, given that their unconditional probabil-

ity of breach is low.

Prediction of cyber incidents
The notion of predicting cyber incidents (rather than detection) has

also enjoyed popularity recently. In [11], Soska et al. apply machine

learning tools to predict the chance of a website turning malicious in

the future, and show that their method can achieve 67% true posi-

tive and 17% false positive. In our previous study [7], we examine

to what degree cyber-security incidents may be predicted by using a

range of security posture data. Compared to the above studies, our

goal in the present study is to consider a broader range of data inci-

dents, including targeted and untargeted physical and cyber-attacks

from both internal and external sources, and incidents due to error,

while at the same time recognizing the difference between specific

incident types by emphasizing the relative risk each incident type

poses to a particular organization. Note that of the 2644 reports in

the VCDB for 2013 and 2014, 981 are hacking and malware inci-

dents (cyber incident), and the rest are nonnetwork related incidents

(noncyber incident).

Other works related to this article include studies on the trends

and costs associated with data breaches. In [12], Edwards et al. use

Generalized Linear Models to uncover trends in data breaches, and

conclude that the frequency and size of data incidents have not

increased over the past decade. Furthermore, The 2015 Cost of Data

Breach Study by Ponemon Institute and IBM [13], finds the average

cost of a data breach to be $3.8 million, with $154 incurred for each

lost or stolen record. The authors [14–18] conduct event-study ana-

lyses on the impact of data breach disclosures on market value, and

conclude that there exists a negative and statistically significant cor-

relation between the two. Moreover, in [19] Romanosky et al. pro-

vide an empirical analysis of data breach litigation, and in [20]

discuss the impact of breach disclosure laws on identity theft.

Datasets

In this section, we illustrate the datasets used in our study, namely

the VERIS Community Database (VCDB) [3], the Open Directory

Project (ODP) [4], the AWIS [5], and the IP Intelligence service from

Neustar, Inc. [6].

VERIS community database
The VCDB is currently composed of 5233 reports on publicly dis-

closed data breaches. The dataset includes incidents that occurred

up to and including 2015, with 4961 entries corresponding to inci-

dents after 2010. For our current study, we focus only on the 2013

and 2014 incidents, consisting of 1850 and 794 entries, respectively.

The reports cover a wide variety of events, some examples of which

are given in Table 1.

Each entry in the VCDB is reported using the Vocabulary for

Event Recording and Incident Sharing (VERIS) [21]. The VERIS

framework, as well as the VCDB, are initiatives by the Verizon

RISK Team facilitating a unified approach to documenting and col-

lecting security incidents. The VERIS fields for an incident are popu-

lated to answer “who did what to what (or whom) with what

result?” [8]; details include the type of incident and the means by

which it took place, the actor and motive, the victim organization,

the assets which were compromised, timeline of the incident, and

links to news reports or blogs documenting the incident. However,

each entry might be only partially populated, since victim organiza-

tions tend to not disclose all the details regarding the incident.

We now explain the fields extracted from VCDB which are of

interest in training and testing our classifiers. The first set is infor-

mation regarding the type of attack, based on which each incident

can be put in one of seven general categories: “environmental,”

“error,” “hacking,” “malware,” “misuse,” “physical,” or “social.”

Each type may include additional fields that can help further differ-

entiate incidents of the type. For instance, a “physical” incident

might be further categorized as theft or loss, while a “hacking” inci-

dent might be identified as a SQL injection or a brute force attack.

The second set identifies the actor responsible for the incident, fall-

ing in one of three types: “external,” “internal,” or “partner.” The

dataset may further include fields identifying the motive for each of

these actor categories. The third set identifies the assets that were

compromised during the incident. There are six possible asset types:

“kiosk/terminal,” “media,” “network,” “people,” “server,” and

“user device.”

We also extract three features about the victim organization

from the existing VCDB fields as input for our classifiers: industry

code, number of employees, and the region of operation of the vic-

tim organization. The industry code provided is the North American
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Industry Classification System (NAICS) code [22] for the victim,

which specifies the organization’s primary economic activity.

Although NAICS codes can extend to up to six digits, each further

detailing the sector, we only extract the first two digits of the code

for our incidents; this classifies the company as one of 25 different

sectors. The employee count captures information about the size of

the organization; this entry may be a numeric range (1–10, 11–100,

101–1000, 1001–10 000, 10 001–25 000, 25 001–50 000, 50 001–

100 000, and over 100 000), or simply “small” or “large” (for ap-

proximately below or over 1000 employees, respectively) when an

exact number is not available. Finally, we use the region of the or-

ganization as a feature by extracting the continent of operation for

the victim. Note that any said features can be missing for a VCDB

entry. In such cases, we generally add an additional “unknown”

category.

AWIS
AWIS is a service offered by Amazon Web Services (AWS) [23] that

provides information and statistics about websites; these include

traffic volume, number of visitors, speed, number of pages linking to

the website, and information about the organization that maintains

the website, such as address, contact information, and stock ticker

symbol.

We gather the following data from AWIS about the victim or-

ganization. We include the global and regional rank, and the num-

ber of pages linking in to the target website, as indicators of the

popularity or familiarity of an organization. The regional rank of a

website is extracted by finding the country which has the most con-

tribution of page views to the website’s traffic, and adding the rank

in that country, as well as the country code, to our feature set. We

also include the 30-day average and standard deviation of the web-

site’s global rank for a 1-month period before the incident, to iden-

tify recent trends in popularity. Other selected features include

speed of the website (as a percentile compared to other websites),

the age and locale of the website, the categories associated with it,

and whether the underlying company is publicly traded in the stock

market. We convert the number of pages linking in, and global, re-

gional, and average historical rank to logarithmic scale, due to their

large range of quantities. We further break each category, if pos-

sible, by separating the portion describing the region of the website.

For instance, for “Regional/Caribbean/Barbados/Government,” the

general category is “Government,” while “Caribbean/Barbados” is

the regional category. For missing fields, we choose a reasonable de-

fault value, e.g. “unknown” for text fields, and 1 for rank. The

aforementioned attributes of an organization can provide further in-

sight into its sector, region, familiarity, and size. By combining these

with features obtained from our other datasets, we are able to build

a detailed description of a business, which can in turn help identify

its risk.

Other than age and historical traffic rank, AWIS only provides

the most recent state of a webpage. Therefore, there is a relatively

large time gap between our incidents (which happened in 2013 and

2014), and features obtained from AWIS (September 2015).

Features such as main contributing country, locale, and category are

related to the organization’s region and sector of operation and are

not expected to change over time. However global and regional

rank, number of pages linking in, and whether the company is pub-

licly traded can exhibit more dynamic behavior. For samples where

both a global and historical rank was available,1 the average mean

absolute percentage error between the two was 6.5%. We therefore

concluded that the order of a website’s rank remains fairly static.

Unfortunately, we could not procure similar measurements for other

statistics of a webpage, since it involves caching results from AWIS

and studying the changes over a long period. However, since re-

gional rank and number of links also capture the popularity of a

page, we expect them to show similar behavior.

ODP
ODP (also known as DMOZ) is the largest publicly available direc-

tory of the Web. Each entry includes a website URL, the title of the

site and a short description, as well as the category of the website.

By selecting random entries from this dataset, we can effectively

choose random nonvictim organizations. For this study, we use a

snapshot of ODP obtained on 19 September 2015 consisting of 3

771 141 entries, of which a random selection of 16 780 entries,

which had not appeared in our victim dataset, is used in this study

as nonvictim organizations. Note that our random selection may

also capture victim organizations that were not reported in the

VCDB. The portion of “tainted” samples in our nonvictim set is

upper bounded by the overall rate of data incidents.

To elaborate more on the process of selecting nonvictim entities,

we would first like to point out that an alternative way to select

nonvictim organizations would be to choose random entries from a

global business directory. However, since we do not have access to

such a directory, websites are used as a proxy to identify organiza-

tions. In our earlier work [7], we have used a random selection of

networks to identify organizations which matched our use of net-

work security posture measurement data. However, this selection

method would limit us to companies that own network assets of

their own, and those who rely on hosting providers and content de-

livery networks would be excluded. In contrast, almost all

Table 1. Incident examples from the VERIS Community Database

Time Report summary

Apr 13 Hackers breach website of Hong Kong police force and publish nonpublic data, deface webpage.

Aug 13 A Lima, Ohio clinical psychologist is in the process of notifying clients that their office was robbed.

Sep 13 Pharmacy accidentally dumped hundreds of private medical records at a recycling depot.

Sep 13 Janitor is blackmailed into gathering documents from a court.

Sep 13 Parents of children at Hopkins Road Elementary Schools say their kids came home with sensitive data belonging to other students.

Dec 13 Multiple Brazilian government sites defaced by Anonymous in protest to upcoming FIFA World Cup.

Jan 14 Hacking group DERP launches DDoS against Xbox Live networks.

May 14 Someone hacked into an electronic traffic sign on Van Ness Avenue in San Francisco.

Jul 14 Anonymous takes down 1000 Israeli government and business websites for #OpSaveGaza.

1 Alexa provides global and historical rank, for the top 30 million

and 1 million websites, respectively. This is also the primary

reason we have included both types in our feature set.
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organizations own a website and would be included in our current

approach. Furthermore, incidents covered in the VCDB include

those concerning large companies, as well as data breach reports on

smaller entities such as personal webpages. Using a web directory

allows us to include smaller entities in our selection, resulting in a

more representative nonvictim group; this cannot be easily achieved

by using a business directory.

IP Intelligence
IP Intelligence is a service offered by Neustar Inc. that includes geo-

graphic information, network characteristics, and ownership infor-

mation over the IPv4 address space. More specifically, we use the

ownership information in our study, consisting of the organization

name that manages a given IP address, along with, where available,

its corresponding NAICS code. This information allows us to iden-

tify the network responsible for maintaining a given website.

Moreover, since VCDB only provides business sector information

for victim organizations, the NAICS code included in the IP

Intelligence dataset allows us to include this information in our over-

all risk prediction for both victim and nonvictim organizations. The

snapshot used in this study was obtained on 22 May 2015. We in-

clude the name of the company listed as the owner of an IP address,

its size (number of IP addresses owned by the same), and the NAICS

code associated with it in our feature set. Doing so helps identify

hosting providers with bad reputation, i.e. those with a higher than

average presence in incident samples.

Pre-processing
To be able to combine these datasets for our study, we first have to

match each incident report with the website of the victim organiza-

tion. To obtain this information, we find the name of the victim or-

ganization through the “victim id” field in VCDB, and extract the

first Google search result for the organization name. We then manu-

ally verify the results to ensure that the websites match the victim or-

ganizations. For ambiguous victim IDs (e.g. “Indian government

website”), we further read the incident report provided by a news re-

port or blog entry to find the website of the entity that suffered the

data breach. For the 2644 incidents that occurred in 2013 and 2014,

we extracted the website for 2062 of them. Note that of the 582 in-

cidents that we dropped, 139 did not report the name of the victim

organization, and the rest were not included in our study either be-

cause the victim name was too ambiguous (e.g. “Egyptian govern-

ment” and “law firm in British Columbia”), or we could not find a

website for the victim (e.g. “Ha Dinh primary school” and “Purple

Cow gas station”). The mapping between a victim organization and

its respective website will allow us to combine entries in the VCDB

with data collected from AWIS. Note that for a given year, we omit

duplicate incidents for each organization. As an example, there are

over 200 entries in the VCDB corresponding to error incidents in the

US Department of Veterans Affairs. We count all of these incident

only two times, once in 2013 and once in 2014. If there are add-

itional entries corresponding to other forms of data incidents (e.g.

hacking), we include them as separate entries when assessing risk for

specific incident types.

Note that statistics obtained from AWIS are often provided only

for the top level domain of a website. For instance, domains such as

“mail.google.com and maps.google.com” are redirected to the top

domain “google.com.” Subdomains are only regarded as separate

entities when “they are identified as personal home pages or blogs”

[24]. On the other hand, website details from ODP are generally

more detailed, and can include any number of subdomains and

subpages. Therefore to avoid inconsistencies, we replace URLs asso-

ciated with victim organizations and our random selection of URLs

from ODP with their respective domains from AWIS. We are able to

map the URLs associated with our incident/victim and nonincident/

nonvictim samples to 1606 and 16 254 unique domains,

respectively.

The next step is to include features from Neustar Inc. We resolve

the domain to obtain an IP address, and then look up the owner of

that address. We augment our set of features with the name of the

owner, its size (number of IP addresses listed under the same name),

and the NAICS code associated with it. Out of the 17 860 domains

from the previous step, we were able to map 17 772 of them to

5805 unique owners. Note that for 88 of the domains we were either

not able to look up their IP address, or there was not any entry in

the IP Intelligence dataset for that address. For these samples we list

“unknown” under owner and NAICS code, and a size of zero.

Finally, we convert text fields to a set of binary features by toke-

nizing each distinct value. For categories and NAICS codes from IP

Intelligence, we break each entry into multiple values with different

levels of detail, and tokenize each separately. For example,

“Business/E-Commerce/Consulting” is a subcategory of “Business,

and Business/E-Commerce”; and a NAICS code of 51 720 (Wired

Telecommunications Carriers) is a subsector of 51 (Information),

and 517 (Telecommunications). To limit the total number of fea-

tures, we ignore tokens that have been repeated less than 10 times in

our samples.

Methodology

In this section, we will discuss the rationale behind the features se-

lected for our model, followed by a detailed description of how to

build a risk assessment model using the features and incident reports

described in Section 3.

Feature set
In Section 3 we listed the features extracted from VCDB, AWIS, and

IP Intelligence to be used in training our classifiers. We will now dis-

cuss our motivations for selecting these features, and why we expect

them to be indicative of a company’s risk of data breach. Note that

while we provide simple examples for why a certain feature can be

correlated with cyber-risk, our model can recognize more complex

relationships within out feature set that can help the classifier make

more accurate assessments. The first and foremost features are those

that specify a company’s sector of operation, namely the industry

code extracted from VCDB, and the website category from AWIS.

We expect an organization’s industry to be strongly correlated with

its risk of falling victim to different types of data breaches. A com-

pany’s industry can provide insight into the types of records that can

potentially be compromised (e.g. credit card information for re-

tailers, or physical and digital records for health care), or motiv-

ations for targeted attacks (e.g. hacktivism for public administration

entities). In addition, a business’s sector can determine the value of

data records to an attacker, which in turn influences the attacker’s

decision to launch an attack on said entity; this type of correlation

also applies to other features used in our model, such as a business’s

size and region of operation. As we discussed in Section 2, DBIR [8]

also uses industry information to give security recommendations to

businesses within a sector.

The next set of features are those that specify the size of a com-

pany: employee count from VCDB, and whether a company is pub-

licly traded, which is provided by AWIS. We expect the size of a
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company to be correlated with how often it is targeted by cyber-

attacks, since compromising a large company tends to be more prof-

itable for an attacker. Furthermore, as we will see in Section 6.2, a

larger employee count can increase the chances of breach through

human error and employee misuse. Features like traffic rank (global,

regional, or historical) and the number of links to a website are indi-

cative of a website’s popularity, and therefore correlated with the

chances of a company being targeted.

We also expect a company’s region of operation to be connected

to its cyber-risk. The region is obtained from VCDB, as well as the

website’s top contributing country, locale, and regional category.

Other features such as the age and speed of an organization’s web-

page, can provide more insight into its security posture. Older com-

panies tend to be more experienced in protecting themselves against

data breaches, and may have better policies in place to prevent

them; a website’s speed is an indication of how well it is being oper-

ated, which in turn can be associated with security posture.

Finally, our measurements from IP Intelligence will provide

more details about an organizational network, which can be closely

coupled with risk of network-related breach incidents. Note that an

organization’s website can be either hosted on the company’s in-

ternal network, or by a hosting provider. The industry code from IP

Intelligence can provide the classifier with the necessary information

to distinguish between the two cases, since the NAICS code 518

(Data Processing, Hosting, and Related Services) can be associated

with hosting providers. When an organization’s website is hosted by

a third party, the name of the hosting company and its size (in terms

of number of IP addresses owned by the provider), can determine its

reputation and how protected customers are. For self-hosted web-

sites, the size of the organizational network will indicate the attack

surface, and therefore the risk of breach through network incidents.

Construction of the classifiers
Our ultimate goal is to provide risk assessment for an arbitrary or-

ganization given its features, i.e. a distribution of risk over all inci-

dent types. This risk can be represented in two parts as follows:

PrðIncidenttypejtÞ ¼ PrðIncidentjtÞPrðIncidenttypejIncident; tÞ; (1)

where t is the type of the organization in question, represented by its

set of features. “Incident type” can be any of the available data inci-

dent types, e.g. physical theft. The first term will be referred to as

the overall risk, with the second term the conditional risk. These

two probabilities are estimated separately by constructing different

classifiers.

Toward this end, we use Random Forest classifiers, an ensemble

learning method that constructs multiple decision trees over the

training data, and outputs the average of all individual trees’ predic-

tions [25]. Random Forest classifiers improve upon single decision

trees by reducing over-fitting over the training set. For overall risk

estimation [first term in the RHS of Equation (1)], we use our set of

victim organizations coupled with a randomly selected set of nonvic-

tim organizations to build a binary classifier; in this case all victim

organizations no matter the type of incident are given a label “1.”

To assess the conditional risk [second term in the RHS of

Equation (1)], a naive way would be to take the incident signature

(i.e. action, actor, and asset) of an entry as a class label, and the vic-

tim’s features as input data for the classifier. However, given the

large number of possible incident signatures, there are only a small

number of samples per signature vector. Furthermore, as we have

mentioned before, a significant number of incident entries provide

only partial information about their corresponding incident.

Ignoring such entries will leave us with even fewer samples.

Our solution to the above problem is to build multiple classifiers,

each of them estimating a portion of the incident signature. This

continues our previous use of the chain rule in probability. Assume

that we want to estimate the risk factor for an organization of type t

for experiencing a physical theft incident. We can break the condi-

tional risk into multiple parts as follows:

PrðTheftjIncident; tÞ ¼ PrðPhysicaljIncident; tÞPrðTheftjPhysical; tÞ:
(2)

As a result, entries that cite a physical incident without specify-

ing additional details will still be included for building and testing

the first classifier [first term in the RHS of Equation (2)], but will be

ignored when building the second classifier (i.e. theft). This method

can be visualized as a tree as shown in Fig. 1, where each node repre-

sents a data breach type. The risk score at a node is the result of

multiplying the risk at its parent node by the output of the classifier

corresponding to said (child) node.

Note that the output of Fig. 1 is a conditional probability, condi-

tioned on the event that an incident has occurred. To derive the ab-

solute risk for the given breach type, we need to multiply the result

by the overall probability of breach [first term in the RHS of

Equation (1)]. In the remainder of this article, we will discuss and

analyze the results on overall risk estimation and conditional risk

for specific breach types separately. The rationale behind this separ-

ation is that the former serves as a forecast on security incidents. On

the other hand, the point of the latter is not to make a single predic-

tion on the type of incident that is going to happen, but to estimate

the distribution of risk among multiple incident types; as we shall

see, predictions for single incident types are significantly less accur-

ate than overall risk estimations due to its density estimation nature.

This point is further elaborated on in Section 5.2.

Overall risk prediction
To forecast the overall risk of breach, we assign labels zero and one

to our nonvictim, and victim features, and train a Random Forest

consisting of 50 trees over victim samples in 2013, and a random se-

lection of 11 585 samples from nonvictim samples. We use features

from AWIS and IP Intelligence for prediction, and omit features

from VCDB since they have only been provided for victim organiza-

tions. We use the incident samples from 2014 and the rest of the

nonvictim samples for testing.

Table A1 in the Appendix summarizes the importance of each fea-

ture in the final classifier. As is evident from the table, the most used

Figure 1. A sample risk assessment tree.
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feature for this type of risk assessment is the general category of the

website. For further elaboration on this point, we have shown the dis-

tribution of victim and nonvictim samples over the top level categories

from AWIS in Fig. 2. While our incident samples have presence in

most of the top level categories (excluding “adult,” “maps,” and

“weather”), it is possible to identify categories that exhibit higher- or

lower-than-average risk. For instance, the portion of incidents that be-

long to “health” and “government” are significantly larger than the

global population, while the “world” and “arts” categories can be

associated with low risk. Note that the “world” category describes

webpages that are in languages other than English. The discrepancy in

this case can also be due to underreporting, since VCDB tends to focus

more on incidents that happened in the USA.

Note that inherent biases in our victim dataset may affect the

output of our trained model. The most prominent examples are

biases toward incidents in the USA, and also certain industries due

to disclosure laws. For instance, businesses operating in retail are

more likely to disclose data breaches due to concerns that customer

information may have been compromised, while other industries

might be underrepresented in publicly disclosed data breaches.

Consequently, we may underestimate or overestimate a business’s

cyber-risk based on its region or sector. In other words, our model is

estimating the risk of a publicly disclosed breach, which is not neces-

sarily the same as risk for undisclosed data incidents. This issue may

be alleviated by training models over specific groups of victims and

nonvictims, e.g. training a classifier on the subset of samples that be-

long to a certain country, or industry, ensuring that samples are

compared to organizations of the same type, and therefore with the

same incident reporting rate. In this article, we do not train separate

models for overall risk prediction since our goal is to provide a sin-

gle assessment that can be used to compare organizational risk, re-

gardless of region or sector. However, we will further explore this

technique in Section 6 for assessing risk in different incident types.

Conditional risk prediction
Given the training and test samples (incidents belonging to 2013

and 2014, respectively), we first train a binary classifier for each

node, using a Random Forest model consisting of 20 trees. To pre-

vent over-fitting, we set the minimum number of samples at each

leaf of the decision trees to 25. However, we may still experience

some over-fitting due to the large number of features available to

our classifier. To help alleviate this problem, we limit the number of

features used for each Random Forest as follows: we always use the

three features extracted from the VCDB, namely industry, employee

count, and region. Out of the remaining 10 features, we select the

most significant through cross validation, i.e. training multiple clas-

sifiers using different combinations of features, and selecting the one

with the best performance. The list of features used for each classi-

fier, as well as their importance in the resulting Random Forest clas-

sifiers, are also included in Table A1 in the Appendix.

Incident categorization

Using the classification method described above, we apply our risk as-

sessment scheme separately to three parts of the incident signatures:

action, actor, and asset. Each of these classifiers focuses on a separate

aspect of an incident. If a single entry matches multiple incident cate-

gories, e.g. a hacking incident through misuse of privileges, we break

it into multiple incidents that each belong to a single category.

Action type. The action type falls into one of the seven general cate-

gories discussed in Section 3.1. We omit “environmental” incidents,

of which there are only four samples between 2013 and 2014. We

further categorize “hacking” events into two subcategories: (i) hack-

ing incidents that involve data breach through compromised creden-

tials, including stolen credential, brute force, and backdoor attacks,

and (ii) all other forms of hacking, 75% of which are SQL injection

and Denial of Service attacks. We also divide “physical” incidents

into two subcategories of (i) theft and (ii) everything else, 88% of

which are due to tampering.

Knowing the action type can provide significant information on

the types of preventive measures that can be used to reduce loss. For

instance, the first group of “hacking” incidents can be prevented by

setting strong passwords and changing them on a regular basis, as

well as not storing unencrypted credentials at insecure locations.

“Error” and “misuse” can be reduced by employee education, set-

ting and enforcing internal regulations, and avoiding unnecessary

access privileges for employees and/or business partners.

Actor type and motive. In addition to action types, we train our clas-

sifier based on the actor responsible for the incident. “Internal”

actors are separated based on their motive into two subcategories of

(i) financial motives, and (ii) other motives, including convenience,
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Figure 2. Distribution of all victim and nonvictim samples (both training and testing) over Alexa’s top categories. Note that a website can belong to multiple or no

categories.
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espionage, grudge, ideology, and fun. “External” actors are simi-

larly subcategorized into (i) financial, (ii) espionage, (iii) ideology,

and (iv) fear, fun and grudge. Incidents due to “partners” are not

further subcategorized due to insufficient samples.

Assessing risk associated with actor types can prompt organiza-

tions to determine policies for employee education and access to

data (for “internal” types), guard their network periphery from “ex-

ternal” attackers, and perform due diligence when selecting

“partners.”

Asset type. Finally, we look at the types of assets that were compro-

mised during the incident. Asset types include “kiosk/terminal,”

“media,” “people,” “server,” and “user device.” We have omitted

“network” related assets due to insufficient number of samples.

Knowing what asset types are more likely to be affected can signifi-

cantly improve our ability to estimate the amount of potential loss

following security incidents. This can guide insurance underwriters

in designing more appropriate policies catered to specific client or-

ganizations. It can also be used to advice network administrators to

keep regular backups when assets such as “media” and “server” are

involved.

Comparison with DBIRs’ categorizations. Our choice of categoriza-

tions is consistent with the one adopted by Verizon in the 2008-13

DBIRs, but differs from the categorizations proposed in their latest

2014 and 2015 reports. DBIR 2014 uses hierarchical clustering to

identify nine incident classification patterns (combinations of ac-

tions, assets, and actors) that can be used to describe 92% of all inci-

dents. Examples of these patterns include cyber-espionage, point of

sale intrusions, and insider misuse. Despite the effectiveness of this

clustering method in accurately describing incidents in the dataset

used by Verizon, an application to the subset available through

VCDB would fail to provide a similar precision, see Table 2: due to

lack of sufficient details, 18% of the VCDB data will not fit the nine

proposed patterns (as opposed to only 6% in Verizon’s larger data-

set). This is one of our main motivations for selecting three different

categorizations based on VERIS primitives only, i.e., actions, actors,

and assets.

Results

Overall risk
Figure 3a displays the Receiver Operating Characteristic (ROC)

curve of our overall risk estimators, evaluated over the test samples.

By identifying organizations with similar attributes to those that

have previously experienced a data breach, we can achieve a 90%

true positive rate in flagging organizations in our victim set as high

risk, while keeping false positive rate at 11%. These numbers are

comparable with our previous results in [7], where we were able to

forecast cyber incidents with 90% true positive and 10% false posi-

tive rate. Figure 3b shows the distribution of the classifier output

scores for victim and nonvictim test samples. There is a clear distinc-

tion between the two distributions, with victim samples having

more bias toward higher scores, signifying more risk.

Moreover, Table 3 summarizes the accuracy of our model over

Alexa’s top categories in Table 2, as well as the overall accuracy on

all samples. Each row in Table 3 displays our model’s performance

over the test samples in 2014 that belong to the corresponding cat-

egory. We have removed categories where we have less than 20 vic-

tim samples. We have included the number of victims, and

nonvictims in each category, as well as the true positive rate that is

closest to 90%, along with its corresponding false positive rate. The

Area Under Curve (AUC) metric displays the area under the ROC

curve. Note that the AUC score is independent of the fraction of the

test population in each class, making it a useful metric for evaluating

performance on unbalanced datasets. The best accuracy belongs to

the “Business” category, and “Reference” and “Government” per-

form the worst.

Risk distributions
Figure 4 shows our results on prediction of specific incident types.

We have drawn ROC curves for three types each in the action, actor,

and asset categorizations. Comparing to Fig. 3a, the accuracy of

these classifiers is significantly lower, typically achieving a 80% true

positive at 50–60% false positive rate, except for the asset type

“kiosk” that achieves the same accuracy at 11% false positive (note

that this asset type is only owned by a select few industries, which

most likely contributes to the high accuracy observed here).

Table 2. VCDB data categorized using DBIR 2014 patterns

Incident type Crimeware Cyber Esp. Ddos Stolen Cred. Error Skimmers PoS Misuse Web app Else

No. of samples 67 16 106 326 333 66 19 272 399 356

Only 82% of the data can be described by the nine patterns.

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0

Non-Victim Samples
Victim Samples 

(a) (b)

Figure 3. ROC curve for overall risk estimation (left), and cumulative distribution of risk (right).
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To explain the difference between Figs 3a and 4, we will consider

a model with n different incident types, and a sample entity with

probability of breach of p. We will then analyze this example for dif-

ferent scenarios. In the first case, the absolute (unconditional) prob-

ability of breach for one incident type is equal to p, while other

types have zero probability, and we will be able to predict with cer-

tainty the type of the data breach. In the second case, assume that all

breach types are equally probable, and the conditional risk is a dis-

crete uniform random variable. In this scenario, if our predictor out-

puts a label of one with probability q for all types, we will on

average see q true positives, and q(n�1) false positives, and the

average true positive and false positive rates, averaged over all clas-

sifiers, will be equal to q. If the risk is equally distributed between k

incident types, then for every true positive the predictor will be

penalized by k�1 false positives, and the overall true positive and

false positive rates will be q and q(k�1)/(n�1), respectively. Note

that regardless of the type of an organization, its risk will never be

zero for breach types such as “error” and “misuse,” and as long as it

owns any form of network assets, it will be vulnerable to hacking in-

cidents (e.g. through zero-day vulnerabilities). As a result, the main

value of this risk distribution estimate is not as a forecast for a par-

ticular incident type, but rather as a prediction of how the overall

risk is distributed over all incident types by combining the outputs

of all classifiers. We will discuss how to interpret this conditional

distribution in Section 6, and show that it can lead to a sparse or di-

verse range of risks.

To gain insights on how details about a business can affect their

risk of experiencing various types of data breach, we start by deriv-

ing the distribution of risk over incident action types for each indus-

try sector. The results for nine business sectors, as well as the overall

distribution are included in Table 4; these results use only sector in-

formation in training the corresponding classifiers. Note that this is

equivalent to simply measuring the distribution of incidents in each

sector, since the Random Forest classifier is using only a single fea-

ture. There are a few observations on the risk distribution of differ-

ent sectors. For instance, information companies are more prone to

both types of hacking, and less likely to sustain damage due to phys-

ical incidents. In contrast, the health care industry has low risk in

hacking but high risk in physical attacks, especially theft. These ob-

servations are intuitively to be expected, since information compa-

nies’ most valuable assets are generally stored in nonphysical

formats (e.g. on the cloud), while the health care industry may still

use physical forms of archiving sensitive data such as patient

information.

To highlight the additional gain we get by using more features

than just industry sector information, we also show in Table 4a

number of examples. In these cases, our classifiers can generate

much more specific risk predictions. For instance, we can see that

compared to a typical information company, Russian Radio has less

risk in malware, social, and hacking through compromised creden-

tials, but higher risk in error, misuse, and physical. Verizon and

Macon-Bibb County exhibit a more uniform risk across the board.

The higher risk for Verizon in error and misuse (also the lower risk

of Macon-Bibb County in the same categories) can be attributed to

their respective sizes. As the number of employees grows larger, so

does the risk of data incidents due to human error and malevolent

employees. These much more refined and targeted predictions

would not be possible without using additional features. As we shall

show later in Section 6.2, with proper thresholding the actual inci-

dents in these organizations were also correctly identified.

Dealing with rare events

Looking at Table 4, there is an imbalance in the overall frequency at

which different incident types appear in our dataset. Social incidents

occur rarely as compared to error and hacking incidents. It is indeed

possible that social incidents are rare events, and therefore should

not be a priority when determining security policies. However, an

important challenge in building a risk assessment model is underre-

porting of security incidents by victims. Data breach reports are

largely undisclosed, as organizations tend not to expose their secur-

ity posture information unless necessary. Our dataset, VCDB, is a

collection of publicly disclosed breaches; these incidents have either

been detected by external sources (e.g. website defacement) or are

incidents which an organization is obligated to report due to the

compromise of private customer information (e.g. payment informa-

tion or health records). Thus, not only incidents are commonly

underreported, but it is also safe to assume the existence of selection

bias in the data: each incident type is represented differently as a

Table 3. Accuracy of overall risk estimation over Alexa’s top

categories

Category Victims Nonvictims AUC TPR (%) FPR (%)

World 56 2204 0.928 91.1 18.2

Business 73 817 0.968 89.0 4.0

Society 20 325 0.922 90.0 20.0

Reference 21 134 0.841 85.7 43.3

Computers 25 119 0.939 88.0 16.8

Health 36 117 0.954 88.9 21.4

Government 58 42 0.876 89.7 35.7

Overall 482 4669 0.953 89.6 11.3
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Figure 4. ROC curves for action (left), actor (middle), and asset (right) classifiers.
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result of both availability and variation of detection methods, and

the corresponding industries’ disclosure policies. This bias could

cause a tendency toward flagging and protecting from incidents that

are reported more often, in turn resulting in poor protection against

less commonly reported incidents.

One way to address this issue is to ignore the frequency at which

incident types are reported. In other words, rather than looking at

each row in Table 4, we could base our decisions on the distribution

of risk within each column. For instance, we can make the observa-

tion that finance and insurance companies exhibit higher than aver-

age risk in social incidents, even though the absolute risk in this

category is the second lowest in its respective row. By having differ-

ent standards, or thresholds, of what signifies high risk in each cat-

egory, we can alleviate the impact of potential underreporting and

reporting bias in the dataset and prevent the tendency of ignoring

rare events by ensuring equal protection among all incident types.

Specifically, after training our classifiers and obtaining risk outputs

on the input data, we specify thresholds for each incident type separ-

ately, such that the reduction in risk is consistent among all types;

this is detailed in the next section. Note that this “normalization” of

risk scores is possible mainly due to the fact that we are constructing

separate classifier for each incident type.

Interpreting the classifier output
After estimating an organization’s risk in each category by feeding

its features into our classifier, the next step is to interpret these

scores by determining what range of values indicate heightened risk.

Based on our discussion in the previous section, this is achieved by

computing the ROC curve for each binary classifier on the training

set, and choosing the point that corresponds to a predefined true

positive rate. We will use the family of thresholds corresponding to

these points to determine risky incident types for any arbitrary or-

ganization, hereafter referred to as the “risk profile.” Selecting a

more conservative set of thresholds (i.e. higher true positive rate)

will tighten the business’s security by advising it to invest in a larger

set of self-protection methods. This selection represents the trade-off

between the amount of resources an organization allocates to self-

protection, and the reduction in incidents it desires to attain. From

this point on when referring to “thresholds” used for deriving the

risk profile, we simply mean the family of thresholds acquired for a

specific true positive rate. We find these thresholds by looking at the

ROC curve of each classifier, and finding the point that corresponds

to a specific accuracy (e.g. 80% true positive rate), this is explained

in Section 6.1. Note that these thresholds are specific to our incident

source (VCDB), through its reporting rates on different incident

types. Therefore, an incident dataset with different reporting rates

would yield a new set of thresholds.

Evaluation
For evaluation, we first obtain the risk profiles of organizations in

our test samples, for various sets of thresholds. We then calculate

the accuracy of our risk assessment model, by counting the number

of incidents which belong to one of the risky types forecasted by the

risk profiles. An important advantage of our model is in reducing

the number of risky types predicted for each organization; achieving

the same accuracy by advising organizations to focus on a smaller

set of incident types will help achieve the same level of protection by

spending less resources on security.

Figure 5a, c, and e summarize our results over action, actor, and

asset types, respectively. Each point in the plot denotes the accuracy

of risk profiles obtained from a particular set of thresholds, versus

the average number of risky types forecasted by these profiles. To il-

lustrate the improved performance of using our extended set of fea-

tures, we have also included the accuracy curve of a predictor using

industry information alone (Table 4). For action, actor, and asset

types we can correctly forecast 90% of the incidents in our dataset

by flagging, on average, 5.6 (70% of incident types), 4.0 (67%), and

3.5 (70%) incident types, respectively. In other words, we can

achieve this accuracy by eliminating at least 30% of all incident

types. Using only business sector information, the numbers increase

to 6.5 (81%), 4.8 (80%), and 3.6 (72%). The distinction is more vis-

ible when predicting over action and actor types.

Note that for a given point in the plot, the number of risky types

in the risk profile can vary across organizations. Figure 5b, d, and f

demonstrate the distribution of organizations over their predicted

number of risky types, corresponding to the 80% accuracy point in

the top plots. Looking at Fig. 5b we can see that using all features,

there are organizations whose risk profiles only consist of 1 or 2 in-

cidents types, while others include up to seven types.

We present a number of these samples in Table 5, whose risk

scores have already been discussed in Table 4. The first two ex-

amples in the table belong to the information sector, and the last

two are public administration organizations. We have included the

risk profiles for these sample organizations using our extended

Table 4. Conditional risk distribution by business sector, and for sample organizations (highlighted rows)

Hacking Physical

Error Comp. Cred. Other Malware Misuse Theft Other Social

Manufacturing 0.08 0.09 0.33 0.13 0.22 0.13 0.00 0.02

Retail trade 0.15 0.26 0.11 0.19 0.09 0.09 0.11 0.02

Information 0.09 0.28 0.41 0.07 0.04 0.03 0.01 0.07

Russian Radio 0.14 0.16 0.40 0.02 0.10 0.10 0.03 0.03

Verizon 0.28 0.17 0.22 0.08 0.19 0.06 0.05 0.05

Finance and insurance 0.25 0.09 0.11 0.05 0.12 0.10 0.19 0.07

Pro., Sci. and Tech. Svcs 0.16 0.09 0.56 0.04 0.13 0.09 0.00 0.02

Educational Svcs 0.30 0.13 0.21 0.06 0.11 0.14 0.00 0.05

Health care and social asst 0.25 0.08 0.03 0.02 0.23 0.38 0.02 0.01

Accommodation and food Svcs 0.08 0.37 0.00 0.18 0.16 0.11 0.11 0.00

Public administration 0.27 0.09 0.29 0.03 0.17 0.10 0.01 0.03

Internal revenue service 0.21 0.08 0.15 0.06 0.17 0.09 0.02 0.03

Macon-Bibb County 0.20 0.13 0.23 0.07 0.14 0.23 0.04 0.04

Overall 0.22 0.12 0.21 0.06 0.15 0.14 0.04 0.04
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feature set, as well as the risk profile using only industry. For the in-

formation sector, the latter recommends focusing on both types of

hacking, as well as social incidents, whereas for public administra-

tion it deems all but the second type of physical incidents risky. In

contrast, using our extended feature set, we are able to eliminate

malware and social incidents as likely threats for Russian Radio,

and still provide an accurate risk profile. Similarly for the Internal

Revenue Service, we are able to narrow down the list of threats to

two types without losing accuracy. Macon-Bibb County and

Verizon are assessed to have a broad range of risks, more so than

their respective industry average would suggest; this highlights that

for these organizations they may be attacked on multiple fronts,

which may call for a different type of resource allocation strategy.

The point is that this type of fine-grained prediction is much more

specific to an organization itself rather than using the industry aver-

age as a proxy. We also note that in all these cases our risk profile

correctly captured the actual incident occurrences (as indicated by

an “�”).

It is worth noting that the gray cells in Table 5 not marked with

an “�” are incident types deemed likely by our classifier but unreal-

ized in reality (not observed in our dataset). These should not be

viewed as discrepancy; rather, the relationship between a predicted

risk profile and actual incident occurrence is analogous to that be-

tween a dice with a certain probability of turning up each side and

the outcome of tossing the dice in a particular random trial. In other

words, in the example of the Internal Revenue Service, even though

misuse is the only incident that actually occurred, the result suggests

that an error event could just as well have happened. This is because

in essence our classification constructs risk profiles by extracting de-

tails about a business and examining actual incidents that have

occurred to other, “similar” companies. In this case, for organiza-

tions that share the same business model as the Internal Revenue

Service, error and misuse constitute the majority of data breach re-

ports; thus given the information available to us, both incident types

are regarded risky.

To close this section, we display the average risk profile over ac-

tion types of all organizations, as well as average risk profiles over

action types for different industry sectors and sizes in Table 6. Each

number in the table represents the percentage of organizations, for

whom the respective incident type is deemed risky. For instance,

61.9% of all organizations have high risk in hacking incidents due

to compromised credentials. However, for 100% of organizations in

the information sector this type of hacking poses a high threat. The

risk profiles are obtained for the 80% accuracy point in Fig. 5a.
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Figure 5. Detection rate vs. average number of risky types (top), and distribution of organizations over the number of types in their risk profiles (bottom).

Table 5. Risk profiles for sample organizations, and their corresponding industries’ profiles

Organization Error Hacking Malware Misuse Physical Social

Comp. Cred. Other Theft Other

Information

Russian Radio �
Verizon �
Public administration

Macon-Bibb County �
Internal revenue Service �

Gray cells signify incident types with high risk, and crosses indicate the actual incident.
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We highlight a number of trends in Table 6. As discussed previ-

ously, large companies tend to have higher risk in error and misuse.

Sectors that are more prone to error include large health care, and

both small and large public administration. Large health care and

large public administration companies also run a high risk of misuse.

Incidents of error exhibit a substantial presence in all business types,

the minimum being 21.2% for information companies. Note that

overall, all of the incident types are flagged for at least 30% of our

samples, even though their occurrence rate is widely different as evi-

denced in the last row of Table 4. This is due to our choice of ignor-

ing the a priori distribution of incidents, as explained in detail in

Section 6.

Comparing Tables 5 and 6 can help provide some insight on

how having additional features has helped eliminate (or introduce)

possible risks for those sample organizations. For instance, small

information companies tend to have lower risk in social incidents,

and this has helped us eliminate this category as a possible threat for

Russian Radio. We can also see that small public administration and

large information companies have a more uniform risk among all

types, attributed to the risk profiles for Macon-Bibb County and

Verizon, respectively. The Internal Revenue Service, a large public

information company, is expected to have less risk in the second

type of physical incidents, as well as hacking and malware. Note

that one cannot completely explain the generated risk profiles by

only looking at business sector and size information alone, as they

are a result of analyzing the dataset’s distribution over all the fea-

tures in Table A1. For instance, large public administration organ-

izations tend to have higher risk in social events than small ones,

even though this incident type has been flagged for Macon-Bibb

County and not the IRS. In this case, other features of the IRS have

contributed to its lower risk.

Conclusion

Our results demonstrate how, and to what extent, can business de-

tails about an organization help forecast its overall risk of data

breach, as well as the relative risk of experiencing different types of

data incidents. We observe that it is possible to forecast future secur-

ity incidents with high accuracy. However, even though there is not-

able correlation between organization features and the incident

signatures in our dataset, it is impossible to assert with certainty the

types of incident an organization is likely to face. We acknowledge

the fact that there is an inherent randomness in incidents suffered by

organizations: no business is prone to a single type of incident. As

observed in our results, while risk in incidents such as hacking and

theft may vary largely across sectors, any organization is likely to

experience incidents due to miscellaneous errors. Nonetheless, feed-

ing further information into our classifiers may help construct more

accurate risk profiles. The feature set used in this article provides

only high level information about the organization itself, and not its

security posture. Even though these features are the easiest to obtain,

as they all are publicly available, further information indicative of

an organization’s security policies will undoubtedly help narrow

down its risk profile. Externally observable signals, such as the ones

used in [7], as well as inside information, may be used to infer a

business’s security posture.

Note that our model’s output is as good as the labels that our in-

cident dataset provides. VCDB reports publicly disclosed data

breaches, and therefore our model’s output is essentially assessing

the risk of publicly disclosed data breaches. Whether these results

can generalize for data breaches that were not reported, depends on

how representative our incident samples are. There are a number of

biases in self-reporting of incidents, and those that are externally de-

tected by a third party. For example, incidents that involve customer

information such as credit card numbers are more frequently re-

ported, and attacks such as website defacement can be easily de-

tected externally. However, we might not have a representative

sample of incidents that result in the theft of trade secrets, and pro-

prietary information.

Furthermore, the discrepancy in reporting rates of different inci-

dent types, might lead to underestimation or overestimation of risk

in our assessments. While we alleviate this issue in our treatment of

Table 6. Average risk profiles by business sector and size

Hacking Physical

Industry (number of samples) Error Comp. Cred. Other Malware Misuse Theft Other Social

Manufacturing (39) 30.8 97.4 51.3 89.7 33.3 28.2 76.9 41.0

Retail trade (63) 34.9 100.0 46.0 76.2 42.9 9.5 68.3 23.8

Information

Small (49) 22.5 100.0 100.0 65.3 12.2 8.2 38.8 59.2

Large (41) 36.6 100.0 80.5 70.7 36.6 0.0 51.2 87.8

Finance and insurance

Small (53) 66.0 62.3 18.9 75.5 18.9 34.0 75.5 60.4

Large (91) 64.8 41.8 29.7 31.9 67.0 49.4 86.8 75.8

Pro., Sci. and Tech. Svcs (44) 54.6 72.7 27.3 50.0 27.3 45.5 36.4 43.2

Educational Svcs

Small (27) 81.5 44.4 14.8 63.0 40.7 92.6 25.9 33.3

Large (46) 89.1 34.8 2.2 19.6 41.3 82.6 41.3 26.1

Health care and social asst

Small (97) 59.8 28.9 7.2 22.7 54.6 95.9 46.4 10.3

Large (97) 93.8 10.3 3.1 7.2 96.9 96.9 42.3 24.7

Accommodation and food Svcs (33) 72.7 6.1 15.1 48.5 87.9 78.8 54.6 9.1

Public administration

Small (41) 95.4 85.4 24.4 22.0 63.4 51.2 9.8 19.5

Large (96) 97.9 32.3 10.4 2.1 93.8 67.7 0.0 55.2

Overall (1426) 61.6 61.9 37.5 32.4 56.9 51.5 38.1 38.9
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rare events in Section 6 for estimating risk distributions, the problem

remains for overall risk assessments. Moreover, we only focus on

discrepancies for specific incident types (by action, actor, and asset

types), and do not take other factors into consideration. Other vari-

ables that may impact the reporting of incidents include region

(VCDB mainly focuses on US incidents), and business sector. A

more comprehensive source of data breaches can improve our as-

sessments, and allow us to use more sophisticated machine learning

methods in order to find factors that influence cyber-risk.

It is worth noting that incident types are often too ambiguous to

act upon for a security unaware business operator, hence the need

for explicit, actionable security recommendations. Note that there

indeed exist frameworks providing such recommendations. For ex-

ample, the SANS institute’s critical security controls [26] is com-

posed of 20 categories of security controls, each describing a specific

action or policy that can be implemented by a business in order to

raise its security levels. Verizon uses this framework to provide gen-

eral security recommendations in its annual Data Breach

Investigations Report, and the SANS institute offers a partial map-

ping between these controls and the VERIS incident categorizations.

Translating our risk profiles into actionable security recommenda-

tions is a direction for future work. Furthermore, our current dataset

does not contain information on the monetary impact of each inci-

dent type. Obtaining such information, and combining it with the

cost of protection for each incident type, will allow us to provide

more economically-informed recommendations.
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Appendix

Table A1. Features and feature importances for all classifiers

Crosses indicate features that have not been used in training the corresponding classifier.
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