

Introduction to Structural System

Condominium Tower

The condominium building will be supported by a deep foundation system that will support the columns, walls, and slabs. The piles will be HP12x84 steel piles driven to 225 tons with a net bearing capacity of 200 tons. These piles will be grouped at columns and transfer load from columns using pile caps. A typical interior pile cap will be 7'-9"x11'-0" and 38 inches thick, with reinforcement in both directions. An exterior pile cap will be 7'-9"x7'-9" with 4 piles and a depth of 32 inches. Concrete grade beams span from column pile cap to pile cap and support the exterior walls of the building. The first floor slab will be a 12 inch thick concrete slab with #7 reinforcement at 12 inches on-center each way, top and bottom.

The condominium building floors will have 8 inch thick post-tensioned concrete slabs. The slabs span between columns spaced at 28'-6" in one direction and 23'-0" in the other

direction. A typical interior column is 16"x52", and its reinforcement and concrete strength decreases at upper floors. The exterior columns are 16"x36". Concrete shear walls (varying 12-16 in., depending on location) provide lateral resistance and are located generally around elevators and stair towers and are scattered throughout the plan. The mechanical penthouse roof will be framed by steel beams spaced at 6 ft. on-center with 1 $\frac{1}{2}$ " deep, 22 gage roof deck spanning in between these beams. The mechanical area will be enclosed by metal panels with steel stud support. The cooling tower will similarly be enclosed with metal paneling, with a structural channel girt system to support it.

Parking Garage

For the parking garage, additional steel piles (80 ton HP12x53) will be added at approximately 20 feet on-center to support the lowest level slab. The exterior columns will have 9'-0"x9'-0"x3'-0" deep pile caps with (5) HP 12x84 piles. The interior walls will have a 6'-0" wide grade beam with HP12x84 piles on each side of the wall, spaced 8'-0" on-center. The slab spanning these piles and columns will be the same as the apartment building slab.

The floor framing of the parking garage will be 34 inch deep pre-topped double tees which span between 45 to 60 feet. An "L" shaped beam makes up the exterior of the building and support the pre-cast tees. These L beams will span approximately 48 feet from column to column. The interior support, including the support of the sloping tees, will be supported by 12 inch thick pre-cast light wall. The exterior pre-cast columns will be approximately 24"x36". 12-inch thick shear walls located throughout the plan will resist the lateral loads on the parking garage.

Governing Codes and Standards

Primary Building Code BOCA 1996 Building Official and Code Administration with City of Wilmington Amendments

<u>Loads and Serviceability Requirements</u> American Society of Civil Engineers, "Minimum Design Loads for Buildings and Other Structures" (ASCE 7-02)

Concrete

American Concrete Institute, Building Code Requirements for Reinforced Concrete (ACI318-02)

Masonry

Building Code Requirements for Masonry Structures (ACI530-02/ASCE 5-02)

Structural Steel

American Institute of Steel Construction, Specification for Structural Steel Buildings

Light Steel Framing

American Iron and Steel Institute, Specifications for the Design of Cold-Formed Steel Structural Members, Specification for Structural Steel Buildings *Allowable Stress Design and Plastic Design (AISI CFSD-ASD)*

Precast Concrete

Precast/Prestressed Concrete Institute, Design Handbook-Precast and Prestressed Concrete: Code of Standard Practice for Precast/Prestressed Concrete (PCI MNL-120)

Structural Material Specifications

Concrete

- Foundations (Pile Caps and Grade Beams): 6,000 psi normal weight
- <u>Slab on Grade:</u> 4,000 psi normal weight
- Post Tensioned Slabs and Beams: 5,000 psi normal weight
- <u>Columns:</u> 5,000 and 6,000 psi normal weight
- <u>Precast Garage Panels:</u> 5,000 psi concrete

Concrete Reinforcing

- Deformed Reinforcing Bars: ASTM A615 Grade 60
- <u>Welded Wire Fabric:</u> ASTM A185

Structural Steel

- <u>Wide Flange Shapes:</u> ASTM A992
- <u>M, S, Channels, Angle Shapes:</u> ASTM A36
- Hollow Structural Steel: ASTM A500 Grade B
- <u>Structural Pipe:</u> ASTM A53 Grade B

Area Type	Provided Design Values	Table 1606 of BOCA 1996 Code
Parking Garage	50 psf	50 psf (Passenger cars only)
Balconies	60 psf	60 psf (One- and two-story dwellings
		that do not exceed 100 sq. ft.)
Exit Stairs	100 psf	100 psf (Fire Escapes)
Tower Floors	40 psf	40 psf (Dwelling units and corridors)
Partitions	20 psf (where applicable)	20 psf minimum (by 1606.2.4 of code)
Terrace	100 psf	100 psf (Exterior balcony)
Mechanical Rooms	150 psf	
Elevator Machine Room	150 psf	

Existing Structural Loading

Live Load Calculation Results: please see Appendix A for detailed calculations

Floor/Level	Primary Usage	Total LL per floor (kips)	(psf)
1	Parking/Residential	1461.35	49.62
2	Parking/Residential	1486.68	49.70
3 to 6	Parking/Residential	1514.48	49.68
7	Parking/Residential	1968.19	49.75
8	Residential/Terrace	2148.59	67.97
9 to 22	Residential	597.11	49.0
23	Penthouse/Mechanical	926.05	99.5
24 to 25	Mechanical	160.5	150
Roof		365.58	30

Live Load Reductions

• "Live loads of 100 psf or less shall be reduced in accordance with the Code established procedure, except at the parking garage levels or roof, where live loads will not be reduced..." (consistent with BOCA 1996 1606.7.2.2). For simplicity, I did not consider these reductions on any level, although levels 8-22 would have been eligible.

	Self Weights Per Level							
Level	Column (k)	Slab (k)	Shear Wall (k)	Total (k)	Total (psf)			
Roof	N/A	N/A	374.73	400*	373			
24 to 25	20.13	104.86	374.73	499.72	467			
23	42.73	912.09	374.73	1329.55	143			
9 to 22	42.73	1194.23	384.1	1621.06	133			
8	59.01	3097.78	483.54	3640.33	115			
7	55.96	3876.88	483.54	4416.38	112			
3 to 6	55.96	2987.63	483.54	3527.13	115.7			
2	61.99	2906.97	483.54	3452.5	116.4			
1	58.76	2886	483.54	3428.3	116			
				54469.86	4234.2			

Dead Load Calculation Results: please see Appendix B for detailed calculations

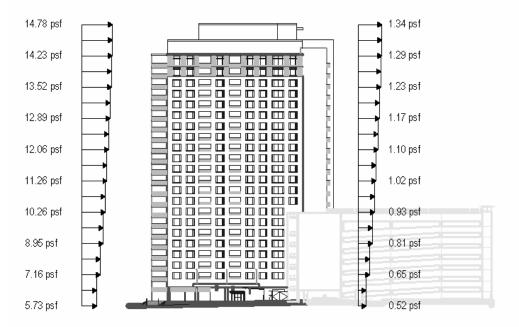
*Please see Appendix B for more clarification on assumptions on roof self weight. In addition to those self weights listed here, there has been an estimation of 20 psf for partition loads where applicable.

Roof and Snow Loads

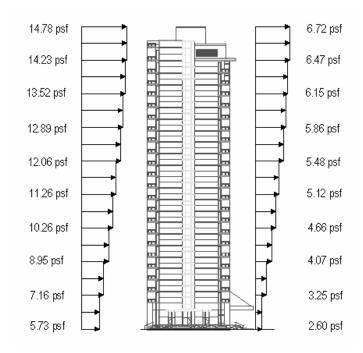
- <u>Minimum Roof Live Load:</u> 30 psf
- Ground Snow Load: 30 psf
- <u>Snow Load Importance Factor:</u> 1.0
- <u>Snow Exposure Factor:</u> 0.7
- <u>Thermal Factor:</u> 1.0
- <u>Flat Roof Snow Load:</u> 14.0 psf (Specified in construction documents as 20 psf minimum)
- Please consult Appendix C for detailed Snow Load Calculations

Drift and Deflection Criteria: As provided by O'Donnell & Naccarato, Structural Engineer:

- Lateral wind and seismic loads:
 - Interstitial drift: L/400 (where L= floor-to-floor height)
- Vertical gravity and live loads:
 - L/360 under live loads
 - L/240 under total load (where L= span of member under consideration in both cases)


Wind Loads

- <u>Basic Wind Speed:</u> 80 mph
- Wind Importance Factor: 1.04
- <u>Wind Exposure</u>: B
- Internal Pressure Coefficient: +/-0.25
- Components and Cladding Loads: vary per code requirements
- Load Diagrams with results provided on next page
- Please consult Appendix D for detailed Wind Load Calculations



Parking garage (dashed) not considered

Wind Pressures (psf) in West-East Direction

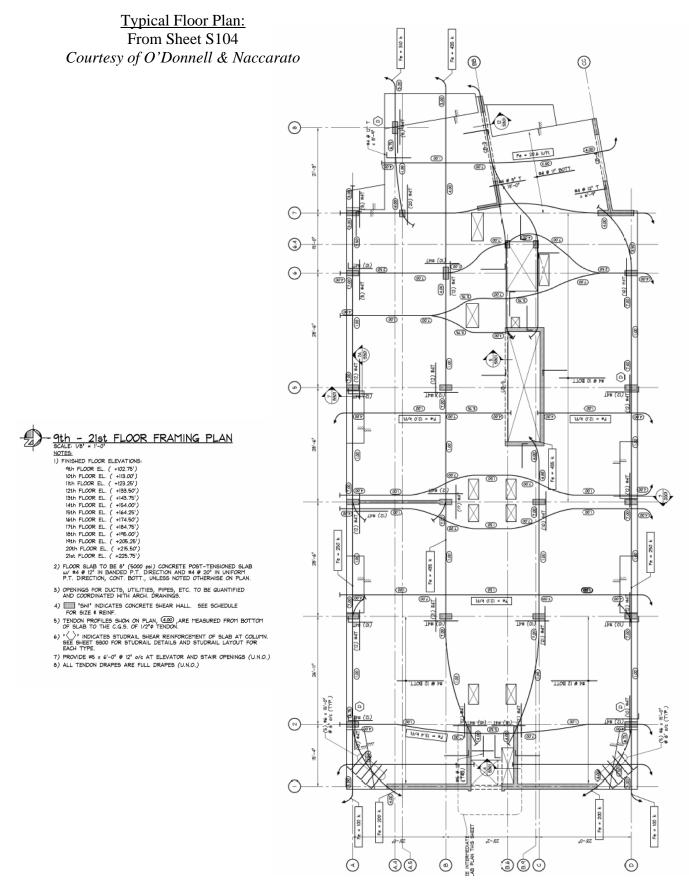
Wind Pressures (psf) in North-South Direction

Seismic Loads

- <u>Seismic Importance Factor:</u> 1.0
- A_v (Velocity related acceleration coefficient) = 0.075
- A_a (Peak acceleration coefficient) = 0.05
- <u>Seismic Design Category:</u> B
- <u>Basic Seismic Force Resisting System:</u> Dual system with shear wall and intermediate concrete frame iteration
- Response Modification Factor, R = 6
- Site Coefficient, $S_4 = 2.0$
- <u>Analysis Procedure Used:</u> Equivalent Force Method
- Base Shear = V = 849.73 kips
- Please see Appendix E for detailed Seismic Load Calculations and results

Structural Design and Theory

From my own personal discussions with the structural engineers on this project, the Residences at Christina Landing tower, a 23-story apartment building adjacent to this structure, served as the initial inspiration for the River Tower's design. The Residences at Christina Landing was designed structurally by the Kling engineering firm, and in fact was the subject of Ms. Pamela A. Morris' senior thesis project of 2004-2005. This structure, which is in the process of being completed, made use of two-way precast concrete floor slabs.


The riverfront location of the River Tower necessitated the use of piles as foundation support, as a spread foundation would not be sufficient in construction so close to the riverbed. The shear walls provide the lateral resistance for the structure, while the flat plate post-tensioned slabs distribute the gravity loads. Part of the reason for the choosing of a post-tensioned flat plate slab, as opposed to another type of two-way or a reinforced slab, is its improved resistance to punching shear. Whereas a reinforced flat plate system would most likely require drop panels or column capitals to provide this necessary shear resistance, the post-tensioning element provides this benefit without additional slab depth. This allows for speedier construction, and ultimately more cost- and space-efficient structures.

Preliminary Spot Check and Lateral Analysis

I attempted to perform a spot check analysis on the post-tensioned slab based on my dead and live load calculations. This proved difficult as my knowledge and experience with both post-tensioned and reinforced slabs are severely limited. Because of the post-tensioning in the slab, the Equivalent Frame Method was recommended by ACI. I then tried to check the slab using Ultimate Flexural Strength Analysis, considering a small 12" section of the slab as a beam. However, this over-simplification (and perhaps poor assumptions along the way) has that compressive reinforcement is needed in the interior bay of the tenth floor that I was analyzing, as shown on the following page. Because this does not match the actual design, I reasoned that my assumptions and methods are not applicable in this case. Unfortunately, this particular system has not been part of my curriculum as of yet, so I will further investigate these methods of analysis and their applicability in future reports. Please consult Appendix F for the Spot Check Calculations in greater detail.

The lateral resistance check of the shear walls, also taken from the tenth floor for consistency, appeared to verify the actual design as the reinforcement and deflection of the wall met the minimum criteria of which I was aware. Again, this was a first attempt at such an analysis, and a more proficient method will be used in the future to confirm the legitimacy of the actual designs. My spot check for gravity loading and lateral resistance checks are only preliminary investigations into the analysis, and will be updated in future reports. Please consult Appendix G for the Lateral Resistance Check calculations in greater detail.

APPENDICES

- A. Design Live Load Calculations
- B. Design Dead Load Calculations
- C. Snow Load Calculations
- D. Wind Load Calculations
- E. Seismic Load Calculations
- F. Spot Check Calculations
- G. Preliminary Lateral Load Analysis Calculations

APPENDIX A

Design Live Load Calculations

Assumptions based on criteria listed on construction drawings and documents, and verified using the BOCA 1996 Building Code.

<u>Roof Live Load:</u> 20 psf <u>Public Spaces:</u> (Corridors, public rooms): 100 psf <u>Typical Tower Floor:</u> (Residential floors): 40 psf <u>Typical Parking Garage Floor:</u> 50 psf <u>Mechanical Load:</u> 150 psf

Floor/ Level	Resident	tial Spaces			Total Floor Square Footage
	SF	% of SF	SF	% of SF	
1	11105	37.71	18344	62.29	29449
2	9812	33.08	19851	66.92	29663
3 to 6	9812	32.19	20674	67.81	30486
7	9812	24.80	29748	75.20	39560
8	19851	62.80	11759	37.20	31610
9 to 22	12186	100.00	0	0.00	12186
23	5724	61.50	3583	38.50	9307
24 to 25	0	0.00	1070	100.00	1070*
Roof	0	0.00	12186	100.00	12186**

Assumptions:

- For simplicity, mechanical loads were judged to apply to half of the spaces on the mechanical/penthouse level 23, and mechanical loads were applied to the full area of level 24.

- Public spaces were assumed to be 15% of residential spaces on typical floors, with the exception of the eighth floor.

- For simplicity, the eighth floor's "other" spaces were assumed to be the rooftop terrace, and was assigned the public space loading of 100 psf to be conservative.

- The roof load was applied to the typical tower floor area for simplicity.

- Live load reductions for live loads of 100 psf or less are not permitted for public garages or for roofs, per BOCA 1996 1606.7.2.2. The reduction would be permitted for the eighth through 22nd floors in this case, but was not considered for simplicity.

*The 25th floor is an extension of the Elevator Machine Room on the 24th floor and was assumed to have the same total area. The elevator room machine load given in the construction documents was used in this live load calculation.

**The largest tower floor area was used in the roof live load calculation for simplicity and to be conservative.

Live Load Calculations:

First Floor: $LL = (29449 \text{ total sf})^*[(0.15*0.377*(100 \text{ psf public})) + (0.85*0.377*(40 \text{ psf residential})) + (0.85*0.377*(40 \text{ p$ +0.623*(50 psf parking)] = 1461.35 kipsLL = (0.15*0.377*100 psf) + (0.85*0.377*40 psf) + (0.623*50 psf) = 49.62 psfSecond Floor: $LL = (29663 \text{ total sf})^*[(0.15*0.331*(100 \text{ psf public})) + (0.85*0.331*(40 \text{ psf residential})) + (0.85*0.331*(40 \text{ p$ + 0.669*(50 psf parking)] = 1486.68 kipsLL = 49.70 psfThird through Sixth Floors: $LL = (30486 \text{ total sf})^*[(0.15*0.322*(100 \text{ psf public})) + (0.85*0.322*(40 \text{ psf residential})) + (0.85*0.322*(40 \text{ p$ + 0.678*(50 psf parking)] = 1514.48 kips per floorLL = 49.68 psfSeventh Floor: $LL = (39560 \text{ total sf})^*[(0.15*0.248*(100 \text{ psf public})) + (0.85*0.248*(40 \text{ psf residential})) + (0.85*0.248*(40 \text{ p$ + 0.752*(50 psf parking)] = 1968.19 kipsLL = 49.75 psfEighth Floor: $LL = (31610 \text{ total sf})^*[(0.15*0.628*(100 \text{ psf public})) + (0.85*0.628*(40 \text{ psf residential})) + (0.85*0.628*(40 \text{ psf residential}))] + (0.85*0.628*(40 \text{ psf residential}))]$ + 0.372*(100 psf public/terrace)] = 2148.59 kipsLL = 67.97 psfNinth through 22nd Floor: $LL = (12186 \text{ total sf})^*[(0.15^*(100 \text{ psf public})) + 0.85^*(40 \text{ psf residential})] = 597.11 \text{ kip per floor}$ LL = 49 psf23rd Floor: $LL = (9307 \text{ total sf})^*[(0.15*0.5*(100 \text{ psf public})) + (0.85*0.5*(40 \text{ psf residential})) +$ + 0.5*(150 psf mechanical)] = 926.05 kipsLL = 99.5 psf24th and 25th Floor: $LL = (1070 \text{ total sf})^*(150 \text{ psf mechanical/elevator room}) = 160.5 \text{ kips}$ LL = 150 psfRoof Load: $LL = (12186 \text{ total sf})^*(30 \text{ psf roof}) = 365.58 \text{ kips}$ LL = 30 psf

APPENDIX B

Design Dead Load Calculations

Assumptions based on criteria listed on construction drawings and documents, and verified using the BOCA 1996 Building Code.

Column Self-Weight Calculations

	Ground Level							
Width (in)	Depth (in)	Area (ft ²)	Height (ft)	Weight (pcf)	Self Wt. (kips)			
16.00	36.00	4.00	10.25	147.00	6.03			
16.00	52.00	5.78	10.25	147.00	8.71			
14.00	24.00	2.33	10.25	147.00	3.52			
24.00	28.00	4.67	10.25	147.00	7.03			
16.00	36.00	4.00	10.25	147.00	6.03			
16.00	36.00	4.00	10.25	147.00	6.03			
16.00	20.00	2.22	10.25	147.00	3.35			
16.00	36.00	4.00	10.25	147.00	6.03			
16.00	36.00	4.00	10.25	147.00	6.03			
16.00	36.00	4.00	10.25	147.00	6.03			
				Σ (k) =	58.76			

Level 2							
Width	Depth	Area	Height	Weight	Self Wt.		
(in)	(in)	(ft^2)	(ft)	(pcf)	(kips)		
16.00	36.00	4.00	10.25	147.00	6.03		
16.00	52.00	5.78	10.25	147.00	8.71		
14.00	24.00	2.33	10.25	147.00	3.52		
24.00	28.00	4.67	10.25	147.00	7.03		
16.00	36.00	4.00	10.25	147.00	6.03		
16.00	36.00	4.00	10.25	147.00	6.03		
16.00	20.00	2.22	10.25	147.00	3.35		
16.00	36.00	4.00	10.25	147.00	6.03		
16.00	36.00	4.00	10.25	147.00	6.03		
16.00	36.00	4.00	10.25	147.00	6.03		
14.00	22.00	2.14	10.25	147.00	3.22		
				Σ (k) =	61.99		

	Levels 3 to 7							
Width	Depth	Area	Height	Weight	Self Wt.			
(in)	(in)	(ft^2)	(ft)	(pcf)	(kips)			
16.00	36.00	4.00	10.25	147.00	6.03			
16.00	52.00	5.78	10.25	147.00	8.71			
14.00	24.00	2.33	10.25	147.00	3.52			
24.00	28.00	4.67	10.25	147.00	7.03			
16.00	36.00	4.00	10.25	147.00	6.03			
16.00	36.00	4.00	10.25	147.00	6.03			
16.00	20.00	2.22	10.25	147.00	3.35			
16.00	36.00	4.00	10.25	147.00	6.03			
16.00	36.00	4.00	10.25	147.00	6.03			
14.00	22.00	2.14	10.25	147.00	3.22			
				Σ (k) =	55.96			

Level 8						
Width	Depth	Area	Height	Weight	Self Wt.	
(in)	(in)	(ft^2)	(ft)	(pcf)	(kips)	
16.00	36.00	4.00	10.25	147.00	6.03	
16.00	36.00	4.00	10.25	147.00	6.03	
24.00	28.00	4.67	10.25	147.00	7.03	
16.00	36.00	4.00	10.25	147.00	6.03	
16.00	20.00	2.22	10.25	147.00	3.35	
16.00	36.00	4.00	10.25	147.00	6.03	
16.00	36.00	4.00	10.25	147.00	6.03	
12.00	48.00	4.00	10.25	147.00	6.03	
12.00	48.00	4.00	10.25	147.00	6.03	
14.00	22.00	2.14	10.25	147.00	3.22	
14.00	22.00	2.14	10.25	147.00	3.22	
		Σ (k) =	59.01			

Level 9 to 23						
Width (in)	Depth (in)	Area (ft ²)	Height (ft)	Weight (pcf)	Self Wt. (kips)	
16.00	36.00	4.00	10.25	147.00	6.03	
16.00	36.00	4.00	10.25	147.00	6.03	
16.00	36.00	4.00	10.25	147.00	6.03	
16.00	20.00	2.22	10.25	147.00	3.35	
16.00	36.00	4.00	10.25	147.00	6.03	
12.00	48.00	4.00	10.25	147.00	6.03	
12.00	48.00	4.00	10.25	147.00	6.03	
14.00	22.00	2.14	10.25	147.00	3.22	
				Σ (k) =	42.73	

Levels 24 and 25						
Width (in)	Depth (in)	Area (ft ²)	Height (ft)	Weight (pcf)	Self Wt. (kips)	
16.00	20.00	2.22	10.0	147.00	3.27	
12.00	16.00	1.33	10.0	147.00	1.96	
12.00	48.00	4.00	10.0	147.00	5.88	
12.00	48.00	4.00	10.0	147.00	5.88	
14.00	22.00	2.14	10.0	147.00	3.14	
				Σ (k) =	20.13	

Shear Wall Self-Weight Calculations

	Foundation to Eighth Floor						
Thick	Length	Area (ft ²)	Height	Weight	Self Wt.		
(in)	(ft)	(11)	(ft)	(pcf)	(kips)		
16.00	44.00	58.67	10.25	147.00	88.40		
12.00	28.00	28.00	10.25	147.00	42.19		
9.00	19.00	14.25	10.25	147.00	21.47		
12.00	18.00	18.00	10.25	147.00	27.12		
12.00	30.00	30.00	10.25	147.00	45.20		
12.00	12.00	12.00	10.25	147.00	18.08		
12.00	9.00	9.00	10.25	147.00	13.56		
12.00	18.00	18.00	10.25	147.00	27.12		
12.00	42.00	42.00	10.25	147.00	63.28		
24.00	15.00	30.00	10.25	147.00	45.20		
12.00	25.00	25.00	10.25	147.00	37.67		
24	18	36.00	10.25	147.00	54.24		
				Σ (k) =	483.54		

9th to 22 nd Floors							
Thick (in)	Length (ft)	Area (ft ²)	Height (ft)	Weight (pcf)	Self Wt. (kips)		
16.00	44.00	58.67	10.25	147.00	88.40		
12.00	28.00	28.00	10.25	147.00	42.19		
9.00	19.00	14.25	10.25	147.00	21.47		
12.00	18.00	18.00	10.25	147.00	27.12		
12.00	30.00	30.00	10.25	147.00	45.20		
12.00	12.00	12.00	10.25	147.00	18.08		
12.00	9.00	9.00	10.25	147.00	13.56		
12.00	18.00	18.00	10.25	147.00	27.12		
12.00	42.00	42.00	10.25	147.00	63.28		
12.00	25.00	25.00	10.25	147.00	37.67		
				Σ (k) =	384.10		

	23 rd Level to Roof					
Thick (in)	Length (ft)	Area (ft ²)	Height (ft)	Weight (pcf)	Column Wt. (kips)	
16.00	44.00	58.67	10.00	147.00	86.24	
12.00	28.00	28.00	10.00	147.00	41.16	
9.00	19.00	14.25	10.00	147.00	20.95	
12.00	18.00	18.00	10.00	147.00	26.46	
12.00	30.00	30.00	10.00	147.00	44.10	
12.00	12.00	12.00	10.00	147.00	17.64	
12.00	9.00	9.00	10.00	147.00	13.23	
12.00	18.00	18.00	10.00	147.00	26.46	
12.00	42.00	42.00	10.00	147.00	61.74	
12.00	25.00	25.00	10.00	147.00	36.75	
				Σ (k) =	374.73	

Dead Load Calculations per Floor

First Floor: W_{slab} = (8" slab)*(147 pcf)*(1ft/12")*(29449 sf)*(1 kip/1000 lb) = 2886.0 kips W_{columns} = 58.76 kips W_{shear wall} = 483.54 kips W_{first} = **3428.30 kips** = **0.116 ksf**

Second Floor: W_{slab} = (8" slab)*(147 pcf)*(1ft/12")*(29663 sf)*(1 kip/1000 lb) = 2906.97 kips W_{columns} = 61.99 kips W_{shear wall} = 483.54 kips W_{second} = 3452.50 kips = 0.1164 ksf

Third through Sixth Floors (values per floor): W_{slab} = (8" slab)*(147 pcf)*(1ft/12")*(30486 sf)*(1 kip/1000 lb) = 2987.63 kips W_{columns} = 55.96 kips W_{shear wall} = 483.54 kips W_{3-6th} = **3527.13 kips per floor** = **0.1157 ksf per floor**

Seventh Floor: W_{slab} = (8" slab)*(147 pcf)*(1ft/12")*(39560 sf)*(1 kip/1000 lb) = 3876.88 kips W_{columns} = 55.96 kips W_{shear wall} = 483.54 kips W_{seventh} = 4416.38 kips per floor = 0.112 ksf

Eighth Floor: $W_{slab} = (8" slab)*(147 pcf)*(1ft/12")*(31610 sf)*(1 kip/1000 lb) = 3097.78 kips$ $W_{columns} = 59.01 kips$ $W_{shear wall} = 483.54 kips$ $W_{eighth} = 3640.33 kips = 0.115 ksf$

Ninth through 22^{nd} Floors (values per floor): $W_{slab} = (8" slab)*(147 pcf)*(1ft/12")*(12186 sf)*(1 kip/1000 lb) = 1194.23 kips$ $W_{columns} = 42.73 kips$ $W_{shear wall} = 384.10 kips$ $W_{9-22nd} = 1621.06 kips per floor = 0.133 ksf per floor$

23rd Floor: $W_{slab} = (8" slab)*(147 pcf)*(1ft/12")*(9307 sf)*(1 kip/1000 lb) = 912.09 kips$ $W_{columns} = 42.73 kips$ $W_{shear wall} = 374.73 kips$ $W_{23rd} = 1329.55 kips = 0.143 ksf$

 $\begin{array}{l} 24^{th} \ to \ 25th \ Floor: \\ W_{slab} = (8" \ slab)*(147 \ pcf)*(1ft/12")*(1070 \ sf)*(1 \ kip/1000 \ lb) = 104.86 \ kips \\ W_{columns} = 20.13 \ kips \\ W_{shear \ wall} = 374.73 \ kips \\ W_{24-25th} = 499.72 \ kips = 0.467 \ ksf \end{array}$

Roof:

Because the roof consists of a small amount of mostly steel framing, which is relatively light compared to the mostly concrete construction of the other floors, this floor self-weight was estimated.

 $W_{roof} = (374.73 \text{ kips})_{shear walls} + (25 \text{ kips})_{steel, etc.} \approx 400 \text{ kips} = 0.373 \text{ ksf}$

APPENDIX C

Snow Load Calculations

Assumptions based on criteria listed on construction drawings and documents, and verified using the BOCA 1996 Building Code.

For flat and low-sloped roofs (BOCA 1996 1608.4):

 $P_f = (C_e)(I)(P_g)$

$C_{e} = 0.7$	(Table 1608.4 - All other structures)
$P_g = 20 \text{ psf}$	(Table 1608.3(1) - Wilmington, DE)
I = 1.0	(Table 1609.5 - All other structures)

Roof Snow Load: $P_f = (0.7)(20 \text{ psf})(1.0) = 14.0 \text{ psf}$

APPENDIX D

Wind Load Calculations

Assumptions based on criteria listed on construction drawings and documents, and verified using the BOCA 1996 Building Code.

Assumptions:

- Because of the stabilizing nature of the parking garage and for the simplicity of these preliminary calculations, I considered a worst case building length/width ratio which only took the tower dimensions into account.

Coefficients and Categories

Exposure Category: B (BOCA 1996 1609.4) Worst Case L/B Ratio: (73.5 ft)/(164 ft) = 0.448Basic Wind Speed (V): 80 mph (Figure 1609.3 – Wilmington, DE) Basic Velocity Pressure (P_v): 16.4 psf (Table 1609.7(3) based on V = 80 mph) Wall Pressure Coefficients (Cp): For N-S Direction (Table 1609.7) - Windward Walls: $C_p = 0.8$ - Leeward Walls: $C_p = -0.5$ Wall Pressure Coefficients (C_p): For W-E Direction (Table 1609.7) - Windward Walls: $C_p = 0.8$ - Leeward Walls: $C_p = -0.3$ Importance Factor (I): 1.04 (Table 1609.5 and interpolation) Internal Pressure Coefficients (GCpi): +/- 0.25 (Table 1609.7(6)) <u>Velocity Pressure Exposure (K_z and K_h):</u> see below (Table 1609.7(4)) Gust Response Factors (G_h and G_z): see below (Table 1609.7(5))

Building Main Windforce-Resisting System: - Windward wall design pressure, P $P = (P_v)(I)[(K_z)(G_h)(C_p) - (K_h)(GC_{pi})]$ - Leeward wall design pressure, P $P = (P_v)(I)[(K_z)(G_h)(C_p) - (K_h)(GC_{pi})]$

Level	Elev. (ft)	K coeff	G coeff.	P (windward)	P (leeward)	Total P (psf)
Roof	279.22	1.34	1.17	14.78	-6.72	8.06
25	269.22	1.32	1.18	14.63	-6.65	7.98
24	259.39	1.30	1.18	14.46	-6.57	7.89
23	247.36	1.27	1.19	14.23	-6.47	7.76
22	236.00	1.25	1.20	13.98	-6.35	7.63
21	225.75	1.22	1.20	13.76	-6.25	7.50
20	215.50	1.20	1.20	13.52	-6.15	7.37
19	205.25	1.17	1.21	13.29	-6.04	7.25
18	195.00	1.15	1.22	13.08	-5.95	7.14
17	184.75	1.12	1.23	12.89	-5.86	7.03
16	174.50	1.09	1.23	12.65	-5.75	6.90
15	164.25	1.06	1.24	12.33	-5.61	6.73
14	154.00	1.03	1.25	12.06	-5.48	6.58
13	143.75	1.00	1.26	11.79	-5.36	6.43
12	133.50	0.97	1.27	11.53	-5.24	6.29
11	123.25	0.94	1.28	11.26	-5.12	6.14
10	113.00	0.91	1.29	10.97	-4.99	5.98
9	102.75	0.87	1.31	10.66	-4.84	5.81
8	92.50	0.83	1.32	10.26	-4.66	5.60
7	82.25	0.78	1.34	9.79	-4.45	5.34
6	72.00	0.74	1.36	9.39	-4.27	5.12
5	61.75	0.69	1.39	8.95	-4.07	4.88
4	51.50	0.64	1.42	8.47	-3.85	4.62
3	41.25	0.58	1.46	7.88	-3.58	4.30
2	31.00	0.51	1.51	7.16	-3.25	3.90
1	10.50	0.37	1.65	5.73	-2.60	3.12

For North-South Direction:

Level	Trib. Width (ft)	Trib. Height (ft)	P (plf)	F (kips)
Roof	164	10.00	1321.81	13.22
25	164	9.83	1308.81	12.87
24	164	12.03	1293.61	15.56
23	164	11.36	1273.28	14.46
22	164	10.25	1250.52	12.82
21	164	10.25	1230.54	12.61
20	164	10.25	1209.38	12.40
19	164	10.25	1188.66	12.18
18	164	10.25	1170.47	12.00
17	164	10.25	1153.38	11.82
16	164	10.25	1131.94	11.60
15	164	10.25	1103.28	11.31
14	164	10.25	1079.05	11.06
13	164	10.25	1055.03	10.81
12	164	10.25	1031.84	10.58
11	164	10.25	1007.04	10.32
10	164	10.25	981.51	10.06
9	164	10.25	953.46	9.77
8	164	10.25	917.99	9.41
7	164	10.25	875.87	8.98
6	164	10.25	839.77	8.61
5	164	10.25	800.78	8.21
4	164	10.25	757.51	7.76
3	164	10.25	705.11	7.23
2	164	20.50	640.30	13.13
1	164	10.50	512.30	5.38
			Sum of F:	284.16

For West-East Direction:

Level	Elev.	K coeff	G	Р	Р	Total P
	(ft)		coeff.	(windward)	(leeward)	(psf)
Roof	279.22	1.34	1.17	14.78	-1.34	13.43
25	269.22	1.32	1.18	14.63	-1.33	13.30
24	259.39	1.30	1.18	14.46	-1.31	13.15
23	247.36	1.27	1.19	14.23	-1.29	12.94
22	236.00	1.25	1.20	13.98	-1.27	12.71
21	225.75	1.22	1.20	13.76	-1.25	12.51
20	215.50	1.20	1.20	13.52	-1.23	12.29
19	205.25	1.17	1.21	13.29	-1.21	12.08
18	195.00	1.15	1.22	13.08	-1.19	11.90
17	184.75	1.12	1.23	12.89	-1.17	11.72
16	174.50	1.09	1.23	12.65	-1.15	11.50
15	164.25	1.06	1.24	12.33	-1.12	11.21
14	154.00	1.03	1.25	12.06	-1.10	10.97
13	143.75	1.00	1.26	11.79	-1.07	10.72
12	133.50	0.97	1.27	11.53	-1.05	10.49
11	123.25	0.94	1.28	11.26	-1.02	10.23
10	113.00	0.91	1.29	10.97	-1.00	9.97
9	102.75	0.87	1.31	10.66	-0.97	9.69
8	92.50	0.83	1.32	10.26	-0.93	9.33
7	82.25	0.78	1.34	9.79	-0.89	8.90
6	72.00	0.74	1.36	9.39	-0.85	8.53
5	61.75	0.69	1.39	8.95	-0.81	8.14
4	51.50	0.64	1.42	8.47	-0.77	7.70
3	41.25	0.58	1.46	7.88	-0.72	7.17
2	31.00	0.51	1.51	7.16	-0.65	6.51
1	10.50	0.37	1.65	5.73	-0.52	5.21

For West-East Direction:

Level	Trib. Width	Trib. Height	P (plf)	F (kips)
Roof	164	10.00	2203.02	22.03
25	164	9.83	2181.34	21.44
24	164	12.03	2156.02	25.94
23	164	11.36	2122.13	24.11
22	164	10.25	2084.20	21.36
21	164	10.25	2050.90	21.02
20	164	10.25	2015.63	20.66
19	164	10.25	1981.11	20.31
18	164	10.25	1950.78	20.00
17	164	10.25	1922.29	19.70
16	164	10.25	1886.56	19.34
15	164	10.25	1838.81	18.85
14	164	10.25	1798.41	18.43
13	164	10.25	1758.39	18.02
12	164	10.25	1719.74	17.63
11	164	10.25	1678.40	17.20
10	164	10.25	1635.86	16.77
9	164	10.25	1589.11	16.29
8	164	10.25	1529.98	15.68
7	164	10.25	1459.78	14.96
6	164	10.25	1399.61	14.35
5	164	10.25	1334.63	13.68
4	164	10.25	1262.51	12.94
3	164	10.25	1175.18	12.05
2	164	20.50	1067.17	21.88
1	164	10.50	853.84	8.97
			Sum of F:	473.60

For West-East Direction:

APPENDIX E

Seismic Load Calculations

Assumptions based on criteria listed on construction drawings and documents, and verified using the BOCA 1996 Building Code.

<u>Seismic Hazard Exposure Group:</u> II (Table 1610.1.5 – Substantial occupancy building) <u>Effective Peak Velocity-related Acceleration:</u> $A_v = 0.075$

 $\begin{array}{l} (Wilmington, DE-Figure 1610.1.3(1): halfway between 0.05 and 0.10 regions) \\ \underline{Effective Peak Acceleration Coefficient:} \ A_a = 0.05 \ (Wilmington, DE-Figure 1610.1.3(2)) \\ \underline{Seismic Performance Category:} \ B \ (Table 1610.1.7 since 0.05 < A_v < 0.10) \\ \underline{Seismic Resisting System:} \ Dual-system with intermediate moment frame of reinforced concrete \\ \end{array}$

with reinforced concrete shear walls (Table 1610.3.3 – No height limitations)

- Response Modification Factor (R): 8.0

- Deflection Amplification Factor (Cd): 6.5

Site Coefficient: S₄, 2.0 (Table 1610.3.1)

Use Equivalent Lateral Force Procedure (Section 1610.3.5.2)

 $V = (C_s)(W)$

<u>Seismic Design Coefficient (C_s):</u> (Section 1610.4.1.1) min of C_s = $(1.2A_vS) / (RT)^{(2/3)}$ = See below ...and $(2.5A_a)/(R) = (2.5)(0.05)/(8.0) = 0.0156$

Approximate Fundamental Period (T_a):

 $T_{a} = (C_{T})(\overline{h_{n}})^{(3/4)}$ $C_{T} = 0.02 \qquad (Section 1610.4.1.2.1: Seismic-Resisting System with shear walls)$ $h_{n} = 279.22 \text{ ft} \quad (Section 1610.4.1.2.1: Height from base to highest level of building)$ $T_{a} = (0.02)(279.22)^{(3/4)} = 1.366 \text{ seconds}$

Coefficient for Upper Limit on Calculated Period (C_a):1.7 (Table 1610.4.1.2)Fundamental Period (T): $T = (C_a)(T_a)$ T = (1.7)(1.366) = 2.322 seconds

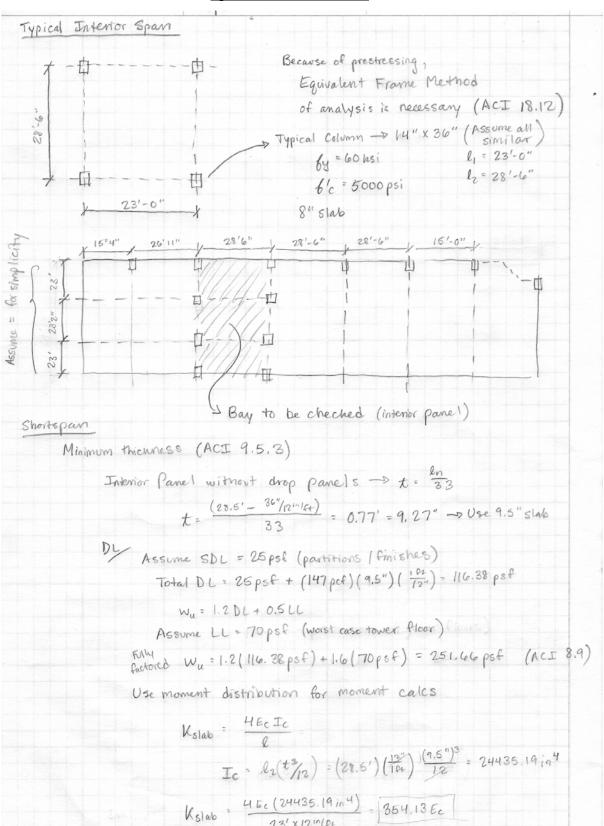
 $C_s = [(1.2)(0.075)(2.0)]/[(8.0)(2.322)]^{(2/3)} = 0.0257 > 0.0156 \rightarrow Use C_s = 0.0156$

V = (0.0156)(54469.86 kips) = **849.73 kips**

 $\frac{\text{Vertical Distribution of Seismic Forces:}}{C_{vx} = (w_x h_x^k) / (\Sigma w_i h_i^k)} \quad (\text{Section 1610.4.2})$

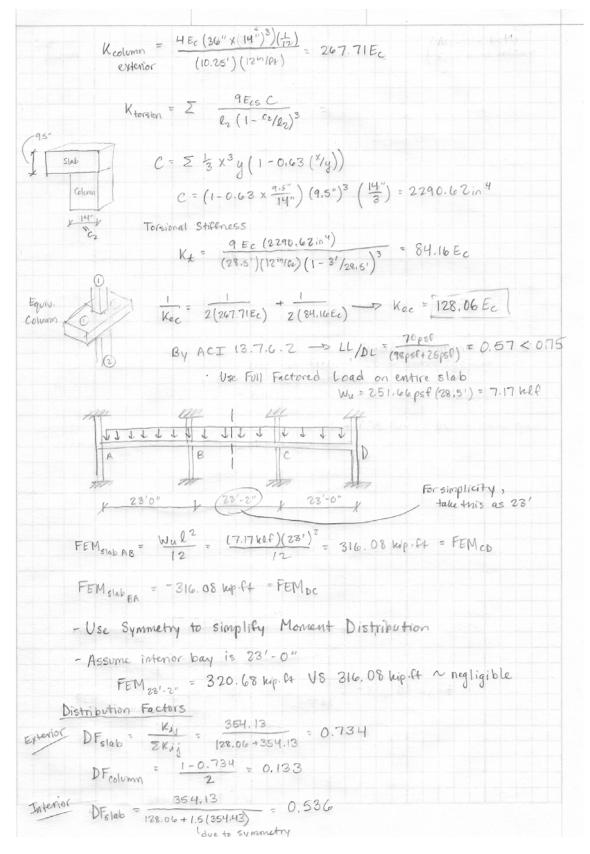
(k determined through linear interpolation: 1.911)

Level	w _x (k)	h _x (ft)	$w_x h_x^{k}$	C _{vx}	$F_{x}(k)$
Roof	375	279.22	17611207	0.028729	24.41
25	499.72	269.22	21889292	0.035707	30.34
24	499.72	259.39	20388130	0.033259	28.26
23	1329.55	247.36	49540908	0.080815	68.67
22	1621.06	236.00	55215501	0.090072	76.54
21	1621.06	225.75	50725707	0.082747	70.31
20	1621.06	215.50	46417675	0.07572	64.34
19	1621.06	205.25	42292167	0.06899	58.62
18	1621.06	195.00	38349985	0.062559	53.16
17	1621.06	184.75	34591977	0.056429	47.95
16	1621.06	174.50	31019041	0.050601	43.00
15	1621.06	164.25	27632130	0.045076	38.30
14	1621.06	154.00	24432261	0.039856	33.87
13	1621.06	143.75	21420524	0.034943	29.69
12	1621.06	133.50	18598088	0.030339	25.78
11	1621.06	123.25	15966220	0.026045	22.13
10	1621.06	113.00	13526297	0.022065	18.75
9	1621.06	102.75	11279826	0.0184	15.64
8	3097.78	92.50	17635236	0.028768	24.44
7	4416.38	82.25	20089819	0.032772	27.85
6	3427.13	72.00	12090260	0.019723	16.76
5	3427.13	61.75	9016690.8	0.014709	12.50
4	3427.13	51.50	6375032.3	0.010399	8.84
3	3427.13	41.25	4172442.2	0.006806	5.78
2	3452.5	31.00	2435760.2	0.003973	3.38
1	3428.3	10.50	305879.51	0.000499	0.42
		$\Sigma w_i h_i^k =$	613018057	$\Sigma F_{x}(k) =$	849.73

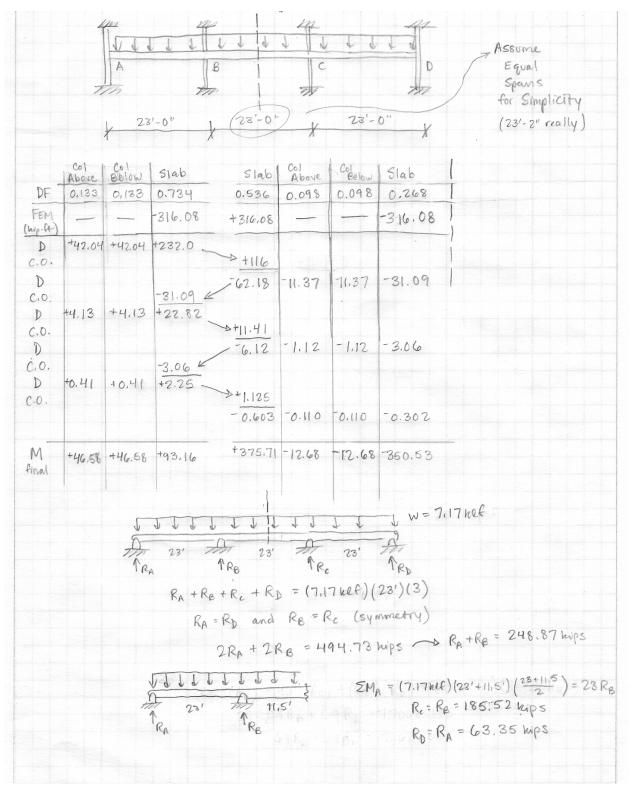


Sto	ry Drift: /	$A_{a} = 0.015$	(h _{sx})
Level	h _{sx} (ft)	Δ_{a} (ft)	Δ_{a} (in)
Roof	279.22	4.19	50.26
25	269.22	4.04	48.46
24	259.39	3.89	46.69
23	247.36	3.71	44.52
22	236.00	3.54	42.48
21	225.75	3.39	40.64
20	215.50	3.23	38.79
19	205.25	3.08	36.95
18	195.00	2.93	35.10
17	184.75	2.77	33.26
16	174.50	2.62	31.41
15	164.25	2.46	29.57
14	154.00	2.31	27.72
13	143.75	2.16	25.88
12	133.50	2.00	24.03
11	123.25	1.85	22.19
10	113.00	1.70	20.34
9	102.75	1.54	18.50
8	92.50	1.39	16.65
7	82.25	1.23	14.81
6	72.00	1.08	12.96
5	61.75	0.93	11.12
4	51.50	0.77	9.27
3 2	41.25	0.62	7.43
	31.00	0.47	5.58
1	10.50	0.16	1.89

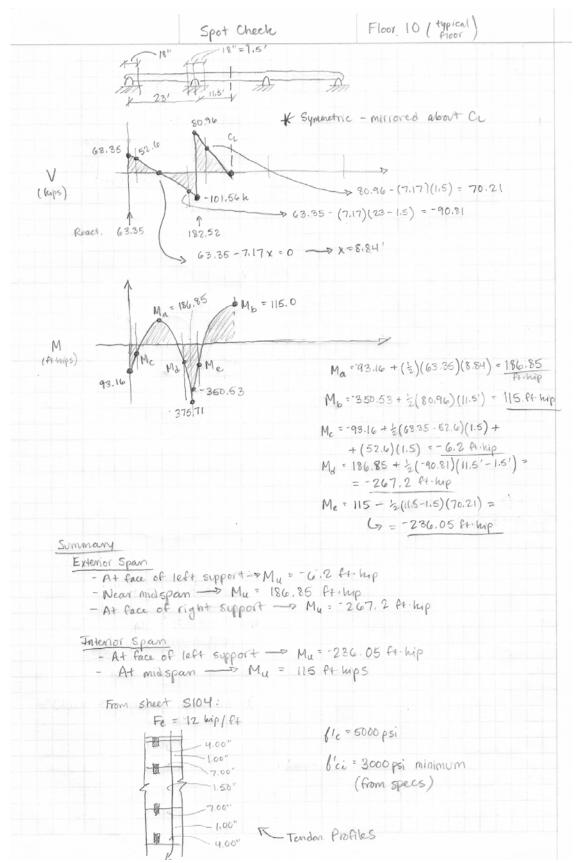
Allowable Story Drift: (Table 1610.3.8 – Exposure Group II, "All other buildings")

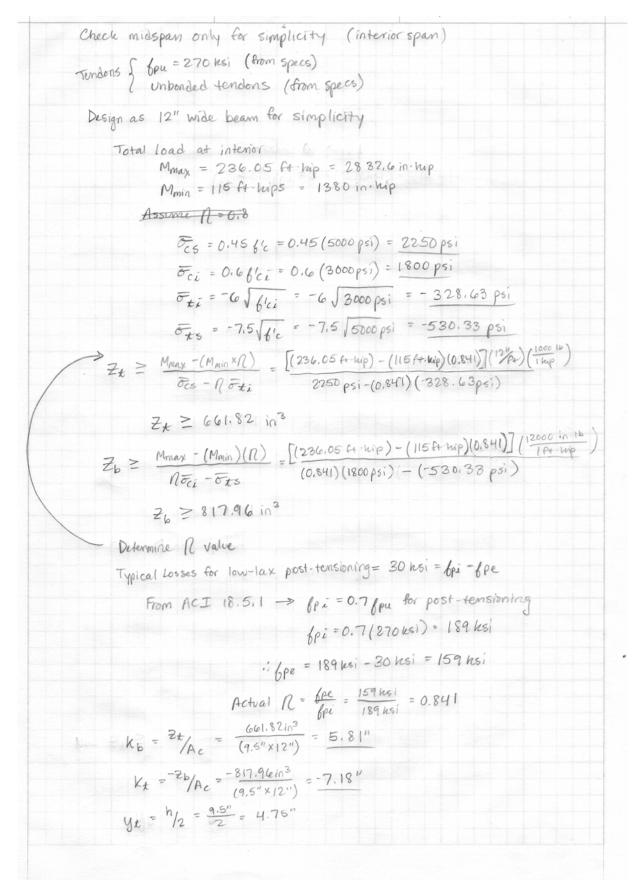


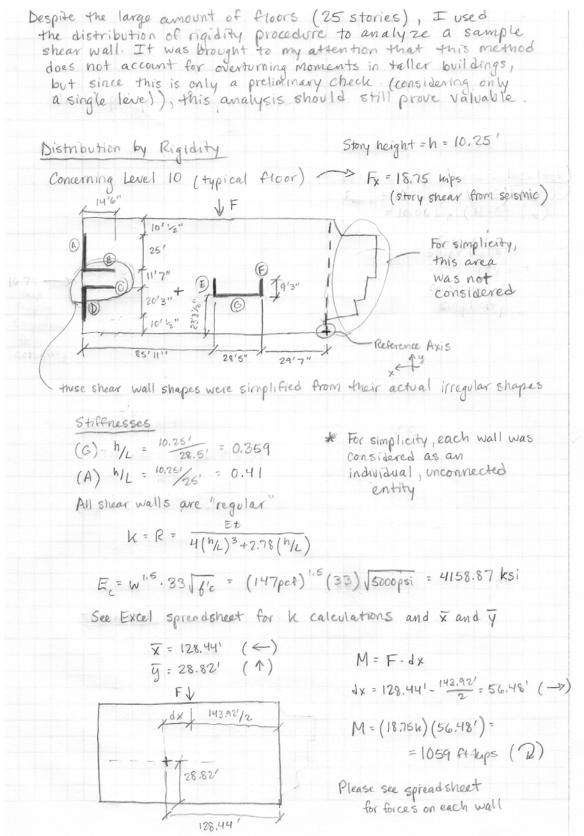
APPENDIX F



Spot Check Calculations







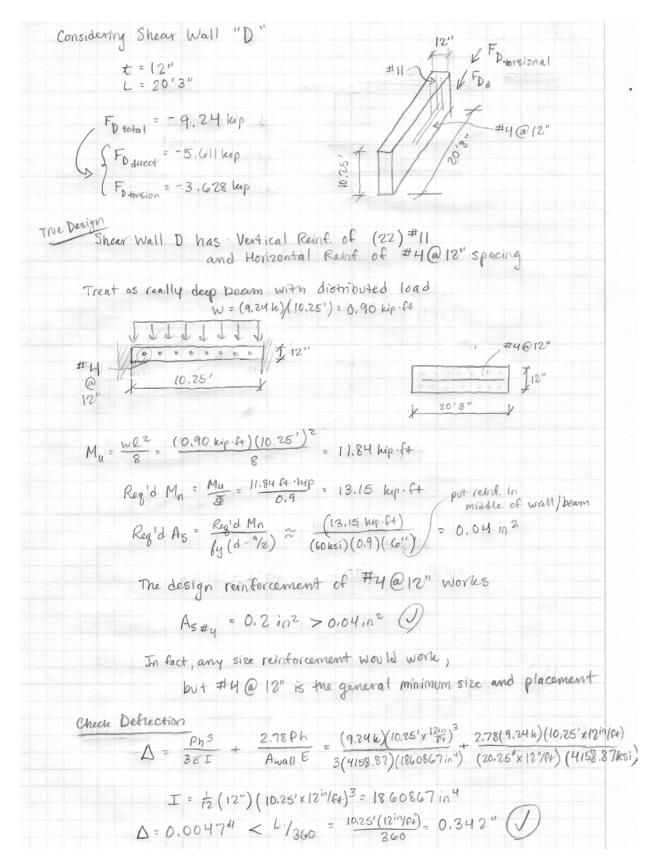
	Strength Analysis - Flexure Dusing actual design from SIO4 sheet
бре	=159 ksi 20,5 fpu = 0.5 (270 ksi) = 135 ksi V
Unbo	nded tendons - Aps = (12kp/f+)(23') = + = 1.91in ²
From E	$\frac{1}{9} \cdot \frac{18 - 4}{18 - 5} = \frac{10}{10} + \frac{10}{10} \cdot \frac{1}{15} = \frac{1}{2}$
	$b_{PS} = b_{Pe} + 10 + \frac{b'c}{k_{Pe}} (usi)$ $\frac{1.5''}{2} = 2$
	kpe
Spa	in-to-depth (atio: L/dp = 23 ft (12"/a) = 42.46 : k=300, C=30
	$P_{p} = \frac{A_{ps}}{b \cdot d_{p}} = \frac{1.91 \text{ m}^{2}}{(12^{\prime\prime})(8^{\prime\prime\prime} - 1.5^{\prime\prime})} = 0.0245$
	$(12^{n})(8^{1n}-1,5^{n})$
	Bps = (159 ksi) + 10 + (5 ksi) = 169.68 ksi
	Does 6ps = 6pe + C = 159 ksi + 60 ? ()
	6ps = 6py = 0.9 6pu = 0.9 (270 msi) = 243 msi
Thurs	$A_{PS}A_{PS} + A_{S}A_{y} - A_{S}'(b'')$
These equations	$c = \frac{A_{ps} f_{ps} + A_{s} f_{g} - A_{s}' f_{y}}{0.85 f_{c} \beta_{1} b}$
from	
Naaman's	B1 = 0.80 for 6'c = 5000 psi
Prestressed	This bay does not appear to have any compressive reinforcement
Concrete Analysis and Design.	in the slab (reference: \$104)
Chapter 5.	$A_{s} = A_{s}' = 0$
(Based off ACI)/	$c = (1.91in^2)(169.68 \text{ ksi}) = 7.94"$
	c =
	$0.85(5 \text{ ksi})(0.80)(12^{n})$
Rec	tangular section - b = bw
	de = Aps 6ps dp + Asbyds = dp = 6.5" Aps 6ps + Asty
	Aps 6ps + Asty
	$a = \beta_1 c = (0.80)(8.03") = 6.42"$
	C/de = C/dp = 7.94" = 1.22 70.6 → Use = 0.65.
	C/de > 0.4 ->: Apparently compression reinforcement is necessary by my
	calculations
I am ass to provide	a reasonable spot check. I will investigate the proper of procedure in future reports.

APPENDIX G

Lateral Load Preliminary Analysis: Shear Wall Check

	t (in)	h (in)	L (in)	k = R	$x_i(ft)$	y _i (in)	k _i x _i	k _i y _i
А	16	123	300	47010.01	143.92	0	6765681	0
В	12	123	174	14773.41	0	41.875	0	618636.7
С	12	123	174	14773.41	0	30.2917	0	447511.8
D	12	123	243	25913.19	143.92	0	3729427	0
Е	16	123	111	7807.207	58	0	452818	0
F	12	123	111	5855.405	29.583	0	173220.5	0
G	12	123	341.04	41927.84	0	23.708	0	994025.2
			$\Sigma k_x =$	86585.82				
		I	$\Sigma k_v =$	71474.67				

Through distribution by rigidity method:


$$\begin{split} x_{bar} &= \Sigma k_i x_i / \Sigma k_i = 128.44 \ ft \\ y_{bar} &= \Sigma k_i y_i / \Sigma k_i = 28.82 \ ft \end{split}$$

	Torsional forces						
	\mathbf{k}_{i}	$d_{i}(ft)$	$k_i d_i^2$	F _{torsion}			
Α	47010.01	15.47926	11263956	6.581879			
В	14773.41	-13.0512	2516400	-1.74397			
С	14773.41	-1.46787	31831.363	-0.19615			
D	25913.19	-15.4793	6208998.1	-3.62811			
Е	7807.207	-70.4407	38738560	-4.97426			
F	5855.405	-98.8577	57224009	-5.23573			
G	41927.84	5.115831	1097324.1	1.940117			
		$\Sigma k_i d_i^2 =$	117081079				

D	irect forces (k)
FA	-10.1799
FB	0
F _C	0
FD	-5.61145
F _E	-1.69064
F_{F}	-1.26798
FG	0

Total Forces (k)	
Α	-3.59805
В	-1.74397
С	-0.19615
D	-9.23956
Е	-6.6649
F	-6.5037
G	1.940117

