RL 5: On-policy and off-policy algorithms

Michael Herrmann

University of Edinburgh, School of Informatics

27/01/2015

Overview

Off-policy algorithms

o Q-learning (last time)

@ R-learning (a variant of Q-learning)
On-policy algorithms

e SARSA

e TD())

@ Actor-critic methods

R-learning
Similar to Q-learning, in particular for non-discounted, non-episodic
problems

Consider average reward p = limp_o0 2 30 | E[r]

Value is define here as “above average™

V(st) = Z Elresk — plse = s
k=1

oo
Q(St, at) = Z E[rt+k - P|5t =S,ar = a]
k=1

Relative value function (relative to the average)
p is adapted and measures (average) success

Implies a different concept of optimality in non-episodic tasks

A. Schwartz (1993) A reinforcement learning method
for maximizing undiscounted rewards. In ICML, 298-305

(see S&B [2] Section 11.2)

R-learning: Algorithm

@ Initialise p and Q (s, a)

@ Observe s; and choose a; (e.g. e-greedy), execute a;
© Observe ryy1 and spp1

Q@ Update

Qir1(st,ar)=(1—n) Q:(st, ar)+n (”t+1 —pt+ m;ax Q:(se+1, 3))
Q If Q(st,ar) = max, Q(st, a) then
pri1=(1—a) prta (fr+1+maa>< Qe(st+1, ar+1) — max Qea(s, 3))

Hint: Choose 1 > « (Otherwise, for r = 0, Q-value may cease to
change and the agent may get trapped in a suboptimal limit cycle.)

R vs. Q: A simple example

Only one decision: Robot RLEARNING VS GLLEARNING
moves either to nearby ® RLEARNING; <
e 25¢ ‘Q-LEARNING-GAMMA-0.7
i “o k" di & O LEARMING GAMMAD.80" -
printer (“o.k.”) or to distant 2
| " dn E 25
mail room (“good"). 5 ; 7
b | {
o |]
g e
VRN TN g 1, o :
P! S LA) g 1 || PO s S
N N A Home N N “
[3) X [5 more o ‘5
\ / (1) states| |
\1/ S Mail] . 3 o ;:
- i ailroom SR
L T A ANDZaN N\ % I
(o) /X [10y Y /: P .
N %) N4 N 0 10 20 30 40 50 60 70 80 90 100
__ NUMBER OF STEPS IN MULTIPLES OF 1000

Similar to a 2AB, but waiting times differ for the “arms”™
Q-learning with low ~ favours the nearby goal, while its learning
times get longer for larger . R-learning identifies the better choice
quickly based on trajectory based reward averages.

Note that results may depend on parameters.

R-learning example: Access-control queuing task

o Customers pay 1, 2, 4, or 8 (this is a reward) of four different

priorities to be served

@ States are the number
of for free servers

@ Actions: customer at
the head of the queue
is either served or
rejected (and removed
from the queue)

@ Proportion of high
priority customers in
the queue is h = 0.5

Value of
best action

Priority

| RececT
/] ACCEPT

POLICY

1 10

2 3 4 5 6 7T 8 9
Number of free servers

N VALUE

5 priority 8 .
Y tya . FUNCTION
L S\
0 et =
e e \ priority 2
/ /;/ priority 1
s S

e

4 5 6 7 &8 9 10

Number of free servers

@ Busy server becomes free with prob. p = 0.06 (p and h are
not known to the algorithm) on each time step

http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node67.html

R-learning: Conclusions

@ An off-policy learning method for on-going learning

@ May be superior to discounted methods

e May get trapped in limit cycles (exploration is important)

@ Success depends on the parameters 7, «, £ (exploration rate)
For details see:

S. Mahadevan (1996). Average reward reinforcement learning:
Foundations, algorithms, and empirical results. Machine Learning,
22(1-3), 159-195.

Exploration-exploitation dilemma

@ Remember MABs: Exploratory moves were necessary to find
promising actions.

@ RL: Actions influence the future reward. It is necessary to
explore the sequence of actions for all state, i.e. policies.

@ Whether or not a policy gives high reward requires the agent
to follow this policy.

The agent can either
@ choose a policy, evaluate it, and move on to better policies
or

@ Collect all available information and use it simultaneously to
construct a good policy

What is a policy?

Deterministic: Function that maps states to actions. 7 : S — A
a=m(s)

Examples: Standard policy in Q-learning:
a;r = 7 (st) = arg max, Q (st, a) (after convergence).

Stochastic: Probability of an action given a state.
m: SxA—[0,1] with > 4 7(s,a) =1foralls

P(a|s) =7 (a,s)

Examples: random, Boltzmann policy

Partial policy: 7 is not necessarily defined for all s € S, e.g. a
policy obtained from demonstration by a human teacher. Can be
completed by defaults or combined with other partial policies.

On-policy learning vs off-policy learning (preliminary)

On-policy (TD(X), SARSA)

e Start with a simple soft policy
@ Sample state space with this policy

@ Improve policy
Off-policy (Q-learning, R-learning)

@ Gather information from (partially) random moves
o Evaluate states as if a greedy policy was used

@ Slowly reduce randomness

SARSA and Q-learning

@ SARSA and Q-learning can be represented as look-up tables
Q-learning (off-policy): a; = argmax, Q (st,a) (plus exploration)
Qev1(st,ae) = (1= 1) Qe (s, a:) + 1 (ft+1 +ymax Q; (St+1, 3))

SARSA (on-policy):
Qet1(se,ae) = (1 —n) Qe (st,a¢) + 0 (res1 + 7Q¢ (St41, ae41))

o Q-learning: V/(st4+1)=max,Q(st+1,a), but a;+1 can be anything

@ SARSA: a; ~ 7 (st,-) and update rule learns the exact value
function for 7 (s, a)

@ How does the policy improve for SARSA ?

SARSA algorithm

e Initialise Qy(s, a)
@ Repeat (for each episode)

o Initialise sy
o Choose ag from sy using policy derived from Q (e.g., e-greedy)
Repeat (for each step of episode):

Take action a;, observe rei1, se+1

Choose a’ form s’ using policy derived from Q (e.g., e-greedy)
Qi1 (st,ar) = (1 —n) Qe (st, ar) + 1 (res1 + 79+ (Se41, ar41))
sett=t+1

until s;y1 is terminal

SARSA means: State — Action — Reward — State — Action

. @ Rin/o Y GReai Ris G
A WAL \TAn XA

SARSA vs. Q: The cliff walking task (S&B, example 6.6)

o r = —1 for every step,

r = —100 for falling
down the cliff

@ c-greedy with e = 0.1
(see figure)

@ e-greedy with ¢ — 0
both methods
converge to the (now
safe) optimal path

safe path

The Cliff

optimal path

[0}

Sarsa

epsiode

Q-learning

Results for fixed ¢

T T T]
200 300 400 500
Episodes

On-policy learning vs off-policy learning (according to S&B)

@ On-policy methods

e attempt to evaluate or improve the policy that is used to make
decisions

o often use soft action choice, i.e. w(s,a) > 0 Va

e commit to always exploring and try to find the best policy that
still explores

e may become trapped in local minima

e Off-policy methods

e evaluate one policy while following another, e.g. tries to
evaluate the greedy policy while following a more exploratory
scheme

e the policy used for behaviour should be soft

o policies may not be sufficiently similar

o may be slower (only the part after the last exploration is
reliable), but remains more flexible if alternative routes appear

@ May lead to the same result (e.g. after greedification)

TD: Temporal difference learning

@ TD learns value function V (s) directly.
@ TD is on-policy, i.e. the resulting value function depends on
policy that is used.

@ Information from policy-dependent sampling of the value
function is not used immediately to improve the policy.

@ TD-learning as such is not an RL algorithm, but can be used
for RL if transition probabilities p (s'|s, a) are known.

@ One way to use TD for RL is SARSA, where the transition
probabilities are implicitly included in the state-action values.

Temporal Difference (TD) Learning for Value Prediction

Ideal value function

[e.e]
Ve = Z’}’Ptfr=ft+7ft+1+72ft+2+“‘
T=t
= n+y(rep+yr2+-)
o0
D
T=t+1
= rn+7Vin

During learning, the value function is based on estimates of V; and
Vi+1 and may not obey this relation. If all states and all actions are
sampled sufficiently often, then the requirement of consistency, i.e.
minimisation of the absolute value of the ¢ error (& for drapopd)

Ot41 = It +’Y\A/t+1 — \A/t

will move the estimates V; and \7t+1 towards the ideal values.

The simplest TD algorithm

Let V, be the t-th iterate of a learning rule for estimating the value
function V.

Let s; the state of the system at time step t.

~

Orp1 = re + ’Y\A/t (st41) — Vi (st)

A \A/t (5) + 775t+1 if s = St
tr1(s) =19 o .
Vi (s) otherwise

\A/t+1 (st) = 2 (st) +n0ey1 = 2 (st) +n (ft +V, (st+1) — v, (St))

=(1-n) 2 (st)+n (”t + ’YVt (5t+1)>

The update of the estimate V is an exponential average over the
cumulative expected reward.

TD(0) Algorithm

Initialise and ~ and execute after each state transition
function TDO(s,r,s1,V) {

d:=r4+~vxV][sl] - V]s];

V[s]:=V][s]+nxd;

return V; }

Remarks

o If the algorithm converges it must converge to a value function
where the expected temporal differences are zero for all states.

@ The continuous version of the algorithm can be shown to be
globally asymptotically stable

e TD(0) is a stochastic approximation algorithm. If the system
is ergodic and the learning rate is appropriately decreased, it
behaves like the continuous version.

Robbins-Monro conditions

How to choose learning rates? If

o0 o0
Znt:oo and an<oo,
t=0 t=0

then V; () will behave as the temporally continuous variant

av ()
Tzr—i—(’yP—/)V()

Choosing e.g. n; = ¢t~ %, the conditions hold for a € (%, 1]:

@ o > 1: forced convergence, but possibly without reaching goal
@ o = 1: smallest step sizes, but still possible

e a < %: large fluctuations can happen even after long time

Iterate-averaging (Polyak & Juditsky, 1992) gives best possible asymptotic rate of convergence

Practically: fixed step sizes or finite-time reduction (see earlier slide)

Actor-Critic Methods

e Policy (actor) is represented independently of the (state) value
function (critic)

@ A number of variants exist, in particular among the early
reinforcement learning algorithms

Advantages!

@ AC methods require minimal computation in order to select
actions which is beneficial in continuous cases, where search
becomes a problem.

@ They can learn an explicitly stochastic policy, i.e. learn the

optimal action probabilities. Useful in competitive and

non-Markov cases?.

@ A plausible model of biological reinforcement learning

@ Recently also an off-policy variant was proposed

Mark Lee following Sutton&Barto
2see, e.g., Singh, Jaakkola, and Jordan, 1994

Actor-Critic Methods

@ Actor aims at improving Actor
policy (adaptive search | p@s) |
element) p°"°y:

\

@ Critic evaluates the o
current policy (adaptive /NT[T
critic element) orTor

0 5)
. @ | S evaluation ! g
@ Learning is based on the S function V(S) 2
TD error 6+
@ Reward only known to the re\(fva)\rd/
- f
critic -

@ Critic should improve as —[Environment]4—
well

Example: Policies for the inverted pendulum

e Exploitation (actor): e Exploration (critic):
Escape from low-reward Find examples where
regions as fast as possible learning is optimal

@ aims at max. r @ aims at max. ¢

@ e.g. Inverted pendulum @ e.g. Inverted pendulum
task: Wants to stay near task: Wants to move away
the upright position from the upright position

o preferentially greedy and o preferentially

deterministic non-deterministic

AC methods vs. other RL algorithms

@ SARSA and Q-learning do not have an explicit policy
representation, in a sense they are thus “critic-only” algorithms.

@ There are also “actor-only” methods which directly try to
improve the policy, e.g. REINFORCE (Williams, 1992).

e AC is advantageous for continuous problems (later!), where Q

and SARSA may become unstable due to the concomitant
function approximation.

Conclusions

@ Both on- and off-policy methods have their advantages

e If a good starting policy is available: on-policy may be
interesting, but may not explore other policies well

o If more exploration is necessary, then perhaps off-policy is
advisable, but maybe slow

@ Actor-critic is of historical interest, but we will come back to
this.

@ Also TD learning including value iteration and policy iteration
will be revisited shortly.

@ We need a theoretical framework to understand better how the
algorithms work. For this purpose, we will study Markov
decision problems (MDPs) next.

Literature: R-learning: S&B (2), section 11.2; SARSA: S&B (2),
section 6.4

