
RL 5: On-policy and off-policy algorithms

Michael Herrmann

University of Edinburgh, School of Informatics

27/01/2015



Overview

Off-policy algorithms

Q-learning (last time)
R-learning (a variant of Q-learning)

On-policy algorithms

SARSA
TD(λ)
Actor-critic methods

27/01/2015 Michael Herrmann RL 5



R-learning (see S&B [2] Section 11.2)

Similar to Q-learning, in particular for non-discounted, non-episodic
problems

Consider average reward ρ = limn→∞
1
n
∑n

t=1 E [rt ]

Value is define here as “above average”:

V (st) =
∞∑

k=1

E [rt+k − ρ|st = s]

Q (st , at) =
∞∑

k=1

E [rt+k − ρ|st = s, at = a]

Relative value function (relative to the average)

ρ is adapted and measures (average) success

Implies a different concept of optimality in non-episodic tasks

A. Schwartz (1993) A reinforcement learning method
for maximizing undiscounted rewards. In ICML, 298-305

27/01/2015 Michael Herrmann RL 5



R-learning: Algorithm

1 Initialise ρ and Q (s, a)

2 Observe st and choose at (e.g. ε-greedy), execute at

3 Observe rt+1 and st+1

4 Update

Qt+1(st , at)=(1− η)Qt(st , at)+η
(
rt+1 − ρt + max

a
Qt(st+1, a)

)
5 If Q (st , at) = maxaQ (st , a) then

ρt+1 =(1−α) ρt+α
(
rt+1+max

a
Qt(st+1, at+1)−max

a
Qt+1(s, a)

)
Hint: Choose η � α (Otherwise, for r = 0, Q-value may cease to
change and the agent may get trapped in a suboptimal limit cycle.)

27/01/2015 Michael Herrmann RL 5



R vs. Q: A simple example

Only one decision: Robot
moves either to nearby
printer (“o.k.”) or to distant
mail room (“good”).

Similar to a 2AB, but waiting times differ for the “arms”:
Q-learning with low γ favours the nearby goal, while its learning
times get longer for larger γ. R-learning identifies the better choice
quickly based on trajectory based reward averages.
Note that results may depend on parameters.

27/01/2015 Michael Herrmann RL 5



R-learning example: Access-control queuing task

Customers pay 1, 2, 4, or 8 (this is a reward) of four different
priorities to be served
States are the number
of for free servers
Actions: customer at
the head of the queue
is either served or
rejected (and removed
from the queue)
Proportion of high
priority customers in
the queue is h = 0.5

Busy server becomes free with prob. p = 0.06 (p and h are
not known to the algorithm) on each time step

http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node67.html

27/01/2015 Michael Herrmann RL 5



R-learning: Conclusions

An off-policy learning method for on-going learning
May be superior to discounted methods
May get trapped in limit cycles (exploration is important)
Success depends on the parameters η, α, ε (exploration rate)

For details see:

S. Mahadevan (1996). Average reward reinforcement learning:
Foundations, algorithms, and empirical results. Machine Learning,
22(1-3), 159-195.

27/01/2015 Michael Herrmann RL 5



Exploration-exploitation dilemma

Remember MABs: Exploratory moves were necessary to find
promising actions.
RL: Actions influence the future reward. It is necessary to
explore the sequence of actions for all state, i.e. policies.
Whether or not a policy gives high reward requires the agent
to follow this policy.

The agent can either

choose a policy, evaluate it, and move on to better policies

or

Collect all available information and use it simultaneously to
construct a good policy

27/01/2015 Michael Herrmann RL 5



What is a policy?

Deterministic: Function that maps states to actions. π : S → A

a = π (s)

Examples: Standard policy in Q-learning:
at = π (st) = argmaxaQ (st , a) (after convergence).

Stochastic: Probability of an action given a state.
π : S ×A → [0, 1] with

∑
a∈As

π (s, a) = 1 for all s

P (a|s) = π (a, s)

Examples: random, Boltzmann policy

Partial policy: π is not necessarily defined for all s ∈ S, e.g. a
policy obtained from demonstration by a human teacher. Can be
completed by defaults or combined with other partial policies.

27/01/2015 Michael Herrmann RL 5



On-policy learning vs off-policy learning (preliminary)

On-policy (TD(λ), SARSA)

Start with a simple soft policy
Sample state space with this policy
Improve policy

Off-policy (Q-learning, R-learning)

Gather information from (partially) random moves
Evaluate states as if a greedy policy was used
Slowly reduce randomness

27/01/2015 Michael Herrmann RL 5



SARSA and Q-learning

SARSA and Q-learning can be represented as look-up tables

Q-learning (off-policy): at = argmaxaQ (st , a) (plus exploration)

Qt+1 (st , at) = (1− η)Qt (st , at) + η
(
rt+1 + γmax

a
Qt (st+1, a)

)
SARSA (on-policy):

Qt+1 (st , at) = (1− η)Qt (st , at) + η (rt+1 + γQt (st+1, at+1))

Q-learning: V (st+1)=maxaQ(st+1,a), but at+1 can be anything
SARSA: at ∼ π (st , ·) and update rule learns the exact value
function for π (s, a)

How does the policy improve for SARSA ?

27/01/2015 Michael Herrmann RL 5



SARSA algorithm

Initialise Q0(s, a)

Repeat (for each episode)

Initialise s0
Choose a0 from s0 using policy derived from Q (e.g., ε-greedy)
Repeat (for each step of episode):

Take action at , observe rt+1, st+1

Choose a′ form s ′ using policy derived from Q (e.g., ε-greedy)
Qt+1 (st , at) = (1− η)Qt (st , at) + η (rt+1 + γQt (st+1, at+1))
set t = t + 1

until st+1 is terminal

SARSA means: State → Action → Reward → State → Action

27/01/2015 Michael Herrmann RL 5



SARSA vs. Q: The cliff walking task (S&B, example 6.6)

r = −1 for every step,
r = −100 for falling
down the cliff
ε-greedy with ε = 0.1
(see figure)
ε-greedy with ε→ 0
both methods
converge to the (now
safe) optimal path

Results for fixed ε

27/01/2015 Michael Herrmann RL 5



On-policy learning vs off-policy learning (according to S&B)

On-policy methods

attempt to evaluate or improve the policy that is used to make
decisions
often use soft action choice, i.e. π (s, a) > 0 ∀a
commit to always exploring and try to find the best policy that
still explores
may become trapped in local minima

Off-policy methods

evaluate one policy while following another, e.g. tries to
evaluate the greedy policy while following a more exploratory
scheme
the policy used for behaviour should be soft
policies may not be sufficiently similar
may be slower (only the part after the last exploration is
reliable), but remains more flexible if alternative routes appear

May lead to the same result (e.g. after greedification)

27/01/2015 Michael Herrmann RL 5



TD: Temporal difference learning

TD learns value function V (s) directly.
TD is on-policy, i.e. the resulting value function depends on
policy that is used.
Information from policy-dependent sampling of the value
function is not used immediately to improve the policy.
TD-learning as such is not an RL algorithm, but can be used
for RL if transition probabilities p (s ′|s, a) are known.
One way to use TD for RL is SARSA, where the transition
probabilities are implicitly included in the state-action values.

27/01/2015 Michael Herrmann RL 5



Temporal Difference (TD) Learning for Value Prediction

Ideal value function

Vt =
∞∑
τ=t

γτ−trτ = rt + γrt+1 + γ2rt+2 + · · ·

= rt + γ (rt+1 + γrt+2 + · · · )

= rt + γ

∞∑
τ=t+1

γτ−(t+1)rτ

= rt + γVt+1

During learning, the value function is based on estimates of Vt and
Vt+1 and may not obey this relation. If all states and all actions are
sampled sufficiently often, then the requirement of consistency, i.e.
minimisation of the absolute value of the δ error (δ for διαϕoρά)

δt+1 = rt + γV̂t+1 − V̂t

will move the estimates V̂t and V̂t+1 towards the ideal values.
27/01/2015 Michael Herrmann RL 5



The simplest TD algorithm

Let V̂t be the t-th iterate of a learning rule for estimating the value
function V .

Let st the state of the system at time step t.

δt+1 = rt + γV̂t (st+1)− V̂t (st)

V̂t+1 (s) =

{
V̂t (s) + ηδt+1 if s = st
V̂t (s) otherwise

V̂t+1 (st) = V̂t (st) + ηδt+1 = V̂t (st) + η
(
rt + γV̂t (st+1)− V̂t (st)

)
= (1− η) V̂t (st) + η

(
rt + γV̂t (st+1)

)
The update of the estimate V̂ is an exponential average over the
cumulative expected reward.

27/01/2015 Michael Herrmann RL 5



TD(0) Algorithm

Initialise η and γ and execute after each state transition

function TD0(s,r ,s1,V ) {

δ := r + γ ∗ V [s1]− V [s];

V [s] := V [s] + η ∗ δ;

return V ; }

Remarks

If the algorithm converges it must converge to a value function
where the expected temporal differences are zero for all states.
The continuous version of the algorithm can be shown to be
globally asymptotically stable
TD(0) is a stochastic approximation algorithm. If the system
is ergodic and the learning rate is appropriately decreased, it
behaves like the continuous version.

27/01/2015 Michael Herrmann RL 5



Robbins-Monro conditions

How to choose learning rates? If

∞∑
t=0

ηt =∞ and
∞∑

t=0

η2
t <∞,

then Vt (·) will behave as the temporally continuous variant

dV (·)
dt

= r + (γP − I ) V (·)

Choosing e.g. ηt = c t−α, the conditions hold for α ∈
(1

2 , 1
]
:

α > 1: forced convergence, but possibly without reaching goal
α = 1: smallest step sizes, but still possible
α ≤ 1

2 : large fluctuations can happen even after long time
Iterate-averaging (Polyak & Juditsky, 1992) gives best possible asymptotic rate of convergence

Practically: fixed step sizes or finite-time reduction (see earlier slide)

27/01/2015 Michael Herrmann RL 5



Actor-Critic Methods

Policy (actor) is represented independently of the (state) value
function (critic)
A number of variants exist, in particular among the early
reinforcement learning algorithms

Advantages1

AC methods require minimal computation in order to select
actions which is beneficial in continuous cases, where search
becomes a problem.
They can learn an explicitly stochastic policy, i.e. learn the
optimal action probabilities. Useful in competitive and
non-Markov cases2.
A plausible model of biological reinforcement learning
Recently also an off-policy variant was proposed

1Mark Lee following Sutton&Barto
2see, e.g., Singh, Jaakkola, and Jordan, 1994

27/01/2015 Michael Herrmann RL 5



Actor-Critic Methods

Actor aims at improving
policy (adaptive search
element)
Critic evaluates the
current policy (adaptive
critic element)
Learning is based on the
TD error δt
Reward only known to the
critic
Critic should improve as
well

27/01/2015 Michael Herrmann RL 5



Example: Policies for the inverted pendulum

Exploitation (actor):
Escape from low-reward
regions as fast as possible
aims at max. r
e.g. Inverted pendulum
task: Wants to stay near
the upright position
preferentially greedy and
deterministic

Exploration (critic):
Find examples where
learning is optimal
aims at max. δ
e.g. Inverted pendulum
task: Wants to move away
from the upright position
preferentially
non-deterministic

27/01/2015 Michael Herrmann RL 5



AC methods vs. other RL algorithms

SARSA and Q-learning do not have an explicit policy
representation, in a sense they are thus “critic-only” algorithms.
There are also “actor-only” methods which directly try to
improve the policy, e.g. REINFORCE (Williams, 1992).
AC is advantageous for continuous problems (later!), where Q
and SARSA may become unstable due to the concomitant
function approximation.

27/01/2015 Michael Herrmann RL 5



Conclusions

Both on- and off-policy methods have their advantages

If a good starting policy is available: on-policy may be
interesting, but may not explore other policies well
If more exploration is necessary, then perhaps off-policy is
advisable, but maybe slow

Actor-critic is of historical interest, but we will come back to
this.
Also TD learning including value iteration and policy iteration
will be revisited shortly.
We need a theoretical framework to understand better how the
algorithms work. For this purpose, we will study Markov
decision problems (MDPs) next.

Literature: R-learning: S&B (2), section 11.2; SARSA: S&B (2),
section 6.4

27/01/2015 Michael Herrmann RL 5


