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Supplementary Figure 1: Wingless signaling for genes with positive scores 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
RNAiCut Results for genes with positive Z-scores for wingless signaling screen in D. 
melanogaster.1  Genes are ordered on the x-axis from left to right based on the 
decreasing magnitude of Z-scores from the RNAi screen.  The y-axis denotes the p-
value, as a function of k, of finding a random PPI subnetwork as well-connected as the 
one containing the k highest-scoring genes from the RNAi screen.  These results are 
based on the D. melanogaster PPI network. 
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Supplementary Figure 2: Wingless signaling for genes with negative scores 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
RNAiCut Results for genes with negative Z-scores for wingless signaling screen in D. 
melanogaster.1  Genes are ordered on the x-axis from left to right based on the 
decreasing magnitude of Z-scores from the RNAi screen.  The y-axis denotes the p-
value, as a function of k, of finding a random PPI subnetwork as well-connected as the 
one containing the k highest-scoring genes from the RNAi screen.  These results are 
based on the D. melanogaster PPI network. 
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Supplementary Figure 3: Hedgehog signaling for genes with positive scores 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
RNAiCut Results for genes with positive Z-scores for hedgehog signaling screen in D. 
melanogaster.2  Genes are ordered on the x-axis from left to right based on the 
decreasing magnitude of Z-scores from the RNAi screen.  The y-axis denotes the p-
value, as a function of k, of finding a random PPI subnetwork as well-connected as the 
one containing the k highest-scoring genes from the RNAi screen.  These results are 
based on the D. melanogaster PPI network. 
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Supplementary Figure 4: Hedgehog signaling for genes with negative scores 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
RNAiCut Results for genes with negative Z-scores for hedgehog signaling screen in D. 
melanogaster.2  Genes are ordered on the x-axis from left to right based on the 
decreasing magnitude of Z-scores from the RNAi screen.  The y-axis denotes the p-
value, as a function of k, of finding a random PPI subnetwork as well-connected as the 
one containing the k highest-scoring genes from the RNAi screen.  These results are 
based on the D. melanogaster PPI network. 
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Supplementary Figure 5: Protein secretion for genes with positive scores 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
RNAiCut Results for genes with positive Z-scores for protein secretion screen in D. 
melanogaster.3  Genes are ordered on the x-axis from left to right based on the 
decreasing magnitude of Z-scores from the RNAi screen.  The y-axis denotes the p-
value, as a function of k, of finding a random PPI subnetwork as well-connected as the 
one containing the k highest-scoring genes from the RNAi screen.  These results are 
based on the D. melanogaster PPI network. 
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Supplementary Figure 6: Protein secretion for genes with negative scores 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
RNAiCut Results for genes with negative Z-scores for protein secretion screen in D. 
melanogaster.3  Genes are ordered on the x-axis from left to right based on the 
decreasing magnitude of Z-scores from the RNAi screen.  The y-axis denotes the p-
value, as a function of k, of finding a random PPI subnetwork as well-connected as the 
one containing the k highest-scoring genes from the RNAi screen.  These results are 
based on the D. melanogaster PPI network. 
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Supplementary Figure 7: Cell titer for genes with positive scores 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
RNAiCut Results for genes with positive Z-scores for cell titer screen in D. 
melanogaster.4  Genes are ordered on the x-axis from left to right based on the 
decreasing magnitude of Z-scores from the RNAi screen.  The y-axis denotes the p-
value, as a function of k, of finding a random PPI subnetwork as well-connected as the 
one containing the k highest-scoring genes from the RNAi screen.  These results are 
based on the D. melanogaster PPI network. 
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Supplementary Figure 8: Cell titer for genes with negative scores 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
RNAiCut Results for genes with negative Z-scores for cell titer screen in D. 
melanogaster.4  Genes are ordered on the x-axis from left to right based on the 
decreasing magnitude of Z-scores from the RNAi screen.  The y-axis denotes the p-
value, as a function of k, of finding a random PPI subnetwork as well-connected as the 
one containing the k highest-scoring genes from the RNAi screen.  These results are 
based on the D. melanogaster PPI network. 
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Supplementary Figure 9: Calcium entry for genes with positive scores 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
RNAiCut Results for genes with positive Z-scores for calcium entry screen in D. 
melanogaster.5  Genes are ordered on the x-axis from left to right based on the 
decreasing magnitude of Z-scores from the RNAi screen.  The y-axis denotes the p-
value, as a function of k, of finding a random PPI subnetwork as well-connected as the 
one containing the k highest-scoring genes from the RNAi screen.  These results are 
based on the D. melanogaster PPI network. 
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Supplementary Figure 10: Calcium entry for genes with negative scores 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
RNAiCut Results for genes with negative Z-scores for calcium entry screen in D. 
melanogaster.5  Genes are ordered on the x-axis from left to right based on the 
decreasing magnitude of Z-scores from the RNAi screen.  The y-axis denotes the p-
value, as a function of k, of finding a random PPI subnetwork as well-connected as the 
one containing the k highest-scoring genes from the RNAi screen.  These results are 
based on the D. melanogaster PPI network. 
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Supplementary Figure 11: Local scrambling comparison 
 

 
RNAiCut Results for genes with positive Z-scores (left) and for locally scrambled genes 
with positive Z-scores (right) for insulin-triggered MAPK pathway screen in D. 
melanogaster.6  Genes are ordered on the x-axis from left to right based on the 
decreasing magnitude of z-scores from the RNAi screen.  The y-axis denotes the p-
value, as a function of k, of finding a random PPI subnetwork as well-connected as the 
one containing the k highest-scoring genes from the RNAi screen.  These results are 
based on the D. melanogaster PPI network. 
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Supplementary Figure 12: Hedgehog signaling on multi-species PPI network 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
RNAiCut Results for genes with negative Z-scores for hedgehog signaling screen in D. 
melanogaster.1  Genes are ordered on the x-axis from left to right based on the 
decreasing magnitude of z-scores from the RNAi screen.  The y-axis denotes the p-
value, as a function of k, of finding a random PPI subnetwork as well-connected as the 
one containing the k highest-scoring genes from the RNAi screen.  These results are 
based on the multi-species PPI network. 
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Supplementary Tables 
 
 
Supplementary Table 1: Locations of canonical genes in RNAi screen lists 
 
RNAi scores Canonical Gene Data Insulin Wg signaling Hh signaling 

Number of canonical 
genes in screen 

21 19 8 

Percentage of canonical 
genes in top 1000 genes 

71% 21% 50% Negative 
Scores 

Percentage of canonical 
genes not in top 1000 
genes 

29% 79% 50% 

Number of canonical 
genes in screen 

11 8 9 

Percentage of canonical 
genes in top 1000 genes 

30% 25% 44% 
Positive Scores 

Percentage of canonical 
genes not in top 1000 
genes 

70% 75% 56% 

 
This table compares the percentages of canonical genes in screens ranked in the top 
1,000 genes to the percentages of canonical genes ranked after the 1,000th gene for 
signaling screens and for genes with negative and positive scores.  This table also 
shows the number of canonical genes in each signaling screen.
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Supplementary Table 2: Comparison of manual screener and RNAiCut cutoffs 
 
RNAi 
scores 

Method Before/
After 

Insulin Wg 
signaling 

Hh 
signaling 

Protein 
secretion 

Cell 
titer 

Calcium 
entry 

Cutoff -1.5 -2.0 -2.0 -1.5 -2.2 -3.0 

Number 
of 
genes 
before 

329 5 441 592 341 306 

Manual 
Screener 

Number 
of 
genes 
after 

4,530 9,397 7,800 3,268 5,684 8,010 

Cutoff -2.38 -1.39 -5.09 -0.09 -1.72 -0.47 

Number 
of 
genes 
before 

139 52 3 3,115 510 4,961 

Negative 
Scores 

RNAiCut 

Number 
of 
genes 
after 

4,720 9,350 8,238 745 5,515 3,355 

Cutoff 1.5 2.0 3.0 NA 3.0 3.0 

Number 
of 
genes 
before 

225 300 400 NA 16 68 

Manual 
Screener 

Number 
of 
genes 
after 

6,285 4,293 8,292 NA 8,120 9,674 

Cutoff 2.35 1.26 2.76 1.42 1.25 3.34 

Number 
of 
genes 
before 

67 631 484 66 1,141 33 

Positive 
Scores 

RNAiCut 

Number 
of 
genes 
after 

6,443 3,962 8,208 10,672 6,995 9,709 
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This table shows the manual screener cutoffs and the RNAiCut cutoffs for each screen 
and for genes with negative and positive scores.  It also shows numbers of genes 
before and after the manual and RNAiCut thresholds.
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Supplementary Table 3: Numbers of genes with each gene identifier 
 
RNAi 
scores 

Numbers of 
Genes 

Insulin Wg 
signaling 

Hh 
signaling 

Protein 
secretion 

Cell 
titer 

Calcium 
entry 

Number of genes 
with DRSC 
identifiers 

N/A 14,963 13,398 6,794 9,753 14,403 

Number of genes 
with CG numbers 

5,204* 9,895 8,681 4,129 6,381 8,786 Negative 
Scores 

Number of genes 
with internal 
identifiers 

4,859 9,402 8,241 3,860 6,025 8,316 

Number of genes 
with DRSC 
identifiers 

N/A 6,995 14,256 18,059 13,661 16,628 

Number of genes 
with CG numbers 

6,963* 4,884 9,166 11,270 8,584 10,258 Positive 
Scores 

Number of genes 
with internal 
identifiers 

6,510 4,593 8,692 10,738 8,136 9,742 

*Insulin genes originally had official gene symbol identifiers, and those identifiers were 
converted directly to our internal identifiers. 
 

This table compares the numbers of genes before and after each gene identifier 
conversion for each screen and for genes with negative and positive scores.  The 
difference between the number of genes with each identifier is the number of gene 
names lost in the conversion.
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Supplementary Table 4: GO enrichment for manual screener and RNAiCut cutoffs  
 
RNAi scores Method Before/After Insulin Wg signaling Hh signaling 

Cutoff -1.5 -2.0 -2.0 

Screen/GO 
enrichment 
before 

111 0 5 

 
 
Manual 
Screener 

Screen/GO 
enrichment 
after 

0 3 3 

Cutoff -2.38 -1.39 -5.09 

Screen/GO 
enrichment 
before 

113 69 11 

Negative 
Scores  

 
RNAiCut 

Screen/GO 
enrichment 
after 

1 3 5 

Cutoff 1.5 2.0 3.0 

Screen/GO 
enrichment 
before 

17 11 0 
Manual 
Screener 

Screen/GO 
enrichment 
after 

3 10 6 

Cutoff 2.35 1.26 2.76 

Screen/GO 
enrichment 
before 

18 9 0 

Positive 
Scores 

RNAiCut 

Screen/GO 
enrichment 
after 

3 5 8 

 
This table shows the manual screener and RNAiCut z-score cutoffs for RNAi screens in 
D. melanogaster for different pathways (in columns) for genes with negative (top of 
table) and positive (bottom of table) scores.  It also gives the number of enriched Gene 
Ontology (GO) functions relevant to each screen, before and after the screener and 
RNAiCut thresholds (in rows).
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Supplementary Table 5: Local scrambling results 
 
RNAi scores Local 

Scrambling 
Trial 

Insulin Wg signaling Hh signaling 

Original 108 33 3 

1 108 34 3 

2 110 39 3 

3 108 32 6 

4 108 41 3 

5 106 42 6 

6 106 40 3 

7 106 35 6 

8 106 33 6 

9 100 39 3 

Negative Scores 

10 109 34 3 
Original 44 390 268 

1 44 407 267 

2 53 384 267 

3 55 404 268 

4 52 397 269 

5 52 387 263 

6 51 398 266 

7 55 389 269 

8 44 386 262 

9 53 398 270 

Positive Scores 

10 44 415 269 
 

This table shows the locations of the global minimums on RNAiCut plots for signaling 
screens and genes with negative and positive scores on the D. melanogaster PPI 
network after each local scrambling trial.   “Original” is the location of the original (no 
scrambling) global minimum on the plot.
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Supplementary Results: 
 
Interpreting the Plots 

 
Low p-values correspond to higher statistical significance, so a low y-coordinate at a 

specific x-coordinate on our plot would indicate that the subgraph of genes through the 

rank of that x-coordinate is highly connected.  Our plots are roughly V-shaped, and this 

matches our intuition of how RNAi hit-strength relates to PPI connectivity.  For low 

values of k, the p-value is high because, since there are very few nodes in the 

subgraph, the subgraph has few edges.  As k increases, the p-value decreases, 

indicating higher connectivity in the PPI subgraph.  We think that this occurs because 

additional nodes added to the subgraph correspond to genes likely to be involved in the 

pathway or process.  Since PPI connectivity correlates with function, this is reflected in 

lower p-values.  For sufficiently high k, the genes beyond index k do not play a 

substantial role in the pathway or process, so the p-value increases.   Thus, our plots 

have a major dip, and the global minimum is the cutoff, which is our estimate of the 

index of the last gene potentially involved in our pathway or process. 

 Sometimes, the plots have multiple dips.  This is likely the result of having two or 

more sets of highly inter-connected genes within the screen.  When this occurs, we 

choose the global minimum, meaning the minimum of the deepest dip, as our cutoff.  

Always choosing the lowest point on the plot as our cutoff enables our method to be 

fully automated.  However, because our result is graphed, these multiple dips are visible 

and can be manually analyzed by the researcher to understand the reason for these 

multiple sets of highly connected genes, which might have biological significance. 

 Some genes from the RNAi screens are not in the fly PPI network.  When we 

count the number of genes before the cutoff, we count the number of genes ranked 

higher than the gene at the global minimum on the plot, and we include genes that are 

not in the PPI network.  Therefore, the number of genes before the cutoff 

(Supplementary Table 2) is greater than the x-coordinate at the global minimum 

(Supplementary Figures 1-12). 
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Comparison of RNAiCut versus Manual Cutoffs 

 

We found the cutoffs from the manual screener and from RNAiCut.  For each screen 

and for genes with positive and negative scores, after we found the cutoff on the plot, 

we identified the gene at the cutoff and found that gene in our original ranked list.  The 

number of genes before the cutoff is the number of genes before (and including) the 

gene at the cutoff in the original list (Supplementary Table 2). 

 

GO enrichment 

 

We found the Gene Ontology (GO)7 enrichment for each signaling screen 

(Supplementary Table 4).  The numbers in the table are the numbers of enriched 

pathway-relevant functions; pathway-relevant functions were determined by using 

DAVID8, 9  to find GO terms enriched for the canonical genes in the pathway (see 

Supplementary Methods).   Thus more pathway-relevant GO terms associated with the 

hit list (before the cutoff) suggests identification of more true positives.  A later cutoff 

does not necessarily lead to higher enrichment before the cutoff.  If moving the cutoff 

later will add genes that are not associated with GO terms relevant to the pathway, then 

moving the cutoff later will decrease the enrichment because the added genes will 

decrease the statistical significance of the pathway-relevant GO terms.  This means 

that, when our cutoff is later than the manual cutoff and our enrichment is as good or 

better than the manual enrichment, we have identified genes involved in the pathway or 

process that the manual screener left out.  For example, we can justify our later cutoff 

for the wingless negative screen because the GO enrichment before our cutoff is 

substantially better than the GO enrichment before the manual cutoff, meaning that the 

manual cutoff likely resulted in more false negatives for real pathway modulators.  In 

fact, our cutoff includes two canonical genes for wingless signaling, arm and wg, that 

the manual cutoff leaves out.  The enrichment charts from DAVID7 are available at the 

“Link to Enrichment Results Tables” on the RNAiCut website, http://rnaicut.csail.mit.edu. 

 
Benefit of Using PPI Network 
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Screener-determined thresholds depend on the availability of prior information about the 

pathway being studied and the subjective view of the screener.  Note that the z-score 

chosen by the manual screener varies substantially from screen to screen 

(Supplementary Table 2); because RNAi screens are noisy, the same z-score cannot be 

used for every screen.   Thus, a naive, fixed cutoff strategy would not be successful.  

 Additionally, rankings in RNAi screens can be substantially inaccurate.  The 

canonical genes in signaling screens are not generally found near the top of the ranked 

list; in fact, they are often scattered throughout the list (Supplementary Table 1).  The 

fact that, for every signaling screen we tested other than insulin positive, at least half of 

the canonical genes are not found near the top of the ranked list demonstrates that 

ranking does not always accurately show the significance of a gene (assuming that the 

“canonical” genes are the most involved in a pathway).  This means that additional 

information should be used to improve determination of the threshold.  RNAiCut uses 

PPI data results in addition to ranking to find a threshold customized to the dataset, 

without any need of prior pathway knowledge or subjective decisions. 

 

Robustness Determination 

 

To evaluate the influence of noise in the RNAi observations on the RNAiCut results, we 

generated multiple randomized locally scrambled datasets by randomly re-ordering 

genes whose z-scores were within a +/- 0.05 range.  We did this for all three signaling 

screens and for genes with negative and positive scores.  The effect of this is to 

introduce localized scrambling in the overall ordering (by z-score) of RNAi hits.  We 

analyzed this locally scrambled dataset with RNAiCut on the fly PPI network.  An 

example is shown above, comparing the original plot with the one corresponding to the 

locally scrambled dataset.  As can be seen, the broad characteristics of the two plots, 

including the approximate position of the global minimum, are similar (Supplementary 

Figure 13).  In fact, the global minimum after local scrambling was always within 25 out 

of 2,500 - 5,000 genes of the original global minimum (Supplementary Table 5).  This 
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consistency shows that the results of RNAiCut are resistant to some noise in the RNAi 

observations. 

 

Significance of RNAiCut's Success 

 

RNAiCut's success demonstrates that genes with related functions are highly connected 

in PPI networks.  RNAiCut thus verifies the key biological observation driving our 

approach, that PPI data provides orthogonal biological information to functional genomic 

data, with both datasets identifying well-connected genes regulating a single biological 

process. 

 By using PPI data, the RNAiCut tool provides an unbiased, automated approach 

to identifying pathway-relevant hits in functional genomic screens, and it can be applied 

to any specific-function screen using RNAi or cDNA reagents in organisms with 

available connectivity data.  In contrast, a manual approach to estimating a threshold 

requires some knowledge of the relevant genes beforehand; it is a subjective process 

that uses only z-score-based RNAi screen gene rank.  RNAiCut is therefore especially 

valuable for choosing genes for further analysis from screens for which very little a priori 

knowledge exists for the relevant pathway or biological process.  As more PPI data 

becomes available, RNAiCut will likely become more accurate. 

 

Potential Limitations 

 

Resolving gene synonyms 

 

A common – and difficult – problem when integrating multiple datasets is resolving gene 

synonyms.  Not every gene has a name under every type of gene identifier, so genes 

are often lost when translating from one set of gene identifiers to another.  In our study, 

fly dsRNA names were first mapped to CG numbers or FlyBase identifiers, and these 

were then mapped to our internal identifiers.  Both the steps (dsRNA -> CG numbers 

and CG numbers -> internal identifiers) lose some information.  Typically, the 

information loss is not substantial, and the majority of the genes always remain.  
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However, in this particular case, the information loss was sometimes substantial, 

especially the information loss in the dsRNA identifiers -> CG numbers conversion 

(Supplementary Table 3).  As both RNAi and PPI datasets become more mature, we 

expect that such information loss will diminish. 

 

RNAi screens for general “housekeeping” processes 

 

RNAiCut performs well when pathway-relevant hits from the RNAi screen all perform a 

specific function.  While this may be true in many cases (e.g., a screen to identify genes 

in a specific pathway), in some cases the set of genes involved in a pathway or process 

may span many distinct sets of functions.  In such cases, we expect there to be multiple 

dips in the graph, corresponding to various sets of functions. 

 The protein secretion negative and calcium entry negative screens shown 

previously had two dips each and especially late global minimums (Supplementary 

Figures 8 and 12).  In each case, the second dip contains the global minimum.  We 

think that these screens, unlike the signaling screens, are are not identifying genes 

involved in one specific pathway, but rather genes in a general cell biological process 

that influences and is influenced by multiple pathways at various times.  Thus, there 

might be multiple groups of closely connected genes within these screens.  The two 

dips that we see could be dips for different sets of closely connected genes.  Therefore, 

our method may be less effective when determining a cutoff for a housekeeping function 

screen than it is when determining a cutoff for a screen for a specific pathway. 

 
Sparseness of PPI network 

 

The D. melanogaster PPI network is continuing to be updated, so some edges will likely 

be added in the near future.  With the current fly PPI network, we obtained reasonable 

cutoffs for most of our screens.  For hedgehog signaling negative, however, our cutoff  

for the fly PPI network included only 3 genes and corresponded to a z-score of -5.09, 

which is substantially greater in magnitude than we would expect (Supplementary 

Figure 6).  When looking at the numbers of degrees and edges of these genes in the fly 
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PPI network, we found that the first three genes have twelve, twenty, and eleven 

degrees but share two out of three possible edges.  The probability of this occurring is 

especially low, which is why the global minimum occurs at this point. 

 Since having only three pathway-relevant genes does not seem reasonable, we 

ran RNAiCut for hedgehog signaling negative on a multi-species network that included 

PPI connections from human and worm.  To create this network, Drosophila PPI were 

supplemented with interologs from human and worm PPI data mapped to Drosophila 

functional orthologs.  The mapping between the genes across various species was 

computed by a global alignment of the respective species-wide PPI networks.  This 

results in an orthology mapping that incorporates both sequence similarity and similarity 

in the network structure.10 

 With the multi-species network, we found a new cutoff, -2.20, which is close to 

the manual cutoff, -2.0 (Supplementary Figure 14).  We also found that, when using the 

multi-species PPI network, RNAiCut includes two canonical genes for hedgehog 

signaling, hh and cos, that it leaves out when using the fly PPI network.  cos has a 

greater degree in the multi-species PPI network than it has in the fly PPI network (11 

versus 4).  We think that, because the fly PPI network may still be missing connections, 

as the fly PPI network is updated, the cutoff for hedgehog signaling on the fly PPI 

network for genes with negative scores will improve.  We have provided this multi-

species network on our website,  http://rnaicut.csail.mit.edu, so that users can select 

this network if they obtain unreasonable results using the fly PPI network.
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Supplementary Methods 
 
Determining Cutoffs 

 

 RNAiCut determines pathway-relevant genes from functional genomic data by 

introducing the use of the connectivity of subgraphs of protein-protein interaction (PPI) 

networks.  We are not changing the z-scores of individual hits; instead, we are using 

connectivity of a PPI network to find a z-score cutoff that indicates which genes' 

relationship to the pathway or process should be subject to further study.  The PPI 

network was constructed with D. melanogaster PPI data from DIP and Biogrid.11, 12  

These networks have, as nodes, D. melanogaster genes and, as edges, the PPIs 

between them.  In our analysis, we eliminated genes whose corresponding dsRNAs 

have >10 off-targets (defined by a 19 nt homology stretch), as this filtering substantially 

reduces off-target effects.13, 14, 15 

 RNAiCut first sorts the scores (either raw assay or z-scores) from a functional 

genomic experiment in descending order of strength (i.e., the strongest hit is ranked 

first) after separating genes with positive scores from genes with negative scores.  It 

then eliminates repeats of genes, leaving in only the gene with greatest (or least for 

negative) score.  For each of the first k nodes (k = 1, 2, 3,…) in a set, we asked the 

question: “compared to k randomly chosen nodes, how much more inter-connected is 

the subgraph formed by these k nodes in the PPI graph?”  We use the number of edges 

in a subgraph as the measure of its inter-connectedness.  This measure can be 

computed more efficiently than another popular measure of inter-connectedness, mean 

graph path length. 

 We then compute the number of edges in the PPI subgraph induced by the first k 

nodes and apply a theoretical model to quickly yet reliably approximate the p-value of 

obtaining this number by chance.  Computing the p-value of obtaining the number of 

edges in a subgraph induced by the top k nodes is typically done through simulations 

that generate random samples by repeated, random re-wiring of the edges in the 

network and then compute the p-value of obtaining the number of edges in the 

subgraph induced by the k nodes.  Unfortunately, these simulations can be time-
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consuming and cumbersome, especially for genome-scale screens.  We therefore 

applied an algorithm that approximates the probability distribution of edges in a 

subgraph with a Poisson distribution, as described by Pradines et al.16 

 These p-value computations (one for each value of k) are summarized as a plot 

where the X-axis consists of the RNAi hits ordered in decreasing order of significance 

(i.e., k) and the Y-axis, the natural log of the p-value of observing a subgraph of at least 

the size (i.e., edge count) of the one induced by the k highest scoring nodes 

(Supplementary Figures 1-12).  (When the p-value is 0, we plot 0 on the Y-axis; this  

occurs for low values of k, when the subgraph does not yet have edges.)  This plot is 

typically V-shaped, with a clear global minimum.  We took the global minimum in the 

graph as the cutoff value, that is, all the genes to the left of and including the global 

minimum were classified as hits relevant to the pathway or process.  We also classify 

genes not in the PPI network that are ranked higher than our global minimum according 

to z-score as pathway/process-relevant hits. 

 

Quantifying Relevant Enrichment 

 

We use the Database for Annotation, Visualization and Integrated Discovery (DAVID)'s 

functional annotation chart to determine which functions were enriched in each signaling 

screen (NIAID/NIH).8, 9  We first use DAVID's functional annotation chart to find the 

enriched Gene Ontology (GO) functions for the canonical genes in each signaling 

screen.  We choose enriched terms with p-value <0.05 as the pathway-relevant 

functions.  Then, we find the enriched GO functions for the genes before the cutoff and 

for the genes after the cutoff.  We count the number of significantly enriched pathway-

relevant functions.  We determine which functions are significant (p-value < 0.05) using 

the Benjamini-Hochberg FDR procedure for adjusting for multiple hypotheses, with n 

equal to the number of pathway-relevant functions for the screen.  Finding substantially 

more pathway-relevant functions before the threshold than after the threshold suggests 

that the threshold is accurate. 
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