
 
1. INTRODUCTION 

 
1.1 DARPA Grand Challenge 2005 Event 

Description 
The DARPA Grand Challenge is widely recognized 

as the largest and most cutting-edge robotics event in 
the world, offering groups of highly motivated scientists 
and engineers an opportunity to innovate in developing 
state-of-the-art autonomous vehicle technologies with 
significant military and commercial applications.  The 
US Congress has tasked the military with making nearly 
one-third of all operational ground vehicles unmanned 
by 2015 and the DARPA Grand Challenge is one in a 
number of efforts to accelerate this effort.  The goal of 
the event is to stimulate innovation and development in 
robotics by groups of engineers and scientists outside 
the normal military procurement channels including 
academia and private industry [1]. 

 
1.2 Vehicle and System Architecture for 2005 Event 

Team CIMAR is a collaborative effort of the 
University of Florida’s Center for Intelligent Machines 
and Robotics (CIMAR), The Eigenpoint Company of 
High Springs, Florida, and Autonomous Solutions of 
Young Ward, Utah. The team learned a tremendous 
amount from the 2004 event and used that experience to 
develop a new, highly advanced system to reach the 
finals of the 2005 Grand Challenge (See Figure 1). 

 

  
 

Fig. 1: NaviGator vehicle. 
 
The vehicle architecture embodies four fundamental 

elements: Planning Element, Control Element, 
Perception Element and Intelligence Element. The 

Planning Element consists of components that act as a 
repository for a priori data, i.e. known roads, trails, or 
obstacles, as well as acceptable vehicle workspace 
boundaries. Additionally, these components perform 
off-line planning based on that data. The Control 
Element is comprised of components that perform 
closed-loop control in order to keep the vehicle on a 
specified path. The Perception Element incorporates 
components that perform the sensing tasks required to 
locate obstacles and to evaluate the smoothness of 
terrain. The Intelligence Element is comprised of 
components that act to determine the 'best' path segment 
to be driven based on the sensed information [1,2]. 

 
2. COLOR MONOCULAR VISION SYSTEM 

2.1 Vision System description  
The Pathfinder Smart Sensor (PFSS) is one 

component of the perception element and consists of a 
single color camera mounted in the sensor cage at the 
front of the vehicle and is oriented facing the terrain 
ahead [1]. Its purpose is to assess the area in the 
camera’s scene for terrain which is similar to that on 
which the vehicle is currently traveling, and then 
translate that scene information into traversability 
information. The PFSS component uses a high-speed 
frame-grabber to store camera images at 30 Hertz. The 
camera incorporates an auto-iris lens and is protected 
from strong lightning conditions by a polarizing film. 
Fig 2 shows the PFSS system.  

The primary feature used for analytical processing is 
the RGB (Red, Green, and Blue) color space. This is the 
standard representation in the world of computers and 
digital cameras and is therefore a natural choice for 
color representation. Furthermore, RGB is the standard 
output from CCD-cameras. The importance of being 
able to characterize the colors of the scene is apparent as, 
typically, roads have different color content than 
non-drivable terrain. 
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(a) Camera Assembly 

 
(b) Sensor Cage 

 
(c) Computer and Electronics Enclosure  

 
Fig. 2: PFSS system 

 
2.2 Training Area 
Three subset image regions combined with vehicle 

pose information are used to define the road and the 
background training area. This positioning information 
was made readily available due to the architecture 
deployed on the NaviGator, specifically JAUS (Joint 
Architecture for Unmanned Systems) [4]. This 
architecture defines a set of versatile components and 
their interfaces, which allow the PFSS to obtain global 
position and pitch information from the position 
estimation components. Since the sky portion of the 
image hinders the classification procedure, the PFSS 
needs to perceive the sky line. Unlike the PFSS 
algorithm used for DGC 2005 [3], the NaviGator’s pitch 
information defines the horizontal line for detecting the 
sky portion of the image as represented by the 
empirically determined red horizontal line shown in 
Fig 3.  Next, a 160 × 50 sub-image is used to define 
the drivable area and two 40 × 60 sub-images are used 
to define the background. The drivable sub-image is 
placed in the bottom, center of the image (see Fig 3, 
blue box) while the background sub-images are placed 
at the middle-right and middle-left of the image(see 
Fig 3, orange box), which contain background area.  

 

 
 

Fig.3 Training area at Nevada 
 

Since the classification algorithm uses statistical 
information on the two sub-images, defining the correct 
drivable image and background image is critical. In 
real-world testing, many background areas were 
observed to be similar to drivable road, especially when 
the vehicle is undergoing sharp turns or when the 
vehicle drives in wide open areas. In such cases, the 
classification algorithm relies on a single side 
background image and/or the drivable sub-image’s 
Gaussian information.  
 
3 EM (Expectation-Maximization) Algorithms  

 
3.1 Introduction 
In this system, the EM (Expectation-Maximization) 

algorithm is implemented for road classification in the 
unstructured desert environment. The Bayesian based 
classification algorithm used for the DGC 2005 was 
limited in many situations because of its basic 
assumption that training areas have only one Gaussian 
distribution.  In most cases, the properties of the road 
training area do not change rapidly and its distribution is 
Gaussian. However background sub-images do change 
at every scene and it is inappropriate to assume the data 
distribution is Gaussian.  The RGB distribution of the 
unstructured desert scene shown in Fig 4 is portrayed as 
a three-dimensional distribution plot in Fig 5.  Fig 4 (a) 
is a test scene at Citra, FL, (b) is a scene from the 2005 
DGC course in Nevada.  Like most of the outdoor 
image systems, the NaviGator vision system is 
susceptible to extreme changes in lighting conditions. 
Such changes can create shadows in captured images 
which can result in changes in the image color 
distribution.  Such shadows can be seen in Fig 4(b).  

 
(a) Citra, FL 

 

 
(b) DGC 2005 course, Nevada 

 
 

Fig. 4: Sample unstructured desert environment 
 
 



  
 

From the 3D RGB plot in Fig 5, it is clear that most 
of the road training-area distribution is well clustered 
and can be evaluated with a single Gaussian distribution. 
However, for the background case there is no common 
distribution in the data.  Thus, if a single Gaussian 
distribution is assumed for these areas, a large number 
of classification errors will be introduced.  

  
Citra, Road 

 
DGC, Road 

  
Citra, Background 

 
DGC, Background 

  
Citra,  

Road & Background 
 

DGC,  
Road & Background 

Fig. 5: RGB distribution of road training area and 
background training area  

 
Therefore, Gaussian based classifiers possess limited 

performance ability in real world scenes.  This 
argument is further evidenced by the statistical model 
distribution for the background case in which the 
distribution is poorly defined.  Therefore it is clear that 
a more sophisticated modeling approach is needed, 
namely a mixture-of-Gaussian model. In the mixture 
model, a single statistical model is composed of the 
weighted sum of multiple Gaussians. Therefore a 
mixture modeling classifier represents more complex 
decision boundaries between the road training 
sub-image and background training sub-images. 
However, computing a complex mixture model requires 
more processing time than computing a single Gaussian 
model. Therefore choosing the proper number of 
mixture models for a real-time application is critical.  
In this project, a single Gaussian model for the road 
training sub-image and two mixture Gaussian models 
for the background sub-image were selected 
empirically.   

 
3.2 Application of EM Algorithm 

The EM algorithm consists of three steps. The first 
step is deciding on the initial value of 

{ , , ( )}i i i iPµ ωΘ = Σ (the mean vector, covariance matrix 
and probability for i-th Gaussian distribution 
respectively).  The second step is the Expectation step 
which calculates the expected value [ | ]ijE y Θ  for the 

hidden variable ijy , given the current estimate of the 
parameter Θ .  The third step is calculating a new 
maximum-likelihood estimate for the parameters kΘ  
assuming that the value taken on by each hidden 
variable ijy is its expected value [ | ]ijE y Θ . The process 
then continues to iterate on the second and third steps 
until the convergence condition is satisfied [5, 6]. 

 1arg max ( , )k kQ −

Θ
Θ = Θ Θ  (1) 

where  
 1 1( , ) [log ( , | ) | , ]k kQ E p x y x− −Θ Θ = Θ Θ  (2) 
It is given that jx  is the known image pixel RGB 

vector and the labeling of the Gaussian distribution is 
given in the hidden variable iy . By completing the 

datum set for jz one can let 

 { , }j j jz x y=  (3) 
where {1,2,..., }j n∈ , and n  is the number of background 
data pixels.  

In the mixture modeling, it has to compute the value 
of the hidden variable vector iy , where {1, 2}i ∈ . The 
value iy can be decided by two simple binary random 
variables  

1ijy =  when jx  belongs to Gaussian iω  
0ijy =  otherwise 

so that 
 1 2{ , }j j jy y y=  (4) 

The vector jy  can only take on two sets of distinct 
values: {1, 0}, {0, 1}. 

By applying the K-mean clustering method for the 
initial{ , , ( )}i i iPµ ωΣ for two Gaussian distributions [7] 
the algorithm clusters objects based on attributes into k 
partitions.  Since it was decided to employ a two 
mixture Gaussian model for the two background 
sub-images, the clustering uses two means to compute 
the covariance and each Gaussian value’s probability.  

The principal difficulty in estimating the 
maximum-likelihood parameters of a mixture model is 
that it is hard to know the labeling iy of each data pixel. 
From the initial value by the k-means clustering 
algorithm, one can compute [ | ]ijE y Θ , where value iy  
is given by 
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Next, one can compute the new { , , ( )}i i iPµ ωΣ in terms 
of the complete data set { , }j j jz x y= . Finally, a 
mixture-of-Gaussian model is computed from the new 
mean vector 
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Similarly, a new covariance matrix is obtained from: 
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Likewise, the probability of a single Gaussian 
distribution is obtained from: 
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Finally, the solution of mixture-of-Gaussian is found as:  
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3.3 Simulation 
The EM algorithm was simulated on test images to 

gauge its performance in classifying images. For the 
purpose of the simulation, a single image was 
empirically chosen from the test site at Citra Florida as a 
representative “easy case” and another image from the 
2005 DGC as a representative “hard case.”  The 
Bayesian based classification result and the EM based 
classification result are shown in Fig.6.  In considering  

 

  
Bayesian classification 

result of Citra 
(a) 

 

Bayesian classification 
result of DGC 2005 

(b) 

  
EM classification result 

of Citra 
(c) 

 

EM classification result of 
DGC 2005 

(d) 

 
Fig 6: Classified road image 

the DGC image (shown in Fig. 4(b)) it is clear that there 
is a considerable affect of shadow/illumination on the 
road surface leaving the left portion of the road many 
shades darker than the right.  Since slightly more of the 
road is covered in shade, the resulting sample contained 
in the training segment is biased to the left half of the 
image as shown in Fig.6 (b). 

 Fig. 7 shows the Citra and DGC 2005 scene’s EM 
error where the x-axis shows the number of Gaussian 
distributions for the road training region and 
background training region. For the DGC 2005 scene 
with only one Gaussian distribution an error of 24.02% 
is obtained. However, if one Gaussian model for the 
road training region and two Gaussian models for the 
background training region are used an error of 6.12% is 
obtained.  For the Citra case, the RGB distribution of 
the road training region and the background training 
region show that the two distributions do not 
overlap/intermix. As a result, a single Gaussian 
distribution for both the road and background training 
regions yields an error of 9.31%. Similarly, by applying 
one Gaussian for the road training region and a two 
Gaussians for the background training regions, the error 
is 6.42%. From these results, it is clear that the EM 
classification algorithm provides better classification 
performance.  Furthermore, it is clear that the EM 
algorithm can dramatically reduce the classification 
error over the Bayesian, in particular in cases of images 
obscured by shadow, adverse lighting, or vibration 
induced motion blur. 

 
 

Fig. 7: Error of Citra and DGC 2005 Scene with 
varying number of mixture-of-Gaussian.  

  
Since the EM algorithm relies on an iterative 

approach, setting the correct iteration condition is 
critical in reducing processing time. In this application, 
the mean RGB value is used to control the iterative 
process wherein the algorithm will continue to iterate 
until the difference between the previous mean RGB 
and the current mean RGB of the image is less than a 
pre-defined limit.    

 1 0.1k k
i iµ µ −− <  (11) 

It should be noted that the variable k in Eq. (11) 
represents the current step of the iteration. Fig.8 shows 
the two Gaussian distribution’s absolute mean value 
over the iteration step for the DGC 2005 image.  
 



  
 

  
 
Fig. 8: Absolute value of RGB mean at first and 

second Gaussian distribution for the DGC 2005 image. 
 

4. Transform to Global Coordinate Map 
After classification of the image, the areas denoted as 

drivable road are converted by perspective 
transformation estimation into global coordinates used 
for the Traversability Grid [1]. The perspective 
transformation matrix is calculated based on camera 
calibration parameters and the instantaneous vehicle 
heading provided by position estimation components, i.e. 
GPS and INS. Finally, the PFSS assigns a value of 12 
(highly traversable, green) to those cells that correspond 
to an area that has been classified as drivable [8]. All 
other cells are given a value of 7 (neutral, pink). Figure 
9 shows the three steps of PFSS processing. Fig. 9(a, b) 
shows the classified image, Fig. 9(c, d) shows the 
transformed image without pixel interpolation, and Fig. 
9(e, f) shows the transformed image with pixel 
interpolation. In each subfigure (Fig. 9c, d, e, f), the 
vehicle is located at the center of the image (blue 
square) with its direction indicated by a thin black line. 
Since a wide angled lens is used on the camera 
assembly, a broad swath of the road is captured.  
However, as a result of the wide angle of view, there is 
an appreciable distortion in distant regions of the image. 
This distortion results in only a small amount of pixels 
representing most of the far away portion of the image. 
This fact results in the transformation generating a 
mapped image with “holes” in the distant regions of the 
map.  These holes can then be filled by linear 
interpolation with respect to the row number of each 
pixel (see Fig. 9(c, e)). Though this process can possibly 
introduce some error to the Traversability grid, the 
un-interpolated data, the horizontal lines or “holes”, 
greatly hinder the Smart Arbiter and the Reactive Driver 
processing for planning the vehicle path [1]. The 
purpose of generating the Traversability grid is to 
generate a standardized sensor output which contains 
confidence information, location and orientation of 
obstacles, and can be readily re-oriented to account for 
changes is vehicle position and orientation.  To this 
end, future work in the area of applying iterative 
statistical methods to image processing will continue 
with a focus on the fusion of multiple sensor outputs 
into a single grid.  Additionally, further work is 
underway on the adaptive training for intensity and 
saturation adjustment for line finding in urban 
environments.     

 

(a) Classified image of 
Citra 

 

(b) Classified image of 
DGC 2005 course 

(c) Traversability Grid 
map image without 

interpolation of Citra 

(d) Traversability Grid 
map image without 

interpolation of DGC 
course 

(e) Traversability Grid 
map image with 

interpolation 

(f) Traversability Grid 
map image with 

interpolation 
Fig. 9: Transformed image 

  
With the Traversability Grid concept in place to 

normalize the outputs of a wide variety of sensors, the 
data fusion task becomes one of arbitrating the matching 
cells into a single output. This process is based on a 
method for combining the representative values for each 
corresponding cell in each traversability grid. Fig. 8(a) 
shows the LADAR sensor grids map and Fig. 8(b) 
shows the final path with combined sensor data. 
 

(a) LADAR Sensor  
Grid Map 

(b) Sample planning result 
through traversability grid

Fig. 10: Other sensor grid map and planning image 
with whole sensor information 



  
 

 
5. SUMMARY 

The pathfinder smart sensor (PFSS) was one of the 
principle components used by Team CIMAR during the 
2005 DARPA Grand Challenge. Testing indicated that 
the EM algorithm based classification result provides a 
more accurate classification of roads and background 
than the Bayesian Algorithm.  
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