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Abstract

A low cost strategy based on well calibrated odom-

etry is presented for localizing mobile robots. The

paper describes a two-step process for correction of

'systematic errors' in encoder measurements followed

by fusion of the calibrated odometry with a gyroscope

and GPS resulting in a robust localization scheme.

A kalman �lter operating on data from the sensors

is used for estimating position and orientation of the

robot. Experimental results are presented that show an

improvement of at least one order of magnitude in ac-

curacy compared to the un-calibrated, un-�ltered case.

Our method is systematic, simple and yields very good

results. We show that this strategy proves useful when

the robot is using GPS to localize itself as well as when

GPS becomes unavailable for some time. As a result

robot can move in and out of enclosed spaces, such as

buildings, while keeping track of its position on the y.

1 Introduction

In order to autonomously navigate and perform

useful tasks, a mobile robot needs to know its exact

position and orientation. Robot localization is thus a

key problem in providing autonomous capabilities to a

mobile robot. The di�erent techniques that have been

developed to tackle this problem can be classi�ed into

two main categories:

Relative (local) localization: evaluating the po-

sition and orientation using information provided by

various on-board sensors (e.g. encoders, gyroscopes,

accelerometers etc).

Absolute (global) localization: obtaining the ab-

solute position using beacons, landmarks or satellite-

based signals (e.g. GPS).

�
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A popular local technique, dead reckoning, employs

simple geometric equations (a kinematic model of the

robot) on odometric data to compute the position of

the robot relative to its start position. Dead reckon-

ing cannot be used for long distances because it su�ers

from various drawbacks. The kinematic model alway

has some inaccuracies, encoders have limited preci-

sion and there are external sources a�ecting the mo-

tion that are not observable by the sensors (e.g. wheel

slippage). The localization error grows with time. Ap-

plying Kalman �lter techniques can provide substan-

tial improvement [1],[9].

In case of absolute localization the error growth is

mitigated when measurements are available. The po-

sition of the robot is externally determined and its

accuracy is usually time and location independent. In

other words integration of noisy data is not required

and thus there is no accumulation of error with time

or distance traveled. The problem in absolute local-

ization (e.g. using GPS) is that one cannot keep track

of the robot for small distances (barring exceptionally

accurate GPS estimates). Commercial o� the shelf

GPS gives errors on the order of 10 cm at each mea-

surement. If the robot moves at 1 m/s one cannot use

GPS at each second since the odometric estimate is

less errorprone than the GPS measurement.

Various people have presented work related to ab-

solute localization . Leonard and Durrant-Whyte [6]

developed a system in which the basic algorithm is

formalized as a vehicle tracking problem, employing

an Extended Kalman Filter (EKF) to match beacon

observations to a navigation map to maintain an es-

timate of the position of the mobile robot. Thrun

et.al.[10] have developed a learning algorithm that en-

ables a mobile robot to learn what features/landmarks

are best suited for localization. They also use map

matching [11],[4] using information from wheel en-

coders and information on wall orientation to localize



the robot. In [7] measurements from a sun sensor and

a 3-axis accelerometer are used for absolute localiza-

tion. The authors incorporate two Kalman �lters in

the form of a smoother. While one of them has the

typical formulation of an indirect Kalman �lter pro-

cessing sensor measurements as they come in real time,

the second one is involved every time an absolute mea-

surement is available and it runs (o�-line) backwards

in time to correct the error accumulated in the path

estimates.

Several groups have also tried improving odome-

try for robot localization. J. Borenstein and L. Feng

[2] presented a calibration technique called the UMB-

mark test. The dominant systematic error sources

were identi�ed as the di�erence in wheel diameter and

the uncertainty about the e�ective wheelbase. In an-

other paper [3] the same authors introduce the term

'gyrodometry' where the localization algorithm relies

on odometry most of the time while substituting gyro

data only during those brief instances during which

gyro and odometry data di�er substantially. The au-

thors in [1] use a low cost INS system (three gy-

roscopes, a triaxial accelerometer) and two tilt sen-

sors for their localization algorithm. Error models for

the inertial sensors are generated and included in an

EKF for estimating the position and orientation of the

robot. The major drawback of this work is that orien-

tation information is missing from the calculation of

position.

The major missing element from all the above work

is the absence of a technique that can localize a robot

both indoors and outdoors. Also, absolute measure-

ments are useful when the robot is traversing rela-

tively large distances but a careful mix of odometry,

inertial sensing and absolute sensing is needed to pro-

vide accurate localization when the distances covered

are relatively small and absolute positions are avail-

able intermittently. How can one localize a robot in

an urban terrain where GPS is lost frequently? In this

paper we propose a solution to this problem by using a

backup system based on well calibrated odometry and

a gyroscope. The overall scheme is robust and allows

the robot to reliably navigate in areas where GPS (or

any other form of absolute measurement) is available

intermittently.

In Section 2 the robot model is presented and

the calibration procedure is described. Section 3 de-

scribes the gyroscope model used and the structure of

Kalman Filter. Section 4 presents the experimental

results and one of the many practical instances where

the proposed strategy is useful. Section 5 concludes

with a summary and a discussion of ongoing and fu-

Figure 1: The Pioneer AT

ture research.

2 Robot Model

The Pioneer AT used for experiments is a four

wheeled robot shown in Figure 1. The wheels on the

same side are mechanically coupled. The encoders re-

turn only two distinct speeds; one for the right pair

of wheels and other for the left pair of wheels. The

kinematics of the Pioneer AT are given in Equations

1-4.

xk+1 = xk � vtot dt sin�k+1 (1)

yk+1 = yk + vtot dt cos�k+1 (2)

�k+1 = �k + _� dt (3)

_� =
vR � vL

l
vtot =

vR + vL

2
(4)

where l is the vehicle axle length, vL and vR are the

velocities of the left and right wheels respectively. xk
and yk denote the position of the center of axle. _�

is the yaw rate of the robot in the x-y plane and �

is the angle between the vehicle axle and x axis. For

the experiments reported here, the frame of reference

is chosen in such a way that the start location of the

robot is the origin facing in the positive y direction.

This de�nes the co-ordinate system with respect to

which xk and yk are calculated at each time step k.

The kinematic quantities of interest are shown in Fig-

ure 2.

Experiments with the Pioneer AT reveal that lo-

calization which relies on velocities returned by the

encoders can produce 20%-25% error in the position

estimates. Some of the main reasons for this are the

limited precision of the encoders, the low sampling fre-

quency of their values and the inaccessibility to raw

data that can give angular velocities of the wheels. In

addition, a signi�cant portion of the error comes from
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Figure 2: The Robot Kinematics

the radius of the wheels chosen to convert rotational

velocities of the wheels to linear velocities. This con-

tains some systematic error and can be compensated

for. The calibration procedure followed required the

use of a precise tachometer (Extech Microprocessor

Tachometer). While the robot was sitting on a box

and the wheels rotated freely in the air, the velocity

measurements from the encoders were compared to

the reference (more precise) velocities that were ob-

tained from the wheel RPM measurements given by

the tachometer. The data obtained from this exper-

iment was plotted to give a relationship between the

velocity returned by encoders and by the tachometer.

The plot is shown in Figure 3. The proportionality

factor to convert from the encoder speed to the cali-

brated speed is denoted by �.

This form of systematic error is also responsible for

part of the error involved with the calculation of the

yaw rate using the velocities from the encoders. This

is show in the following equation.

_� =
!R R� !L R

l
=

!L R̂� !R R̂

l
R̂
R

=
vR � vL

l
R̂
R

(5)

where !R and !L are the angular velocities of the right

and left wheel respectively. R is the radius of the two

wheels (assumed to be the same for the time being).

The velocities returned by the encoders are assumed

to be equivalent to !L R̂ and !R R̂.

Another source of systematic error is involved in

the determination of yaw rate in the x�y plane using

the velocities from the encoders. The speci�cations

for the Pioneer AT give the axle length l but during

a turn, the wheels do not pivot at their center and

thus the e�ective axle length is changed. The e�ective

axle length due to skid steering changes the kinematic

constraint on the vehicle from equation 5 to 6.

_� =
vR � vL

l̂
R̂
R

=
vR � vL

l �
(6)

Figure 3: Finding parameter �. Measurements are in

mm/sec.

We determined � = l̂
l
R̂
R
empirically. It was found

that when the encoders predicted a 200 degree turn

the robot actually turned only 180 degrees. Various

such experiments enabled us to determine the value

of �. Section 4 shows the improvement in localization

accuracy as a result of using the calibration factors �

and �.

3 Kalman Filter

Kalman �ltering [5] is a well known technique for

state and parameter estimation. It is a recursive es-

timation procedure that uses sequential sets of mea-

surements. Prior knowledge of the state (expressed

by the covariance matrix) is improved at each step by

taking the prior state estimates and new data for the

subsequent state estimation. In recent years Kalman

�lter based localization has become common practice

[8],[9] in the robotics literature.

To improve on the estimate of yaw rate in the x-y

plane an inexpensive gyroscope (QRS14-64-109 from

Systron Donner) with a range of �64 o
=s to +64 o

=s

was used. Before using it for estimating orientation its

bias was empirically determined. The mean value of

a set of gyro measurements (when the robot was sta-

tionary) was calculated. Observations show that this

value (mean) does not change signi�cantly with time

and thus it was assumed to be constant for the dura-

tion of the motion reported here. The bias (0:4 o
=s)

is thus subtracted each time from the gyro signal.

In the experiments reported here the measurement

vector used in the localization is composed of the two

translational speeds of left and right wheels and the



yaw rate of the chassis as measured by the gyro. The

state estimate is denoted by x̂, z is the measurement

vector, r is the residual vector and ẑ is the measure-

ment estimate.

z = [vL vR
_�]T ẑ = x̂ = [v̂L v̂R

_̂�]T r = z� ẑ (7)

The Kalman �lter consists of two di�erent steps

propagation and update. The equations for the

propagation step are:

x̂k+1=k = � x̂k=k (8)

Pk+1=k = � Pk=k �
T + Q (9)

Satisfying the constraints given by equation (4) and

applying teh results from calibration discussed earlier,

the system matrix � is given by:

� =

2
4 1 0 0

0 1 0
�1
� l

1
� l

0

3
5

The equations for update are

K = Pk+1=k (Pk+1=k +R)�1 (10)

x̂k+1=k+1 = x̂k+1=k +K r (11)

Pk+1=k+1 = (I �K) Pk+1=k (12)

where P is the error covariance matrix, Q is the sys-

tem noise covariance matrix, K is the Kalman gain

matrix and R is the measurement noise covariance

matrix.

The system noise covariance matrix Q is deter-

mined empirically. Di�erent sets of experimental data

were processed to calculate the system driving noise.

The values of measurement noise matrix R are based

on sensor speci�cations as well as empirical observa-

tions.

Q =

"
1:92 0 0

0 1:92 0

0 0 10
�4

#
R =

"
0:832 0 0

0 0:832 0

0 0 10
�6

#

4 Experimental Results

4.1 Indoors

We �rst report here on four indoor experiments.

Consider Figure 4. Each sub-�gure shows the case of

a di�erent trajectory. In every experiment the initial

position of the robot is at (0,0). In each �gure all

the measurements are in centimeters. The dashed line

Simple Calib. Kalman Filter

Exp. No. Odom. Odom. (Gyro &

calib. odom.)

1. 22.7% 14.0% 2.5%

2. 21.5% 17.4% 0.4%

3. 23.1% 17.1% 0.9%

4. 20.5% 15.7% 2.6%

Table 1: Error comparison of three di�erent techniques.

Error = Actual Final Position � Estimated Final Position

Total Distance Traversed

shows the estimated path of the robot if no calibration

is performed and only odometry is used. The dashed-

dotted line shows the estimated path when calibrated

odometry (incorporating both � and �) is used for lo-

calization and the solid line shows the path from the

complete system, that is, from the Kalman �lter that

combines information from calibrated odometry and

gyroscope.

The �rst sub-�gure in Figure 4 is the case of tri-

angular trajectory. The robot was started pointing

towards the positive y-direction and after completion

of the trajectory it re-orients itself to face the positive

x-direction. One can easily see how poor raw odome-

try is.

In the rest of the three experiments the robot was

manually moved closeto the start location in the end.

The third and fourth experiments are more revealing.

In the third experiment the robot traveled in a straight

line and followed almost the same straight line while

returning. The Kalman �lter relying on calibrated

odometry and gyroscope data localizes the robot up

to an accuracy of 1% of the length of the traverse

while the estimates from other two methods shown in

the �gure are quite poor by comparison.

The fourth and last experiment shown here is il-

lustrative due to the number of turns and the length

of the trajectory. This experiment was performed

indoors on the second oor of the Computer Sci-

ence building at USC. The achieved accuracy is 98%.

Table 1 summarizes the results of the four exper-

iments conducted using three di�erent localization

techniques. These results show that one cannot rely

on un-calibrated odometry even for small distances

(on the order of 10 meters).

4.2 Outdoors

The Pioneer AT is equipped with GPS (NovAtel

3111RE) and is capable of localizing itself globally

when it is outdoors and the GPS signals are not oc-

cluded by tall buildings or other structures. The local-



ization error is constant (1� = 0:8m) and independent

of the time of the day. Its accuracy though, can seri-

ously degrade depending on the location. The number

of satellites in sight determines the achieved level of

accuracy. When some of these signals are not avail-

able the triangulation performed by the GPS provides

poor results.

The outdoor experiments performed, required the

robot to move between pre-speci�ed locations. The

positions of these locations wer marked with the GPS

value (latitude and longitude). A simple P (propor-

tional) controller was implemented for the purpose of

driving the robot from one location to the other. This

controller servos on the di�erences in the longitude

and latitude between the current and the desired po-

sition of the robot. A lower level obstacle avoidance

behavior bypassed it whenever the robot was in danger

of collision with structures or people moving around it.

For most of the locations that were tested the perfor-

mance of the system was satisfactory and the achieved

accuracy was as expected from GPS.

When the same robot was commanded to navigate

from one position to another in the vicinity of tall

buildings, the controller was unable to drive the robot

to its goal. Extensive testing revealed that between

the initial and desired position there were areas where

the GPS signals were either unavailable or occluded.

To overcome this problem the control strategy had to

be redesigned.

The proposed method requires the desired locations

as well as the necessary intermediate ones to be spec-

i�ed using two di�erent representations. The �rst

one uses the value of the GPS signal at these loca-

tions. The second one (which is used when the above

mentioned controller fails) requires the coordinates of

these locations to be calculated beforehand using a

map of the area. These new coordinates with respect

to some arbitrary de�ned local frame are given in me-

ters (x, y) while the previous ones (longitude, latitude)

are in degrees with respect to the geo-centric coordi-

nate system.

The new dual controller was tested in a scenario

depicted in Figure 5: the robot was commanded to

start from building A, travel to building B and then

return to its initial position. Starting from point o and

until the position a, the robot depended on the con-

troller which uses the GPS signal to drive the robot to

the goal. At position a, the GPS signal is a�ected by

the tall buildings and the system has to switch to the

back-up controller which uses the Kalman �lter esti-

mate for the current location and the predetermined

metric information for the destination. The calibrated

odometry, fused with the gyro signal in the Kalman

�lter, allows for precise localization of the robot and

thus the performance of the system remains at the

same level as before switching from the GPS driven

controller. The robot continues to move between po-

sitions a and b by navigating on the metric (�x;�y)

which is the di�erence between its location at every

time step and the desired location (Building B). At

position b the GPS signal becomes available again and

the robot switches to the controller that uses the GPS

signal. The robot reaches Building B, takes a turn and

heads towards Building A. The trajectory followed is

almost parallel to the previous one (there is only one

free path between the two buildings). As before the

robot has to switch controllers for the part of the tra-

jectory between positions c and d (in the vicinity of a

and b). The GPS signal was poor for the area near a,

b, c, and d. Finally, for the rest of its route between

position d and Building A the robot again uses the

GPS based controller.

At this point it is worth mentioning that the ac-

curacy of the GPS signal is almost the same for all

the locations where it is available. However it is not

desirable to fuse it with the gyro signal and the cal-

ibrated odometry data in the Kalman �lter. For ex-

ample at each time step (one tenth of a second) the

robot moved for about 4 cm while the accuracy of the

GPS is (at its best) 80 cm. This is because of the

transformation from the longitude and latitude mea-

surements available in degrees into meters on the plane

of motion. This is the main reason for combining these

two independent sources of localization information in

time instead of in frequency. Switching in time from

one controller (and thus localization algorithm) to the

other is very well suited for cases like this where the lo-

cations of interest are marked with their coordinates

in the geo-centric coordinate system as well as with

their coordinates with respect to some arbitrarily de-

�ned local (to the area) coordinate frame.

Another advantage of the current implementation

is that the robot can be used to map its surroundings

within an area of interest. The precision of the GPS

signal is not adequate when we want to specify the

locations of objects that can be a few meters apart,

e.g. when locating landmines. The dual internal rep-

resentation of locations allows the robot to navigate

between remote positions without depending solely on

the availability of the GPS signal. At the same time

it provides the capability to mark the locations of ob-

jects of interest with higher precision estimates (from

the Kalman �lter based localization) with respect to

some arti�cial or natural landmarks. Maps built using



Figure 5: An example of GPS failure where the back up

system is useful.

Point x y Latitude Longitude

(cm) (cm) (degrees) (degrees)

o 0 0 34.018552 -118.289507

a 16.60 617.16 34.018525 -118.289533

b 30.99 886.73 34.018502 -118.289552

c -124.57 842.76 34.018474 -118.289553

d -100.29 525.99 34.018492 -118.289536

Table 2: Co-ordinates of various points in two metric

spaces.

GPS signals as well as Kalman �lter based localization

can coexist in parallel.

5 Conclusions and Future Work

In this paper we have presented a robust local-
ization scheme. We have shown that well calibrated
odometry and gyroscopic data provide a backup sys-
tem that proves to be very useful in the case when
absolute positioning sensors are unavailable for some
time. Nowadays most outdoor robots use GPS but
given the constraints of urban terrain GPS is avail-
able intermittently. Also such robots are unable to
navigate both indoors and outdoors since there is no
mechanism available to switch to an indoor position
estimation system once indoors. Moreover one cannot
keep track of a robot in a local coordinate system us-
ing GPS since accuracy is poor for small distances. If
good odometry is available then the robot can rely on

it for some time and when it has moved a su�ciently
long distance GPS can be used for absolute localiza-
tion. We have obtained very good results in local-
ization accuracy and robustness with an inexpensive
backup system. The position estimates have accuracy
up to 2% of the distance traveled over traverses as
large as 100 m with intermittent GPS.

In the present system, the e�ective length of the
axle is calculated o�-line and is assumed to be con-
stant. We plan to build an adaptive Kalman �lter
which can update � at each time step. Also we have
neglected gyro drift in this work. In our future work
we plan to incorporate it in the state to provide better
orientation estimates.
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Figure 4: Each �gure above shows three traces. The traces are from un-calibrated odometry(- -), calibrated odometry(-.)
and from the Kalman �lter using information from calibrated odometry and gyroscope (solid line). Measurements are in

centimeters.


