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Single Degree-of-Freedom
Rigidly Foldable Cut Origami
Flashers
We present the design for a family of deployable structures based on the origami flasher,
which are rigidly foldable, i.e., foldable with revolute joints at the creases and planar
rigid faces. By appropriate choice of sector angles and introduction of a cut, a single
degree-of-freedom (DOF) mechanism is obtained. These structures may be used to real-
ize highly compact deployable mechanisms. [DOI: 10.1115/1.4032102]

1 Introduction

Many patterns from the world of origami have application in
the world of engineering, particularly in the area of deployable
structures. Whenever there is a need for a mechanism to transform
between a large, flat, sheetlike state (the “deployed” state) and a
much smaller state (“stowed”), origami-based mechanisms can
provide efficient solutions.

One origami mechanism that has received considerable atten-
tion over the years is the pattern called a “flasher,” which was
introduced and explored in the origami world by Palmer and Sha-
fer [1]; they developed their concept from the twist-fold forms of
Kawasaki (see, e.g., Ref. [2]). However, the concept had a long
existence outside of the origami world. As noted by Guest and
Pellegrino (see Ref. [3] and references therein), several authors
have discovered and explored similar structures since the early
1960s and it is regularly rediscovered. Nojima [4] showed a vari-
ety of similar forms with varying degrees of helicity and rotational
symmetry. For purposes of this work, we will refer to all of these
patterns that are rotationally symmetric, roughly flat in the
deployed state, roughly cylindrical in the stowed state, and deploy
in a spiral pattern, as (generalized) flashers.

Most work has focused on the use of the flasher mechanism in
concert with membranes, or at least, structures that have distrib-
uted flexibility [5,6]. While many flashers have been demonstrated
from relatively stiff materials, the basic flasher mechanism and, to
the best of our knowledge, all versions proposed and demonstrated
to date are not rigidly foldable; they cannot be folded continu-
ously from the stowed to the deployed state with rigid panels and
pure revolute joints.

To get around this problem, several alternatives have been pro-
posed and/or demonstrated that work with rigid panels. Guest and
Pellegrino proposed a structure composed of separate panels
joined by struts [7]. Zirbel et al. demonstrated a prototype solar
array using a flasher structure with rigid panels and finite-width
membrane hinges between the panels, in which the flexible mem-
brane hinges provide the necessary additional compliance needed
for deployment [8], albeit at the cost of introducing potentially
undesirable additional DOF into the motion.

It is also potentially possible to add DOF by triangulating some
fraction, perhaps all, of the quadrilateral panels to allow some
amount of flexing across their diagonals. However, whether such
an approach guarantees full reachability across the range of
motion and the effects on the DOF of the mechanism remain open
questions for that approach.

An additional challenge with using idealized flasher patterns in
real-world engineering is the problem of thickness: idealized pat-
terns assume zero (or negligible) thickness, but in real-world
applications, the thickness of each panel is usually non-negligible.
Finite thickness matters in two ways. First, it affects metric fold-
ability: offsets and displacements of hinges from their idealized
zero-thickness positions can affect the mechanics of folding or
even prevent folding by turning a flexible mechanism into a
locked structure. Second, it affects injectivity, or self-intersection:
the layers of a thick structure can collide with each other even if
the corresponding zero-thickness model does not self-intersect.
Fortunately, recent work by Tachi [9] and Edmonson et al. [10]
demonstrated effective techniques for adapting zero-thickness
structures with non-negligible thickness panels, and such techni-
ques are applicable here.

Self-intersection aside, the problem of metric foldability
remains. In particular, for applications with rigid panels, it would
be desirable to have a folding pattern that is rigidly foldable. Even
better, it would be desirable for the folding motion to have a sin-
gle DOF, so that there is one and only one path between the
stowed and deployed states.

In this paper, we propose, describe, and analyze a member of
the flasher family of mechanisms that meets both criteria: it is rig-
idly foldable with planar panels and pure revolute joints and trans-
forms continuously from a fully flat state to a compact, cylindrical
configuration with a single DOF. Like another well-known
deployable structure, the Miura-ori [11], it is overconstrained
according to the Kutzbach criteria, but by careful choice of angles
in the design, we can realize a single DOF in the deployment
motion; however, it is necessary to introduce a cut into the mecha-
nism. Furthermore, there is a tuning parameter for the spacing
between layers in the stowed state, so that nonzero-thickness pan-
els of varying thicknesses may be accommodated in the folding
pattern. Throughout this work, we assume a zero-thickness model,
but note that the thickness-accommodating techniques of Tachi
and/or Edmonson may be applied to any of the mechanisms
described to realize a full thick-panel mechanism while preserving
the single-DOF deployment motion.

2 Preliminaries

Figures 1 and 2 show implementations of the flasher structure
by Scheel [12] and Palmer and Shafer [1] that illustrate the funda-
mental structure. There is a central planar region (henceforth, the
central polygon) surrounded by a series of mountain and valley
folds that emanate roughly radially, but are offset somewhat from
being center-directed.

These images show curved and bent facets, but it is possible to
create polyhedral (planar facet) versions of the flasher [3,8].
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Figure 3 shows three versions of a polyhedral flasher with a square
central polygon and fourfold rotational symmetry constructed
according to the algorithm of Ref. [8].

There are four distinct types of folds in a flasher, as illustrated
in Fig. 4. The diagonal folds emanate from the corners of the cen-
tral polygon and, in the folded form, propagate helically around
the axis of symmetry. Next, there are reverse folds, which propa-
gate axially around the structure, each fold forming a spiral that
lies (nearly) in the same plane. Both reverse and diagonal folds
are sharp folds, being folded nearly to 6p. Next, there are the
bend folds, which are (nearly) axis-parallel folds at the corners of
the central polygon; they are the folds used for the layers to wrap
around the central polygon. And last, there are the central polygon
folds, which appear to be continuations of the reverse folds but,
unlike the latter, have a fold angle of about p=2, rather than 6p.

For a flasher to be rigidly foldable with a single DOF, the fold
angles around each vertex must flex continuously in such a way
that the fold angles along each fold are compatible when they
meet up at every vertex. In general with flashers, this is not possi-
ble; for all of the patterns shown to date, at the very least, facets
must bend along their diagonals. A general flasher pattern consists
of degree-6, degree-5, and degree-4 vertices, with the last usually
being the most numerous. Degree-4 vertices individually have a
single DOF in their motion, and it will be these vertices that are
the key to realizing single-DOF motion for a flasher. We now
review briefly the important and relevant properties of degree-4
vertices.

3 Degree-4 Vertices

Figure 5 shows a generic degree-4 vertex, with four sector
angles ai; i ¼ 1;…; 4, and four dihedral angles, ci; i ¼ 1;…; 4,
with ci 2 �p;p½ �. For mountain folds, ci < 0; for valley folds,
ci > 0. If jcij ¼ p, the fold is fully folded; if jcij 2 0;6pð Þ, it is
partially folded; and if ci ¼ 0 it is unfolded.

If all four creases are partially or fully folded, then there must
be three mountains and one valley or three valleys and one moun-
tain [13]. If we look at alternating (not consecutive) folds around

the vertex, two will be of the same type and the other two will be
of opposite type. We call the two folds of the same type (c2 and c4

in Fig. 5) the major folds (or major pair) of the vertex. The two
folds of the opposite type (c1 and c3 in Fig. 5) are the minor folds
of the vertex.

We also recognize two special cases: if a1 þ a4 ¼ a2 þ a3 ¼ p,
the vertex is straight-major, because the major folds are collinear.
Similarly, if a1 þ a2 ¼ a3 þ a4 ¼ p, the vertex is straight-minor.

Fig. 1 Scheel’s wind-up membrane. Left: nearly open. Right:
starting to close. From Ref. [12].

Fig. 2 The Palmer–Shafer origami flasher. Left: nearly fully
deployed. Right: stowed. From Ref. [1].

Fig. 3 A polyhedral flasher with fourfold rotational symmetry.
Top row: an ideal polyhedral flasher (left: crease pattern and
right: folded form). Middle row: the same structure, modified to
spread the layers to accommodate nonzero thickness. Bottom
row: the same structure, but with additional reverse folds added
to reduce the height. Note that the crease patterns and folded
forms are shown at different scales; the diameter of the folded
form is approximately the diameter of the central polygon of the
crease pattern in each case.

Fig. 4 The four distinct types of fold in a flasher. Here, we use
the origami convention of drawing mountain folds as solid
lines, valleys as dashed, with different tones for the four fami-
lies of fold.
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Straight-minor vertices are perfectly well behaved, but straight-
major vertices are a special case; it is not possible for all four
folds of a straight-major vertex to be partially folded at the same
time. For a straight-major vertex to fold, first, c2 and c4 must fold
from 0 to 6p, and only then can c1 and c3 fold (and then only if
a1 ¼ a4 and a2 ¼ a3).

For non-straight-major vertices, if one fold angle is chosen, the
other three are fully determined from trigonometric relationships
between the sector angles and the fold angles. For the generic
case, these relationships can be rather complex (as shown in the
Appendix). However, for a flat-foldable vertex—one that can be
pressed flat with all layers in a common plane—the relations col-
lapse to simple forms.

First, as is well known from Kawasaki’s theorem [14], a
degree-4 vertex is flat-foldable if and only if

a1 þ a3 ¼ a2 þ a4 ¼ p (1)

For a flat-foldable vertex, the major fold angles are equal [15]

c2 ¼ c4 (2)

and the minor fold angles are equal and opposite [15]

c1 ¼ �c3 (3)

The relationship between adjacent fold angles has been
described by several authors [13,15,16]; a particularly simple and
useful expression (derived in the Appendix) is

tan
1

2
c2

tan
1

2
c1

¼ �
tan

1

2
c2

tan
1
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¼
tan

1

2
c4

tan
1

2
c1

¼ �
tan

1

2
c4

tan
1

2
c3

¼
sin

1

2
a1 þ a2ð Þ

sin
1

2
a1 � a2ð Þ

(4)

Equation (4) also gives some justification for the names
“major” and “minor”; a consequence of Eq. (4) is that

jc2;4j � jc1;3j (5)

with strict inequality at all partially folded angles and equality
only at the flat (fully unfolded and fully folded) states. So, away
from the flat state, major folds are always larger than minor folds
at a flat-foldable degree-4 vertex.

We define the ratio in Eq. (4) as the fold angle multiplier l for
the vertex. In general, l > 1: The fold angle multiplier is a mea-
sure of the geometric advantage between a major and minor fold
of the vertex. If we denote either major fold angle by cþ and either
minor fold angle by c�, we have that

lim
c�!0

dcþ
dc�
¼ 6l; lim

c�!p

dcþ
dc�
¼ 61=l; and���� dcþ

dc�

���� 2 1=l; lð Þ at angles in between (6)

There is a remarkable property implicit in Eqs. (2)–(4), noted
by Tachi [16]. For any two angles ci; cj at a flat-foldable degree-4
vertex, tan ð1=2Þci= tan ð1=2Þcj ¼ constant, independent of the
state of foldedness. This property extends to any mesh of degree-4
vertices: if ci and cj are connected by a path containing only non-
straight-major flat-foldable degree-4 vertices, their half-angle-
tangents are proportion by some fixed value that depends on the
sector angles around all of the vertices along the path. Because of
this constant of proportionality, it is guaranteed that ci, cj, and all
folds in between can fold smoothly all the way from flat to fully
folded, at least, if we ignore all vertices outside the path. And,

more broadly, for a mesh whose interior vertices are all flat-
foldable degree-4 vertices, if we can find a partially folded state
involving all folds for a single fold angle, then it is guaranteed
that the entire pattern folds smoothly over the full range of fold
angles from fully flat to fully folded, with a single DOF.

This property is extremely powerful and useful, and we can
employ it when we are seeking single-DOF folding mechanisms. If
we can construct a fold pattern consisting of flat-foldable degree-4
vertices and find a single consistent partially folded state, then we
have a single-DOF mechanism. In principle, such a pattern could
fold from flat unfolded to flat fully folded. In practice, self-
intersection may limit the full range of motion, but even if we do not
need full flat-foldability, we can still use this technique to achieve
single-DOF mechanisms. And, we will now do this with flashers.

4 Simple Flashers

4.1 Fold Angle Relations. We now turn our attention back to
the flasher. For simplicity, we will consider first a flasher that has
no reverse folds at all, such as the one illustrated in Fig. 6. There
are only diagonal, bend, and central polygon folds. This choice
ensures that all of the interior vertices of the pattern are degree-4.

We will first look at the constraints on the angles in the pattern,
assuming m-fold rotational symmetry on the positions of the fold
lines, m-fold rotational symmetry on the magnitudes of the
fold angles, and m=2-fold rotational symmetry on the sign of the
fold angles (mountain/valley assignment). We also assume (at
least initially) that m is even and m � 4. The central polygon is a
regular m-gon, and so the interior angles at its corners are
p� 2p=mð Þ. We take d to be the angle between the incident diag-

onal fold and the side of the central polygon. In Fig. 6, we have
m¼ 4 and the central polygon is a square.

Moving out along the diagonal folds, we have a sequence of
degree-4 vertices. Denote the two angles to left and right of the

Fig. 5 A degree-4 vertex. Left: crease pattern. Right: folded
form.

Fig. 6 A simplified flasher, containing only diagonal, bend,
and central polygon folds. Left: the full crease pattern. Right: a
close-up, with labeled sector angles.
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diagonal fold as a and b, respectively. If we are going to attempt
to create a single-DOF mechanism using the property described in
Sec. 3, then this vertex must be flat-foldable, with opposite angles
summing to p. This allows us complete the sector angle assign-
ment around this vertex—and, as well, around all of the other
degree-4 vertices. Since, according to Eqs. (2) and (3), the major
and minor folds around each of the degree-4 vertices are equal,
this means that the fold angles of all of the diagonal folds are
equal to one another in magnitude, and the fold angles of all of
the bend folds are equal to one another in magnitude. We denote
the magnitude of the diagonal fold angles by cdiag and the magni-
tude of the bend fold angles by cbend.

All of the degree-4 vertices are similar to one another (similar
in the geometric sense), and because of that, the diagonal and
bend fold angles at each degree-4 vertex are related to each other
by Eq. (4). So, up to now, the sector angles and fold angles are
consistent with one another at every degree-4 vertex. Since each
degree-4 vertex is a single-DOF mechanism, the entire array of
degree-4 vertices (apart from those of the central polygon) must
be, itself, a single-DOF mechanism—if, that is, it is not locked by
other interactions.

We have not yet considered the degree-4 vertices around the
central polygon. If we force each central polygon vertex to be
developable (its sector angles sum to 2p), so that the crease pat-
tern is a flat sheet, that condition allows us solve for a

a ¼ p
2
� p

m
(7)

While a is given by Eq. (7), angles b and d may be chosen inde-
pendently. But there is not complete freedom to choose. Looking
at one of the vertices along the diagonal fold, if we choose b ¼ a,
then the major folds at that vertex become collinear, resulting in
the straight-major condition. As noted above, in a straight-major
vertex, the major and minor folds become uncoupled; such a ver-
tex must fold entirely from flat to fully folded along the major
crease before the minor crease can fold at all (if even possible).
So b ¼ a is forbidden if we want a single-DOF mechanism where
all the folds happen together.

It is convenient to introduce a new angle, e, as the deviation
from straightness of the major folds, as illustrated in Fig. 6. We
then have

b ¼ aþ e (8)

And because we now know the sector angles around these verti-
ces, we can compute the fold angle multiplier between the major
folds (diagonal folds) and minor folds (bend folds) at each vertex.
We denote this fold angle multiplier by ldb. It is given by

ldb ¼ cos aþ cot
e
2

sin a (9)

If we choose any bend fold angle cbend, then every other bend
fold has the fold angle 6cbend, with the sign depending on its
mountain/valley assignment, and every diagonal fold has the fold
angle

6cdiag ¼ 62 tan�1 ldb tan
1

2
cbend

� �
(10)

with, again, the sign determined from the mountain/valley
assignment.

4.2 Consistency in the Middle. Now we consider fold angles
around the central polygon, and here a problem arises. Consider
the black-dotted central polygon vertex in Fig. 6. It is clearly not
flat-foldable, because opposite angles sum to p=2þ p=mð Þ, not p.
It is still a single-DOF mechanism, and so if we choose a generic
value of the diagonal fold angle, cdiag, we can compute the fold
angles of the two incident central polygon folds (which will, in

general, be different from one another in magnitude, as well as
sign).

Let us denote the dihedral angle of the valley fold of the central
polygon by ccp;v and that of the mountain fold by ccp;m. Using the
general expressions for opposite and adjacent dihedral angles
from the Appendix and the angles from Fig. 6, we can solve for
both ccp;v and ccp;m in terms of cdiag. The expressions are both
rather large, and we omit them for brevity, but the important thing
is this: they are quite different.

The problem is that if we move to the next central polygon ver-
tex and compute the fold angles for the two incident central poly-
gon folds, we will get the same two values, but with opposite sign.
Consistency from one vertex to the next therefore requires that

ccp;m ¼ �ccp;v (11)

and this is not the case; they have fundamentally different func-
tional dependence upon cdiag, no matter what values of a and d
might be chosen. So it is not possible to find an assignment of fold
angles around the central polygon consistent with the single-DOF
mechanism surrounding it.

Well, then: How about if we simply cut out the central polygon
entirely, so that its edges now become edges of the fold pattern?
Then, there would no longer be a consistency condition on the
fold angles around each vertex of the central polygon because
there are no central polygon fold angles to contend with.

But there is still a consistency condition to consider. In fact, it
just got more complicated: by adding a hole, consistency must be
satisfied in both rotation angle (3DOF) and translation (three more
DOF). By design, all six conditions are satisfied at the unfolded
and fully folded state. However, for a single-DOF mechanism,
both must be satisfied across the full range of motion.

If we cut out the central polygon, at each of its vertices, we
have three fixed sector angles and two fold angles whose values
are linked by the single-DOF mechanism, and so we can solve for
the angle between two adjacent sides of the central polygon—
what would have been the interior angle of the central polygon.

We compute this angle by making use of 3D rotation matrices.
Define the usual rotation matrices about the x, y, and z axes as

Rx /ð Þ �
1 0 0

0 cos / �sin /
0 sin / cos /

0
@

1
A

Ry /ð Þ �
cos / 0 sin /

0 1 0

�sin / 0 cos /

0
@

1
A

Rz /ð Þ �
cos / �sin / 0

sin / cos / 0

0 0 1

0
@

1
A

(12)

Left-multiplying a vector by matrix Rx /ð Þ rotates the vector
through angle / about the global x-axis, similarly for Ry /ð Þ and
Rz /ð Þ. If we have a local coordinate system defined by a 3� 3
matrix, then we can rotate that coordinate system about its own
local axes by right-multiplying by the transpose of these same
matrices. We set up a coordinate system centered on the central
polygon vertex whose local x-axis runs along ccp;m and whose
local x–y plane contains folds ccp;m and cbend and describe this
coordinate system by some matrix I. Then, we can find the direc-
tion vector for fold ccp;v by successively rotating the coordinate
system about the local z-axis for each sector angle and about the
local x-axis for each dihedral angle as we work our way around
the vertex. The transformed coordinate system is thus given by

I0 ¼ I � RT
z p� a� dð Þ � RT

x cbendð Þ
RT

z p� að Þ � RT
x cdiagð Þ � RT

z dð Þ (13)

If the first component of I was the direction vector of fold ccp;m,
then the first component of I0 should be the direction vector of
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fold ccp;v, and their dot product must be the cosine of the angle
between the twofold in 3D. We denote that angle by a3D. Its angle
cosine is

cosa3D¼ cosa cosdcos aþdð Þþ sindsin aþdð Þcoscbend coscdiag

� �
þsin aþdð Þ sindsincbend sincdiag� sinacosdcoscbend

� �
þsinasindcos aþdð Þcoscdiag (14)

Unfortunately, this quantity varies as the rest of the mechanism
changes its folded state (i.e., as cbend and cdiag vary, which they do
together). In the flat, unfolded state, the edges of the central poly-
gon form a closed polygon. But, it turns out, for nearly all other
partially folded states, the corner angles change, and so the central
polygon no longer closes up. That means we fail to satisfy transla-
tional consistency going around the central polygon.

Perhaps, a different choice of angles in the initial design would
allow consistency, some magic combination? Unfortunately not,
a3D varies across the motion for every nonzero value of e.

Perhaps, instead, we could remove more material around the
center? Again, no. Consistency failure for a single loop around the
center means that any loop that encloses the central polygon
would fail in the same way (just with much greater algebraic
complexity).

And so, there is no consistent assignment of sector and fold
angles that makes this pattern an isometric mechanism. We are
almost there: we can achieve consistency, isometry, and single-
DOF motion at every other interior vertex, but the fold pattern
fails when we require consistency going around the loop of the
central polygon.

The solution, therefore, is to break the loop; we cut the pattern
from the outside edge in to the center, so that there is no longer a
loop condition around the central polygon to be satisfied. The cut
path can be anywhere from the outside in, but for simplicity, we
will cut along one of the diagonal folds, as illustrated in Fig. 7 and
then remove the central polygon.

And that resolves the conflict! We now have a pattern consist-
ing entirely of degree-4 vertices in which the fold angles and sec-
tor angles at each interior vertex are mutually consistent at every
folded state, from unfolded to fully flat (or as close to fully flat as
we can get without self-intersection).

We note that the idea of cutting a flasher from edge to center is
not without precedent. Tibbalds et al. introduced the notion of cut-
ting multiple panels of a disklike form apart in order to produce a
single-DOF mechanism [17] at the cost of introducing multiple
sets of struts. If we create a single-DOF flasher, though, then we
only need to create a single cut, and we end up with a single con-
nected single-DOF mechanism.

4.3 Vertex Coordinates. So what does this pattern look like
when folded? For that, we need to compute the vertex coordinates
in 2D and 3D.

We denote each vertex of the crease pattern by pi;j, where
i ¼ 0;… indexes the vertices heading out along the diagonal folds
from the central polygon, and j ¼ 0;…;m denotes the rotational
position around the origin, as illustrated in Fig. 8. Rotational
indices “wrap around”: pi;m ¼ pi;0, and so forth.

We assume for simplicity that p0;0 ¼ 1; 0ð Þ.
Define the 2D rotational matrix

Rm kð Þ �
cos

2pk

m
�sin

2pk

m

sin
2pk

m
cos

2pk

m

0
BB@

1
CCA (15)

Then, we have that

pi;j ¼ Rm jð Þ � pi;0 (16)

We further define angles /i;j and hi;j as the absolute angles
(measured in a global coordinate system as a rotation from the x-
axis) of the fold lines emanating from pi;j, as illustrated in Fig. 8.
From consideration of the angles in Fig. 6, we have that

hi;j ¼ p� d� að Þ þ ieþ 2pj=m (17)

/i;j ¼ �dð Þ þ ieþ 2pj=m (18)

Now, we can compute the position of pi;j for i> 0 as the inter-
section of lines emanating from lower-i vertices. We introduce the
vector-valued function

u nð Þ � cos n; sin nð Þ (19)

the matrix determinant

det x; yð Þ �
���� x1 y1

x2 y2

���� ¼ x1y2 � y1x2 (20)

and the line intersection function LINEINT a1;d1; a2;d2ð Þ that
returns the intersection between two lines emanating from points
a1 and a2 with direction vectors d1 and d2, given by

LINEINT a1;d1; a2; d2ð Þ ¼ a1 þ d1

det a2 � a1ð Þ; d2ð Þ
det d1;d2ð Þ (21)

Fig. 7 Cut lines on the simple flasher. We cut out the central
polygon and cut in from the edges along a diagonal fold. Fig. 8 Vertex and angle indexing in the simple flasher
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Then,

piþ1;0 ¼ LINEINT pi;0; u hi;0ð Þ;pi;1; u /i;1

� �� �
(22)

This relation, plus Eq. (16), allows us to recursively compute all
of the points of the crease pattern, for as far out as we wish to go.

An open question is what to do for the outer boundary of the
pattern. For simplicity, we have chosen to simply close the pattern
by connecting the points pn;j for some value n.

What about the folded form? Since we know the crease pattern,
and we know the angle of all of the folds, we can compute the
folded form by rotating the facets of the crease pattern relative to
their neighbors about the known fold angles of their shared
creases. This is done efficiently by constructing a spanning tree on
the facets linked by their adjacency, then traversing the tree and
composing rotations along the way.

Using these formulas, we have computed representative exam-
ples of single-DOF flasher mechanisms. An example is shown in
Fig. 9 for parameters m¼ 4, n¼ 3, e ¼ 3 deg; d ¼ 43:5 deg, and
cbend taking on various values from 0 (fully flat) to (nearly) fully
folded.

The 3D plots verify the impossibility of achieving a closed cen-
tral polygon. As can be seen in the first few images, the central
polygon opens up quite widely, then (in the middle image) it
begins to curl up on itself. The maximum value of cbend in the fig-
ure was chosen to be the point at which the central polygon closes
back up on itself—and, not incidentally, the originally cut edges
of the ring meet up with each other once more.

It is possible to take the pattern all the way to a bend fold angle
of cbend ¼ 180 deg, i.e., fully flatly folded, at which point the
entire pattern lies in a common plane. However, to get there, the
panels of the pattern must intersect each other in numerous places
and ways. No practical application would take this structure all
the way to flatly folded (at least none that we can envision at pres-
ent). The stowed state for this structure stops when the central
polygon recloses and the panels have some small dihedral angle
between them. Such a model may be used in a thickening algo-
rithm, such as that of Tachi [9], which requires slightly angularly
separated panels.

There are two noticeably different motions in going from the
flat to the curled-up state. First, for small cbend, most of the motion
happens on the diagonal folds, and as they fold up, the flat disk
forms into a slightly curved vertical stack of layers. There then
comes a point where the diagonal folds are mostly folded, and the
remaining motion comes from the bend folds curling the layers
around until they meet up again.

4.4 The Central Region. In general, the vertices of the cen-
tral polygon are nonplanar in the partially folded state. However,
we have found that a particular value of d gives rise to a central
polygon that is planar through the full range of motion:

dplanar ¼
p
m
� e

2
(23)

We chose d ¼ dplanar in Fig. 9.
As noted already, as the mechanism proceeds away from the

flattened state, the central polygon opens up, and then it recloses.
The “fully stowed” state would be that where the central polygon
has closed to its original state and the edges of the cut have come
back together. We would like to know what bend angle cbend gives
rise to this state: this would define the full range of useful motion
of the mechanism.

Recall that Eq. (14) gave the cosine of the angle between folds
ccp;m and ccp;v, which was a3D. The mechanism has reclosed when
that angle takes on the value of the interior angle of the original
planar central polygon, whose angle cosine is

cos a0 ¼ cos p� 2p
m

� �
¼ �cos

2p
m

� �
(24)

So we can equate cos a3D from Eq. (14) and cos a0 from Eq. (24)
and solve for the bend angle (or equivalently, the diagonal angle)
that satisfies the equality.

To keep the algebra tractable, we introduce the Weirstrauss
substitution

x � tan
cbend

2
(25)

which gives rise to the following simplifying substitutions:

sin cbend ¼
2x

1þ x2

cos cbend ¼
1� x2

1þ x2

sin cdiag ¼
2 ldbxð Þ

1þ ldbxð Þ2

cos cdiag ¼
1� ldbxð Þ2

1þ ldbxð Þ2

(26)

Substituting these into Eq. (14) along with taking
d ¼ dplanar ¼ p=m� e=2; ldb ¼ cos aþ cot e=2 sin a, and a ¼ p=2
�p=m gives

cos a3D ¼ x2 x2 þ 1ð Þsin
2p
m

� �
sin eð Þ þ x2 � cos eð Þ

	 
�

þ cos
2p
m

� �
�2x2 þ x4 þ x2 þ 1ð Þcos eð Þ � 1
� ��

x2 þ 1ð Þ x2 cos
2p
m
� e

� �
þ x2 � cos eð Þ þ 1

	 
� �
(27)

This angle cosine is parameterized on the variable x, which is
the transformed version of cbend. We would like to know the value
of x (and thus, by extension, cbend) that makes this value equal

Fig. 9 A single-DOF flasher for various values of cbend. From
upper left to lower right: cbend 5 0 deg; 3 deg; 5 deg; 10 deg;
20 deg; 30 deg; 40 deg; 65 deg; and 87 deg. Note that the scale
varies from one subfigure to the next.
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that of the planar central polygon. Setting the two values equal
and solving for x gives two solutions: first, x¼ 0, which is the
unfolded state. The second solution is the desired fully folded
state. We find

x ¼
sec

p
m

� �
ldb

ffiffiffi
2
p � l2

db cos e� cos
2p
m

� �	

�4ldb cos
e
2

sin
p
m
� e

2

� �
þ cos

2p
m
� e

� �
� cos

2p
m


1=2

(28)

which sets the maximum bend angle to be

cbend;max ¼ 2 tan�1 sec
p
m
� e

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin

p
m

� �
sin

p
m
� e

� �s2
4

3
5

� 2p
m
� e� 1

4
cot

p
m

� �
e2 þ O e3ð Þ (29)

As we fold the pattern beyond cbend;max, the pattern self-
intersects. There is also a small amount of self-intersection even
before closure. This can be seen in Fig. 10, which is a view
“looking down the barrel” of the tubular form just before the cen-
tral polygon closes.

So, this is potentially a problem with practical applications of
this structure. However, this collision happens because of where
we chose our cut, which results in one portion of the pattern wrap-
ping around another as we approach the stowed state. In the
stowed state, the cut edges realign with one another. We can
therefore begin with the curled-up state and make our cut some-
where else in a way that prevents this wrap-around issue. Two
possible alternate locations for a cut are illustrated in Fig. 11.

Judicious choice of cut line can potentially eliminate self-
intersection throughout the full range of motion, from stowed to

fully deployed. We will show one such choice and its effects in
Sec. 6.

Another issue getting in the way of practical application is the
fact that the stowed form is long and tubular, which arises from
the fact that this is the simplest possible flasher structure. That
length can be reduced by choosing a larger rotational order, but
that strategy gives small slivers of triangles near the inner rim,
which are undesirable in applications.

Scheel [12] and subsequent investigators show that one can
reduce the height of a flasher by incorporating what in the origami
world are called reverse folds into the pattern; such were included
in the constructive algorithms of Guest and Pellegrino [3] and
Zirbel et al. [8]. We can incorporate such folds into this flasher
while preserving the single-DOF motion, as we show now.

5 Reduced-Height Flashers

We now consider adding a pair of reverse folds that emanates
from some point along one of the diagonal folds, as illustrated in
Fig. 12. We denote by g the angle that the reverse fold makes
relative to the diagonal fold. In order to avoid disturbing the
single-DOF mechanism that already exists, we will assume that
the diagonal and bend folds are unchanged, except for the addition
of vertices and selective inversion of the fold type (sign change of
the fold angle). The name “reverse fold” comes from the origami
world; such a set of folds inverts the parity of all of the diagonal
and bend folds that lie within the V of the reverse fold.

What freedom do we have in the choice of g? If we are to leave
the magnitude of the fold angles unchanged along the diagonal
and bend folds, then all of the new vertices must be flat-foldable.
That means that both sides of the base of the V (where the reverse
folds hit the diagonal) must make the same angle g with the diago-
nal fold, as shown in Fig. 12.

It also means that each of the vertices where a reverse fold
meets a bend fold must be geometrically similar to one another, as
well as flat-foldable. Considering what happens at two successive
vertices along a reverse fold reveals that there is only one possible
set of sector angles at those vertices that make them all geometri-
cally similar, namely, sector angles of p=2� e=2ð Þ and
p=2þ e=2ð Þ (two of each), as illustrated in Fig. 12.

With the four sector angles at each reverse/bend vertex
assigned, the value of g is fully defined and can be worked out
from the interior angles of the shaded triangle in Fig. 12. We find
that

g ¼ p
2
� a� e

2
¼ p

m
� e

2
¼ dplanar (30)

This is a nice result; it tells us that if we choose d ¼ dplanar and
place the tip of the reverse fold V along the first diagonal fold, the
left side of the V will be parallel to the edge of the central

Fig. 10 A view from the top of the flasher of Fig. 9 for
cbend 5 80 deg, showing collisions with the inner layers

Fig. 11 A top view of the flasher with m 5 4, n 5 3,
�5 3 deg; d 5 43:5 deg, and cbend 5 87 deg. Lines A and B indi-
cate possible alternate cut lines.

Fig. 12 Crease pattern with the addition of a pair of reverse
folds along one of the diagonals
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polygon. If we place the tip of the reverse fold V on a vertex of
the central polygon, then the left side will be coincident with the
edge of the central polygon.

There is one thing still to check, however. We have three types
of folds with distinct fold angle magnitudes: diagonal (cdiag), bend
(cbend), and now reverse (crvrs). We also have three types of inte-
rior vertices that enforce proportionality between the half-angle-
tangents of the fold angles at each vertex. Each vertex can be
labeled by the two types of fold incident on the vertex: diagonal/
bend (which we have already met, characterized by fold angle
multiplier ldb), and now two new ones: reverse/bend, which
will be characterized by a fold angle multiplier lrb, and
reverse/diagonal, with a fold angle multiplier lrd.

The shaded triangle in Fig. 12 has one of each type of vertex.
There is a self-consistency condition that must be satisfied going
around this triangle. In particular, we must have

lrb ¼ lrdldb (31)

For a general triangle of three flat-foldable vertices, this rela-
tionship is not guaranteed to hold. What about this particular
case?

The value of ldb was given by Eq. (9). For the other two, we
find that

lrb ¼ csc
e
2

(32)

lrd ¼ csc aþ e
2

� �
(33)

Substituting these into Eq. (31) reveals that the latter is satisfied
for all values of a and e. So, no matter what simple flasher we start
with, we can add one or more reverse folds anywhere along the
diagonal folds, and the resulting pattern is guaranteed to be a
single-DOF mechanism.

Equation (29) gave the value of cbend at the maximally folded
(stowed) state, cbend;max. We can substitute that value back into
Eq. (10), to find cdiag at the maximally folded state

cdiag;max ¼ 2 tan�1 csc
e
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin

p
m

� �
sin

p
m
� e

� �s2
4

3
5 (34)

And in the same vein, the reverse fold angle, crvrs, at the maxi-
mally folded state will be

crvrs;max ¼ 2 tan�1 csc
e
2

� �
sec

p
m
� e

2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin

p
m

� �
sin

p
m
� e

� �s2
4

3
5

(35)

The spacing between successive reverse folds can be chosen
arbitrarily. The farther apart successive reverse folds are placed,
the taller the resulting mechanism.

When placing the reverse folds, one can think of each reverse
fold as “sliding” along the diagonal, creating triangular and quad-
rilateral panels along each diagonal; each reverse fold breaks a
diagonal fold into two segments whose lengths depend upon the
position of the tip of the V of the reverse fold. There is a special
case, where the tip of the V of the reverse fold coincides with an
existing vertex along the diagonal. This choice gives rise to a par-
ticularly elegant crease pattern consisting of triangular facets
along the diagonals and near-rectangular panels everywhere else.

It also creates degree-6 vertices along the diagonal, each cre-
ated by the effective merging of two degree-4 vertices. This merg-
ing potentially increases the number of DOF of the mechanism—
an issue we will come back to presently—but it does not alter the
consistency between the values of cbend, cdiag, and crvrs given
above.

We now compute 2D and 3D representations of this structure.
We introduce triply subscripted points for the vertices of the
reverse folds, as illustrated in Fig. 13.

Fig. 13 A portion of the crease pattern of a reverse-folded
flasher, with reverse folds emanating from each of the diagonal
vertices

Fig. 15 A view from the top of the flasher of Fig. 14 for
cbend 5 80 deg, showing collisions with the inner layers

Fig. 14 A single-DOF reverse-folded flasher for various values
of cbend. From upper left to lower right: cbend 5 0 deg;
3 deg; 5 deg; 10 deg; 20 deg; 30 deg; 40 deg; 65 deg; and 87 deg.
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In each rotational section, we define ri;j;k for vertices on the left
side of the diagonal fold and si;j;k for vertices on the right side (as
viewed from the central polygon). For vertices on the diagonal
folds, we define both

ri;j;0 ¼ si;j;0 � pi;j (36)

where fpi;jg are the original vertices of the pattern as defined in
Sec. 4. As we move out from ri;j;0 along a reverse fold, the k index
of ri;j;k increments each time we hit a bend fold, and similarly
with si;j;k.

We note that this gives multiple names to the same point; not
only does ri;j;0 ¼ si;j;0 but also ri;j;1 ¼ ri;j�1;0 and s0;j;k ¼ r0;j�1;kþ1.
This requires a bit of care in the bookkeeping of distinct vertices,
but otherwise causes no problems.

We further define qi;j;k as the absolute angle of the reverse fold
emanating outward from ri;j;k, and ri;j;k as the absolute angle of
the reverse fold emanating outward from si;j;k (like hi;j and /i;j,
measured as a rotation relative to the x-axis in a global coordinate
system).

With these definitions, the vertex coordinates and angles are as
follows:

qi;j;k ¼ hi;j þ gþ ke (37)

ri;j;k ¼ hi;j � gþ ke (38)

ri;j;kþ1 ¼ LINEINT ri;j;k; u qi;j;kð Þ; piþk;jþ1; u /iþk;jþ1

� �� �
(39)

si;j;kþ1 ¼ LINEINT si;j;k; u ri;j;kð Þ;piþkþ1;j; u /iþkþ1;j

� �� �
(40)

where hi;j and /i;j were given by Eq. (17).
The outermost vertices are a special case, and their position

depends on how we choose to finish the pattern. For the tubular
flasher, we simply connected points fpn;jg for some n. Doing that
with this reverse-folded case will slice some of the outermost
panels, giving trapezoidal and/or triangular facets. For simplicity
and elegance, we have chosen to terminate the pattern along what
would be bend folds, which gives roughly rectangular panels for
all panels not along the diagonal folds. We have also chosen the
cut line along one of the reverse folds (specifically, along the s0;0;k

chain of folds), rather than along a diagonal, as in the previous
example.

Figure 14 shows this new flasher design from unfolded to fully
folded for the same parameters as Fig. 9, with m¼ 4, n¼ 3, and
e ¼ 3 deg. Once again, we have a rigidly foldable single-DOF
mechanism.

Fig. 17 A rigidly foldable flasher near the endpoints of the
motion. Left: cbend 5 1 deg. Right: cbend 5 85 deg (different
scale).

Fig. 18 A rigidly foldable hexagonal flasher near the end-
points of the motion. Left: cbend 5 0:5 deg. Right: cbend 5 56 deg
(different scale).

Fig. 19 A flasher with reverse folds only along the fs0;j ;kg and
fr0;j ;k g lines with fivefold rotational symmetry. Top left: crease
pattern. Top right: top view of the folded form. Bottom left:
perspective view of the flasher with equally spaced cut planes.
Bottom right: side view of same.

Fig. 16 A rigidly foldable flasher for various values of cbend.
From upper left to lower right: cbend 5 0 deg; 3 deg;
5 deg; 10 deg; 20 deg; 30 deg; 40 deg; 65 deg; and 87 deg.
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6 Layer Collision Avoidance

There is still the question of layer collisions. For the simulation
of Fig. 14, we have cut the crease pattern along a reverse fold,
rather than along a diagonal fold as in the simpler flasher. This cut
still gives a layer collision as we approach the folded state, as can
be seen in Fig. 15.

The presence of layer collisions depends upon the position and
orientation of the cut. A straight cut in the flat state—either along
a diagonal fold, as in the simple flasher, or along a reverse fold, as
in the previous example—assumes a spiral form in the 3D state,
and it is the overlap of that spiral that gives rise to the collision in
the nearly stowed state. We can avoid such a collision by choosing
a cut that is nearly straight in the stowed state, as was noted earlier
in Fig. 11. Such a cut will give rise to a spiral cut in the flat state,
but with appropriate choice of cut, can give rise to a collision-free
motion as the fold angle approaches cbend;max.

In Fig. 16, we show a different cut position with otherwise the
same parameters as Fig. 14. As before, this pattern moves rigidly
between the deployed (flat) and stowed (cylindrical) shape.

By making the cut follow along a bend, we get the cut edges to
more cleanly line up in the stowed state. As c! cbend;max, the cut
edges realign and form a perfect butt joint.

However, this particular introduces a very slight layer intersec-
tion near the deployed state. Figure 17 shows top views in the
nearly deployed and nearly stowed states.

This collision is slight and only results in a slight overlap; com-
plete elimination of the intersection could be achieved with a
slight removal of material from a few of the panels.

Contributing factors to the presence of collisions in the near-
stowed state are the sharp corners in the bend that arises from low
rotational order. In higher-rotational order, the residual overlap is
reduced. Figure 18 shows a hexagonal flasher with the same cut
pattern; in this pattern, there is still a very slight overlap in the
near-stowed state, but it is extremely small, and only a tiny
amount of material would need to be removed to eliminate the
overlap.

It seems likely that an appropriately chosen path for the cut
could entirely eliminate layer collisions; we leave that exploration
as a topic for future work.

7 Constant-Height Flashers

The choice of initiating the reverse folds at existing vertices has
a certain elegance and cleanliness to it, and it makes all panels
either quadrilaterals or triangles. This choice has an important
side effect: it creates several degree-6 vertices. The number of
DOF of a degree-n vertex is n� 3, so a degree-6 vertex has three,
not one, DOF. This could, in principle, give the mechanism extra
DOF.

However, those degree-6 vertices do not exist in isolation. The
facets surrounding each degree-6 vertex are themselves connected
to degree-4 vertices, and those vertices are constrained to single-
DOF paths in phase space. If enough facets surrounding a high-
degree vertex are constrained to single-DOF paths, then the

remaining facets will also be clamped to the single-DOF motion,
which happens in this mechanism.

Another potential drawback of locating reverse fold tips at
existing bend vertices along the diagonal is that it gives each spi-
ral ring a slightly different height, with inner rings being shorter
than outer ones. (This behavior is most clearly visible in the last
subfigure of Fig. 14.) This results in a less than optimal packing in
the stowed state, since the space above the shorter rings is essen-
tially wasted. It would be most efficient if each panel fully filled
the vertical slice of space allocated to it by its vertical projection.

As we have already noted, the tip of any given V of reverse
folds may be positioned anywhere along the diagonal fold while
maintaining the kinematics of the mechanism, and if no reverse
fold tips coincide with other vertices along the diagonal, then all
of the vertices will be of degree-4 and all interior vertices and
their incident facets will collectively exhibit single-DOF motion.

The freedom to place reverse folds anywhere along the diago-
nals allows us to make all of the spiral rings have exactly the
same height in the stowed state, and that height can be independ-
ently selected as a design variable in the construction of the crease
pattern.

We constructed both of the flashers presented thus far by select-
ing angles that enforce single-DOF rigid foldability at all degree-4
vertices. It turns out that this choice results in a fortuitous behav-
ior: the vertices of each near-linear chain of reverse folds lie in a
common plane throughout the full range of motion, and since the
central polygon itself is planar for g ¼ dplanar ¼ p=m� e=2, that
means that many groups of vertices lie in a common plane
throughout the full range of motion. In particular, the sets of verti-
ces fs0;j;kg and fr0;j;kg all lie in the same plane as the central poly-
gon throughout the full range of motion.

If we construct a flasher with those as the only reverse folds, we
obtain a structure like that shown in Fig. 19, in which the bottom
of the flasher lies in a horizontal plane, and each of the near-
vertical facets makes the same angle with that plane, an angle of
cbend=2. We could then envision cutting this conical structure in
the stowed state with a series of horizontal planes spaced evenly
in z; the intersection of each plane with the basic flasher thereby
defines a set of reverse folds in the crease pattern, and the folded
form that incorporates those reverse folds would be the result of

Fig. 20 A constant-height flasher for m 5 6, nr 5 9, e 5 3 deg,
and h 5 4.8. Left: crease pattern. Right: folded form. In this
flasher, the cut runs along the fs0;0;k g chain of creases.

Fig. 21 A wood veneer laminate fabricated constant-height
flasher for m 5 6, nr 5 9, e 5 3 deg, and h 5 4.8. Top left:
stowed state, top view. Top right: stowed state, side view. Bot-
tom left: partially folded. Bottom right: deployed.
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successive reflections of the folded form in the stack of planes, as
illustrated in Fig. 19.

Suppose we start at point p0;0 ¼ 1; 0ð Þ and travel outward along
the diagonal fold a distance d, where d is measured along the
chain of diagonal folds (making bends at each of the points
fpi;0g). Then in the fully folded (stowed) form, i.e., when
cbend ¼ cbend;max, the height z of the point at distance d is given by

z dð Þ ¼ d sec
e
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin

p
m

� �
sin

p
m
� e

� �s
(41)

This can be turned around to determine the positions of the
points of the V of each reverse fold as a function of the desired
target height of the flasher. If h is the desired height, then each
successive reverse fold along the jth diagonal should be initiated
at a distance

dk ¼ h cos
e
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
csc

p
m

� �
csc

p
m
� e

� �s
(42)

from the point p0;j for k ¼ 1;…; nk, with the reverse folds and ver-
tices constructed along the diagonals and bend folds in the same
way we constructed points fs0;j;kg and fr0;j;kg. Now, the number
of vertical divisions nk is decoupled from the number of panels nr

in a single spiral. An example of such a constant-height flasher
with hexagonal rotational symmetry is shown in Fig. 20.

Choosing a constant height for all the spiral reverse folds gives
the most efficient possible stowed form by making full use of the
vertical “airspace” above or below each tilted panel. In addition,
displacing the reverse folds from the existing vertices along the
diagonals, as in Fig. 20, ensures that all of the interior vertices are
degree-4 vertices, making it easier to obtain a single-DOF mecha-
nism even after adding a radial cut.

8 Example Fabrication

To verify the analysis presented above, we have fabricated sev-
eral small test pieces, using laser-scored wood veneer laminate for
ease of fabrication. The laminate used was Sanfoot wall covering,
manufactured by Hokusan Corporation, which consists of a
polymer-infused wood veneer sandwiched with layers of foil and
polymer, with a total thickness of 0.34 mm. We then laser-scored
creases by scoring through the upper wood polymer layers, using
the foil layer as a blocking layer to prevent cutting through the
lower polymer layers, thereby creating flexible polymer hinges
from the layers below the foil. The wood and polymer laminate
creates stiff, nonstretchable/nonwrinklable facets. The scored
lines create flexible hinges with little excess play in the hinges
owing to the narrow width of the laser cuts (	0.1 mm), and the
overall thinness of the material means that we can get close to
zero-thickness theoretical behavior without having to implement
more complex thickness-compensating fabricational techniques
(e.g., Refs. [9] and [10]).

We typically laser-scored complete (uncut) flasher patterns,
then manually introduced the radial cut by cutting the pattern with
a sharp knife. This allowed us to quickly examine the effects of
different radial cut patterns without having to build them pro-
grammatically into the parameterized model that generated the
crease pattern.

Figure 21 shows photographs of one such flasher, using the pat-
tern from Fig. 20, in the flat (deployed), partially folded, and fully
stowed states.

Manual manipulation of these test models verifies the single-
DOF motion of the theoretical behavior, which is the case for arbi-
trarily stiff panels and arbitrarily free hinges. Real materials, of
course, are not perfectly stiff and/or free, and in the thin wood
veneer models, some residual flexing of panels gives rise to some
additional bending modes, in much the same way that a single-

DOF Miura-ori possesses twisting modes that rely on flexing of
the panels.

With suitable choice of fabrication technologies, such parasitic
modes can undoubtedly be minimized. However, there is an inher-
ent problem in mechanisms based on flat-foldable degree-4 verti-
ces such as this one (and the venerable Miura-ori [11], among
others). In general, the greatest stacking efficiencies arise when
the sector angles are close to 90 deg. Exactly 90 deg is a singular
condition for which the major and minor fold angles become
decoupled. As the vertex angles move away from 90 deg, though,
there grow offsets between the stacked layers, lowering the pack-
ing efficiency of the stowed state. Thus, the most efficient struc-
tures will generally include many vertices with sector angles close
to, but not quite, 90 deg.

There is an inherent tradeoff, though. As one gets closer to the
90 deg singular condition, the geometric advantage between the
major and minor fold angles becomes huge and variable across
the range of motion. As noted in Eq. (6), it varies between l and
1=l across the range of motion, and as we approach the singular
condition, l diverges. So, close to the singular state, at some posi-
tions, some of the angles are very weakly coupled to the rest of
the mechanism and so can readily flex with small deformations of,
e.g., panel bending or play in the hinges. As one moves away
from the singular state, major and minor angles are more strongly
coupled, but offsets between layers are greater, and stacking effi-
ciency is lessened.

In our structure, Fig. 12 shows that the parameter e is a measure
of how far one is from the singular state for the axial/bend and
reverse/bend vertices. For close packing, we would want e to be
small, but that will result in large geometric advantages between
the major and minor crossing creases.

The way this relationship played out in the fabricated samples
was that while in theory, the slightly polygonal curvature of the
axial creases should have been sufficient to force single-DOF
motion, in practice, they felt “floppy” due to the weak geometric
coupling between the crossed creases.

Evaluation of the tradeoff between stacking efficiency and com-
pliance, mediated by the angle parameter e, requires consideration
of many more factors: residual flexibility of panels, play in hinges,
and fabricational inaccuracies, to name a few. Exploration of such
tradeoffs is something we defer to the future. We note, however,
that some special properties of the constant-height flashers suggest
several strategies for adding stiffness in ways that reduce or pre-
vent parasitic flexing modes, as we will mention in our
conclusions.

9 Conclusions and Discussion

In conclusion, we have presented a family of flasher mecha-
nisms that possess rigid foldability, thereby making them suitable
for the implementation of deployable mechanisms with rigid
hinged panels. Many of these mechanisms exhibit single-DOF
motion, which is another desirable trait. We presented construc-
tive algorithms for the 2D crease patterns and 3D folded forms
and the relevant fold angles of all creases. We presented specific
examples with fourfold and sixfold rotational symmetry, but the
analysis is fully parameterized on the rotational order m, so that
other rotational orders may be readily similarly constructed.

While it is possible to design all of the vertices of a flasher to
exhibit kinematic single-DOF motion compatible with the
dynamic fold angles of all other interior vertices, it is not possible
to achieve such consistency around the central polygon as well.
Consistency may be restored by cutting the pattern radially and
removing the central polygon. The result is a true single-DOF
kinematic mechanism, however, at the cost of breaking the radial
symmetry and potentially complicating its implementation.

A common usage configuration for a flasher-based deployable
is to wrap the mechanism around a central payload in the stowed
state (e.g., Refs. [3] and [8]), and then deploy it to a disk around
the payload in the deployed state. The cut flasher still supports
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this mode of deployment, as the stowed and deployed states are
identical to those of an uncut flasher. However, the cut flasher
would only be solidly fixed along a single edge of the central
polygon, as the other edges will move away from the central hub,
then come back into contact over the course of the deployment
motion. This would entail greater mechanical complexity, but
would allow such flashers to be used in applications where the
thickness and stiffness of the panels must be accommodated in
design, e.g., solar arrays.

We speculate that, instead of introducing a radial cut, a single-
DOF mechanism may be achievable by further triangulation of
some or all of the quadrilateral panels with further hinges. Indeed,
it is clear from observation that flashers created from flexible
materials and pin hinges incorporate panel flexing as part of their
deployment motion. Whether such triangulation can be done “just
enough” to create a single DOF is an interesting question and a
potential avenue for further exploration.

We also showed how to construct constant-height variants of
single-DOF rigidly foldable flashers. The constant-height property
provides a more efficient packing of facet panels than flashers in
which the reverse fold vertices are aligned with bend vertices; it
also allows one to avoid degree-6 vertices that could conceivably
give rise to unwanted flexible motions.

The constant-height variants also enable another intriguing pos-
sibility. As noted above, in both the flat and stowed forms, all of
the vertices of the upper reverse folds lie in the same horizontal
plane, and all of the vertices of the bottom reverse folds, including
the vertices of the central polygon, also lie in the same horizontal
plane. It is readily shown that the coplanarity of these sets of verti-
ces holds throughout the full range of motion from flat to fully
stowed. This property, in turn, suggests several interesting ave-
nues for building upon constant-height flashers to create more
functional or robust mechanisms. For example, one could connect
adjacent sets of panels with scissor-joints to add stiffness against
out-of-plane motions, thereby circumventing the unwanted com-
pliance of near-singular vertices noted in Sec. 8.

We note, too, that the planarity of the top and bottom surfaces
across the range of motion also supports the concept of stacking
flashers to create cellular forms that have overall rotational
deployment motions, in analogy with the translational deployment
of Tachi-Miura cellular forms [18].

More broadly, we have shown an approach for constructing
large-scale single-DOF mechanisms by making use of the unique
properties of flat-foldable degree-4 vertices—specifically, the pro-
portionality relationship of Eq. (4). This behavior was noted by
Tachi [16], who demonstrated flat-foldable “generalized Miura-
ori.” As shown here, this property can be used to construct large
single-DOF networks that provide useful functionality even when
the mechanism is never folded all the way (or even close) to the
fully flat state; individual vertex flat-foldability is used simply as
a means to attain constancy of tanð1=2Þci= tanð1=2Þcj for every
pair fi; jg of vertices in the network. We expect that this property
can be used to construct many more complex, single-DOF,
origami-based mechanisms in the future.
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Appendix

Sector-Dihedral Relations

Here, we derive new formulas relating the dihedral angles of a
general degree-4 vertex to the values of the surrounding sector
angles. A portion of this derivation is also presented in Ref. [19].

We build off of the work of Huffman [13], following his
approach and using several of his results. We consider the trace of
the vertex on the Gaussian sphere, as shown in Fig. 22 (analogous
to Fig. 3 of Ref. [13]). The Gaussian sphere is a dual-space repre-
sentation of the vertex and is the path traced out on a unit sphere
by the surface normal vector as it travels around the vertex. The
flat sectors of the vertex, being planar, map to points on the trace.
We denote by faig the points on the trace, which correspond to
sectors with sector angles faig. Since the normal vector sweeps
out an arc at each fold, the dihedral angles (fold angles) of the ver-
tex map to arcs on the Gaussian sphere.

As noted by Huffman, the trace of a developable degree-4 vertex
always takes the general form of a (not necessarily symmetric) bow-
tie, and the solid angles subtended by the two triangles of the bow
are equal (this follows directly from developability of the vertex).

Huffman derived relations between opposite dihedral angles for
a general vertex (Eqs. (2a)–(2c) in Ref. [13]). Using our notation,
they are

sin2 1

2
c2

� �

sin2 1

2
c4

� � ¼ sin a3 sin a4

sin a1 sin a2

(A1)

and

sin2 1

2
c1

� �

sin2 1

2
c3

� � ¼ sin a2 sin a3

sin a1 sin a4

(A2)

For a flat-foldable vertex (a1 þ a3 ¼ p and a2 þ a4 ¼ p) with
crease assignment as shown in Fig. 22, these simplify to

c2 ¼ c4; c1 ¼ �c3 (A3)

Huffman also derived a relationship between adjacent dihedral
angles (Eq. (3) in Ref. [13]); here, we derive one that is somewhat
simpler.

We consider the four triangles on the Gaussian sphere

� a4; a1; a2ð Þ;� a4; a3; a2ð Þ;� a1; a4; a3ð Þ; and � a1; a2; a3ð Þ

each composed of two of the smaller lettered triangles in Fig. 22.
Because the first two of the four share the triangle F and the

two halves of the bow-tie of the trace have equal area, the first
pair of triangles has equal area, as do the second pair

area � a4; a1; a2ð Þ
� �

¼ area � a4; a3; a2ð Þ
� �

¼ Eþ F (A4)

area � a1; a4; a3ð Þ
� �

¼ area � a1; a2; a3ð Þ
� �

¼ Eþ G (A5)

Using a cotangent formula for triangle areas from Ref. [13] (see
unmarked equation preceding Eq. (1) in Ref. [13]), we can estab-
lish an equality for each pair of triangles

Fig. 22 Schematic of a degree-4 vertex. (a) The vertex embed-
ded in a unit sphere. Dashed lines are valley folds, and dotted
lines are mountain folds. (b) The trace of the vertex on the
Gaussian sphere. Since c3 is a mountain fold, its sign is
negative.
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cot
1

2
c1

� �
cot

1

2
c2

� �
csc p� a1ð Þ þ cot p� a1ð Þ

¼ cot
1

2
c4

� �
cot � 1

2
c3

� �
csca3 þ cota3 (A6)

cot
1

2
c1

� �
cot

1

2
c4

� �
csc p� a4ð Þ þ cot p� a4ð Þ

¼ cot
1

2
c2

� �
cot � 1

2
c3

� �
csca2 þ cota2 (A7)

Now, we can eliminate one of the half-angle cotangents from
these two equations and solve for any one of the four in terms of
the two remaining. For example,

cot
1

2
c2

� �

¼
cot 1

2
c3

� �
cota2 þ cota4ð Þcsca3 � cot 1

2
c1

� �
cota1 þ cota3ð Þcsca4

cot2 1
2
c3

� �
csca2csca3 � cot2 1

2
c1

� �
csca1csca4

(A8)

But this can be simplified; by using Eq. (A2), the denominator
simplifies to

cot2 1

2
c3

� �
csca2csca3 � cot2 1

2
c1

� �
csca1csca4

¼ csca1csca4 � csca2csca3 (A9)

Applying this and corresponding relations for all four half-
angle cotangents, we find linear relationships among the four

cot
1

2
c1

� �

¼
cot 1

2
c2

� �
cota1 þ cota3ð Þcsca2 � cot 1

2
c4

� �
cota2 þ cota4ð Þcsca3

csca3csca4 � csca1csca2

(A10)

cot
1

2
c2

� �

¼
cot 1

2
c3

� �
cota2 þ cota4ð Þcsca3 � cot 1

2
c1

� �
cota1 þ cota3ð Þcsca4

csca1csca4 � csca2csca3

(A11)

cot
1

2
c3

� �

¼
cot 1

2
c2

� �
cota2 þ cota4ð Þcsca1 � cot 1

2
c4

� �
cota1 þ cota3ð Þcsca4

csca3csca4 � csca1csca2

(A12)

cot
1

2
c4

� �

¼
cot 1

2
c3

� �
cota1 þ cota3ð Þcsca2 � cot 1

2
c1

� �
cota2 þ cota4ð Þcsca1

csca1csca4 � csca2csca3

(A13)

Now, each of Eqs. (A2) and (A3) may be rewritten in terms of
cotangents

cot2 1

2
c2

� �
¼ csc2 1

2
c4

� �
sin a1 sin a2

sin a3 sin a4

� 1

¼ 1þ cot2 1

2
c4

� �� �
sin a1 sin a2

sin a3 sin a4

� 1 (A14)

cot2 1

2
c4

� �
¼ csc2 1

2
c2

� �
sin a3 sin a4

sin a1 sin a2

� 1

¼ 1þ cot2 1

2
c2

� �� �
sin a3 sin a4

sin a1 sin a2

� 1 (A15)

cot2 1

2
c1

� �
¼ csc2 1

2
c3

� �
sin a1 sin a4

sin a2 sin a3

� 1

¼ 1þ cot2 1

2
c3

� �� �
sin a1 sin a4

sin a2 sin a3

� 1 (A16)

cot2 1

2
c3

� �
¼ csc2 1

2
c1

� �
sin a2 sin a3

sin a1 sin a4

� 1

¼ 1þ cot2 1

2
c1

� �� �
sin a2 sin a3

sin a1 sin a4

� 1 (A17)

Recall that for the two pairs of opposite angles, one pair must
have the same sign and the other must have the opposite sign.
When we take square roots of Eqs. (A14) and (A16), we must
choose signs that respect this convention. We can denote the pos-
sible choices by introducing operations 6i, where the sign of each
is chosen to match the desired crease directions. Then, we have
that

cot
1

2
c2

� �
¼ 62

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cot2

1

2
c4

� �� �
sin a1 sin a2

sin a3 sin a4

� 1

s
(A18)

cot
1

2
c4

� �
¼ 64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cot2

1

2
c2

� �� �
sin a3 sin a4

sin a1 sin a2

� 1

s
(A19)

cot
1

2
c1

� �
¼ 61

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cot2

1

2
c3

� �� �
sin a1 sin a4

sin a2 sin a3

� 1

s
(A20)

cot
1

2
c3

� �
¼ 63

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cot2

1

2
c1

� �� �
sin a2 sin a3

sin a1 sin a4

� 1

s
(A21)

and each of these may be substituted into the proceeding four
equations to give a one-to-one relationship between any dihedral
angle and either of its immediately adjacent angles. We summa-
rize these for the general case and for the specific cases of
straight-major, straight-minor, and flat-foldable, where the rela-
tionships take on somewhat simpler forms.

From Minor Dihedral.

Consider first a minor pair, where c1 is the known angle. Then,
from Eq. (A2), the other minor angle is given by

c3 ¼ �2 sin�1 sin
1

2
c1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin a1 sin a4

sin a2 sin a3

r" #
(A22)

which is valid for either sign of c1.
The two major angles are then given by

c2¼2cot�1

cot 1
2
c3

� �
cota2þcota4ð Þcsca3�cot 1

2
c1

� �
cota1þcota3ð Þcsca2

csca1csca4�csca2csca3

" #

(A23)
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c4 ¼ 2cot�1

cot 1
2
c3

� �
cota1 þ cota3ð Þcsca2 � cot 1

2
c1

� �
cota2 þ cota4ð Þcsca1

csca1csca4 � csca2csca3

" #

(A24)

These two expressions give the proper signs for c2 and c4 for all
possible sets of valid sector angles and given angle c1, except for
the special cases where the two expressions are undetermined:
flat-foldable, straight-minor, and straight-major.

For the flat-foldable special case, where a1 þ a3 ¼ p
and a2 þ a4 ¼ p, we have

c3 ¼ �c1 (A25)

c2 ¼ c4 ¼ 2cot�1 cot
1

2
c1

� �
sin 1

2
a1 � a2ð Þ

sin 1
2

a1 þ a2ð Þ

" #

¼ 2cot�1 l�1cot
1

2
c1

� �	 
 (A26)

where we have included the fold angle multiplier l that we intro-
duced above. These equations, too, give the proper sign for all
possible sets of sector angles and c1.

For the straight-minor special case, where a1 þ a2 ¼ p
and a3 þ a4 ¼ p, we have

c3 ¼ �c1 (A27)

c2 ¼ 2cot�1 1� cot2 1
2
c1

� �� �
cota1 þ 1þ cot2 1

2
c1

� �� �
cota3

2cot 1
2
c1

� �
csca1

" #

(A28)

c4 ¼ �2cot�1 1� cot2 1
2
c1

� �� �
cota3 þ 1þ cot2 1

2
c1

� �� �
cota1

2cot 1
2
c1

� �
csca3

" #

(A29)

And finally, for the straight-major special case, where
a1 þ a4 ¼ p and a2 þ a3 ¼ p, we have

c3 ¼ �c1 (A30)

c2 ¼ c4 ¼
6p if c1 6¼ 0

unspecified if c1 ¼ 0

�
(A31)

From Major Dihedral

Instead of being given a minor dihedral angle, we might instead
be given a major dihedral angle, e.g., c4. From this, we can calcu-
late the other three dihedrals. For the general case, the other major
angle comes from Eq. (A1), given by

c2 ¼ 2 sin�1 sin
1

2
c4

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin a3 sin a4

sin a1 sin a2

r" #
(A32)

The two minor angles are then given by

c1 ¼ 2cot�1

cot 1
2
c2

� �
cota1 þ cota3ð Þcsca2 � cot 1

2
c4

� �
cota2 þ cota4ð Þcsca3

csca3csca4 � csca1csca2

" #

(A33)

c3 ¼ 2cot�1

cot 1
2
c2

� �
cota2 þ cota4ð Þcsca1 � cot 1

2
c4

� �
cota1 þ cota3ð Þcsca4

csca3csca4 � csca1csca2

" #

(A34)

For the flat-foldable special case, where a1 þ a3 ¼ p
and a2 þ a4 ¼ p, we have

c2 ¼ c4 (A35)

c1 ¼ �c3 ¼ 2cot�1 cot
1

2
c4

� �
sin 1

2
a1 þ a2ð Þ

sin 1
2

a1 � a2ð Þ

" #

¼ 2cot�1 lcot
1

2
c4

� �	 

(A36)

For the straight-minor special case, where a1 þ a2 ¼ p
and a3 þ a4 ¼ p, we have

c2 ¼ 2 sin�1 sin
1

2
c4

� �
sin a3

sin a1

	 

(A37)

c1 ¼ �c3

¼ 2cot�1 cot 1
2
c2

� �
csca1 þ cot 1

2
c4

� �
csca4

� �
cota1 þ cota3ð Þ

csc2a3 � csc2a1

" #

(A38)

And last, for the straight-major special case, where
a1 þ a4 ¼ p and a2 þ a3 ¼ p, we have

c2 ¼ c4 (A39)

c1 ¼ �c3 ¼
0 if c4 6¼ 0

unspecified if c4 ¼ 6p

�
(A40)

Flat-Foldable

The relations between adjacent vertex angles simplify consider-
ably for flat-foldable vertices. From Eq. (A3), c2 ¼ c4; c1 ¼ �c3,
and opposite sector angles sum to p, that is,
a1 þ a3 ¼ p and a2 þ a4 ¼ p. In principle, we could substitute
these relationships into Eqs. (A10)–(A13), but the expressions
become undetermined (zero in both numerator and denominator).
Instead, we make the substitution

a3 ¼ p� a1 þ e; a4 ¼ p� a2 þ e (A41)

and then take the limit as e! 0 using L’Hôpital’s rule.
This gives the following result:

tan 1
2
c1

tan 1
2
c2

¼
sin 1

2
a1 � a2ð Þ

� �
sin 1

2
a1 þ a2ð Þ

� � (A42)

This relation not only gives a much simpler formulation than
Eqs. (A23), (A24), (A33), and (A34), but it also shows immedi-
ately the inequality relationship between major and minor angles.
The right side of this expression always has magnitude less than
or equal to 1, which means that, except at the endpoints of motion,
j tan 1=2c1j < j tan 1=2c2j. And since the tangent function is mon-
otonic, it follows that jc1;3j < jc2;4j over the same range.

For a general vertex, the relationship between adjacent dihedral
fold angles is more complex and there is not such a strict inequal-
ity between individual pairs of angles. However, we can identify a
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similar inequality between sums of angles. Because the surface of
the Gaussian sphere is a metric space, the triangle inequality
holds. With respect to Fig. 22, it follows, then, that:

jc1j þ jc3j 
 jc2j þ jc4j (A43)

with, again, strict inequality holding at all configurations except
for the fully open and fully closed states, where the two sides are
indeed equal.
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