Articulated Robots

Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 2017

1

- Robot configurations
- Joints and links
- Joint-link-joint transformations
 - Denavit-Hartenberg representation

Copyright 2017 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

Assembly Robot Configurations

Assembly Robot Workspaces

Serial Robotic Manipulators

Proximal link: closer to the base **Distal link:** farther from the base

- Serial chain of robotic links and joints
 - Large workspace
 - Low stiffness
 - Cumulative errors from link to link
 - Proximal links carry the weight and load of distal links
 - Actuation of proximal joints affects distal links
 - Limited load-carrying capability at end effecter

Humanoid Robots

.

NASA/GM Robonaut

Disney Audio-Animatronics, 1967

Baxter, Sawyer, and the PR2

Parallel Robotic Mechanisms

- End plate is directly actuated by multiple links and joints (*kinematic chains*)
 - Restricted workspace
 - Common link-joint configuration
 - Light construction
 - Stiffness
 - High load-carrying capacity

Stewart Platform http://www.youtube.com/watch? v=QdKo9PYwGaU

Pick-and-Place Robot http://www.youtube.com/watch? v=i4oBExl2KiQ

9

Gearing and Leverage

Force multiplication Displacement ratios

- Machine tools
 - Grinding, sanding
 - Inserting screws
 - Drilling
 - Hammering
- Paint sprayer
- Gripper, clamp
- Multi-digit hand

DARPA Prosthetic Hand http://www.youtube.com/watch? v=QJg9igTnjlo&feature=related

11

Links and Joints

Prismatic Robotic Joints

Sliding along a single axis

Construction Cranes

Four-Bar Linkage

- Closed-loop structure
- Rotational joints
- Planar motion
- Proportions of link lengths determine pattern of motion
- Examples
 - Double wishbone suspension
 - Pantograph
 - Scissor lift
 - Gripper

19

Characteristic Transformation of a Link

Link: solid structure between two joints

- Each link type has a characteristic transformation matrix relating the proximal joint to the distal joint
- Link *n* has
 - <u>Proximal end</u>: Joint n, coordinate frame n 1
 - <u>Distal end</u>: Joint n + 1, coordinate frame n

Links Between Revolute Joints

Link: solid structure between two • ioints

- Proximal end: closer to the base
- Distal end: farther from the base

4 Link Parameters

- Length of the link between rotational axes, *I*, along the common normal
- Twist angle between axes, α
- Angle between 2 links, θ (revolute)
- Offset between links, d (prismatic)
- Joint Variable: single link parameter that is free to vary

Links Involving Prismatic Joints

- Link *n* extends along z_{n-1} axis
 - $I_n = 0$, along x_{n-1}
 - $d_n = \text{length}, \text{ along } z_{n-1}$ (variable)
 - $\theta_n = 0$, about z_{n-1}
 - a_n = fixed orientation of n + 1prismatic axis about x_{n-1}

about z_{n-1} a_n = fixed orientation of n + 1prismatic axis about x_{n-1}

 $I_n = 0$, along x_{n-1}

Links Between Revolute Joints - 2

Type 3 Link Two revolute joints with intersecting rotational axes (e.g., shoulder)

- Link *n* extends along z_{n-1} axis
 - $I_n = 0$, along x_{n-1}
 - d_n = length, along z_{n-1} (fixed)
 - θ_n = variable joint angle *n* about z_{n-1}
 - a_n = fixed orientation of n + 1rotational axis about x_{n-1}

McKerrow, 1991

- Link *n* extends along $-z_n$ axis
 - $I_n = 0$, along x_{n-1}
 - $d_n = 0$, along z_{n-1}
 - θ_n = variable joint angle *n* about z_{n-1}
 - a_n = fixed orientation of n + 1rotational axis about x_{n-23}

Links Involving Prismatic Joints - 2

- Link *n* extends along x_{n-1} axis
 - $I_n = \text{length along } x_{n-1}$
 - $d_n = 0$, along z_{n-1}
 - θ_n = variable joint angle *n* about z_{n-1}
 - $a_n = 0$, orientation of n + 1prismatic axis about x_{n-1}

McKerrow, 1991

- Link *n* extends along z_{n-1} axis
 - $I_n = 0$, along x_{n-1}
 - $d_n = \text{length}, \text{ along } z_{n-1}$ (variable)
 - $\theta_n = 0$, about z_{n-1}
 - a_n = fixed orientation of n + 1rotational axis about x_{n-1 24}

Simulink/SimMechanics Representation of Four-Bar Linkage

Recall: Homogeneous Transformation

one joint to the next

Rotation Matrix can be Derived from Euler Angles or Quaternions

Transformation for a Single Robotic Joint-Link

Denavit-Hartenberg Representation of Joint-Link-Joint Transformation

 Like Euler angle rotation, transformational effects of the 4 link parameters are defined in a specific application sequence (right to left): {θ, d, l, α}

Denavit-Hartenberg Representation of Joint-Link-Joint Transformation

- 4 link parameters
 - Angle between 2 links, **0** (revolute)
 - Distance (offset) between links, d (prismatic)
 - Length of the link between rotational axes, *I*, along the common normal (prismatic)
 - Twist angle between axes, α (revolute)

$$\mathbf{A}_{n} = \mathbf{A}(z_{n-1}, \theta_{n}) \mathbf{A}(z_{n-1}, d_{n}) \mathbf{A}(x_{n-1}, l_{n}) \mathbf{A}(x_{n-1}, \alpha_{n})$$

= Rot(z_{n-1}, θ_{n}) Trans(z_{n-1}, d_{n}) Trans(x_{n-1}, l_{n}) Rot(x_{n-1}, α_{n})
 $\triangleq {}^{n}\mathbf{T}_{n+1}$ in some references (e.g., McKerrow, 1991)

Denavit-Hartenberg Demo http://www.youtube.com/watch?v=10mUtjfGmzw

Four Transformations from One Joint to the Next

(Single Link)

Rotation of θ_n about the z_{n-1} axis

$\operatorname{Rot}(z_{n-1},\theta_n) =$	$\cos\theta_n$	$-\sin\theta_n$	0	0
$\mathbf{D}_{ot}(\mathbf{r} = 0) =$	$\sin \theta_n$	$\cos\theta_n$	0	0
$\operatorname{Kot}(z_{n-1}, \Theta_n) =$	0	0	1	0
	0	0	0	1

Translation of I_n along the x_{n-1} axis

	1	0	0	l_n
$\mathrm{Trans}(x_{n-1},l_n) =$	0	1	0	0
$\operatorname{Trans}(x_{n-1}, \iota_n) =$	0	0	1	0
	0	0	0	1

Translation of	<i>d_n</i> along	the <i>z</i> _{<i>n</i>-1} axis
----------------	----------------------------	---

	1	0	0	0]
$T_{max}(z, d)$	0	1	0	0	
$\operatorname{Trans}(z_{n-1}, a_n) =$	0	0	1	d_n	
$\mathrm{Trans}(z_{n-1}, d_n) =$	0	0	0	1	

Rotation of α_n about the x_{n-1} axis

1	0	0	0
$\operatorname{Rot}(x_{n-1},\alpha_n) = \begin{vmatrix} 0\\0 \end{vmatrix}$	cose	$\alpha_n - \sin \alpha_n$, 0
$\operatorname{Kot}(x_{n-1},\alpha_n) = 0$	sina	$\alpha_n \cos \alpha_n$	0
LO	0	0	1
			35

Denavit-Hartenberg Representation of Joint-Link-Joint Transformation

Then

 $-\sin\theta_{n}$

 $\cos\theta_n$

0

0 0

0 0

1 0

1

0 1 0 0

 $0 \quad 0 \quad 1 \quad d_n$

 $\cos\theta_{n}$

 $\sin \theta_{r}$

0

 $A_{n}^{n-1} =$

Then Then First 0 0 0 $1 \ 0 \ 0 \ l_n$

0 1 0 0

 $0 \ 0 \ 1 \ 0$

0 1 0 0 $0 \cos \alpha_n$ $-\sin\alpha_n$ 0 $0 \sin \alpha_n$

 $\cos \alpha_n$

$\mathbf{A}_{n}^{n-1} = \begin{bmatrix} \cos\theta_{n} & -\sin\theta_{n}\cos\alpha_{n} & \sin\theta_{n}\sin\alpha_{n} & l_{n}\cos\theta_{n} \\ \sin\theta_{n} & \cos\theta_{n}\cos\alpha_{n} & -\cos\theta_{n}\sin\alpha_{n} & l_{n}\sin\theta_{n} \\ 0 & \sin\alpha_{n} & \cos\alpha_{n} & d_{n} \\ 0 & 0 & 0 & 1 \end{bmatrix}_{36}$	0	0 0 1			0 0	1
$\mathbf{A}_{n}^{n-1} = \begin{bmatrix} \sin\theta_{n} & \cos\theta_{n}\cos\alpha_{n} & -\cos\theta_{n}\sin\alpha_{n} & l_{n}\sin\theta_{n} \\ 0 & \sin\alpha_{n} & \cos\alpha_{n} & d_{n} \\ 0 & 0 & 0 & 1 \end{bmatrix}$		$\cos\theta$	$-\sin\theta_{\rm c}\cos\alpha_{\rm c}$	$\sin\theta_{}\sin\alpha_{}$	$l_{\rm m}\cos\theta_{\rm m}$	7
	▲ <i>n</i> -1 _	$\sin \theta_n$	$\cos\theta_n \cos\alpha_n$	$-\cos\theta_n\sin\alpha_n$	$l_n \sin \theta_n$	
	\mathbf{A}_n –	0	$\sin \alpha_n$	$\cos \alpha_n$	d_n	
		0	0	0	1	

36

Example: Joint-Link-Joint Transformation, Type 1 Link

Joint Variable = θ_n θ = variable	$\mathbf{A}_{n}^{n-1} =$	$\begin{bmatrix} \cos \theta_n \\ \sin \theta_n \\ 0 \\ 0 \end{bmatrix}$	$\cos\theta_n \cos\alpha_n$	$\frac{\sin\theta_n \sin\alpha_n}{-\cos\theta_n \sin\alpha_n}$ $-\cos\alpha_n$ 0	
d = 0 m l = 0.25 m $\alpha = 90 deg$		$\mathbf{A}_{n}^{n-1} =$			- "
$\theta \triangleq 30 \text{ deg}$ d = 0 m l = 0.25 m $\alpha = 90 \text{ deg}$		$\mathbf{A}_{n}^{n-1} =$	$\left[\begin{array}{rrrr} 0.866 & 0 \\ 0.5 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}\right]$	0.5 0.217 -0.866 0.125 0 0 0 1	37

Forward and Inverse Transformations

<u>Forward transformation</u>: proximal to distal frame (Expression of proximal frame in distal frame)

$$\mathbf{s}_1 = \mathbf{A}_0^1 \mathbf{s}_0$$
 ; $s_2 = \mathbf{A}_1^2 \mathbf{s}_1 = \mathbf{A}_1^2 \mathbf{A}_0^1 \mathbf{s}_0 = \mathbf{A}_0^2 \mathbf{s}_0$

<u>Reverse transformation</u>: distal to proximal frame = inverse of forward transformation

$$\mathbf{s}_0 = \left(\mathbf{A}_0^2\right)^{-1} \mathbf{s}_2 = \mathbf{A}_2^0 \mathbf{s}_2 = \mathbf{A}_1^0 \mathbf{A}_2^1 \mathbf{s}_2$$

Homogeneous Transformation Matrix is not Orthonormal

$$\mathbf{A}_{2}^{0} = \left(\mathbf{A}_{0}^{2}\right)^{-1} \neq \left(\mathbf{A}_{0}^{2}\right)^{T}$$

...but a useful identity makes inversion simple

Matrix Inverse Identity

Given: a square matrix, A, and its inverse, B

Δ -	$\mathbf{A}_{1}_{\substack{m\times m}}$	\mathbf{A}_{2} $m \times n$		$\mathbf{B} \triangleq \mathbf{A}^{-1} =$	\mathbf{B}_1	B ₂
A –	\mathbf{A}_{3}	$\mathbf{A}_{4}_{n \times n}$,		B ₃	B ₄

Then $\begin{bmatrix} \mathbf{A} \mathbf{B} = \mathbf{A} \mathbf{A}^{-1} = \mathbf{I}_{m+n} \\ = \begin{bmatrix} \mathbf{I}_{m} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{n} \end{bmatrix} = \begin{bmatrix} (\mathbf{A}_{1} \mathbf{B}_{1} + \mathbf{A}_{2} \mathbf{B}_{3}) & (\mathbf{A}_{1} \mathbf{B}_{2} + \mathbf{A}_{2} \mathbf{B}_{4}) \\ (\mathbf{A}_{3} \mathbf{B}_{1} + \mathbf{A}_{4} \mathbf{B}_{3}) & (\mathbf{A}_{3} \mathbf{B}_{2} + \mathbf{A}_{4} \mathbf{B}_{4}) \end{bmatrix}$

Equating like parts, and solving for B_i

$\begin{bmatrix} \mathbf{B}_1 \end{bmatrix}$	\mathbf{B}_2]_[$(\mathbf{A}_{1} - \mathbf{A}_{2}\mathbf{A}_{4}^{-1}\mathbf{A}_{3})^{-1}$	$-{\bf A}_{1}^{-1}{\bf A}_{2}\left({\bf A}_{4}-{\bf A}_{3}{\bf A}_{1}^{-1}{\bf A}_{2}\right)^{-1}$
$\begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_3 \end{bmatrix}$	\mathbf{B}_4		$-\mathbf{A}_{4}^{-1}\mathbf{A}_{3}(\mathbf{A}_{1}-\mathbf{A}_{2}\mathbf{A}_{4}^{-1}\mathbf{A}_{3})^{-1}$	$(\mathbf{A}_4 - \mathbf{A}_3 \mathbf{A}_1^{-1} \mathbf{A}_2)^{-1}$

Apply to Homogeneous Transformation

Forward transformation (to distal frame)

	\mathbf{A}_{1}	\mathbf{A}_2]_[H	[^{distal} proxi		$\mathbf{r}_{o_{proximal}}$
A =	\mathbf{A}_3	\mathbf{A}_4		(0	0	0) 1

Inverse transformation (to proximal frame)

ſ	$\mathbf{H}_{proximal}^{distal}$	\mathbf{r}_{o}	$\begin{bmatrix} -1 & \mathbf{B}_1 \end{bmatrix}$	B ₂	$\mathbf{H}_{distal}^{proximal}$	$-\mathbf{H}^{proximal}_{distal}\mathbf{r}_{o_{distal}}$
		1	$ = \begin{bmatrix} \mathbf{B}_3 \end{bmatrix} $	$\mathbf{B}_4 \end{bmatrix}^{=}$		1

41

Apply to Homogeneous Transformation

Forward transformation

_			_	$- h_{11}$	h_{12}	<i>h</i> ₁₃	x_o
A≜	\mathbf{A}_1	\mathbf{A}_2		h_{21}	h_{22}	h_{23}	y _o
	\mathbf{A}_3	\mathbf{A}_4		h_{31}	h_{32}	<i>h</i> ₃₃	Z_o
				0	0	0	1

Inverse transformation

Γ	<i>h</i> ₁₁	h_{12}	h_{13}	<i>x</i> _o	-1	h_{11}	h_{21}	h_{31}	$-(h_{11}x_o+h_{21}y_o+h_{31}z_o)$
	h_{21}	h_{22}	h_{23}	y _o	=	h_{12}	h_{22}	<i>h</i> ₃₂	$-(h_{12}x_o + h_{22}y_o + h_{32}z_o)$
	<i>h</i> ₃₁	<i>h</i> ₃₂	<i>h</i> ₃₃	Z _o		h_{13}	h_{23}	<i>h</i> ₃₃	$-(h_{13}x_o + h_{23}y_o + h_{33}z_o)$
L	0	0	0	1		0	0	0	1

Next Time: Transformations, Trajectories, and Path Planning

43

Supplemental Material

Multi-Bar-Linkage Gripper http://www.youtube.com/watch? v=YDd6VBx9oqU&feature=related