Articulated Robots

Robert Stengel

Robotics and Intelligent Systems
MAE 345, Princeton University, 2017

- Robot configurations
- Joints and links
- Joint-link-joint transformations
- Denavit-Hartenberg representation

Assembly Robot Configurations

Assembly Robot Workspaces

Serial Robotic Manipulators

Proximal link: closer to the base Distal link: farther from the base

- Serial chain of robotic links and joints
- Large workspace
- Low stiffness
- Cumulative errors from link to link
- Proximal links carry the weight and load of distal links
- Actuation of proximal joints affects distal links
- Limited load-carrying capability at end effecter

Humanoid Robots

NASA/GM Robonaut

Disney Audio-Animatronics, 1967

Baxter, Sawyer, and the PR2

Parallel Robotic Mechanisms

- End plate is directly actuated by multiple links and joints (kinematic chains)
- Restricted workspace
- Common link-joint configuration
- Light construction
- Stiffness
- High load-carrying capacity

Stewart Platform
http://www.youtube.com/watch?
$v=Q d K o 9 P Y w G a U$

Pick-and-Place Robot
http://www.youtube.com/watch? $v=i 40 B E x I 2 K i Q$

9

Gearing and Leverage

Force multiplication
Displacement ratios

- Machine tools
- Grinding, sanding
- Inserting screws
- Drilling
- Hammering
- Paint sprayer
- Gripper, clamp
- Multi-digit hand

End Effecters

Links and Joints

Human Joints

Gray' s Anatomy, 1858

Skeleton and MuscleInduced Motion

Prismatic Robotic Joints

Sliding along a single axis

Universal

Other Robotic Joints

Flexible
Spherical (or ball)

Cylindrical (sliding and turning composite)

Constant-Velocity

Roller Screw

Planar (sliding and turning composite)

Construction Cranes

Four-Bar Linkage

- Closed-loop structure
- Rotational joints
- Planar motion
- Proportions of link lengths determine pattern of motion
- Examples
- Double wishbone suspension
- Pantograph
- Scissor lift
- Gripper

Characteristic Transformation of a Link

Link: solid structure between two joints

- Each link type has a characteristic transformation matrix relating the proximal joint to the distal joint
- Link n has
- Proximal end: Joint n, coordinate frame $n-1$
- Distal end: Joint $n+1$, coordinate frame n

Links Between Revolute Joints

- Link: solid structure between two joints
- Proximal end: closer to the base
- Distal end: farther from the base
- 4 Link Parameters
- Length of the link between rotational axes, I, along the common normal
- Twist angle between axes, α
- Angle between 2 links, θ (revolute)
- Offset between links, d (prismatic)
- Joint Variable: single link parameter that is free to vary

21

Links Involving Prismatic Joints

- Link n extends along z_{n-1} axis
- $I_{n}=0$, along x_{n-1}
- $d_{n}=$ length, along z_{n-1} (variable)
- $\theta_{n}=0$, about z_{n-1}
- $a_{n}=$ fixed orientation of $n+1$
prismatic axis about x_{n-1}

- Link n extends along z_{n-1} axis
- $I_{n}=0$, along x_{n-1}
- $d_{n}=$ length, along z_{n-1} (fixed)
- $\theta_{n}=$ variable joint angle n about z_{n-1}
- $a_{n}=$ fixed orientation of $n+1$ prismatic axis about x_{n-1}

Links Between Revolute Joints - 2

Type 3 Link Two revolute joints with intersecting rotational axes (e.g., shoulder)

- Link n extends along z_{n-1} axis
- $I_{n}=0$, along x_{n-1}
- $d_{n}=$ length, along z_{n-1} (fixed)
- $\theta_{n}=$ variable joint angle n about z_{n-1}
- $a_{n}=$ fixed orientation of $n+1$ rotational axis about x_{n-1}

Type 4 Link Two perpendicular revolute joints with common origin (e.g., elbow-wrist)

- Link n extends along $-z_{n}$ axis
- $I_{n}=0$, along x_{n-1}
- $d_{n}=0$, along z_{n-1}
- $\theta_{n}=$ variable joint angle n about z_{n-1}
- $a_{n}=$ fixed orientation of $n+1$ rotational axis about x_{n-23}

Links Involving Prismatic Joints - 2

Type 7 Link Parallel prismatic and revolute joints

- Link n extends along x_{n-1} axis
- $I_{n}=$ length along x_{n-1}
- $d_{n}=0$, along z_{n-1}
- $\theta_{n}=$ variable joint angle n about z_{n-1}
- $a_{n}=0$, orientation of $n+1$ prismatic axis about x_{n-1}
McKerrow, 1991
- Link n extends along z_{n-1} axis
- $I_{n}=0$, along x_{n-1}
- $d_{n}=$ length, along z_{n-1}
(variable)
- $\theta_{n}=0$, about z_{n-1}
- $a_{n}=$ fixed orientation of $n+1$ rotational axis about $\boldsymbol{x}_{n-1} \quad 24$

Two-Link/Three-Joint Manipulator

Assignment of coordinate frames

Parameters and Variables for 2-link manipulator

- Link lengths (fixed)
- Joint angles (variable)

Four-Joint (SCARA*) Manipulator

Arm with Three Revolute

 Link Variables(Joint Angles)

Operation http://www.youtube.com/watch?v=3sbtCCyJXo

Joint Variables Must Be Actuated and Observed for Control

-Frames of Reference for Actuation and Control

- World coordinates
- Actuator coordinates
- Joint coordinates
- Tool coordinates

Rotary Actuators

Linear Actuator

Sensors May Observe Joints Directly, Indirectly, or Not At All

Simulink/SimMechanics

 Representation of Four-Bar Linkage

Recall: Homogeneous Transformation

$$
\mathbf{s}_{\text {new }}=\left[\begin{array}{c:l}
\binom{\text { Rotation }}{\text { Matrix }}_{\text {old }}^{\text {new }} & \left(\begin{array}{l}
\text { Location } \\
\text { of Old } \\
\text { Origin }
\end{array}\right)_{\text {new }} \\
\hdashline\left(\begin{array}{ccc}
0 & 0 & 0
\end{array}\right) & 1
\end{array}\right] \mathbf{s}_{\text {old }}=\mathbf{A}_{\text {old }}^{\text {new }} \mathbf{s}_{\text {old }}
$$

Transform from one joint to the next

Rotation Matrix can be Derived from Euler Angles or Quaternions

$$
\mathbf{A}=\left[\begin{array}{c:c}
\mathbf{H}_{\text {old }}^{\text {new }} & \mathbf{r}_{\text {old }} \\
\hdashline\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right) & 1
\end{array}\right]=\left[\begin{array}{ccc:c}
h_{11} & h_{12} & h_{13} & x_{o} \\
h_{21} & h_{22} & h_{23} & y_{o} \\
h_{31} & h_{32} & h_{33} & z_{o} \\
\hdashline 0 & 0 & 0 & 1
\end{array}\right]
$$

Series of Homogeneous Transformations

Two serial transformations can be combined in a single transformation

$$
\mathbf{s}_{2}=\mathbf{A}_{1}^{2} \mathbf{A}_{0}^{1} \mathbf{s}_{0}=\mathbf{A}_{0}^{2} \mathbf{s}_{0}
$$

Four transformations for SCARA robot
$\mathbf{s}_{4}=\mathbf{A}_{3}^{4} \mathbf{A}_{2}^{3} \mathbf{A}_{1}^{2} \mathbf{A}_{0}^{1} \mathbf{s}_{0}=\mathbf{A}_{0}^{4} \mathbf{s}_{0}$

Transformation for a Single Robotic Joint-Link

- Each joint-link requires four sequential transformations:
- Rotation about α
- Translation along d
- Translation along I
- Rotation about θ

$$
\begin{aligned}
\mathbf{s}_{n+1} & =\mathbf{A}_{3}^{n+1} \mathbf{A}_{2}^{3} \mathbf{A}_{1}^{2} \mathbf{A}_{n}^{1} \mathbf{s}_{n}=\mathbf{A}_{n}^{n+1} \mathbf{s}_{n} \\
& =\mathbf{A}_{\theta} \mathbf{A}_{d} \mathbf{A}_{l} \mathbf{A}_{\alpha} \mathbf{S}_{n}=\mathbf{A}_{n}^{n+1} \mathbf{s}_{n}
\end{aligned}
$$

- ... axes for each transformation (along or around) must be specified

$$
\begin{array}{|cc|}
\mathbf{4}^{\text {th }} & \mathbf{3}^{\text {rd }} \\
\mathbf{s}_{n+1}=\mathbf{A}\left(z_{n-1}, \theta_{n}\right) \mathbf{A}\left(z_{n-1}, d_{n}\right) \mathbf{A}\left(x_{n-1}, l_{n}\right) \mathbf{A}\left(x_{n-1}, \alpha_{n}\right) \mathbf{s}_{n}=\mathbf{A}_{n}^{n+1} \mathbf{s}_{n}
\end{array}
$$

Denavit-Hartenberg Representation of Joint-Link-Joint Transformation

Denavit-Hartenberg Representation of Joint-Link-Joint Transformation

- Like Euler angle rotation, transformational effects of the 4 link parameters are defined in a specific application sequence (right to left): $\{\theta, d, I, \alpha\}$
- 4 link parameters
- Angle between 2 links, θ (revolute)
- Distance (offset) between links, d (prismatic)
- Length of the link between rotational axes, l, along the common normal (prismatic)
- Twist angle between axes, α (revolute)

$$
\begin{aligned}
\mathbf{A}_{n} & =\mathbf{A}\left(z_{n-1}, \theta_{n}\right) \mathbf{A}\left(z_{n-1}, d_{n}\right) \mathbf{A}\left(x_{n-1}, l_{n}\right) \mathbf{A}\left(x_{n-1}, \alpha_{n}\right) \\
& =\operatorname{Rot}\left(z_{n-1}, \theta_{n}\right) \operatorname{Trans}\left(z_{n-1}, d_{n}\right) \operatorname{Trans}\left(x_{n-1}, l_{n}\right) \operatorname{Rot}\left(x_{n-1}, \alpha_{n}\right) \\
& \triangleq{ }^{n} \mathbf{T}_{n+1} \quad \text { in some references (e.g., McKerrow, 1991) }
\end{aligned}
$$

Rotation of θ_{n} about the z_{n-1} axis
$\operatorname{Rot}\left(z_{n-1}, \theta_{n}\right)=\left[\begin{array}{cccc}\cos \theta_{n} & -\sin \theta_{n} & 0 & 0 \\ \sin \theta_{n} & \cos \theta_{n} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Translation of I_{n} along the x_{n-1} axis
$\operatorname{Trans}\left(x_{n-1}, l_{n}\right)=\left[\begin{array}{cccc}1 & 0 & 0 & l_{n} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Translation of d_{n} along the z_{n-1} axis
$\operatorname{Trans}\left(z_{n-1}, d_{n}\right)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{n} \\ 0 & 0 & 0 & 1\end{array}\right]$
Rotation of α_{n} about the x_{n-1} axis
$\left.\operatorname{Rot}\left(x_{n-1}, \alpha_{n}\right)=\left\lvert\, \begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \alpha_{n} & -\sin \alpha_{n} & 0 \\ 0 & \sin \alpha_{n} & \cos \alpha_{n} & 0 \\ 0 & 0 & 0 & 1\end{array}\right.\right]$

Then

Denavit-Hartenberg Representation of Joint-Link-Joint Transformation

Then Then
First
$\mathbf{A}_{n}^{n-1}=\left[\begin{array}{cccc}\cos \theta_{n} & -\sin \theta_{n} & 0 & 0 \\ \sin \theta_{n} & \cos \theta_{n} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{n} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & l_{n} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \alpha_{n} & -\sin \alpha_{n} & 0 \\ 0 & \sin \alpha_{n} & \cos \alpha_{n} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\mathbf{A}_{n}^{n-1}=\left[\begin{array}{cccc}\cos \theta_{n} & -\sin \theta_{n} \cos \alpha_{n} & \sin \theta_{n} \sin \alpha_{n} & l_{n} \cos \theta_{n} \\ \sin \theta_{n} & \cos \theta_{n} \cos \alpha_{n} & -\cos \theta_{n} \sin \alpha_{n} & l_{n} \sin \theta_{n} \\ 0 & \sin \alpha_{n} & \cos \alpha_{n} & d_{n} \\ 0 & 0 & 0 & 1\end{array}\right]$

Example: Joint-Link-Joint Transformation, Type 1 Link

$$
\text { Joint Variable }=\theta_{n}
$$

$$
\begin{aligned}
& \theta=\text { variable } \\
& d=0 \mathrm{~m} \\
& l=0.25 \mathrm{~m} \\
& \alpha=90 \mathrm{deg} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \theta \triangleq 30 \mathrm{deg} \\
& d=0 \mathrm{~m} \\
& l=0.25 \mathrm{~m} \\
& \alpha=90 \mathrm{deg} \\
& \hline
\end{aligned}
$$

$\mathbf{A}_{n}^{n-1}=\left[\begin{array}{cccc}0.866 & 0 & 0.5 & 0.217 \\ 0.5 & 0 & -0.866 & 0.125 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Forward and Inverse Transformations

Forward transformation: proximal to distal frame (Expression of proximal frame in distal frame)

$$
\mathbf{s}_{1}=\mathbf{A}_{0}^{1} \mathbf{s}_{0} \quad ; \quad s_{2}=\mathbf{A}_{1}^{2} \mathbf{s}_{1}=\mathbf{A}_{1}^{2} \mathbf{A}_{0}^{1} \mathbf{s}_{0}=\mathbf{A}_{0}^{2} \mathbf{s}_{0}
$$

Reverse transformation: distal to proximal frame $=$ inverse of forward transformation

$$
\mathbf{s}_{0}=\left(\mathbf{A}_{0}^{2}\right)^{-1} \mathbf{S}_{2}=\mathbf{A}_{2}^{0} \mathbf{s}_{2}=\mathbf{A}_{1}^{0} \mathbf{A}_{2}^{1} \mathbf{S}_{2}
$$

Homogeneous Transformation Matrix is not Orthonormal

$$
\mathbf{A}_{2}^{0}=\left(\mathbf{A}_{0}^{2}\right)^{-1} \neq\left(\mathbf{A}_{0}^{2}\right)^{T}
$$

...but a useful identity makes inversion simple

Matrix Inverse Identity

Given: a square matrix, A, and its inverse, B

$$
\mathbf{A}=\left[\begin{array}{c:c}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\hdashline m \times m & , m \times n \\
\hdashline \mathbf{A}_{3} & \mathbf{A}_{4} \\
n \times m & n \times n
\end{array}\right] ; \quad \mathbf{B} \triangleq \mathbf{A}^{-1}=\left[\begin{array}{ll}
\mathbf{B}_{1} & \mathbf{B}_{2} \\
\mathbf{B}_{3} & \mathbf{B}_{4}
\end{array}\right]
$$

Then $\mathbf{A B}=\mathbf{A A}^{-1}=\mathbf{I}_{m+n}$

$$
=\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0} \\
\mathbf{0} & \mathbf{I}_{n}
\end{array}\right]=\left[\begin{array}{ll}
\left(\mathbf{A}_{1} \mathbf{B}_{1}+\mathbf{A}_{2} \mathbf{B}_{3}\right) & \left(\mathbf{A}_{1} \mathbf{B}_{2}+\mathbf{A}_{2} \mathbf{B}_{4}\right) \\
\left(\mathbf{A}_{3} \mathbf{B}_{1}+\mathbf{A}_{4} \mathbf{B}_{3}\right) & \left(\mathbf{A}_{3} \mathbf{B}_{2}+\mathbf{A}_{4} \mathbf{B}_{4}\right)
\end{array}\right]
$$

Equating like parts, and solving for B_{i}

$$
\left[\begin{array}{ll}
\mathbf{B}_{1} & \mathbf{B}_{2} \\
\mathbf{B}_{3} & \mathbf{B}_{4}
\end{array}\right]=\left[\begin{array}{c:c}
\left(\mathbf{A}_{1}-\mathbf{A}_{2} \mathbf{A}_{4}{ }^{-1} \mathbf{A}_{3}\right)^{-1} & -\mathbf{A}_{1}^{-1} \mathbf{A}_{2}\left(\mathbf{A}_{4}-\mathbf{A}_{3} \mathbf{A}_{1}^{-1} \mathbf{A}_{2}\right)^{-1} \\
\hdashline-\mathbf{A}_{4}^{-1} \mathbf{A}_{3}\left(\mathbf{A}_{1}-\mathbf{A}_{2} \mathbf{A}_{4}{ }^{-1} \mathbf{A}_{3}\right)^{-1} & \left(\mathbf{A}_{4}-\mathbf{A}_{3} \mathbf{A}_{1}^{-1} \mathbf{A}_{2}\right)^{-1}
\end{array}\right]
$$

Apply to Homogeneous Transformation

Forward transformation (to distal frame)
$\mathbf{A} \triangleq\left[\begin{array}{ll}\mathbf{A}_{1} & \mathbf{A}_{2} \\ \mathbf{A}_{3} & \mathbf{A}_{4}\end{array}\right]=\left[\begin{array}{cc}\mathbf{H}_{\text {proximal }}^{\text {disal }} & \mathbf{r}_{o_{\text {proximal }}} \\ \left(\begin{array}{lll}0 & 0 & 0\end{array}\right) & 1\end{array}\right]$

Inverse transformation (to proximal frame)

Apply to Homogeneous Transformation

Forward transformation

$$
\mathbf{A} \triangleq\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]=\left[\begin{array}{ccc:c}
h_{11} & h_{12} & h_{13} & x_{o} \\
h_{21} & h_{22} & h_{23} & y_{o} \\
h_{31} & h_{32} & h_{33} & z_{o} \\
\hdashline 0 & 0 & 0 & 1
\end{array}\right]
$$

Inverse transformation
$\left[\begin{array}{ccc:c}h_{11} & h_{12} & h_{13} & x_{o} \\ h_{21} & h_{22} & h_{23} & y_{o} \\ h_{31} & h_{32} & h_{33} & z_{o} \\ \hdashline 0 & 0 & 0 & 1\end{array}\right]^{-1}=\left[\begin{array}{ccc:c}h_{11} & h_{21} & h_{31} & -\left(h_{11} x_{o}+h_{21} y_{o}+h_{31} z_{o}\right) \\ h_{12} & h_{22} & h_{32} & -\left(h_{12} x_{o}+h_{22} y_{o}+h_{32} z_{o}\right) \\ h_{13} & h_{23} & h_{33} & -\left(h_{13} x_{o}+h_{23}+3_{o} z_{o}\right) \\ \hdashline 0 & 0 & 0 & 1\end{array}\right]$

Next Time: Transformations, Trajectories, and Path Planning

Supplemental Material

Multi-Bar-Linkage Gripper
http://www.youtube.com/watch?
$v=Y D d 6 V B x 9 o q U \& f e a t u r e=$ related

