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Roberto’s Notes on Linear Algebra 

Chapter 11: Vector spaces Section 1 

Vector space axioms 

What you need to know already: What you can learn here: 

 How Euclidean vectors “work”. 

 What linear combinations are and why they 

are important. 

 How mathematicians have generalized the 

idea of Euclidean vectors to more general 

structures that have the same key properties. 

 

 

Over the years, mathematicians reflected on the following observations, which 

by now should be familiar to you, although not in the same words or as fast! 

 

Knot on your finger 

The features that characterize Euclidean vectors as 

special objects are: 

 The presence of the two operations of addition 

and a scalar multiplication. 

 The possibility of constructing linear 

combinations with them. 

 Certain basic algebraic properties ensuring that 

some computations follow familiar patterns. 
 

 

By using these observations, we started from geometric vectors – which can be 

considered as very concrete and visible objects – and generalized them to Euclidean 

vectors, which are more abstract mathematical constructs, but with very similar 

properties (we even use arrows to draw them!) and the possibility of both theoretical 

and practical applications.  Well, those mathematicians wondered, can we extend the 

notion of vectors to totally different sets of objects that still rely on similar 

properties? 

It turns out that yes, we can, but only after we have answered the obvious 

question: “What are the basic properties that make vectors a special kind of object 

worth studying and generalizing?”  I will first give you a general idea of what the 

accepted answer to this question is and then provide you with its technical details. 

That looks pretty simple. 
 

Warning bells 

You are now entering what is probably the most 

abstract area of mathematics you have seen so far! 

Behind some statements that look simple and familiar 

lurk logical pitfalls that are hidden by a number of 

assumptions and beliefs that are true for usual 

numbers, but may not be true for other objects! 
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Where we are going, a familiar language is spoken, but those who live there 

(abstract vectors) are strange things indeed and follow the letter of the logical law.  

So, tread carefully, but get ready to be excited by a brave new world!  

Here is the formal definition: drum roll, please!  

 
 

Definition of vector space 

A vector space consists of a set V of objects (any 

objects, but usually mathematical ones) called 

vectors (surprise!), together with two operations: 

 An operation called “addition” that associates to 

two vectors u and v in V a vector, usually 

denoted by u v . 

 An operation called “scalar product” that 

associates to a vector v in V and a scalar c a 

vector, usually denoted by c v . 

These two operations must also satisfy the set of 10 

properties, usually called vector space axioms, listed 

in the following two definition boxes. 
 

 

So far, we have a set of items, things, that we call vectors and two operations.  

Let’s now see how these operations are supposed to behave in order for the whole 

structure to earn the title of vector space. 

Definition of the addition axioms 

In a vector space, the addition operation, usually 

denoted by  , must satisfy the following axioms: 

1. Closure:  The addition (or sum) u v of any 

two vectors u and v of V  exists and is a 

unique vector of V. 

2. Commutativity:  For any two vectors u and v of 

V,   u v v u . 

3. Associativity:  For any three vectors u, v and w 

of V ,        u v w u v w  

4. Existence of the zero vector: There exists a 

vector in V, called the zero vector and denoted 

by 0 , such that for any vector u of V : 

   0 u u 0 u  

5. Existence of all negative vectors:  For each 

vector u of V  there exists a vector, called its 

negative and denoted by “– u”, such that: 

    u u 0  

 

Five down, five to go, namely the axioms for the scalar product or scalar 

multiplication. 
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Definition of the scalar product axioms 

In a vector space, the scalar product, or scalar 

multiplication operation, usually denoted by  , must 

satisfy the following axioms: 

6. Closure:  The product of any scalar c with any 

vector u of V exists and is a unique vector of 

V, denoted by cu . 

7. Associativity:  For any scalars c and d and any 

vector u of V: 

   cd c d   u u  

8. Neutrality of 1:  For any vector u of V: 

1 u u  

9. Distributivity over vector addition:  For any 

scalar c and any two vectors u and v of V: 

     c c c     u v u v . 

10. Distributivity over scalar addition:  For any 

scalars c and d and any vector u of V: 

     c d c d     u u u . 

 

 

Wow!  What a mess of symbols, words and formulae!  And you expect me to 
memorize all this?! 

First of all, there are only 10 axioms and I am sure you know way more than 10 

rules of the road!  Moreover, the more important thing is to understand what each 

axiom is trying to guarantee, because then it will become easy to remember them, 

almost second nature.  To help you do that, here is a quick portrait of the vector 

space axioms, organized in terms of what they try to accomplish. 

 

Quick portrait of the                        

vector space axioms 

Axioms 1) and 6)  are closure axioms, meaning that 

when we combine vectors and scalars in the 

prescribed way, we do not stray outside of V .  That 

is, they keep the results within the vector space, 

rather than ending up somewhere else. 

Axioms 2), 3), 7), 9) and 10)  are algebraic axioms, 

meaning that certain basic properties of usual 

algebraic operations of numbers still hold within V 

and we need not worry about these formulae falling 

apart.  We have seen other operations (such as matrix 

multiplication) for which the usual rules of algebra 

do not hold.  Here we want to make sure that these 

rules do. 

Axioms 4), 5) and 8)  are special items axioms, 

meaning that we want 0 (as a vector) and 1 (as a 

scalar) to maintain the properties that make them 

special values among usual numbers. 
 

 

Given the importance of understanding these axioms and their purposes, here is 

another way to list and label them that reflects the above protrait.  In what follows, I 

will use either list and I encourage you to use whichever list you find easier to 

remember.  Also, I will now make the statements of the axioms shorter, trusting that 

you remember the notation and details of the original definitions. 
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Definition of vector space 

A vector space consists of a set V of objects called 

vectors, together with two operations – an “addition” 

  and a “scalar product”   – which satisfy the 

following ten properties, usually called vector space 

axioms: 

Closure axioms: 

C1) For any two vectors u and v in V , u v  is 

unique and is also in V. 

C2) For any scalar c and any vector u of V, c u   

is unique and is also in V. 

Algebraic axioms: 

A1) Addition is commutative:   

  u v v u . 

A2) Addition is associative: 

       u v w u v w
 

A3) Scalar product is associative: 

   cd c d   u u . 

A4) Scalar product is distributive for addition: 

     c c c     u v u v . 

A5) Scalar product is distributive for usual addition: 

     c d c d     u u u  

 

Special items axioms: 

S1) There is a zero vector such that, for every u: 

   0 u u 0 u  

S2) Each vector u has a negative “– u”, such that: 

   u u 0
. 

S3) For any vector u,  1 u u . 
 

 

Too much abstract talk!  Can we see some examples? 

Told ya!  Of course, geometric and Euclidean vectors satisfy all the axioms.  I 

will prove this for 
2

 and you may want to generalize this proof to any 
n

 

 

Technical fact 

The set 
2

 of 2D vectors with the usual operations 

of vector addition and scalar multiplication, forms a 

vector space. 
 

 

Proof  

In this case   u v u v and c c v v .  Even though in this context 

the statements of the axioms seem rather obviously true, I will go through 

their formal proof to give you an idea of how this is done in general. 

C1)      1 2 1 2 1 1 2 2a a b b a b a b     and this is a 2D vector. 

C2)    1 2 1 2c a a ca ca  and this is a 2D vector. 
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A1)      1 2 1 2 1 1 2 2a a b b a b a b     

     1 1 2 2 1 2 1 2b a b a b b a a    
 

This is the commutativity required by the axiom. 

A2)           1 2 1 2 1 2 1 2 1 1 2 2a a b b c c a a b c b c       

 1 1 1 2 2 2a b c a b c      

          2 2 1 1 1 2 1 2 1 2 1 2a b a b c c a a b b c c        

This is the associativity required by the axiom. 

A3)          1 2 1 2 1 2 1 2cd a a cda cda c da da c d a a    

This is the associativity required by the axiom. 

A4)       1 2 1 2 1 1 2 2c a a b b c a b a b     

     1 1 2 2 1 1 2 2c a b c a b ca cb ca cb         

       1 2 1 2 1 2 1 2ca ca cb cb c a a c b b      

This is the distributivity required by the axiom. 

A5)       1 2 1 2c d a a c d a c d a       

     1 1 2 2 1 2 1 2ca da ca da ca ca da da    
 

   1 2 1 2c a a d a a    

This is the distributivity required by the axiom. 

S1)      0 0a b a b   so that  0 00  is the required zero vector. 

S2)      0 0a b a b     

Therefore, all negative vectors exist. 

S3)      1 1 1a b a b a b   

Therefore, 1 does act as required. 

 

Hmmmm.  So far, this just seems like a useless complication of a simple concept! 

Yes, but pretty soon our vector spaces will consist of objects and operations 

that are much less obvious and familiar and you will need to patiently go through 

each of these steps.  The next section will offer two examples of possibly mind-

boggling vector spaces, so, you better start from the familiar. 

Before showing you some initial mind-boggling facts, let me try to simplify the 

notation. 

 

Knot on your finger 

When working in a specific vector space whose 

operations have been identified, and if no further 

confusion arises, we shall denote the two operations 

by using the usual notation.  That is, we shall write: 

 u v    to denote   u v   

 cv    to denote   c v   
 

 

Finally, some common sense! 

We all like simplicity, but do not underestimate the highlighted caution: “if no 

further confusion arises!”  And, believe me, it will likely arise! 

Just to show you how hairy things can become (and because we are going to 

need this soon), here are two facts that seem obvious, are true, but need checking. 

 

 



Linear Algebra Chapter 11: Vector spaces Section 1: Vector space axioms  Page 6 

Technical fact 

If u is a vector in vector space V, then: 

 0 u 0   

  1  u u  

 

 

Oh, come on!  This is definitely obvious! 

Are you sure?  It is obvious for usual numbers and Euclidean vectors, here I 

claim that they are true no matter what objects we use, as long as the axioms hold!    

That means that we cannot use any familiar property of Euclidean vectors, but only 

the axioms.  So, here is the proof: notice that it is NOT simple! 

 

Proof  

To prove that 0u  is the 0 vector, we notice that: 

  0 0 0 u u  because 0+0=0 as number. 

  0 0 0 0  u u u  by axiom A5. 

 Since 0 0 0 u u u , axioms S2 (the negative vector exists) and C1 

(the sum of two vectors is unique) allow us to claim that 

      0 0 0 0 0     u u u u u   

 Now, axioms S2 (what the negative vector does) and A2 (associativity) 

imply that  0 0 0     0 u u u  

 So, finally axiom S1 allows us to confirm that 0 0  0 u 0 u . 

You will probably have to go through the above steps several times to 

convince yourself that they are correct and, more importantly, each of them 

is needed, since we can use no other property of the mysterious objects 

involved!   

 

Now we are ready for the second part.  To prove that  1 u  is the negative 

of u, we notice that: 

 BY axiom S3,    1 1 1    u u u u . 

 Next, A5 implies that    1 1 1 0    u u u u   

 The fact we just proved tells us that this is the zero vector and hence that  

 1 u  is the negative of u. 

 

Wow!  Are you sure that there is no shorter way to do this? 

Believe me: mathematicians have tried, but have come to the conclusion that all 

axioms are needed for this and other proofs, as well as the fact that they are sufficient 

to obtain what we need from a vector space. 

But since I appreciate the desire to look for shorter ways to do something, here 

is one property that you may like and that we shall use often in the future. 

 

Technical fact 

If all algebraic and special items axioms are true, the 

two closure axioms C1 and C2 together are 

equivalent to the single linear combination axiom: 

LC) For any two object u and v in V and any scalars 

c and d, the linear combination 

   c d c d    u v u v  is also in V. 

 

 

Proof  

If C1 and C2 are valid, then, by C2, for any two u and v in V and any 

scalars c and d, cu and dv  are in V.  But in that case, by C1, so is 

c du v , thus implying LC. 
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On the other hand, if LC is valid, then for any two u and v in V, 

1 1  u v u v  is also in V, thus implying C1, and 

0c c c   u u 0 u u  is also in V, thus implying C2. 

Again, you may want to go through these two lines several times, maybe 

together with another student to convince yourself of what they say and that 

their logic is correct and needed. 

 

This is going to take some getting used to!  Is it worth it? 

Only if you plan to pass the course ☺ .  But I guess that what you are 

wondering is whether the notion of vector spaces is useful to analyze sets that are not 

made up of Euclidean vectors and their usual operations. 

No, I was wondering if it was worth our efforts, but I will trust you for the 
time being.  

Thank you!  In the next few sections we shall see many such examples, but I 

want to finish this section by pointing out how we can prove that a set with two 

operations like the one we are dealing with is NOT a vector space, since this will be 

important information as well.  It turns out that this is an easier task than the long 

and tedious job of checking all 10 axioms. 

 

Knot on your finger 

In order to prove that a set with two operations is 

NOT a vector space, it is sufficient to check that one 

of the axioms is not true. 

In order to prove that one of the axioms is not true, it 

is sufficient to prove that it does not work in one 

instance. 

In other words, a single counterexample is sufficient 

to show that the given set is not a vector space. 
 

Example:   0, 1, 2, ...     

This strange version of the capital letter Z is the universal symbol used to 

identify the set of integer numbers with the usual addition and multiplication.  

Well, it turns out that this is NOT a vector space, since the product of an 

integer and a non-integer scalar is usually not an integer.  But all we need is 

one counterexample!  So, by noticing that the product of the scalar π and the 

integer 2 is not an integer, we have proved that  is not a vector space. 

Similarly, the set of rational numbers with the usual operations is not a vector 

space, since, say, 
1

3
2

  is not a rational number.  One counterexample is 

enough to disprove the vector space structure. 
 

 

Example:  ; ,
n

n m
m

 
   
 

  

This is the set of rational numbers, that is, all fractions.  This is also NOT a 

vector space and for the same reason:  the fact that 
1

3
2

  is not a rational 

number provides one counterexample and that is enough to disprove the 

vector space structure. 
 

 

And you are sure there are other useful examples of sets that ARE vector spaces, 
eh? 

Positive!  Just look at the next few sections. 

Fine, but why is it important to know if some set with operations is a vector 
space or not? 

Because there are several nice and useful properties that are consequences of 

the axioms and are therefore true for ALL vector spaces.  So, when we know that we 

are dealing with a vector space, we can assume that those properties hold, while if 

we know that we are not dealing with one, we cannot count on those properties. 

Time for a break and review. 
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Summary  

 By identifying the key properties that make Euclidean vectors tick, we can use them as the defining features of a general structure called a vector space. 

 In order to have a vector space we need a set of objects endowed with two operations, with the whole setup satisfying ten specific axioms.  

 In order to verify that a set with two operations is a vector space, we need to verify each and every one of the axioms.  However, to show that it is NOT a vector space all we 

need is one counterexample that violates one of the axioms. 

 Once we know that a set with two operations is a vector space, we can apply to it any knowledge that applies to vector spaces in general.  These properties are yet to be 

identified, but the go along the lines of what we learned about Euclidean vectors. 

Common errors to avoid 

 This is a tremendously theoretical, abstract and logical concept.  It will take a while to get used to the axioms, what they say, why they are important, how to use them and how 

to ensure that good logic is used and no facts are assumed without checking that they are true. 

 This will take a lot of working time, that is, work on it and don’t expect great leaps of understanding in a short time.  But that understanding will come, if you are willing to put 

in that working time. 

Learning questions for Section LA 11-1 

Review questions: 
 

1. Describe the underlying concepts for the idea of vector spaces. 2. List the 10 axioms of a vector space in your own words, but be accurate! 

 

Memory questions: 
 

The key point of this section is the conceptual goal we are trying to achieve.  While memorizing the ten axioms is a worthwhile endeavor, it is not the main point. 

 

1. What is required in order to have a vector space? 
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Computation questions: 
 

1. Check that all vector space axioms are valid in 
3

 with the usual operations of 

vector addition and scalar multiplication. 

2. Check that all vector space axioms are valid in 
n

 with the usual operations of 

vector addition and scalar multiplication. 

3. Consider the set of real numbers with the usual addition and with scalar 

multiplication given by
a b

a b
a b


 


.  With this strange operation, compute 

 6 4 3   and find one vector space axiom that does not work for this scalar 

multiplication. 

4. Consider the set of real numbers with the usual multiplication, but the addition 

defined by: a b ab a b    .  With this strange operation, compute 

  5 4 3 2    and explain why this operation cannot be used as the 

addition for a vector space structure.   

 

In each of questions 5-10, determine whether the given set, together with the usual operations of addition and scalar product, form a vector space.  In each case, provide sufficient 

arguments in support of your conclusion. 

 

5. The set of all even numbers. 

6. The set of all irrational numbers.  

7. The set of all orthogonal 44 matrices. 

8. The set of all 44 matrices whose entries add up to 0. 

9. The set of all 44 matrices whose diagonal entries are all 0. 

10. The set of all elementary 44 matrices  

 

 

 

11. Consider the following pairs of operations on vectors in 
2

: 

   

 

1 1 2 2 1 2 1 2x y x y x x y y

k x y k x k y

      

    

 

i) Determine if the associativity axiom for addition holds. 

ii) Pick one distributivity axiom and determine if it holds. 

iii) Explain why these operations do not endow 
2

 with a vector space 

structure. 

 

 

 

12. Consider the following pairs of operations on vectors in 
2

: 

     

 

1 1 2 2 1 2 1 2

k k

x y x y x x y y

k x y x y

 

 
 

 

i) Determine if the associativity axiom for addition holds. 

ii) Pick one distributivity axiom and determine if it holds. 

iii) Explain why these operations do not endow 
2

 with a vector space 

structure. 
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13. Consider the set of 22 matrices of the form 
2

1

a a

a a

 
 

 
 with the usual 

operations.  Explain why this set together with these operations does not form a 

vector space and show that the set satisfies at least two of the vector space 

axioms. 

 

Theory questions: 
 

1. Which axioms of a vector space are called closure axioms? 

2. A vector space must be closed under which operations? 

3. What is the main mathematical purpose of studying vector spaces? 

4. Is the dot product a required part of the definition of a vector space? 

5. What does the associativity axiom for addition require? 

6. How many axioms must be contradicted to show that a set with two operations 

is not a vector space? 

7. In a vector space, is it always true that  
2 2     2

u v u uv vu v  ? 

 

Proof questions: 
 

1. We have seen that for any element u of a vector space V, 0 u 0  (the zero 

vector), but we have also seen that this fact needs a proof, since it is not one of 

the axioms.  Another true fact that is not an axiom and must be proved is that if 

k is any scalar, then k 0 0 .   

Below is a proof of the fact that if k u 0 , then either 0k   or u 0 . 

For each step of this proof, identify whether the step is based on a vector space 

axiom, a property of scalars, one of the two above facts, or the starting 

assumption of the claim. 

a) If k is 0 the claim is true  

b) Otherwise, 1u u  

c) But 
1

1 k
k

 
  
 

u u  

d) Moreover,  
1 1

k k
k k

 
 

 
u u  

e) Therefore,  
1 1

k
k k

u 0  

f) So that 
1

k
0 0 , and the original vector u is the zero vector. 

 

 

What questions do you have for your instructor? 
 


