Robot Control Basics

Mobile robot kinematics

- Differential drive mobile robot
- Two wheels, with diameter r, point P centered
- Between two wheels is the origin of the robot frame
- Each wheel is a distance l from the center

Some terminology

- Effector (legs, arms, wheels, fingers)
- Actuator - enables effector to execute motion (electric, hydraulic)
- Degree of freedom DOF - number of parameters describing the pose/configuration of the robot
- Rigid body 6 DOF, mobile robot 3 DOF
- Simplest case one actuator controls one DOF \rightarrow all degrees of freedom are controllable
- We have derived kinematics equations of the robot

$$
\begin{aligned}
\dot{x} & =v \cos \theta \\
\dot{y} & =v \sin \theta \\
\dot{\theta} & =\omega
\end{aligned}
$$

Some terminology

- Alternative derivation (optional) is in terms of wheel constraints section (3.2.3-3.4.2)
- Example
- sliding constraint - each wheel can only roll in the plane of the wheel
- steering constraint - streerable wheels can be steered
- degree of maneuverability - number of degrees of freedom robot can directly control δ_{M}
- Car-like mobile robot-3-DOF, two control inputs

$$
\delta_{M}=\delta_{m}+\delta_{s}
$$

- Differential drive robot $\delta_{M}=2+0=2$

$$
\begin{aligned}
\dot{x} & =v \cos \theta \\
\dot{y} & =v \sin \theta \\
\dot{\theta} & =\omega
\end{aligned}
$$

Some terminology

- Degrees of Freedom DOF
- Differential number of Degrees of freedom (DOF in the velocity space) - DDOF
- DDOF is always equal to δ_{m} degree of mobility
- Car-like mobile robot-3-DOF, two control inputs, two differential degrees of freedom
-If DOF = DDOF robot is holonomic, otherwise it is nonholonomic
- Differential drive robot - non-holonomic
- Omnidirectional drive - holonomic

Connection between DOF and actuators/effectors

- If there is an actuator for each DOF then each DOF is controllable
- If not all DOF are directly controllable the control problems are much harder (see later)

The number of controllable DOF determines how hard the control problem will be.
holonomic robots \# of DOF is the same as \# of controllable DOF's
nonholonomic robot \# of DOF is bigger then \# of controllable DOF's
redundant robot \# of controllable DOF is larger then \# of total DOF's
e.g. Human Arm 6 DOF's - position and orientation of the Fingertip in 3D space - 7 actuators - 3 shoulder, 1 elbow, 3 wris \dagger

Five Basic Types of Three-Wheel Configurations

Previously

- Kinematics models of kinematic chain, arm and mobile robot
- Relationship between the position of the endeffector and joint angles (manipulator), pose of the mobile robot and angular and linear velocities
- Control and Planning - How to do the right thing?

1. Open loop control
2. Feedback control
3. Potential field based methods (feedback control)

Paths and Trajectories

- In general - control problem - need to generate set of control commands to accomplish the task
- In an open loop setting there are two components

1. Geometric Path Generation
2. Trajectory generation (time indexed path)
3. Trajectory tracking

- Example omni-directional robot - can control all degress of freedom independently

Trajectories

- Smooth 1D trajectories - scalar functions of time
- Polynomials of higher orders
- Piecewise linear segments and polynomial blends
- Blackboard
- Interpolation of orientation in 3D
- Rigid Body Pose and Motion
- Varying coordinate frames

Example trajectory generation

- Given end points in either work space or joint angle space
- Generate joint angle trajectory between start and end position
- Specify start and end position (or additional constraints - spatial (obstacles) or temporal (time of completion)
- How to generate velocities and accelerations to follow the trajectory
- Example blackboard: use cubic polynomials to generate the trajectory

Trajectory generation

- Alternatives linear paths with parabolic blends (splines) - the via points are not actually reached
- Previous example - paths computed in joint space the path in the workspace depends on the kinematics of the manipulator
- Another scenario - compute paths in the workspace - specify at each instance of time the pose (R, T) the end effector robot should be at interpolate between poses
- Problems with workspace and singularities make sure all intermediate points are reachable the joint rates are attainable

Path / Trajectory Considerations: Omnidirectional Drive

Path / Trajectory Considerations: Two-Steer

Move for 1 s with constant speed along X, rotate steered wheels by $-50 / 50$ degrees; change orientation counterclockwise by 90 degrees in 1s, move for 1 s with constant speed along Y

x, y, θ

© R. Siegwart, I. Nourbakhsh

Beyond Basic kinematics

- So far we have considered only trajectories in time and space - no velocities
- When handling more dynamic scenarios velocities Become important, we need to design trajectory profiles which can be nicely followed
- Two main control approaches

Open Loop Control
Feedback Control

Motion Control: Open Loop Control

- Trajectory (path) divided in motion segments of clearly defined shape:
- straight lines and segments of a circle.
- Control problem:
- pre-compute a smooth trajectory based on line and circle segments
- Disadvantages:
- It is not at all an easy task to pre-compute a feasible trajectory
- limitations and constraints of the robots velocities and accelerations
- does not adapt or correct the trajectory if dynamical changes of the environment occur.

- The resulting trajectories are usually not smooth

Motion Control: Open Loop

- Problem: given initial and final configuration of the robot, compute the path as a sequence of predefined motion segments - segments of straight line and circle (Dubins car, Reeds-Shep car)

Feedback control

- More suitable alternative
- Use state feedback controller
- At each instance of time compute a control law
- Given the current error between current and desired position

Kinematic Position Control

The kinematic of a differential drive mobile robot described in the initial frame $\left\{x_{I}, y_{I}, \theta\right\}$ is given by,

$$
{ }^{I}\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & 0 \\
\sin \theta & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
v \\
\omega
\end{array}\right]
$$

relating the linear velocities in the direction of the x_{I} and y_{I} of the initial frame.
Let α denote the angle between the x_{R} axis of the robots reference frame and the vector connecting the center of the axle of the wheels with the final position.

Motion Control (kinematic control)

- The objective of a kinematic controller is to follow a trajectory described by its position and/or velocity profiles as function of time.
- Motion control is not straight forward because mobile robots are non-holonomic systems.
- However, it has been studied by various research groups and some adequate solutions for (kinematic) motion control of a mobile robot system are available.
- Most controllers are not considering the dynamics of the system

Motion Control - Streering to a point

- Consider our robot $\dot{x}=v \cos \theta$

$$
\begin{aligned}
& \dot{y}=v \sin \theta \\
& \dot{\theta}=\omega
\end{aligned}
$$

- To steer the robot to desired position $\left[x_{g}, y_{g}\right]$

$$
\begin{gathered}
v=K_{v} \sqrt{\left(x-x_{g}\right)^{2}+\left(y-y_{g}\right)^{2}} \\
\omega=\tan ^{-1} \frac{y_{g}-y}{x_{g}-x}
\end{gathered}
$$

Motion Control: Steering to a pose

- Set intermediate positions lying on the requested path.
- Given a goal how to compute the control commands for
- linear and angular velocities to reach the desired configuration
- Problem statement
- Given arbitrary position and orientation of the robot $[x, y, \theta]$ how to reach desired goal orientation and position $\left[x_{g}, y_{g}, \theta_{g}\right]$

Motion Control: Feedback Control, Problem Statement

- Find a control matrix K, if exists

$$
K=\left[\begin{array}{lll}
k_{11} & k_{12} & k_{13} \\
k_{21} & k_{22} & k_{23}
\end{array}\right]
$$

- with $k_{i j}=k(t, e)$
- such that the control of $v(t)$ and $\omega(t)$

$$
\left[\begin{array}{c}
v(t) \\
\omega(t)
\end{array}\right]=K \cdot e=K \cdot\left[\begin{array}{l}
x \\
y \\
\theta
\end{array}\right]
$$

- drives the error e to zero. $\quad \lim _{t \rightarrow \infty} e(t)=0$

Motion Control:

Kinematic Position Control

- The kinematic of a differential drive mobile robot described in the initial frame $\left\{X_{I}, y_{I}, \theta\right\}$ is given by,

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & 0 \\
\sin \theta & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
v \\
\omega
\end{array}\right]
$$

where and are the linear velocities in the direction of the x_{I} and y_{I} of the initial frame. Let α denote the angle between the x_{R} axis of the robots reference frame and the vector connecting the center of the axle of the wheels with the final position.

Kinematic Position Control: Coordinates Transformation

Coordinates transformation into polar coordinates with its origin at goal position:

$$
\begin{aligned}
& \rho=\sqrt{\Delta x^{2}+\Delta y^{2}} \\
& \alpha=-\theta+\operatorname{atan} 2(\Delta y, \Delta x) \\
& \beta=-\theta-\alpha
\end{aligned}
$$

System description, in the new polar coordinates

$$
\left[\begin{array}{c}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{array}\right]=\left[\begin{array}{cc}
-\cos \alpha & 0 \\
\frac{\sin \alpha}{\rho} & -1 \\
-\frac{\sin \alpha}{\rho} & 0
\end{array}\right]\left[\begin{array}{l}
v \\
\omega
\end{array}\right]
$$

$$
\left[\begin{array}{c}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{array}\right]=\left[\begin{array}{cc}
\cos \alpha & 0 \\
-\frac{\sin \alpha}{\rho} & 1 \\
\frac{\sin \alpha}{\rho} & 0
\end{array}\right]\left[\begin{array}{l}
v \\
\omega
\end{array}\right]
$$

For α from $I_{1}=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$
\text { for } I_{2}=(-\pi,-\pi / 2] \cup(\pi / 2, \pi]
$$

Kinematic Position Control: Remarks

- The coordinates transformation is not defined at $x=y=0$; as in such a point the determinant of the Jacobian matrix of the transformation is not defined, i.e. it is unbounded
- For $\alpha \in I_{1}$ the forward direction of the robot points toward the goal, for $\alpha \in I_{2}$ it is the backward direction.
- By properly defining the forward direction of the robot at its initial configuration, it is always possible to have $\alpha \in I_{1}$ at $t=0$. However this does not mean that α remains in I_{1} tor all time t.

Kinematic Position Control: The Control Law

- It can be shown, that with

$$
v=k_{\rho} \rho \quad \omega=k_{\alpha} \alpha+k_{\beta} \beta
$$

the feedback controlled system

$$
\left[\begin{array}{c}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{array}\right]=\left[\begin{array}{c}
-k_{\rho} \rho \cos \alpha \\
k_{\rho} \sin \alpha-k_{\alpha} \alpha-k_{\beta} \beta \\
-k_{\rho} \sin \alpha
\end{array}\right]
$$

- will drive the robot to $(\rho, \alpha, \beta)=(0,0,0)$
- The control signal v has always constant sign,
- the direction of movement is kept positive or negative during movement
- parking maneuver is performed always in the most natural way and without ever inverting its motion.
- Question: How to select the constant parameters
- to achieve that the error will go to zero
- Digression-review

Previously - Eigenvalues and Eigenvectors

For the previous example

$$
\lambda_{1}=-1, x_{1}=[1,1]^{T} \quad \lambda_{2}=-2, x_{2}=[5,2]^{T}
$$

We will get special solutions to ODE $\dot{\mathbf{u}}=A \mathbf{u}$

$$
\mathbf{u}=e^{\lambda_{1} t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \mathbf{u}=e^{\lambda_{2} t}\left[\begin{array}{l}
5 \\
2
\end{array}\right]
$$

Their linear combination is also a solution (due to the linearity of $\dot{\mathbf{u}}=A \mathbf{u}$)

$$
\mathbf{u}=c_{1} e^{\lambda_{1} t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} e^{\lambda_{1} t}\left[\begin{array}{l}
5 \\
2
\end{array}\right]
$$

In the context of diff. equations - special meaning Any solution can be expressed as linear combination Individual solutions correspond to modes

Eigenvalues of linear system

- Given linear system of differential equations

$$
\dot{\mathbf{x}}=A \mathbf{x}
$$

- For 2 dimesional system (A is 2×2), A has two eigenvalues
- Define $\Delta=\lambda_{1} \lambda_{2}$ and $\tau=\lambda_{1}+\lambda_{2}$
- if $\Delta<0$ saddle node
- if $\Delta>0$ we have two cases

1. $\tau>0$ eigenvalues positive

2. $\tau<0$ eigenvalues negative : stable nodes of the system

Kinematic Position Control: Resulting Path

- Digression
- Notes of system linearization

Linearization

- But our system is not linear, e.g. cannot be written in the form

$$
\dot{\mathbf{x}}=A \mathbf{x}
$$

Some terminology

- We have derived kinematics equations of the robot

$$
\begin{aligned}
& \dot{x}=v \cos \theta \\
& \dot{y}=v \sin \theta \\
& \dot{\theta}=\omega
\end{aligned}
$$

- Non-linear differential equation $\dot{x}=f(x, u)$
- In our case

$$
\begin{aligned}
& \dot{x}=f_{1}(x, y, \theta, v, \omega) \\
& \dot{y}=f_{2}(x, y, \theta, v, \omega) \\
& \dot{\theta}=f_{3}(x, y, \theta, v, \omega)
\end{aligned}
$$

Jacobian Matrix

- Suppose you have two dim function

$$
f(\mathbf{x})=\left[\begin{array}{l}
f_{1}(\mathbf{x}) \\
f_{2}(\mathbf{x})
\end{array}\right]
$$

- Gradient operator $\nabla_{\mathbf{x}}=\left[\begin{array}{llll}\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \cdots & \frac{\partial}{\partial x_{n}}\end{array}\right]^{T}$
- Jacobian is defined as

$$
\begin{aligned}
& \mathbf{F}_{\mathbf{x}}=\left[\begin{array}{c}
f_{1}(\mathbf{x}) \\
f_{2}(\mathbf{x})
\end{array}\right] \cdot\left[\begin{array}{lll}
\frac{\partial}{\partial x_{1}} & \cdots & \frac{\partial}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{lll}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}}
\end{array}\right] \\
& \text { - Linearization of a function }
\end{aligned}
$$

$$
F(\mathbf{x})=F\left(\mathbf{x}_{0}\right)+J_{F}\left(\mathbf{x}_{0}\right) d \mathbf{x}
$$

Linearization

- But our system is not linear, e.g. cannot be written in the form

$$
\dot{\mathbf{x}}=A \mathbf{x}
$$

- Linearization of the system

$$
\dot{\mathbf{x}}=J_{F}\left(\mathbf{x}_{0}\right) d \mathbf{x}+F\left(\mathbf{x}_{0}\right)
$$

$$
F(\mathbf{x})=F\left(\mathbf{x}_{0}\right)+J_{F}\left(\mathbf{x}_{0}\right) d \mathbf{x}
$$

Kinematic Position Control: Stability Issue

- Continuous linear time-invariant system is exponentially stable if and only of the system has eigenvalues (i.e. poles of input-to-output systems) with strictly negative real parts
- Exponential Stability is a form of asymptotic stability
- In practice the system will not "blow up" give unbounded output, when given an finite input and non-zero initial condition

Kinematic Position Control: Stability Issue

- It can further be shown, that the closed loop control system is locally exponentially stable if

$$
k_{\rho}>0 ; k_{\beta}<0 ; k_{\alpha}-k_{\rho}>0
$$

- Proof: linearize around equilibrium for small $x \rightarrow \cos x=1, \sin x=x$

$$
\left[\begin{array}{c}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{array}\right]=\left[\begin{array}{ccc}
-k_{\rho} & 0 & 0 \\
0 & -\left(k_{\alpha}-k_{\rho}\right) & -k_{\beta} \\
0 & -k_{\rho} & 0
\end{array}\right]\left[\begin{array}{l}
\rho \\
\alpha \\
\beta
\end{array}\right] \quad A=\left[\begin{array}{ccc}
-k_{\rho} & 0 & 0 \\
0 & -\left(k_{\alpha}-k_{\rho}\right) & -k_{\beta} \\
0 & -k_{\rho} & 0
\end{array}\right]
$$

- and the characteristic polynomial of the matrix A of all roots have negative real parts.

$$
\left(\lambda+k_{\rho}\right)\left(\lambda^{2}+\lambda\left(k_{\alpha}-k_{\rho}\right)-k_{\rho} k_{\beta}\right)
$$

