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Robot Kinematics: 

 Forward and Inverse Kinematics 
 
 

Serdar Kucuk and Zafer Bingul 
 

1. Introduction       

Kinematics studies the motion of bodies without consideration of the forces or 
moments that cause the motion. Robot kinematics refers the analytical study of 
the motion of a robot manipulator. Formulating the suitable kinematics mod-
els for a robot mechanism is very crucial for analyzing the behaviour of indus-
trial manipulators. There are mainly two different spaces used in kinematics 
modelling of manipulators namely, Cartesian space and Quaternion space. The 
transformation between two Cartesian coordinate systems can be decomposed 
into a rotation and a translation. There are many ways to represent rotation, 
including the following: Euler angles, Gibbs vector, Cayley-Klein parameters, 
Pauli spin matrices, axis and angle, orthonormal matrices, and Hamilton 's 
quaternions. Of these representations, homogenous transformations based on 
4x4 real matrices (orthonormal matrices) have been used most often in robot-
ics. Denavit & Hartenberg (1955) showed that a general transformation be-
tween two joints requires four parameters. These parameters known as the 
Denavit-Hartenberg (DH) parameters have become the standard for describing 
robot kinematics. Although quaternions constitute an elegant representation 
for rotation, they have not been used as much as homogenous transformations 
by the robotics community. Dual quaternion can present rotation and transla-
tion in a compact form of transformation vector, simultaneously.  While the 
orientation of a body is represented nine elements in homogenous transforma-
tions, the dual quaternions reduce the number of elements to four. It offers 
considerable advantage in terms of computational robustness and storage effi-
ciency for dealing with the kinematics of robot chains (Funda et al., 1990). 
The robot kinematics can be divided into forward kinematics and inverse 
kinematics. Forward kinematics problem is straightforward and there is no 
complexity deriving the equations. Hence, there is always a forward kinemat-
ics solution of a manipulator. Inverse kinematics is a much more difficult prob-
lem than forward kinematics. The solution of the inverse kinematics problem 
is computationally expansive and generally takes a very long time in the real 
time control of manipulators. Singularities and nonlinearities that make the 
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problem more difficult to solve. Hence, only for a very small class of kinemati-
cally simple manipulators (manipulators with Euler wrist) have complete ana-
lytical solutions (Kucuk & Bingul, 2004). The relationship between forward 
and inverse kinematics is illustrated in Figure 1. 
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Figure 10. The schematic representation of forward and inverse kinematics. 

 
Two main solution techniques for the inverse kinematics problem are analyti-
cal and numerical methods. In the first type, the joint variables are solved ana-
lytically according to given configuration data. In the second type of solution, 
the joint variables are obtained based on the numerical techniques. In this 
chapter, the analytical solution of the manipulators is examined rather then 
numerical solution.  
There are two approaches in analytical method: geometric and algebraic solu-
tions. Geometric approach is applied to the simple robot structures, such as 2-
DOF planar manipulator or less DOF manipulator with parallel joint axes. For 
the manipulators with more links and whose arms extend into 3 dimensions or 
more the geometry gets much more tedious. In this case, algebraic approach is 
more beneficial for the inverse kinematics solution.  
There are some difficulties to solve the inverse kinematics problem when the 
kinematics equations are coupled, and multiple solutions and singularities ex-
ist. Mathematical solutions for inverse kinematics problem may not always 
correspond to the physical solutions and method of its solution depends on the 
robot structure. 
This chapter is organized in the following manner. In the first section, the for-
ward and inverse kinematics transformations for an open kinematics chain are 
described based on the homogenous transformation. Secondly, geometric and 
algebraic approaches are given with explanatory examples. Thirdly, the prob-
lems in the inverse kinematics are explained with the illustrative examples. Fi-
nally, the forward and inverse kinematics transformations are derived based 
on the quaternion modeling convention. 
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2. Homogenous Transformation Modelling Convention  

2.1. Forward Kinematics 

A manipulator is composed of serial links which are affixed to each other revo-
lute or prismatic joints from the base frame through the end-effector. Calculat-
ing the position and orientation of the end-effector in terms of the joint vari-
ables is called as forward kinematics. In order to have forward kinematics for a 
robot mechanism in a systematic manner, one should use a suitable kinematics 
model. Denavit-Hartenberg method that uses four parameters is the most 
common method for describing the robot kinematics. These parameters ai-1, 

1i−
α , di and θi are the link length, link twist, link offset and joint angle, respec-

tively. A coordinate frame is attached to each joint to determine DH parame-
ters. Zi axis of the coordinate frame is pointing along the rotary or sliding di-
rection of the joints. Figure 2 shows the coordinate frame assignment for a 
general manipulator. 
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Figure 2.  Coordinate frame assignment for a general manipulator. 

 
As shown in Figure 2, the distance from Zi-1 to Zi measured along Xi-1 is as-
signed as ai-1, the angle between Zi-1 and Zi measured along Xi is assigned as  

αi-1, the distance from Xi-1 to Xi measured along Zi is assigned as di and the an-

gle between Xi-1 to Xi measured about Zi is assigned as θi (Craig, 1989). 

The general transformation matrix T1i

i

−  for a single link can be obtained as fol-

lows. 
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where  Rx  and  Rz  present  rotation, Dx  and Qi  denote translation, and cθi and 

sθi are the short hands of cosθi and sinθi, respectively. The forward kinematics 
of the end-effector with respect to the base frame is determined by multiplying 

all of the T1i

i

−  matrices. 
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An alternative representation of Tbase

effector_end  can be written as  
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where rkj’s represent the rotational elements of transformation matrix (k and 
j=1, 2 and 3). px, py  and pz denote the elements of the position vector. For a six 
jointed manipulator, the position and orientation of the end-effector with re-
spect to the base is given by  
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where qi is the joint variable (revolute or prismatic joint) for joint i, (i=1, 2, .. 
.6). 
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Example 1. 
As an example, consider a 6-DOF manipulator (Stanford Manipulator) whose 
rigid body and coordinate frame assignment are illustrated in Figure 3. Note 
that the manipulator has an Euler wrist whose three axes intersect at a com-
mon point. The first (RRP) and last three (RRR) joints are spherical in shape. P 
and R denote prismatic and revolute joints, respectively. The DH parameters 
corresponding to this manipulator are shown in Table 1.  
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Figure 3. Rigid body and coordinate frame assignment for the Stanford Manipulator. 

 
i θi αi-1 ai-1 di 

1 θ1 0 0 h1 

2 θ2 90 0 d2 

3 0 -90 0 d3 
4 θ4 0 0 0 

5 θ5 90 0 0 

6 θ6 -90 0 0 

Table 1. DH parameters for the Stanford Manipulator. 
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It is straightforward to compute each of the link transformation matrices using 
equation 1, as follows. 
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The forward kinematics of the Stanford Manipulator can be determined in the 

form of equation 3 multiplying all of the T1i

i

−  matrices, where i=1,2, …, 6. In 

this case, T0

6  is given by 
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where 

 
)ssc)cccss(c(c)sccsc(sr 521421415642114611 θθθ+θθθ−θθθθ−θθθ+θθθ−=  

)sccsc(c)ssc)cccss(c(sr 421146521421415612 θθθ+θθθ−θθθ+θθθ−θθθθ=  

25142141513 scc)cccss(sr θθθ−θθθ−θθθ=  

)sss)sccsc(c(c)ssccc(sr 521142415641241621 θθθ−θθθ+θθθθ+θθθ−θθθ=  

)sss)sccsc(c(s)ssccc(cr 521142415641241622 θθθ−θθθ+θθθθ−θθθ−θθθ=  

21514241523 ssc)sccsc(sr θθθ−θθθ+θθθ−=  

64225452631 sss)sccsc(cr θθθ−θθθ+θθθ=  

42625452632 ssc)sccsc(sr θθθ−θθθ+θθθ−=  

5245233 sscccr θθθ−θθ=  

21312x scdsdp θθ−θ=  

21312y ssdcdp θθ−θ−=  

231z cdhp θ+=  

 

2.1.1 Verification of Mathematical model 

In order to check the accuracy of the mathematical model of the Stanford Ma-
nipulator shown in Figure 3, the following steps should be taken. The general 
position vector in equation 11 should be compared with the zero position vec-
tor in Figure 4.   
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Figure 4. Zero position for the Stanford Manipulator. 
 

The general position vector of the Stanford Manipulator is given by 
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In order to obtain the zero position in terms of link parameters, let’s set 

θ1=θ2=0° in equation 12.  
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All of the coordinate frames in Figure 3 are removed except the base which is 
the reference coordinate frame for determining the link parameters in zero po-
sition as in Figure 4. Since there is not any link parameters observed in the di-
rection of +x0 and -x0 in Figure 4, px=0. There is only d2 parameter in –y0 direc-
tion so py equals -d2. The parameters h1 and d3 are the +z0 direction, so pz 
equals h1+d3. In this case, the zero position vector of Stanford Manipulator are 
obtained as following 
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It is explained above that the results of the position vector in equation 13 are 
identical to those obtained by equation 14. Hence, it can be said that the 
mathematical model of the Stanford Manipulator is driven correctly. 
 

2.2. Inverse Kinematics 

The inverse kinematics problem of the serial manipulators has been studied 
for many decades. It is needed in the control of manipulators. Solving the in-
verse kinematics is computationally expansive and generally takes a very long 
time in the real time control of manipulators. Tasks to be performed by a ma-
nipulator are in the Cartesian space, whereas actuators work in joint space. 
Cartesian space includes orientation matrix and position vector. However, 
joint space is represented by joint angles. The conversion of the position and 
orientation of a manipulator end-effector from Cartesian space to joint space is 
called as inverse kinematics problem. There are two solutions approaches 
namely, geometric and algebraic used for deriving the inverse kinematics solu-
tion, analytically. Let’s start with geometric approach. 
 

2.2.1 Geometric Solution Approach 

Geometric solution approach is based on decomposing the spatial geometry of 
the manipulator into several plane geometry problems.It is applied to the sim-
ple robot structures, such as, 2-DOF planer manipulator whose joints are both 
revolute and link lengths are l1 and l2 shown in Figure 5a. Consider Figure 5b 
in order to derive the kinematics equations for the planar manipulator. 
 
The components of the point P (px and py) are determined as follows. 
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(b) 
 

Figure 5. a) Planer manipulator; b) Solving the inverse kinematics based on trigo-
nometry. 
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where 212112 ssccc θθ−θθ=θ  and 212112 sccss θθ+θθ=θ . The solution of 2θ can be 

computed from summation of squaring both equations 15 and 16.  
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Since 1sc 1
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=θ+θ , the equation given above is simplified as follows. 
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=θ+θ  (i =1,2,3,……),  2sθ  is obtained as  
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Finally, two possible solutions for 2θ  can be written as 
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Let’s first, multiply each side of equation 15 by 1cθ  and equation 16 by 1sθ and 

add the resulting equations in order to find the solution of 1θ  in terms of link 

parameters and the known variable 2θ .  
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The simplified equation obtained as follows. 
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In this step, multiply both sides of equation 15 by 1sθ−  and equation 16 by 1cθ  

and then adding the resulting equations produce 
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The simplified equation is given by 
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Now, multiply each side of equation 20 by xp  and equation 21 by yp  and add 

the resulting equations in order to obtain 1cθ . 
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1sθ  is obtained as 
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As a result, two possible solutions for 1θ  can be written  

 

⎟⎟
⎟
⎠
⎞

⎜⎜
⎜
⎝
⎛

+

θ+θ+⎟⎟⎠
⎞

⎜⎜⎝
⎛

+

θ+θ+
−±=θ

2

y

2

x

22y221x

2

2

y

2

x

22y221x

1
pp

slp)cll(p
,

pp

slp)cll(p
12tanA  (24) 

 
Although the planar manipulator has a very simple structure, as can be seen, 
its inverse kinematics solution based on geometric approach is very cumber-
some.  
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2.2.2 Algebraic Solution Approach 

For the manipulators with more links and whose arm extends into 3 dimen-
sions the geometry gets much more tedious. Hence, algebraic approach is cho-
sen for the inverse kinematics solution. Recall the equation 4 to find the in-
verse kinematics solution for a six-axis manipulator.  
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To find the inverse kinematics solution for the first joint ( 1q ) as a function of 

the known elements of Tbase

effectorend− , the link transformation inverses are premul-

tiplied as follows.  
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, I is identity matrix. In this case the above equation 

is given by 
 

[ ] )q(T)q(T)q(T)q(T)q(TT)q(T
6

5

65

4

54

3

43

2

32

1

2

0

6

1

1

0

1
=

−

 (25) 

 
To find the other variables, the following equations are obtained as a similar 
manner. 
 

[ ] )q(T)q(T)q(T)q(TT)q(T)q(T
6

5

65

4

54

3

43

2

3

0

6

1

2

1

21

0

1
=

−

 (26) 

 

[ ] )q(T)q(T)q(TT)q(T)q(T)q(T
6

5

65

4

54

3

4

0

6

1

3

2

32

1

21

0

1
=

−

 (27) 

 

[ ] )q(T)q(TT)q(T)q(T)q(T)q(T
6

5

65

4

5

0

6

1

4

3

43

2

32

1

21

0

1
=

−

 (28) 

 

[ ] )q(TT)q(T)q(T)q(T)q(T)q(T
6

5

6

0

6

1

5

4

54

3

43

2

32

1

21

0

1
=

−

 (29) 

 
There are 12 simultaneous set of nonlinear equations to be solved. The only 
unknown on the left hand side of equation 18 is q1. The 12 nonlinear matrix 
elements of   right hand side are either zero, constant or functions of q2 
through q6. If the elements on the left hand side which are the function of q1 
are equated with the elements on the right hand side, then the joint variable q1 
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can be solved as functions of r11,r12, … r33, px, py, pz and the fixed link parame-
ters. Once q1 is found, then the other joint variables are solved by the same 
way as before. There is no necessity that the first equation will produce q1 and 
the second q2 etc. To find suitable equation for the solution of the inverse kine-
matics problem, any equation defined above (equations 25-29) can be used 
arbitrarily. Some trigonometric equations used in the solution of inverse kine-
matics problem are given in Table 2. 
 
 

. 
 Equations Solutions 

1 ccosbsina =θ+θ  ( )c,cba2tanA)b,a(2tanA 222
−+=θ m  

2 0cosbsina =θ+θ  )a,b(2tanA −=θ  or  )a,b(2tanA −=θ  

3 acos =θ and bsin =θ  ( )a,b2tanA=θ  

4 acos =θ  ( )a,a12tanA 2
−=θ m  

5 asin =θ  ( )2a1,a2tanA −=θ m  

Table 2.  Some trigonometric equations and solutions used in inverse kinematics 

 
 
 
Example 2. 
 
As an example to describe the algebraic solution approach, get back the in-
verse kinematics for the planar manipulator. The coordinate frame assignment 
is depicted in Figure 6 and DH parameters are given by Table 3.  

 
 
 

i θi αi-1 ai-1 di 

1 θ1 0 0 0  

2 θ2 0 l1 0 

3 0 0 l2 0 

 

 

 

Table 3. DH parameters for the planar manipulator. 
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l1

θ1

θ2

l2

X0,1

Y0,1

Z0,1

X2

Y2

Z2

X3

Y3

Z3

 
Figure 6. Coordinate frame assignment for the planar manipulator. 

 
The link transformation matrices are given by 
 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
θθ

θ−θ

=

1000

0100

00cs

00sc

T
11

11

0

1

 (30) 

 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
θθ

θ−θ

=

1000
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l0sc

T
22

122

1

2

 (31) 

 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

1000

0100

0010

l001

T

2

2

3

 (32) 

 
 
Let us use the equation 4 to solve the inverse kinematics of the 2-DOF manipu-
lator.  
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z333231

y232221

x131211

0

3
=
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⎦

⎤
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⎣

⎡
=  (33) 

 

Multiply each side of equation 33 by 10

1T
−   

 

TTTTTT 2

3

1

2

0

1

10

1

0

3

10

1

−−
=  (34) 

 
where 
 

⎥⎦
⎤⎢⎣

⎡ −
=

−

1000

PRR
T 1

0T0

1

T0

110

1
 (35) 

 

In equation 35, T0

1 R  and 1

0 P denote the transpose of rotation and position vec-

tor of T0

1 , respectively. Since, ITT 0

1

10

1 =
− , equation 34 can be rewritten as fol-

lows. 
 

TTTT 2

3

1

2

0

3

10

1
=

−
 (36) 

 
Substituting the link transformation matrices into equation 36 yields   
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θθ
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⎦
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⎣

⎡

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
θθ−

θθ
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0100

0010

l001
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0100

00cs

l0sc
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prrr

prrr

prrr
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0100

00cs

00sc
2

22

122

z333231

y232221

x131211

11

11

 

 (37) 
 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
θ

+θ

=

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
θ+θ−

θ+θ

1000

0...

sl...

lcl...

1000

p...

pcps...

pspc...

22

122

z

y1x1

y1x1

 

 
 
Squaring the (1,4) and (2,4) matrix elements of each side in equation 37  
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2

12212

22

211yx
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y1

22

x1

2 lcll2clscpp2pspc +θ+θ=θθ+θ+θ        

2

22

211yx

2

y1

22

x1

2 slscpp2pcps θ=θθ−θ+θ  

 
and then adding the resulting equations above gives 
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Finally, two possible solutions for 2θ  are computed as follows using the fourth 

trigonometric equation in Table 2. 

 

⎟⎟
⎟
⎠
⎞
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⎜
⎝
⎛ −−+⎥⎦
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⎡ −−+
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21

2

2

2

1

2

y

2

x

2

21
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2

2

1

2

y

2

x

2
ll2

llpp
,

ll2

llpp
12tanA m  (38) 

 

Now the second joint variable 2θ  is known. The first joint variable 1θ  can be 

determined equating the (1,4) elements of each side in equation 37 as follows. 
 

122y1x1
lclpspc +θ=θ+θ  (39) 

 
Using the first trigonometric equation in Table 2 produces two potential solu-
tions. 
 

)lcl,)lcl(pp(2tanA)p,p(2tanA
122

2

122x

2

yxy1
+θ+θ−+=θ m  (40) 

 
Example 3. 
 
As another example for algebraic solution approach, consider the six-axis Stan-
ford Manipulator again. The link transformation matrices were previously de-
veloped. Equation 26 can be employed in order to develop equation 41. The 
inverse kinematics problem can be decoupled into inverse position and orien-
tation kinematics. The inboard joint variables (first three joints) can be solved 
using the position vectors of both sides in equation 41. 
 

[ ] TTTTTTT 5
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 (41) 
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)hp(s)pspc(c...

3

2y1x1
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The revolute joint variables 1θ  and 2θ  are obtained equating the (3,4) and (1,4) 

elements of each side in equation 41 and using the first and second trigono-
metric equations in Table 2, respectively.  
 

)d,dpp(2tanA)p,p(2tanA
2

2

2

2

y

2

xyx1
−+±−=θ  (42) 

 

)hp,pspc(2tanA 1zy1x12 +−θ+θ±=θ  (43) 

 

The prismatic joint variable 3d  is extracted from the (2,4) elements of each side 

in equation 41 as follows. 
 

)hp(c)pspc(sd
1z2y1x123

−θ+θ+θθ−=  (44) 

 
The last three joint variables may be found using the elements of rotation ma-
trices of each side in equation 41. The rotation matrices are given by  
 

 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
θθ

θθθ−θθ

θθ−

=

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
θ−θ

θθ−θθ−θ

θθ+θθ+θ

1000

.ss..

.csssc

.sc..

1000

.crsr..

.ssrscrcred

.scrccrsr..

54

56556

54

123113

21232113233

12232113233

 (45) 

 

where 21212111231 ssrscrcrd θθ−θθ−θ=  and 21222112232 ssrscrcre θθ−θθ−θ= . The 

revolute joint variables 5θ  is determined equating the (2,3) elements of both 

sides in equation 45 and using the fourth trigonometric equation in Table 2, as 
follows.  
 

( )
21232113233

2

212321132335
ssrscrcr,)ssrscrcr(12tanA θθ−θθ−θθθ−θθ−θ−±=θ  (46) 

 

Extracting  4cosθ  and 4sin θ  from (1,3) and (3,3), 6cosθ  and 6sin θ  from (2,1) 

and (2,2) elements of each side in equation 45 and using the third trigonomet-
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ric equation in Table 2, 4θ  and 6θ  revolute joint variables can be computed, re-

spectively. 
 

⎟⎟⎠
⎞⎜⎜⎝
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θ

θθ+θθ+θ
−

θ

θ−θ
=θ

5
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s
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⎟⎟⎠
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θ
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θ

θθ−θθ−θ
−=θ

5

21212111231
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21222112232

6
s

ssrscrcr
,

s
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2.2.3 Some Drawbacks for the Solution of the Inverse Kinematics Problem 

Although solution of the forward kinematics problem is steady forward, the 
solution of the inverse kinematics problem strictly depend on the robot struc-
tures. Here are some difficulties that should be taken in account while driving 
the inverse kinematics.   
The structure of the six-axis manipulators having Euler wrist allows for the 
decoupling of the position and orientation kinematics. The geometric feature 
that generates this decoupling is the intersection of the last tree joint axes. 
Hence, their inverse kinematics problems are quite simple.  On the other hand, 
since the orientation and position of some 6 DOF manipulators having offset 
wrist (whose three axes does not intersect at a common point) are coupled, 
such manipulators do not produce suitable equations for the analytical solu-
tion. In this case, numerical methods are employed to obtain the solution of the 
inverse kinematics problem.  

Consider the example 3 for describing the singularity. As long as o05 ≠θ  and 
o1805 ≠θ , 4θ  and 6θ  can be solved. A singularity of the mechanism exists 

when o05 =θ  and o1805 =θ . In this case, the manipulator loses one or more de-

grees of freedom. Hence, joint angles, 4θ  and 6θ  make the same motion of the 

last link of the manipulator.  
The inverse kinematics solution for a manipulator whose structure comprises 
of revolute joints generally produces multiple solutions.  Each solution should 
be checked in order to determine whether or not they bring the end-effector to 
the desired poison. Suppose the planar manipulator illustrated in Figure 5, 
with the link lengths l1=10 and l2=5 in some units. Use the inverse kinematics 
solutions given in equations 38 and 40 to find the joint angles which bring the 
end-effector at the following position (px,py)=(12.99, 2.5).  Substituting l1=10, 
l2=5 and (px,py)=(12.99, 2.5) values into equation 38 yields  
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2222
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( )4999.0,)4999.0(12tanA 2
−= m  (49) 

( ) omm 604999.0,866.02tanA ==  

 

As can be seen from equation 49, 2θ  has two solutions, corresponding to the 

positive (+60°) and negative (-60°) sign choices. Since )cos()cos( θ−=θ , one 

( 2θ =60°) of above two solutions can be employed to find the numeric values of 

the first joint as follows. 
 

m)99.12,5.2(2tanA
1

=θ  

)10)60(c5,)10)60(c5(99.125.2(2tanA 222
+⋅+⋅−+  (50) 

1.199.10 m=  
 
Clearly, the planar manipulator has four different mathematical solutions 
given by  
 

}60,301.199.10{S
211

oo
+=θ=+=θ=  (51) 

 

}60,301.199.10{S
212

oo
−=θ=+=θ=  (52) 

 

}60,20.81.199.10{S
213

oo
+=θ−=−=θ=  (53) 

 

}60,20.81.199.10{S
214

oo
−=θ−=−=θ=  (54) 

 
As a result, these four sets of link angle values given by equations 51 through 
54 solve the inverse kinematics problem for the planar manipulator. Figure 7 
illustrates the particular positions for the planar manipulator in each of above 
solutions. 
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 (c)  (d) 

 
Figure  7. Four particular positions for the planar manipulator. 

 
Although there are four different inverse kinematics solutions for the planar 
manipulator, only two (Figure 7b and 6c) of these bring the end-effector to the 
desired position of (px, py)=(12.99, 2.5).    
Mathematical solutions for inverse kinematics problem may not always corre-
spond to physical solutions. Another words, there are physical link restrictions 
for any real manipulator. Therefore, each set of link angle values should be 
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checked in order to determine whether or not they are identical with the 

physical link limits. Suppose, 2θ =180°, the second link is folded completely 

back onto first link as shown in Figure 8. One can readily verify that this joint 
value is not physically attained by the planar manipulator. 
 

 

θ2=180

θ1

l2

l1

 
 
 

Figure 8. The second link is folded completely back onto the first link when 2θ =180°. 

3. Quaternion Modelling Convention 

Formulating the suitable mathematical model and deriving the efficient algo-
rithm for a robot kinematics mechanism are very crucial for analyzing the be-
havior of serial manipulators. Generally, homogenous transformation based 
on 4x4 real matrices is used for the robot kinematics. Although such matrices 
are implemented to the robot kinematics readily, they include in redundant 
elements (such matrices are composed of 16 elements of which four are com-
pletely trivial) that cause numerical problems in robot kinematics and also in-
crease cost of algorithms (Funda et al., 1990). Quaternion-vector pairs are used 
as an alternative method for driving the robot kinematics of serial manipula-
tor. The successive screw displacements in this method provide a very com-
pact formulation for the kinematics equations and also reduce the number of 
equations obtained in each goal position, according to the matrix counterparts.  
Since (Hamilton, 2004)’s introduction of quaternions, they have been used in 
many applications, such as, classical and quantum mechanics, aerospace, geo-
metric analysis, and robotics. While (Salamin, 1979) presented advantages of 
quaternions and matrices as rotational operators, the first application of the 
former in the kinematics was considered by (Kotelnikov, 1895). Later, general 
properties of quaternions as rotational operators were studied by (Pervin & 
Webb, 1982) who also presented quaternion formulation of moving geometric 
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objects. (Gu & Luh, 1987) used quaternions for computing the Jacobians for ro-
bot kinematics and dynamics. (Funda et al., 1990) compared quaternions with 
homogenous transforms in terms of computational efficiency. (Kim & Kumar, 
1990) used quaternions for the solution of direct and inverse kinematics of a 6-
DOF manipulator. (Caccavale & Siciliano, 2001) used quaternions for kine-
matic control of a redundant space manipulator mounted on a free-floating 
space-craft. (Rueda et al., 2002) presented a new technique for the robot cali-
bration based on the quaternion-vector pairs.  
 

3.1. Quaternion Formulation 

A quaternion q is the sum of scalar (s) and three dimensional vectors (v). Other 
words, it is a quadrinomial expression, with a real angle θ and an axis of rota-
tion n = ix + jy + kz, where i, j and k are imaginary numbers. It may be ex-
pressed as a quadruple q = (θ, x, y, z) or as a scalar and a vector q = (θ, u), 
where u= x, y, z.  In this chapter it will be denoted as,   
 

]k,k,k)2/sin(),2/[cos(]v,s[q
zyx

><θθ==  (55) 

 

where Rs∈ , 3Rv∈  and  θ and k, a rotation angle and unit axis, respectively.  
For a vector r oriented an angle θ about the vector k, there is a quaternion  

]z,y,x,s[]k,k,k)2/sin(),2/[cos(q zyx ><=><θθ=  that represents the orienta-

tion. This is equivalent to the rotation matrix R. 
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⎥
⎦
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⎢
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−−−+

+−−−

=
22

22
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y2x21sx2yz2sy2xz2

sx2yz2z2x21sz2xy2

sy2xz2sz2xy2z2y21

R  (56) 

 
If R is equated to a 3x3 rotational matrix given by 
 
 

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡

333231

232221

131211

rrr

rrr

rrr

 (57) 

 

and since, q is unit magnitude ( 1zyxs 2222
=+++ ) then, the rotation matrix R 

can be mapped to a quaternion ]z,y,x,s[q ><= as follows. 
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1rrr
s

332211
+++

=  (58) 

s4

rr
x 2332

−
=  (59) 

 

s4

rr
y 3113

−
=  (60) 

 

s4

rr
z 1221

−
=  (61) 

 
Although unit quaternions are very suitable for defining the orientation of a 
rigid body, they do not contain any information about its position in the 3D 
space. The way to represent both rotation and translation in a single transfor-
mation vector is to use dual quaternions. The transformation vector using dual 
quaternions for a revolute joint is  
 
 

><><θθ= zyxzyx p,p,p],k,k,k)2/sin(),2/([cos()p,q(Q  (62) 

 
where the unit quaternion q  represents appropriate rotation and the vector  

p=<px, py, pz> encodes corresponding translational displacement. In the case 
of prismatic joints, the displacement is represented by a quaternion-vector pair 
as follows. 
 

)p,p,p],0,0,0,1([)p,q(Q
zyx

><><=  (63) 

 
where ]0,0,0,1[ >< represents unit identity quaternion. Quaternion multiplica-

tion is vital to combining the rotations. Let, ]v,s[q 111 =  and ]v,s[q 222 = denote 

two unit quaternions. In this case, multiplication process is shown as 
 

]vvvsvs,vvss[qq
211221212121

×++⋅−=∗  (64) 

 
where (.), (× ) and (∗ ) are dot product, cross product and  quaternion multipli-
cation, respectively. In the same manner, the quaternion multiplication of two 
point vector transformations is denoted as,    
 

1

1

12121221121
pqpq,qq)p,q()p,q(QQ +∗∗∗=∗=

−
 (65) 
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where, ).pv(v2)pv(s2pqpq 2112112

1

121 ××+×+=∗∗
−  A unit quaternion inverse 

requires only negating its vector part, i.e. 
 

]v,s[]v,s[q 1
−==

−
 (66) 

  
Finally, an equivalent expression for the inverse of a quaternion-vector pair 
can be written as,  
 

)q*p*q,q(Q 111 −−−
−=  (67) 

 

where ))].p(v(v2))p(v(s2[pq*p*q 1
−××+−×−+−=−

−  

3.2 Forward Kinematics 

Based on the quaternion modeling convention, the forward kinematics vector 
transformation for an open kinematics chain can be derived as follows: Con-
sider the Stanford Manipulator once more as illustrated in Figure 9. A coordi-
nate frame is affixed to the base of the manipulator arbitrarily and the z-axis of 
the frame is assigned for pointing along the rotation axis of first joint. This 
frame does not move and, is considered as the reference coordinate frame. The 
position and the orientation vectors of all other joints are assigned in terms of 
this frame. Let’s find orientation vectors. Since the z-axis of the reference coor-
dinate frame is the unit line vector along the rotation axis of the first joint, the 
quaternion vector that represents the orientation is expressed as 
 

]1,0,0sin,[cosq
111

><θθ=  (68) 

 

where 2/11 θ=θ . As shown in Figure 9, the unit line vector of the second joint 

is the opposite direction of the y-axis of the reference coordinate frame, in this 
case, the orientation of the second joint is given by 
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Figure 9. The coordinate frame and unit line vectors for the Stanford Manipulator. 

 

]0,1,0sin,[cosq
222

>−<θθ=  (69) 

 
Because, the third joint is prismatic; there is only a unit identity quaternion 
that can be denoted as 
 

]0,0,0,1[q
3

><=  (70) 

 
Orientations of the last three joints are determined as follows using the same 
approach described above. 
 

]1,0,0sin,[cosq
444

><θθ=  (71) 

]0,1,0sin,[cosq
555

><θθ=  (72) 

 

]1,0,0sin,[cosq
666

><θθ=  (73) 

 
The position vectors are assigned in terms of reference coordinate frame as fol-
lows. When the first joint is rotated anticlockwise direction around the z axis 

of reference coordinate frame by an angle of 1θ , the link d2 traces a circle in the 

xy-plane which is parallel to the xy plane of the reference coordinate frame as 
given in Figure 10a. Any point on the circle can be determined using the vector  
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>θ−θ>=<<=
112121z1y1x1

h,cosd,sindp,p,pp  (74) 

 
If the second joint is rotated as in Figure 10b, in this case the rotation will be 
xz-plane with respect to the reference coordinate frame. The position vector of 
the second quaternion can be written as  
 

>θθ−<=
23232

cosd,0,sindp  (75) 
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Figure 10. a) The link d2 traces a circle on the xy-plane; b) The link d3 traces a circle on 
the xz-plane. 

 
 
Since rotation of the last four joints do not create any displacement for the suc-
cessive joints, the position vectors are denoted as  
 

>=<=== 0,0,0pppp
6543

 (76) 

 

Finally, the kinematics transformations for the Stanford Manipulator defining 
the spatial relationships between successive linkages can be expressed as fol-
lows. 
 

( )>θ−θ<><θθ=
11212111

h,cosd,sind],1,0,0sin,[cosQ  (77) 

 

( )>θθ−<>−<θθ=
2323222

cosd,0,sind],0,1,0sin,[cosQ  (78) 

 

( )><><= 0,0,0],0,0,0,1[Q
3

 (79) 
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( )><><θθ= 0,0,0],1,0,0sin,[cosQ 444  (80) 

 

( )><><θθ= 0,0,0],0,1,0sin,[cosQ 555  (81) 

 

( )><><θθ= 0,0,0],1,0,0sin,[cosQ
666

 (82) 

 

The forward kinematics of the Stanford Manipulator can be determined in the 

form of equation 62, multiplying all of the iQ  matrices, where i=1,2, …, 6.   
 

[ ]( )>θ+θθ−θ−θθ−θ<=
2312131221312

cdh,ssdcd,scdsd,v,s)p,q(Q  (83) 

 

where 11Ms =  and  M,M,Mv 141312 >=< are given by equation 98. 

3.3 Inverse Kinematics 

To solve the inverse kinematics problem, the transformation quaternion is de-
fined as 
 

)p,p,p],c,b,a,w([]T,R[
zyxww

><><=  (84) 

 

where )T,R( ww  represents the known orientation and translation of the robot 

end-effector with respect to the base. Let iQ )6i1( ≤≤ denotes kinematics trans-

formations describing the spatial relationships between successive coordinate 

frames along the manipulator linkages such as )p,q(Q 111 = , )p,q(Q 222 = … 

)p,q(Q 666 = .  
 

The quaternion vector products iM  and the quaternion vector pairs 1jN + are 

defined as  
 

1iii
MQM

+
=  (85) 

i

1

i1i
NQN −

+
=  (86) 

 

where 5i1 ≤≤ . Note that 66 QM =  and ]T,R[N ww1 = . In order to extract joint 

variables as functions of s, v, px, py, pz and fixed link parameters, appropriate 

iM  and 1jN + terms are equated, such as ,NM 11 = 22 NM =  … 66 NM = . For the 

reason of compactness, 2/iθ , )2/sin( iθ , )2/cos( iθ , )sin( iθ and )cos( iθ will be 

represented as iθ , is , ic , is  and ic  respectively. The link transformation matri-

ces were formerly developed.  The inverse transformations can be written as 
follows using equation 67. 
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)h,d,0],1,0,0s,c([Q
1211

1

1
>−−<><−=

−
 (87) 

 

)d,0,0],0,1,0s,c([Q
322

1

2
>−<><=

−
 (88) 

 

)0,0,0],0,0,0,1([Q 1

3
><><=

−
 (89) 

 

)0,0,0],1,0,0s,c([Q
44

1

4
><><−=

−  (90) 

 

)0,0,0],0,1,0s,c([Q 55

1

5 ><><−=
−

 (91) 

 

)0,0,0],1,0,0s,c([Q 66

1

6 ><><−=
−

 (92) 

 

The quaternion vector products are 
            

( )><><θθ== 0,0,0],1,0,0s,c[QM
6666

 (93) 

 

)0,0,0],sc,cs,ss,cc([MQM
65656565655

><><==  (94) 

 

)0,0,0],M,M,M,M([MQM
44434241544

><><==  (95) 

 
where,  
 

)64(541 ccM += ,  

)64(542 ssM −−= ,  

)64(543 csM −=  and 

)46(544 scM += . 

 

)0,0,0],M,M,M,M([MQM
34333231433

><><==  (96) 

 

where,  
 

4232 MM = ,  

4333 MM =  and  

4434 MM = . 

 

)cd,0,sd],M,M,M,M([MQM
232324232221322

>−<><==  (97) 

 

where,  
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43241221 MsMcM −= ,  

44242222 MsMcM −= , 41243223 MsMcM −=  and  

42244224 MsMcM += . 

 

)M,M,M],M,M,M,M([MQM 17161514131211211 ><><==  (98) 

 

where,  
 

)MsMc(sMcM 422442121111 −−= , 

23122112 MsMcM −= ,  

22123113 MsMcM += ,  

24121114 McMsM += ,  

2131215 scdsdM θθ−θ= ,  

2131216 ssdcdM θθ−θ−=  and 

23117 cdhM θ+= . 

 

The quaternion vector pairs are 
 

)p,p,p]c,b,a,w([N
zyx1

><><=  (99) 

 

)hp,N,N],N,N,N,N([NQN
1z2625242322211

1

12
>−<><==

−  (100) 

 

where, 
 

1121 sccwN += , 

 1122 sbcaN += , 

 1123 sacbN −= ,  

1124 swccN −= ,  

1y1x25 spcpN +=  and  

21y1x26 dcpspN −+−= . 

 

)N,N,N],N,N,N,N([NQN
373635343332312

1

23
><><==

−  (101) 

where,  

24221231 NsNcN −= ,  

23222232 NsNcN −= ,  

22223233 NsNcN += ,  

21224234 NsNcN += ,  

)ph(s)spcp(cN z121y1x235 −−+= , 21x1y36 dspcpN −−= ,

31y1x21z237 d)spcp(s)hp(cN −+−−= . 
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)0,0,0],N,N,N,N([NQN
444342413

1

34
><><==

−  (102) 

 

where, 3141 NN = ,  

3242 NN = ,  

3343 NN =  and  

3444 NN = .  

 

The first joint variable 1θ  can be determined equating the second terms of M2 

and N2 as follows.  
 

)d,dpp(2tanA)p,p(2tanA 2

2

2

2

y

2

xyx1 −+±−=θ  (103) 

 

The joint variables 2θ  and 3d are computed equating the first and third ele-

ments of M3 and N3 respectively.  
 

)ph,pspc(2tanA
z1y1x12

−θ+θ±=θ  (104) 

 

)hp(c)pspc(sd
1z2y1x123

−θ+θ+θθ−=  (105) 

2

43

2

42

2

5 NNs += , 2

44

2

41

2

5 NNc += , 
41

44
64

N

N
)tan( =θ+θ     and  

43

42
64

N

N
)tan( −=θ−θ  

equations can be derived form equating the terms M4 to N4,  where,  

41)64(5 Ncc =+ , 42)64(5 Nss =− − , 43)64(5 Ncs =−  and 44)46(5 Nsc =+ . In this case, the 

orientation angles of the Euler wrist can be determined as follows. 
 

( )2

44

2

41

2

43

2

425
NN,NN2arctan ++±=θ  (106) 

 

⎟⎟⎠
⎞⎜⎜⎝

⎛
−+⎟⎟⎠

⎞⎜⎜⎝
⎛

=θ
43

42

41

44

4
N

N
arctan

N

N
arctan  (107) 

⎟⎟⎠
⎞⎜⎜⎝

⎛
−−⎟⎟⎠

⎞⎜⎜⎝
⎛

=θ
43

42

41

44

6
N

N
arctan

N

N
arctan  (108) 
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