
ROBOTIC ARM CONTROL THROUGH HUMAN ARM

MOVEMENT USING ACCELEROMETERS

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS & INSTRUMENTATION ENGINEERING

by

ASHUTOSH PATTNAIK, 109EI0297

RAJIV RANJAN, 109EI0339

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING,

NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA

ROBOTIC ARM CONTROL THROUGH HUMAN ARM

MOVEMENT USING ACCELEROMETERS

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS & INSTRUMENTATION ENGINEERING

by

ASHUTOSH PATTNAIK, 109EI0297

RAJIV RANJAN, 109EI0339

UNDER THE SUPERVISION OF

PROF. SANTOS KUMAR DAS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING,

NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA

NATIONAL INSTITUTE OF TECHNOLOGY,

ROURKELA

CERTIFICATE

This is to certify that the project report titled “ Robotic Arm Control Through Human Arm

Movement using Accelerometers ” submitted by Ashutosh Pattnaik (Roll No: 109EI0297)

and Rajiv Ranjan (Roll No: 109EI0339) in the partial fulfillment of the requirements for the

award of Bachelor of Technology Degree in Electronics and Instrumentation Engineering during

session 2009-2013 at National Institute of Technology, Rourkela and is an authentic work carried

out by them under my supervision and guidance.

Date:

Prof. Santos Kumar Das

Department of Electronics & Communication Engineering,

National Institute of Technology, Rourkela

i

ACKNOWLEDGEMENT

We would like to express my deep sense of gratitude and respect to my supervisor Prof. Santos

Kumar Das for his excellent guidance, suggestions and support. I consider myself extremely

lucky to be able to work under the guidance of such a dynamic personality. We would like to

render heartiest thanks to my friend who’s ever helping nature and suggestion has helped us to

complete this present work.

We would like to thank all faculty members and staff of the Department of Electronics and

Communication Engineering, N.I.T. Rourkela for their extreme help throughout course. An

assemblage of this nature could never have been attempted without reference to and inspiration

from the works of others whose details are mentioned in the reference section. We acknowledge

our indebtedness to all of them.

Ashutosh Pattnaik (109EI0297)

Rajiv Ranjan (109EI0339)

ii

ABSTRACT

In today’s world there is an increasing need to create artificial arms for different inhuman

situations where human interaction is difficult or impossible. They may involve taking readings

from an active volcano to diffusing a bomb. Here we propose to build a robotic arm controlled

by natural human arm movements whose data is acquired through the use of accelerometers. For

proper control mechanism and to reduce the amount of noise coming in from the sensors, proper

averaging algorithm is used for smoothening the output of the accelerometer. The development

of this arm is based on ATmega32 and ATmega640 platform along with a personal computer for

signal processing, which will all be interfaced with each other using serial communication.

Finally, this prototype of the arm may be expected to overcome the problem such as placing or

picking hazardous objects or non-hazardous objects that are far away from the user.

iii

CONTENTS

ACKNOWLEDGEMENT i

ABSTRACT ii

Chapter 1 : INTRODUCTION 1

1.1 Introduction 2

1.2 Robotic arm definition 2

1.3 Literature Review 3

1.4 Project Overview 4

Chapter 2 : HARDWARE DESIGN AND DESCRIPTION 5

2.1 Hardware Requirements 6

2.2 Accelerometer 6

2.3 Servo Motors 9

2.4 ATmega32 Microcontroller 10

2.4.1 USART Interface 12

2.4.2 Analog to Digital Converter (ADC) 12

2.5 ATmega640 Microcontroller 13

2.5.1 Timer 16

2.5.2 USART Interface 17

2.6 16x2 LCD Module 17

2.7 Hardware Design 18

Chapter 3 : SOFTWARE DESCRIPTION 20

3.1 Software Requirements 21

iv

3.2 Software for programming and dumping on the microcontrollers 21

3.3 Software for Signal Processing and Actuation of the servo motors 23

3.4 Software Design 23

Chapter 4 : IMPLEMENTATION 25

4.1 Implementation 26

4.2 Data Acquisition, Processing and Calibration 30

4.2.1 Data Acquisition 30

4.2.2 Data Processing 31

4.2.3 Calibration of the Servo Motors 34

Chapter 5 : CONCLUSION AND FUTURE SCOPE 36

5.1 Conclusion 37

5.2 Future Scope 37

BIBLIOGRAPHY 38

v

LIST OF FIGURES

Fig1. Block Diagram Representation of the Proposed Robotic Arm System 3

Fig2. Simplified Accelerometer Functional Block Diagram 8

Fig3. Pin Configuration of ATmega32 11

Fig4. Pin Configuration of ATmega640 15

Fig5. LCD Pin Configuration and Connections 17

Fig6. Circuit diagram for the data acquisition from the sensor via ATmega32 18

Fig7. Circuit diagram for the control of servo motors via ATmega640 19

Fig8. Screenshot of AVR Studio 4 running on Windows 7 platform 21

Fig9. Screenshot of SinaProg 2.0 running on Windows 7 platform 22

Fig10. Screenshot of MATLAB v7.6 (R2012a) running on Windows 7 platform 23

Fig11. Block Diagram of the implemented system with signal information 24

Fig12. (a) Physical Implementation of the system; (b) Robotic Arm Only 26

Fig13. (a) Implementation of the Shoulder to Elbow Joint; (b) Implementation of the

Elbow to Wrist Joint

27

Fig14. Shoulder Joint Motors (M1 and M2) 28

Fig15. Elbow Joint Motors (M3, M4 and M5) 28

Fig16. (a) ATmega32 (b) ATmega640 Development Board 29

Fig17. (a) Real time plot when accelerometer is kept constant; (b) Real time plot

when accelerometer is in rotation in both anti clockwise and clockwise

direction.

30

Fig18. Original Input Plot of accelerometer data 32

vi

Fig19. Smoothened Output Plot of accelerometer data when N = 5 32

Fig20. Smoothened Output Plot of accelerometer data when N = 10 33

Fig21. Smoothened Output Plot of accelerometer data when N = 15 32 33

vii

LIST OF TABLES

Table1. Table containing the Timer Register Values for the reference positions taken

during calibration.

35

1

CHAPTER - 1

INTRODUCTION

2

1.1 Introduction

Nowadays, robots are increasingly being integrated into working tasks to replace humans

especially to perform the repetitive task. In general, robotics can be divided into two areas,

industrial and service robotics. International Federation of Robotics (IFR) defines a service robot

as a robot which operates semi- or fully autonomously to perform services useful to the well-

being of humans and equipment, excluding manufacturing operations. These robots are currently

used in many fields of applications including office, military tasks, hospital operations,

dangerous environment and agriculture. Besides, it might be difficult or dangerous for humans to

do some specific tasks like picking up explosive chemicals, defusing bombs or in worst case

scenario to pick and place the bomb somewhere for containment and for repeated pick and place

action in industries. Therefore a robot can be replaced human to do work.

1.2 Robotic arm definition

A robotic arm is a robot manipulator, usually programmable, with similar functions to a human

arm. The links of such a manipulator are connected by joints allowing either rotational motion

(such as in an articulated robot) or translational (linear) displacement. The links of the

manipulator can be considered to form a kinematic chain. The business end of the kinematic

chain of the manipulator is called the end effectors and it is analogous to the human hand. The

end effectors can be designed to perform any desired task such as welding, gripping, spinning

etc., depending on the application. The robot arms can be autonomous or controlled manually

and can be used to perform a variety of tasks with great accuracy. The robotic arm can be fixed

or mobile (i.e. wheeled) and can be designed for industrial or home applications. [1][2]

3

This report deals with a robotic arm whose objective is to imitate the movements of a human arm

using accelerometers as sensors for the data acquisition of the natural arm movements. This

method of control allows greater flexibility in controlling the robotic arm rather than using a

controller where each actuator is controlled separately. The processing unit takes care of each

actuator’s control signal according to the inputs from accelerometer, in order to replicate the

movements of the human arm. Figure 1 shows the block diagram representation of the system to

be designed and implemented.

Fig1. Block Diagram Representation of the Proposed Robotic Arm System

1.3 Literature Review

There are various ways in which a robotic arm may be controlled. In the past there have been

many researchers working to control robotic arm through computer terminals, Joysticks, even

interfacing them with the internet so they can be controlled from anywhere in the world. [1][2]

Usually most of the robotic arms are controlled by a central controller which makes uses of

Human Arm
Movement Sensors
(Accelerometers)

Atmega32
Microcontroller

Processing Unit

Atmega640
Microcontroller

Robotic Arm Actuators
(Servo Motor Controller)

4

values taken in from the terminal that are entered by the user at the terminal to move the arm to a

particular coordinates in space. This makes the control very difficult as the control values of the

motors are very difficult to predict to achieve a particular movement. This is easily achieved by

our project.

This Project represents a simple accelerometer controlled robotic arm using Atmega32/640

powered embedded system as the core of this robot and also a Computer to interface the robot

with the sensors. The robot does not require training because the robotic arm is fully controlled

by the user. This interfacing is done using wired communication but it can easily be switched to

wireless with ease.

1.4 Project Overview

In this Project, the hardware and software function are combined to make the system reliable.

The ATmega32 and ATmega640 will be interfacing the robot with the sensor i.e. 3 axis

accelerometer and the actuators i.e. servo motors which will control the movement of the robot

respectively.

The chapter that follows describe the hardware (Chapter 2), which is followed by the description

of the software being used (Chapter 3) Chapter 4 describes the implementation of the project and

Chapter 5 concludes the discussion followed by the future scope of the project.

5

CHAPTER – 2

HARDWARE DESIGN AND DESCRIPTION

6

This chapter describes the hardware that is being used in the project.

2.1 Hardware Requirements

1. Accelerometers (Sensor)

2. Servo Motors (Actuator)

3. ATmega32 (Data Acquisition)

4. ATmega640 (Controller)

5. 16x2 LCD Module (Display)

2.2 Accelerometer

Here we use an accelerometer designed by Freescale Semiconductors. The MMA7361L is a low

power, low profile capacitive micro-machined accelerometer featuring signal conditioning, a 1-

pole low pass filter, temperature compensation, self-test, 0g-Detect which detects linear free fall,

and g-Select which allows for the selection between 2 sensitivities. [11]

Salient Features of MMA7361L

 3mm x 5mm x 1.0mm LGA-14 Package

 Low Current Consumption: 400μA

 Sleep Mode: 3μA

 Low Voltage Operation: 2.2 V – 3.6 V

 High Sensitivity (800 mV/g @ 1.5g)

 Selectable Sensitivity (±1.5g, ±6g)

 Fast Turn On Time (0.5ms Enable Response Time)

7

 Self-Test for Free-fall Detect Diagnosis

 0g-Detect for free fall Protection

 Signal Conditioning with Low Pass Filter

 Robust Design, High Shocks Survivability

 RoHS Compliant

 Environmentally Preferred Product

 Low Cost

Typical applications of this include

 Robotics: Motion Sensing

 3D Gaming: Tilt and Motion Sensing, Event Recorder

 HDD MP3 Player: free-fall Detection

 Laptop PC: free-fall Detection, Anti-Theft

 Cell Phone: Image Stability, Text Scroll, Motion Dialing, E-Compass

 Pedometer: Motion Sensing

 PDA: Text Scroll

 Navigation and Dead Reckoning: E-Compass Tilt Compensation

The device consists of a surface micro-machined capacitive sensing cell (g-cell) and a signal

conditioning ASIC contained in a single package. The sensing element is sealed hermetically at

the wafer level using a bulk micro-machined cap wafer. The g-cell is a mechanical structure

formed from semiconductor materials (poly-silicon) using semiconductor processes (masking

and etching). It can be modeled as a set of beams attached to a movable central mass that move

between fixed beams. The movable beams can be deflected from their rest position by subjecting

8

the system to acceleration. As the beams attached to the central mass move, the distance from

them to the fixed beams on one side will increase by the same amount that the distance to the

fixed beams on the other side decreases. The change in distance is a measure of acceleration. The

g-cell beams form two back-to-back capacitors. As the center beam moves with acceleration, the

distance between the beams changes and each capacitor's value will change, (C = Aε/D). Where

A is the area of the beam, ε is the dielectric constant, and D is the distance between the beams.

The ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the

acceleration data from the difference between the two capacitors. The ASIC also signal

conditions and filters (switched capacitor) the signal, providing a high level output voltage that is

ratio metric and proportional to acceleration. Figure 2 shows the simplified functional block

diagram of an accelerometer. [11]

Fig2. Simplified Accelerometer Functional Block Diagram

9

2.3 Servo Motors

Servo motors are a type of electromechanical actuators that do not rotate continuously like

DC/AC or stepper motors; rather, they are used to position and hold some object. They are used

where continuous rotation is not required so they are not used to drive wheels (unless a servo is

modified). In contrast they are used where something is needed to move to particular position

and then stopped and hold there. Most common use is to position the rudder of aircrafts and

boats etc. The servo can be commanded to rotate to a particular angle (say 30) and then hold its

position there. Servos also employ a feedback mechanism, so it can sense an error in its

positioning and correct it. This is called servomechanism. Say if you ask servo to go and lock

itself to 30 degrees and then try to rotate it with your hand, the servo will try hard and its best to

overcome the force and keep servo locked in its specified angle. Controlling a servo is easy by

using a microcontroller, no external driver like h-bridge etc. are required. Just a control signal is

needed to be feed to the servo to position it in any specified angle. The frequency of the control

signal is 50 Hz (i.e. the period is 20ms) and the width of positive pulse controls the angle. We

can use the AVR microcontrollers PWM feature to control servo motors. In this way the PWM

with automatically generate signals to lock servo and the CPU is free to do other tasks.

Here we use AVR Timer1 Module which is a 16bit timer and has two PWM channels (A and B).

The CPU frequency is 8 MHz; this frequency is the maximum frequency that most AVRs are

capable of running. And so it is used in most development board like Low Cost AVR

Development Boards. We chose the pre-scaler as 64. So the timer will get 8MHz/64 = 125 kHz

(8uS period). We setup Timer Mode as Mode 14. [3]

10

Timer Mode 14 features

 FAST PWM Mode

 TOP Value = ICR1

So the timer will count from 0 to ICR1 (TOP Value).

2.4 ATmega32 Microcontroller

The ATmega32 is a part of the AVR family. It uses on-chip flash memory for program storage,

as opposed to one-time programmable ROM, EPROM, or EEPROM used by other

microcontrollers at the time. Flash, EEPROM, and SRAM are all integrated onto a single chip,

removing the need for external memory in most applications [8]. Some of the Salient Features

and Specifications of ATmega32 are:

 High-performance, Low-power 8-bit Microcontroller

 Advanced RISC Architecture

 131 Powerful Instructions

 32 × 8 General Purpose Working Registers

 32Kbytes of In-System Self-programmable Flash program memory

 1024Bytes EEPROM

 Write/Erase Cycles: 10,000 Flash/100,000 EEPROM

 Data retention: 20 years at 85°C/100 years at 25°C(1)

 Two 8-bit Timer/Counters with Separate Pre-scalers and Compare Modes

 One 16-bit Timer/Counter with Separate Pre-scaler, Compare Mode, and Capture Mode

 Four PWM Channels

11

 8-channel, 10-bit ADC

 8 Single-ended Channels

 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x

 Programmable Serial USART

 External and Internal Interrupt Sources

 32 Programmable I/O Lines

 Operating Voltages: 4.5V - 5.5V for ATmega32

 Power Consumption at 1MHz, 3V, 25°C

The Pin configuration of ATmega is shown in Figure 3.

Fig3. Pin Configuration of ATmega32

12

The main features of ATmega32 that we are using in this project are

1. USART Interface

2. Analog to Digital Converter (ADC)

2.4.1 USART Interface

ATmega32 Development board also has a dedicated hardware for serial communication this part

is called the USART - Universal Synchronous Asynchronous Receiver Transmitter. Here we just

have to supply the data (in this case the ADC output) need to transmit and it will do the rest. The

advantage of hardware USART is that we just need to write the data to one of the registers of

USART and we are free to do other things while USART is transmitting the byte.

Also the USART automatically senses the start of transmission of RX line and then inputs the

whole byte and when it has the byte it informs through an interrupt(CPU) to read that data from

one of its registers. [7]

We are using USART in our project to transfer ADC output of the ATmega32 microcontroller to

a Computer. The Computer then receives the byte and processes the data accordingly.

2.4.2 Analog to Digital Converter (ADC)

Most of the physical quantities around us are continuous. By continuous we mean that the

quantity can take any value between two extreme. If an electrical quantity is made to vary

directly in proportion to the physical quantity (that needs to be measured) then what we have is

an analog signal. Now we have we have brought a physical quantity into electrical domain. The

13

electrical quantity in most case is voltage. To bring this quantity into digital domain we have to

convert this into digital form. For this an ADC or analog to digital converter is used. ATmega32

has an ADC on chip. An ADC converts an input voltage into a number. An ADC has a resolution

of 10bits. A 10 Bit ADC has a range of 0-1023. (2^10=1024) The ADC also has a Reference

voltage (ARef). When input voltage is GND the output is 0 and when input voltage is equal to

ARef the output is 1023. So the input range is 0-ARef and digital output is 0-1023.

We are using ADC in our project to acquire data from the 3-axis accelerometer which provides

us with an analog voltage signal to convert this signal into digital domain for further processing.

This needs to be done because the ATmega32 microcontroller can only work in digital domain.

[6]

2.5 ATmega640 Microcontroller

The ATmega640 is a part of the AVR family. The ATmega640/1280/1281/2560/2561 is a low-

power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By

executing powerful instructions in a single clock cycle, the ATmega640/1280/1281/2560/2561

achieves throughputs approaching 1 MIPS per MHz allowing the system designed to be

optimized for power consumption versus processing speed. Some of the Salient Features and

Specifications of ATmega640 are [9]:

 High Performance, Low Power Microcontroller

 Advanced RISC Architecture

 135 Powerful Instructions – Most Single Clock Cycle Execution

 32 x 8 General Purpose Working Registers

14

 Up to 16 MIPS Throughput at 16 MHz

 On-Chip 2-cycle Multiplier

 Non-volatile Program and Data Memories

 64K/128K/256K Bytes of In-System Self-Programmable Flash

 Endurance: 10,000 Write/Erase Cycles

 Optional Boot Code Section with Independent Lock Bits

 4K Bytes EEPROM

 Endurance: 100,000 Write/Erase Cycles

 8K Bytes Internal SRAM

 Up to 64K Bytes Optional External Memory Space

 JTAG (IEEE std. 1149.1 compliant) Interface

 Extensive On-chip Debug Support

 Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface

 Two 8-bit Timer/Counters with Separate Pre-scaler and Compare Mode

 Four 16-bit Timer/Counter with Separate Pre-scaler, Compare- and Capture Mode

 Real Time Counter with Separate Oscillator

 Four 8-bit PWM Channels

 Six/Twelve PWM Channels with Programmable Resolution from 2 to 16 Bits

(ATmega1281/2561, ATmega640/1280/2560)

 8/16-channel, 10-bit ADC

 Two/Four Programmable Serial USART (ATmega1281/2561,ATmega640/1280/2560)

 Master/Slave SPI Serial Interface

 Byte Oriented 2-wire Serial Interface

15

 Programmable Watchdog Timer with Separate On-chip Oscillator

 On-chip Analog Comparator

 Interrupt and Wake-up on Pin Change

The Pin configuration of ATmega640 is shown in Figure 4.

Fig4. Pin Configuration of ATmega640

16

The main features of ATmega32 that we are using in this project are

1. Timer

2. USART Interface

2.5.1 Timer

A timer in simplest term is a register. Timers generally have a resolution of 8 or 16 Bits. So an 8

bit timer is 8 Bits wide so capable of holding value within 0-255. But this register has a property

that its value increases/decreases automatically at a predefined rate (supplied by user). This is the

timer clock. And this operation does not need CPU’s intervention.

ATmega640 has six different timers of which the simplest is TIMER0. Its resolution is 8 bits i.e.

it can count from 0 to 255. The Pre-scaler is a mechanism for generating clock for timer by the

CPU clock. As we know that CPU has a clock source such as an external crystal of internal

oscillator. Normally these have the frequency like 1 MHz, 8 MHz, 12 MHz or 16MHz (MAX).

The Pre-scaler is used to divide this clock frequency and produce a clock for TIMER. The Pre-

scaler can be used to get the following clock for timer; No Clock (Timer Stop), No Pre-scaling

(Clock = FCPU), FCPU/8, FCPU/64, FCPU/256, FCPU/1024. Timers can also be externally

clocked

Timer is being used in our project to generate the PWM signal of required pulse width in order to

control the servo motor’s position. By varying the value of the registers of the timer we can

change the pulse width of the control signal thus controlling the robotic arm itself.

17

2.5.2 USART Interface

ATmega640 Development board consists of dedicated hardware for serial communication this

part is called the USART - Universal Synchronous Asynchronous Receiver Transmitter. Here we

just have to supply the data (in this case the ADC output) need to transmit and it will do the rest.

We are using USART with ATmega640 in our project to transfer control values for the servo

motors from the Computer. The ATmega640 then receives the bytes which are then fed to

respective timers to generate the required PWM signals for individual servo motors.

2.6 16x2 LCD Module

Fig5. LCD Pin Configuration and Connections

LCD Modules can present textual information to user. They come in various types. The most

popular one that we use here can display 2 lines of 16 characters. [5]

18

LCD on ATmega32 Development is being used to display the value of the ADC output which

takes the accelerometer as the input and the LCD on ATmega640 is used to display the value of

the corresponding OCR Register value which provides the changes in PWM signal to control the

robotic arm.

2.7 Hardware Design

The schematic diagram for the data acquisition from the sensor via ATmega32 is as shown in

Figure 6, followed by the schematic of the servo motor control via the ATmega640 in Figure 7.

As can be seen from Figure 6, the two accelerometer’s individual X, Y and Z channel inputs are

given to the ADC0-ADC5 pins which are multiplexed with PORTA. The common Vcc and GND

power the accelerometer as well as the ATmega32. A serial transmission is interfaced between

the ATmega640 and the digital computer via the Rx-Tx of the ATmega32 which are PIN14 &

PIN15.

Fig6. Circuit diagram for the data acquisition from the sensor via ATmega32

19

Fig7. Circuit diagram for the control of servo motors via ATmega640

In Figure 7, it is seen that the servo motors PWM input signal is coming from the ATmega640

timer outputs, viz. OCR3A, OCR3B, OCR3C, OCR4A, OCR4B which control the motors M1,

M2, M3, M4 & M5 respectively. The servo motors also share the same power supply as the

ATmega640. A serial transmission is interfaced between the ATmega640 and the digital

computer via the Rx-Tx of the ATmega640 which are PIN1 & PIN2.

The following chapter describes the software that is being used in the project.

20

CHAPTER – 3

SOFTWARE DESIGN AND DESCRIPTION

21

This chapter describes the software that is being used in the project.

3.1 Software Requirements

1. AVR Studio 4.18

2. WinAVR – Build 20090313

3. SinaProg 2.0

4. MATLAB v7.6 (R2012a)

3.2 Software for programming and dumping on the microcontrollers

We use the following software to program and dump onto the ATmega32 and ATmega640

Microcontrollers.

1. AVR Studio 4 (Programming the Microcontroller)

2. SinaProg 2.0 (Dumping HEX file on Microcontroller)

3. WinAVR – Build 20090313 (Used in backend for compiler support)

The steps that need to be followed are:

a. Start “AVR Studio” from Start Menu->All programs->Atmel AVR Tools-> AVR Studio

4. Fig8. Shows the AVR Studio IDE being used.

Fig8. Screenshot of AVR Studio 4 running on Windows 7 platform

22

b. Select AVR GCC in Project type then enter a suitable project name say “hello” and select

a location in the hard disk. Then click next. Make sure that “Create initial file” and

“Create folder” option is checked.

c. In next dialog box select AVR Simulator in “Debug Platform” list and select the

ATmega32/640 in Device list. Click finish. After that you will be presented with an

Integrated Development Environment-IDE.

d. Here create a new .c file and write the code as desired.

e. Then go to Menu->Build->Rebuild All. This will compile and generate all the required

files. The .hex file which is needed for burning will also be generated in this step in the

root folder.

f. Once the “.hex” file is generated it is dumped on the ATmega32/640 using “SinaProg”.

g. Start “SinaProg” -> Open HEX file to dump -> Choose the type of Microcontroller being

programmed -> Click on Program Command. The HEX file will be successfully dumped

when the message “Programming OK” message appears on “SinaProg”. Fig 9. Shows the

SinaProg being used.

Fig9. Screenshot of SinaProg 2.0 running on Windows 7 platform

23

3.3 Software for Signal Processing and Actuation of the servo motors

We use the following software to interface the sensors and the servo motors via the ATmega32

and ATmega640 microcontrollers.

1. MATLAB v7.6 (R2012a)

Also signal processing is done in this software to reduce noise coming in from the sensors.

Figure 10 shows a screenshot of MATLAB being used.

Fig10. Screenshot of MATLAB v7.6 (R2012a) running on Windows 7 platform

Interfacing between the microcontrollers and the computer is done using serial communication

that is being controlled by MATLAB.

3.4 Software Design

The software is designed to achieve the required objective. There are three software modules

which make up the project are:

24

1. Software development for ATmega32: To receive data from the accelerometers and

convert the real time analog signal to digital signals and transmits these digital signals to

a computer via serial communication.

2. Software development for the Computer (Processing Unit): To receive data via serial

communication from the ATmega32 and smoothens the data and calculate the

appropriate values of the timer register contents for servo control and transmit these

control words to ATmega640 via serial communication again.

3. Software development for ATmega640: To receive data from the Computer and store

them in their respective timer registers and generate corresponding PWM signal for servo

motor actuation.

The block diagram in Figure 9 shows the intermediate work/input entering the individual blocks.

Fig11. Block Diagram of the implemented system with signal information

The following chapter describes the implementation of the hardware and software of the robotic

arm.

Accelerometers
Atmega32

Microcontroller

Processing Unit

Atmega640
Microcontroller

Robotic Arm Actuators
(Servo Motor Controller)

Fetch Data from Sensors

Send Control Word for servo control

Analog
Input

PWM
Signal

25

CHAPTER – 4

IMPLEMENTATION

26

4.1 Implementation

The accelerometers are connected to the ATmega32 development board which is then connected

to the Computer via serial communication. Now the data received by the computer is processed

to remove as much noise as possible. Again the ATmega640 development board is connected

with the computer through another serial communication channel.

The design of the software modules and hardware modules can be referred back to section 2.7

and section 3.5 respectively. Figure 12 shows the physical implementation of the system.

(a) (b)

Fig.12. (a) Physical Implementation of the system; (b) Robotic Arm Only

27

The various joints of the robotic arm are shown in Figure 13.

(a) (b)

Fig.13. (a) Implementation of the Shoulder to Elbow Joint; (b) Implementation of the Elbow to Wrist Joint

Each motor moves the arm in one plane. As we have implemented two motors at the shoulder

joint as can be seen from Figure 14, M1 is to move the arm in Y-Z plane and M2 is for the

movement along the X-Z plane. In this way the two motors provide the shoulder joint to be

moved in any direction in space. From Figure 15, it can be seen that we have implemented three

motors at this joint. The Motor M3 is for the movement of the arm along the Z-axis in the X-Y

plane. The Motor M4 is used for the bending motion of the elbow and the Motor M5 is for the

rotation/twisting of the elbow to wrist portion.

28

Fig.14. Shoulder Joint Motors (M1 and M2)

Fig.15. Elbow Joint Motors (M3, M4 and M5)

29

The ATmega32 and ATmega640 development boards are shown in Figure 13.

(a)

(b)

Fig16. (a) ATmega32 (b) ATmega640 Development Board

30

4.2 Data Acquisition, Processing and Calibration

4.2.1 Data Acquisition

The data from the accelerometer is shown in Figure 12 which is plotted using MATLAB.

(ATmega32 sends the output of the accelerometer after A-D conversion through the serial port).

Figure 17(a) and 17(b) show the real time plots of the serial data. Further processing will be

carried out at a later stage of our project.

(a)

(b)

Fig17. (a) Real time plot when accelerometer is kept constant; (b) Real time plot when accelerometer is in rotation

in both anti clockwise and clockwise direction.

31

The two plots show that there are shot and spikes in the input. Due to these sharp and sudden

changes in the accelerometer output, the arm has sudden jerks in the movement. To minimize

this jerking effect we use signal processing algorithms. Also, as MATLAB is being used to send

control words to the ATmega640 for the control of the servo motors, the data acquisition of the

accelerometer output and the processing of this output all have to be executed in real time in

MATLAB. Therefore the following tasks are implemented in MATLAB:

1. Data acquisition from the ATmega32 via serial communication over “COMx”.

2. Processing of this acquired data to smoothen the data set.

a. For better analysis of the signal we plot the input as well as the processed

signal in real time.

3. Using the processed dataset to send appropriate control words to the ATmega640 via

serial communication over “COMy”.

4.2.2 Data Processing

Here in our project we use a simple moving average algorithm to smoothen the output of the

accelerometer.

Moving Average Algorithm: Given a series of numbers and a fixed subset size, the first element

of the moving average is obtained by taking the average of the initial fixed subset of the number

series. Then the subset is modified by "shifting forward"; that is, excluding the first number of

the series and including the next number following the original subset in the series. This creates a

new subset of numbers, which is averaged. This process is repeated over the entire data series.

The real time plot of the processed output that is drawn by MATLAB is achieved by connecting

all the (fixed) averages in the moving average. This gives us the smoothened output.

32

Now the appropriate number of data points to be accounted for in moving average are found out

by experimentation. Figure 18 shows the original input followed by the smoothened outputs

when N = 5, 10, 15 respectively shown by Figure 19, 20 & 21.

Fig18. Original Input Plot of accelerometer data

Fig19. Smoothened Output Plot of accelerometer data when N = 5

AD
C

Va
lu

e
AD

C
Va

lu
e

Samples

Samples

33

Fig20. Smoothened Output Plot of accelerometer data when N = 10

Fig21. Smoothened Output Plot of accelerometer data when N = 15

AD
C

Va
lu

e
AD

C
Va

lu
e

Samples

Samples

34

As can be seen from the processed outputs, choosing N = 5 proves to be of not much use. The

output still is jerky. When N = 15 is chosen, the output becomes a lot smoother but it is

smoothing out even the required movements that are actually not noises but rather movements

that should be tracked by the accelerometer. Therefore, N = 10 is the chosen value for the

number of samples to be taken for the moving average as it provides sufficient smoothing while

still keeping all the necessary information intact.

4.2.3 Calibration of the Servo Motors

As mentioned above, we are using MATLAB to send the control words to the ATmega640 for

the register values of the timer that will generate the PWM signal for their respective servo

motors. To figure out the control word for the servo motor for a given value of the accelerometer

output, it needs to be calibrated first.

The motors are kept at reference positions whose timer values are noted and their corresponding

accelerometer outputs are noted as well. This gives us the value of the timer and value of the

accelerometer for a particular position. This is done for all the motors separately along their

direction of movement.

Three separate positions are taken for each motor and the intermediate values of the timer

register values for the intermediate accelerometer output is interpolated using two point method

which makes the system piece wise linear. Here we assume that the values given by

accelerometer are approximately linear for the ranges taken into consideration.

35

Table 1 contains the respective values of the timer’s register for the position of each individual

motor.

Motor
Position

1

Timer Register

Value

Position

2

Timer Register

Value

Position

3

Timer Register

Value

M1 0° 398 90° 188 - -

M2 0° 220 90° 396 - -

M3 -90° 441 0° 305 90° 220

M4 0° 253 90° 459 165° 545

M5 -90° 166 0° 345 90° 532

Table1. Table containing the Timer Register Values for the reference positions taken during

calibration.

After calibration is done, then the MATLAB code is implemented which takes the accelerometer

data coming in from the serial port, smoothen it and calculates the corresponding timer register

value for the ATmega640 to be sent over another serial port.

This completes the implementation of the robotic arm.

The next section gives the conclusion and the future scope of the project.

36

CHAPTER – 5

CONCLUSION AND FUTURE SCOPE

37

5.1 Conclusion

The objectives of this project has been achieved which was developing the hardware and

software for an accelerometer controlled robotic arm. From observation that has been made, it

clearly shows that its movement is precise, accurate, and is easy to control and user friendly to

use. The robotic arm has been developed successfully as the movement of the robot can be

controlled precisely. This robotic arm control method is expected to overcome the problem such

as placing or picking object that away from the user, pick and place hazardous object in a very

fast and easy manner.

5.2 Future Scope

The project is built on a wired model. It could further be developed to work on wireless

communication, thus allowing the user to move in an even easier unrestricted manner. A clamper

can be connected on the motor M6 which will allow the movements of the palm and allow

picking and placing of objects. Currently the accelerometer signal is being processed via a digital

computer; this could be eliminated by using a fast microprocessor such as ARMv7, etc. It could

also be possible to eliminate the ATmega32 altogether when ARMv7 is being used. The

microprocessor could take the input from the accelerometer and smoothen it and then generate

the corresponding PWM signal itself to actuate the servo motors.

38

BIBLIOGRAPHY

39

[1] Mohd Ashiq Kamaril Yusoffa, Reza Ezuan Saminb, Babul Salam Kader Ibrahimc, “Wireless

Mobile Robotic Arm”, International Symposium on Robotics and Intelligent Sensors 2012

(IRIS 2012), July 2012

[2] Wan Muhamad Hanif Wan Kadir, Reza Ezuan Samin, Babul Salam Kader Ibrahim, “Internet

Controller Robotic Arm”. International Symposium on Robotics and Intelligent Sensors 2012

(IRIS 2012), July 2012

[3] Avinash Jain, “Servo Motor Control by Using AVR ATmega32 Microcontroller”, http://extr

emeelectronics.co.in/avr-tutorials/servo-motor-control-by-using-avr-atmega32-

microcontroller/, June 2010

[4] Paul Smith, “Programming with AVRDUDE”, http://www.ladyada.net/learn/avr/ avrdude

.html/, April 2012

[5] Avinash, “Using LCD Modules with AVR”, http://extremeelectronics.co.in/avrtutorials/using

-lcd-module-with-avrs/, July 2008

[6] Avinash, “Using ADC on AVR”, http://extremeelectronics.co.in/avr-tutorials/using-the-

analog-to-digital-converter/, September 2008

[7] Avinash, “Using the USART of Microcontrollers”, http://extremeelectronics.co.in/avr-

tutorials/using-the-usart-of-avr-microcontrollers/, December 2008

[8] Atmel ATmega32 Datasheet, AVR Corporation, Feb 2011

[9] Atmel ATmega640 Datasheet, AVR Corporation, April 2012

[10] ATmega640 Development Board Manual, Nex Robotics, Oct 2010

[11] MMA7361L Datasheet, Freescale Semiconductors, Apr 2008

	MAIN.pdf
	LIST OF CONTENTS.pdf
	CONTENT.pdf

