
ans =

 0 -0.6000 0.5000 0.1000

 0.6000 0 -0.4000 0.2000

 -0.5000 0.4000 0 0.3000

 0 0 0 1.0000

m =

 0 -0.6000 0.5000 0.1000

 0.6000 0 -0.4000 0.2000

 -0.5000 0.4000 0 0.3000

 0 0 0 1.0000

m =

 0 -0.7000 0.6000 0.1000

 0.7000 0 -0.5000 0.2000

 -0.6000 0.5000 0 0.3000

 0 0 0 0

ans =

 0.1000

 0.2000

 0.3000

 0.5000

 0.6000

 0.7000

ans =

 0.1 <0, 0, 0>

ans =

 0.99875 <0.013357, 0.026715, 0.040072>

Robotics Toolbox

for Matlab

(Release 8)

Peter I. Corke
Peter.I.Corke@gmail.com

December 2008
http://www.petercorke.com

c©2008 by Peter I. Corke.

3

1
Preface

1 Introduction

This, the eighth release of the Toolbox, represents nearly adecade of tinkering and a sub-
stantial level of maturity. This release is largely a maintenance one, tracking changes in
Matlab/Simulink and the way Matlab now handles help and demos. There is also a change
in licence, the toolbox is now released under LGPL.

The Toolbox provides many functions that are useful in robotics including such things as
kinematics, dynamics, and trajectory generation. The Toolbox is useful for simulation as
well as analyzing results from experiments with real robots.

The Toolbox is based on a very general method of representingthe kinematics and dynam-
ics of serial-link manipulators. These parameters are encapsulated in Matlab objects. Robot
objects can be created by the user for any serial-link manipulator and a number of examples
are provided for well know robots such as the Puma 560 and the Stanford arm. The Toolbox
also provides functions for manipulating and converting between datatypes such as vec-
tors, homogeneous transformations and unit-quaternions which are necessary to represent
3-dimensional position and orientation.

The routines are written in a straightforward manner which allows for easy understanding,
perhaps at the expense of computational efficiency. My guidein all of this work has been
the book of Paul[1], now out of print, but which I grew up with.If you feel strongly about
computational efficiency then you can always rewrite the function to be more efficient,
compile the M-file using the Matlab compiler, or create a MEX version.

1.1 What’s new

This release is primarily fixing issues caused by changes in Matlab and Simulink R2008a.

• Simulink blockset and demos 1–6 all work with R2008a

• Some additional robot models were contributed by Wynand Swart of Mega Robots
CC: Fanuc AM120iB/10L, Motoman HP and S4 ABB 2.8.

• The toolbox is now released under the LGPL licence.

• Some functions have disappeared:dyn , dh

• Some functions have been redefined, beware:

– The toolbox used to use roll/pitch/yaw angles as per the bookby Paul[1] in
which the rotations were: roll about Z, pitch about Y and yaw about X. This
is different to the more common robot conventions today, andas used in the
vehicular and aerospace industry in which roll is about X, pitch about Y and yaw
about Z. The functionstr2rpy andrpy2t r have been changed accordingly.

1 INTRODUCTION 4

– The functionsrotx , roty androtz all used to return a 4×4 transform matrix.
They now return a 3×3 rotation matrix. Use the functionstrotx , troty and
trotz instead if you want a 4×4 transform matrix.

• Some functions have been added:

– r2t , t2r , isvec , isrot .

• HTML format documentation is provided in the directoryhtmldoc which was gen-
erated using the packagem2html . This help is accessible through MATLAB’s inbuilt

help browser, but you can also point your browser at htmldoc/index.html .

All code is now under SVN control which should eliminate manyof the versioning problems
I had previously due to developing the code across multiple computers. A first cut at a test
suite has been developed to aid in pre-release testing.

1.2 Other toolboxes

Also of interest might be:

• A python implementation of the toolbox. All core functionality is present including
kinematics, dynamics, Jacobians, quaternions etc. It is based on the python numpy
class. The main current limitation is the lack of good 3D graphics support but people
are working on this. Nevertheless this version of the toolbox is very usable and of
course you don’t need a MATLAB licence to use it.

• Machine Vision toolbox (MVTB) for MATLAB. This was described in an article

@article{Corke05d,

Author = {P.I. Corke},

Journal = {IEEE Robotics and Automation Magazine},

Month = nov,

Number = {4},

Pages = {16-25},

Title = {Machine Vision Toolbox},

Volume = {12},

Year = {2005}}

It provides a very wide range of useful computer vision functions beyond the Mathwork’s

Image Processing Toolbox. However the maturity of MVTB is less than that of the robotics

toolbox.

1.3 Contact

The Toolbox home page is at

http://www.petercorke.com/robot

1 INTRODUCTION 5

This page will always list the current released version number as well as bug fixes and new
code in between major releases.

A Google Group called “Robotics Toolbox” has been created tohandle discussion. This
replaces all former discussion tools which have proved to bevery problematic in the past.
The URL ishttp://groups.google.com.au/group/robotics-tool-box .

1.4 How to obtain the Toolbox

The Robotics Toolbox is freely available from the Toolbox home page at

http://www.petercorke.com

or the CSIRO mirror

http://www.ict.csiro.au/downloads.php

The files are available in either gzipped tar format (.gz) or zip format (.zip). The web page
requests some information from you regarding such as your country, type of organization
and application. This is just a means for me to gauge interestand to help convince my
bosses (and myself) that this is a worthwhile activity.

The file robot.pdf is a comprehensive manual with a tutorial introduction and details
of each Toolbox function. A menu-driven demonstration can be invoked by the function
rtdemo .

1.5 MATLAB version issues

The Toolbox should in principle work with MATLAB version 6 and greater. However fea-
tures of Matlab keep changing so it best to use the latest versions R2007 or R2008.

The Toolbox will not function under MATLAB v3.x or v4.x since those versions do not
support objects. An older version of the Toolbox, availablefrom the Matlab4 ftp site is
workable but lacks some features of this current Toolbox release.

1.6 Acknowledgements

I am grateful for the support of my employer, CSIRO, for supporting me in this activity and
providing me with access to the Matlab tools.

I have corresponded with a great many people via email since the first release of this Tool-
box. Some have identified bugs and shortcomings in the documentation, and even better,
some have provided bug fixes and even new modules, thankyou. See the fileCONTRIBfor
details.

1.7 Support, use in teaching, bug fixes, etc.

I’m always happy to correspond with people who have found genuine bugs or deficiencies
in the Toolbox, or who have suggestions about ways to improveits functionality. However
I draw the line at providing help for people with their assignments and homework!

1 INTRODUCTION 6

Many people use the Toolbox for teaching and this is something that I would encourage.
If you plan to duplicate the documentation for class use thenevery copy must include the
front page.

If you want to cite the Toolbox please use

@ARTICLE{Corke96b,

AUTHOR = {P.I. Corke},

JOURNAL = {IEEE Robotics and Automation Magazine},

MONTH = mar,

NUMBER = {1},

PAGES = {24-32},

TITLE = {A Robotics Toolbox for {MATLAB}},

VOLUME = {3},

YEAR = {1996}

}

which is also given in electronic form in the README file.

1.8 A note on kinematic conventions

Many people are not aware that there are two quite different forms of Denavit-Hartenberg
representation for serial-link manipulator kinematics:

1. Classical as per the original 1955 paper of Denavit and Hartenberg, and used in text-
books such as by Paul[1], Fu etal[2], or Spong and Vidyasagar[3].

2. Modified form as introduced by Craig[4] in his text book.

Both notations represent a joint as 2 translations (A andD) and 2 rotation angles (α andθ).
However the expressions for the link transform matrices arequite different. In short, you
must know which kinematic convention your Denavit-Hartenberg parameters conform to.

Unfortunately many sources in the literature do not specifythis crucial piece of information.
Most textbooks cover only one and do not even allude to the existence of the other. These
issues are discussed further in Section 3.

The Toolbox has full support for both the classical and modified conventions.

1.9 Creating a new robot definition

Let’s take a simple example like the two-link planar manipulator from Spong & Vidyasagar[3]
(Figure 3-6, p73) which has the following (standard) Denavit-Hartenberg link parameters

Link ai αi di θi

1 1 0 0 θ∗1
2 1 0 0 θ∗2

where we have set the link lengths to 1. Now we can create a pairof link objects:

1 INTRODUCTION 7

>> L1=link([0 1 0 0 0], ’standard’)

L1 =

0.000000 1.000000 0.000000 0.000000 R (std)

>> L2=link([0 1 0 0 0], ’standard’)

L2 =

0.000000 1.000000 0.000000 0.000000 R (std)

>> r=robot({L1 L2})

r =

noname (2 axis, RR)

grav = [0.00 0.00 9.81] standard D&H parameters

alpha A theta D R/P

0.000000 1.000000 0.000000 0.000000 R (std)

0.000000 1.000000 0.000000 0.000000 R (std)

>>

The first few lines create link objects, one per robot link. Note the second argument to
link which specifies that the standard D&H conventions are to be used (this is actually the
default). The arguments to the link object can be found from

>> help link

.

.

LINK([alpha A theta D sigma], CONVENTION)

.

.

which shows the order in which the link parameters must be passed (which is different to
the column order of the table above). The fifth element of the first argument,sigma , is a
flag that indicates whether the joint is revolute (sigma is zero) or primsmatic (sigma is non
zero).

The link objects are passed as a cell array to therobot() function which creates a robot
object which is in turn passed to many of the other Toolbox functions.

Note that displays of link data include the kinematic convention in brackets on the far right.
(std) for standard form, and(mod) for modified form.

The robot just created can be displayed graphically by

1 INTRODUCTION 8

−2

−1

0

1

2

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

XY

Z

 noname

xy z

Figure 1: Simple two-link manipulator model.

>> plot(r, [0 0])

which will create the plot shown in Figure 1.

1.10 Using MEX files

The Robotics Toolbox Release 7 includes portable C source code to generate a MEX file
version of therne function.

The MEX file runs upto 500 times faster than the interpretted versionrne.m and this is
critical for calculations involving forward dynamics. Theforward dynamics requires the
calculation of the manipulator inertia matrix at each integration time step. The Toolbox uses
a computationally simple but inefficient method that requires evaluating therne function
n + 1 times, wheren is the number of robot axes. For forward dynamics therne is the
bottleneck.

The Toolbox stores all robot kinematic and inertial parameters in arobot object, but ac-
cessing these parameters from a C language MEX file is somewhat cumbersome and must
be done on each call. Therefore the speed advantage increases with the number of rows in
theq, qd andqdd matrices that are provided. In other words it is better to call rne with a
trajectory, than for each point on a trajectory.

To build the MEX file:

1. Change directory to themex subdirectory of the Robotics Toolbox.

2. On a Unix system just typemake. For other platforms follow the Mathworks guide-
lines. You need to compile and link three files with a command something likemex
frne.c ne.c vmath.c .

3. If successful you now have a file calledfrne.ext whereext is the file extension and
depends on the architecture (mexsol for Solaris,mexlx for Linux).

4. From within Matlabcd into this same directory and run the test script

1 INTRODUCTION 9

>> cd ROBOTDIR/mex

>> check

*** ************

************************ Puma 560 ******************** *********

*** ************

************************ normal case ***************** ************

DH: Fast RNE: (c) Peter Corke 2002

Speedup is 17, worst case error is 0.000000

MDH: Speedup is 1565, worst case error is 0.000000

************************ no gravity ****************** ***********

DH: Speedup is 1501, worst case error is 0.000000

MDH: Speedup is 1509, worst case error is 0.000000

************************ ext force ******************* **********

DH: Speedup is 1497, worst case error is 0.000000

MDH: Speedup is 637, worst case error is 0.000000

*** ************

********************** Stanford arm ****************** *********

*** ************

************************ normal case ***************** ************

DH: Speedup is 1490, worst case error is 0.000000

MDH: Speedup is 1519, worst case error is 0.000000

************************ no gravity ****************** ***********

DH: Speedup is 1471, worst case error is 0.000000

MDH: Speedup is 1450, worst case error is 0.000000

************************ ext force ******************* **********

DH: Speedup is 417, worst case error is 0.000000

MDH: Speedup is 1458, worst case error is 0.000000

>>

This will run the M-file and MEX-file versions of therne function for various robot
models and options with various options. For each case it should report a speedup
greater than one, and an error of zero. The results shown above are for a Sparc Ultra
10.

5. Copy the MEX-filefrne.ext into the Robotics Toolbox main directory with the
namerne.ext . Thus all future references torne will now invoke the MEX-file
instead of the M-file. The first time you run the MEX-file in any Matlab session it
will print a one-line identification message.

10

2
Using the Toolbox with Simulink

2 Introduction

Simulink is the block diagram editing and simulation environment for Matlab. Until its
most recent release Simulink has not been able to handle matrix valued signals, and that has
made its application to robotics somewhat clumsy. This shortcoming has been rectified with
Simulink Release 4. Robot Toolbox Release 7 and higher includes a library of blocks for
use in constructing robot kinematic and dynamic models.

To use this new feature it is neccessary to include the Toolbox Simulink block directory in
your Matlab path:

>> addpath ROBOTDIR/simulink

To bring up the block library

>> roblocks

which will create a display like that shown in Figure 2.

Users with no previous Simulink experience are advised to read the relevant Mathworks
manuals and experiment with the examples supplied. Experienced Simulink users should
find the use of the Robotics blocks quite straightforward. Generally there is a one-to-one
correspondence between Simulink blocks and Toolbox functions. Several demonstrations
have been included with the Toolbox in order to illustrate common topics in robot control
and demonstrate Toolbox Simulink usage. These could be considered as starting points for
your own work, just select the model closest to what you want and start changing it. Details
of the blocks can be found using the File/ShowBrowser optionon the block library window.

Robotics Toolbox for Matlab (release 7)

TODO

Copyright (c) 2002 Peter Corke

Dynamics Graphics Kinematics Transform conversionTrajectory

x

y

z

T

xyz2T

T1

T2

dx

tr2diff

roll

pitch

yaw

T

rpy2T

tau

q

qd

qdd

noname

rne

noname

plot

q

qd

qdd

jtraj

J
n

noname

q J

jacobn

J
0

noname

q J

jacob0

J
−1

J Ji

ijacob

q T

noname

fkine

a

b

c

T

eul2T

T

x

y

z

T2xyz

T

roll

pitch

yaw

T2rpy

T

a

b

c

T2eul

tau

q

qd

qdd

noname

Robot

Figure 2: The Robotics Toolbox blockset.

3 EXAMPLES 11

Puma560 collapsing under gravity

Puma 560

plot
[0 0 0 0 0 0]’

Zero
torque

simout

To Workspace

tau

q

qd

qdd

Puma 560

Robot

Simple dynamics demo
pic
11−Feb−2002 14:19:49

0

Clock

Figure 3: Robotics Toolbox exampledemo1, Puma robot collapsing under gravity.

3 Examples

3.1 Dynamic simulation of Puma 560 robot collapsing under gravity

The Simulink model,demo1, is shown in Figure 3, and the two blocks in this model would
be familiar to Toolbox users. TheRobot block is similar to thefdyn() function and repre-
sents the forward dynamics of the robot, and theplot block represents theplot function.
Note the parameters of theRobot block contain the robot object to be simulated and the
initial joint angles. Theplot block has one parameter which is the robot object to be dis-
played graphically and should be consistent with the robot being simulated. Display options
are taken from theplotbotopt.m file, see help forrobot/plot for details.

To run this demo first create a robot object in the workspace,typically by using thepuma560

command, then start the simulation using Simulation/Startoption from the model toolbar.

>> puma560

>> demo1

3.2 Dynamic simulation of a simple robot with flexible transmission

The Simulink model,demo2, is shown in Figure 4, and represents a simple 2-link robot with
flexible or compliant transmission. The first joint receivesa step position demand change at
time 1s. The resulting oscillation and dynamic coupling between the two joints can be seen
clearly. Note that the drive model comprises spring plus damper, and that the joint position
control loops are simply unity negative feedback.

To run this demo first create a 2-link robot object in the workspace,typically by using the
twolink command, then start the simulation using Simulation/Startoption from the model
toolbar.

>> twolink

>> demo2

3 EXAMPLES 12

2−link robot with flexible transmission

load position

transmission comprises
spring + damper

assume the motor
is infinitely "stiff"

Puma 560

plot

simout

To Workspace

Step

Scope

tau

q

qd

qdd

Puma 560

Robot

Rate Limiter

2−link demo
pic
Mon Apr 8 11:37:04 2002

100

K

du/dt

Derivative

0

Constant

0

Clock

20

B

motor
position

Figure 4: Robotics Toolbox exampledemo2, simple flexible 2-link manipulator.

3.3 Computed torque control

The Simulink model,demo3, shown in Figure 5, is for a Puma560 with a computed torque
control structure. This is a “classical” dynamic control technique in which the rigid-body
dynamic model is inverted to compute the demand torque for the robot based on current joint
angles and joint angle rates and demand joint angle acceleration. This model introduces the
rne block which computes the inverse dynamics using the recursive Newton-Euler algo-
rithm (seerne function), and thejtraj block which computes a vector quintic polynomial.
jtraj has parameters which include the initial and final values of the each output element
as well as the overall motion time. Initial and final velocityare assumed to be zero.

In practice of course the dynamic model of the robot is not exactly known, we can only
invert our best estimate of the rigid-body dynamics. In the simulation we can model this
by using theperturb function to alter the parameters of the dynamic model used inthe
rne block — note the ’P/’ prefix on the model name displayed by thatblock. This means
that the inverse dynamics are computed for a slightly different dynamic model to the robot
under control and shows the effect of model error on control performance.

To run this demo first create a robot object in the workspace,typically by using thepuma560

command, then start the simulation using Simulation/Startoption from the model toolbar.

Puma 560 computed torque control

trajectory
(demand)

robot state
(actual)

error

tau

q

qd

qdd

P/Puma 560

rne

Puma 560

plot

q

qd

qdd

jtraj

simout

To Workspace

tau

q

qd

qdd

Puma 560

Robot

Puma560 computed torque control
pic
11−Feb−2002 14:18:39

100

Kp

1

Kd

0

Clock

Figure 5: Robotics Toolbox exampledemo3, computed torque control.

3 EXAMPLES 13

>> puma560

>> demo3

3.4 Torque feedforward control

The Simulink modeldemo4 demonstrates torque feedforward control, another “classical”
dynamic control technique in which the demanded torque is computed using therne block
and added to the error torque computed from position and velocity error. It is instructive to
compare the structure of this model withdemo3. The inverse dynamics are not in the for-
ward path and since the robot configuration changes relatively slowly, they can be computed
at a low rate (this is illustrated by the zero-order hold block sampling at 20Hz).

To run this demo first create a robot object in the workspace,typically by using thepuma560

command, then start the simulation using Simulation/Startoption from the model toolbar.

>> puma560

>> demo4

3.5 Cartesian space control

The Simulink model,demo5, shown in Figure 6, demonstrates Cartesian space motion con-
trol. There are two conventional approaches to this. Firstly, resolve the Cartesian space
demand to joint space using inverse kinematics and then perform the control in joint space.
The second, used here, is to compute the error in Cartesian space and resolve that to joint
space via the inverse Jacobian. This eliminates the need forinverse kinematics within the
control loop, and its attendent problems of multiple solutions. It also illustrates some addi-
tional Simulink blocks.

This demonstration is for a Puma 560 robot moving the tool in acircle of radius 0.05m
centered at the point(0.5, 0, 0). The difference between the Cartesian demand and the
current Cartesian pose (in end-effector coordinates) is computed by thetr2diff block
which produces a differential motion described by a 6-vector. The Jacobian block has as
its input the current manipulator joint angles and outputs the Jacobian matrix. Since the
differential motion is with respect to the end-effector we use the JacobianN block rather
than Jacobian0. We use standard Simulink block to invert theJacobian and multiply it by

Cartesian circle

Cartesian control

x

y

z

T

xyz2T

T1

T2

dx

tr2diff

Puma 560

plot

Bad Link

jacob0

J
−1

J Ji

ijacob

q T

Puma 560

fkine

XY Graph
T

x

y

z

T2xyz

1
s

Rate
controlled

robot
axes

Matrix
Multiply

−0.6

0.05*sin(u)

f(u)

0

0

Clock

q

q

Figure 6: Robotics Toolbox exampledemo5, Cartesian space control.

3 EXAMPLES 14

the differential motion. The result, after application of asimple proportional gain, is the
joint space motion required to correct the Cartesian error.The robot is modelled by an
integrator as a simple rate control device, or velocity servo.

This example also demonstrates the use of thefkine block for forward kinematics and the
T2xyz block which extracts the translational part of the robot’s Cartesian state for plotting
on the XY plane.

This demonstration is very similar to the numerical method used to solve the inverse kine-
matics problem inikine .

To run this demo first create a robot object in the workspace,typically by using thepuma560

command, then start the simulation using Simulation/Startoption from the model toolbar.

>> puma560

>> demo5

3.6 Image-based visual servoing

The Simulink model,demo6, shown in Figure 7, demonstrates image-based visual servoing
(IBVS)[5]. This is quite a complex example that simulates not only the robot but also a
camera and the IBVS algorithm. The camera is assumed to be mounted on the robot’s end-
effector and this coordinate is passed into the camera blockso that the relative position of
the target with respect to the camera can be computed. Arguments to the camera block
include the 3D coordinates of the target points. The output of the camera is the 2D image
plane coordinates of the target points. The target points are used to compute an image
Jacobian matrix which is inverted and multiplies the desired motion of the target points on
the image plane. The desired motion is simply the differencebetween the observed target
points and the desired point positions. The result is a velocity screw which drives the robot
to the desired pose with respect to a square target.

When the simulation starts a new window, the camera view, popsup. We see that initially
the square target is off to one side and somewhat oblique. Theimage plane errors are
mapped by an image Jacobian into desired Cartesian rates, and these are futher mapped by a

Image−based visual servo control

desired camera velocity

uv J

visual
Jacobian

146.1

visjac
condition

Puma 560

plot

MATLAB
Function

pinv

6.998

manip jac condition

J
n

Puma 560

q J

jacobn

J
−1

J Ji

ijacob

q T

Puma 560

fkine

274

feature error
norm

85.07

107.89

112.87

109.40

108.90

80.92

81.10

80.81

feature error

feature
error

256 456
456 456
456 256
256 256

desired
image plane
coordinates

MATLAB
Function

cond()

T uv

camera

1
s

Rate
controlled

robot
axes

Matrix
Multiply

Matrix
Multiply

Image−based visual servo control
pic
08−Apr−2002 11:31:20

MATLAB
Function

MATLAB
Function

MATLAB
Function

−0.10

0.21

0.28

−0.32

−0.00

0.04

−0.01

Cartesian velocity dmd

6

q 6

6
6
q

[6x6]

[6x6]

[6x6]

6

[4x2]

[4x2]
[4x2][4x4]

[8x6]

[8x6]
[8x6]

[4x2]

[6x8]

[4x2]

8
8

8

8

8
feature vel

[6x6]

6

6

6

6

6

Figure 7: Robotics Toolbox exampledemo6, image-based visual servoing.

3 EXAMPLES 15

manipulator Jacobian into joint rates which are applied to the robot which is again modelled
as a rate control device. This closed-loop system is performing a Cartesian positioning task
using information from a camera rather than encoders and a kinematic model (the Jacobian
is a weak kinematic model). Image-based visual servoing schemes have been found to be
extremely robust with respect to errors in the camera model and manipulator Jacobian.

16

3
Tutorial

3 Manipulator kinematics

Kinematics is the study of motion without regard to the forces which cause it. Within kine-
matics one studies the position, velocity and acceleration, and all higher order derivatives of
the position variables. The kinematics of manipulators involves the study of the geometric
and time based properties of the motion, and in particular how the various links move with
respect to one another and with time.

Typical robots areserial-link manipulators comprising a set of bodies, calledlinks, in a
chain, connected byjoints1. Each joint has one degree of freedom, either translationalor
rotational. For a manipulator withn joints numbered from 1 ton, there aren + 1 links,
numbered from 0 ton. Link 0 is the base of the manipulator, generally fixed, and link n
carries the end-effector. Jointi connects linksi andi−1.

A link may be considered as a rigid body defining the relationship between two neighbour-
ing joint axes. A link can be specified by two numbers, thelink length andlink twist, which
define the relative location of the two axes in space. The linkparameters for the first and
last links are meaningless, but are arbitrarily chosen to be0. Joints may be described by
two parameters. Thelink offset is the distance from one link to the next along the axis of the
joint. Thejoint angle is the rotation of one link with respect to the next about the joint axis.

To facilitate describing the location of each link we affix a coordinate frame to it — framei
is attached to linki. Denavit and Hartenberg[6] proposed a matrix method of systematically
assigning coordinate systems to each link of an articulatedchain. The axis of revolute joint
i is aligned withzi−1. The xi−1 axis is directed along the normal fromzi−1 to zi and for
intersecting axes is parallel tozi−1× zi. The link and joint parameters may be summarized
as:

link length ai the offset distance between thezi−1 andzi axes along the
xi axis;

link twist αi the angle from thezi−1 axis to thezi axis about thexi axis;
link offset di the distance from the origin of framei−1 to thexi axis

along thezi−1 axis;
joint angle θi the angle between thexi−1 andxi axes about thezi−1 axis.

For a revolute axisθi is the joint variable anddi is constant, while for a prismatic jointdi

is variable, andθi is constant. In many of the formulations that follow we use generalized
coordinates,qi, where

qi =

{

θi for a revolute joint
di for a prismatic joint

1Parallel link and serial/parallel hybrid structures are possible, though much less common in industrial manip-

ulators.

3 MANIPULATOR KINEMATICS 17

joint i−1 joint i joint i+1

link i−1

link i

T
i−1

T
iai

X i

Yi
Z i

ai−1

Z i−1

X i−1

Yi−1

(a) Standard form
joint i−1 joint i joint i+1

link i−1

link i

Ti−1 TiX i−1

Yi−1
Zi−1

Yi
X

i

Z i

a
i−1

a i

(b) Modified form

Figure 8: Different forms of Denavit-Hartenberg notation.

and generalized forces

Qi =

{

τi for a revolute joint
fi for a prismatic joint

The Denavit-Hartenberg (DH) representation results in a 4x4 homogeneous transformation
matrix

i−1Ai =

cosθi −sinθi cosαi sinθi sinαi ai cosθi

sinθi cosθi cosαi −cosθi sinαi ai sinθi

0 sinαi cosαi di

0 0 0 1

(1)

representing each link’s coordinate frame with respect to the previous link’s coordinate
system; that is

0Ti = 0Ti−1
i−1Ai (2)

where0Ti is the homogeneous transformation describing the pose of coordinate framei with
respect to the world coordinate system 0.

Two differing methodologies have been established for assigning coordinate frames, each
of which allows some freedom in the actual coordinate frame attachment:

1. Framei has its origin along the axis of jointi+1, as described by Paul[1] and Lee[2,
7].

3 MANIPULATOR KINEMATICS 18

2. Framei has its origin along the axis of jointi, and is frequently referred to as ‘modi-
fied Denavit-Hartenberg’ (MDH) form[8]. This form is commonly used in literature
dealing with manipulator dynamics. The link transform matrix for this form differs
from (1).

Figure 8 shows the notational differences between the two forms. Note thatai is always the
length of link i, but is the displacement between the origins of framei and framei + 1 in
one convention, and framei−1 and framei in the other2. The Toolbox provides kinematic
functions for both of these conventions — those for modified DH parameters are prefixed
by ‘m’.

3.1 Forward and inverse kinematics

For an n-axis rigid-link manipulator, theforward kinematic solution gives the coordinate
frame, or pose, of the last link. It is obtained by repeated application of (2)

0Tn = 0A1
1A2 · · ·

n−1An (3)

= K (q) (4)

which is the product of the coordinate frame transform matrices for each link. The pose
of the end-effector has 6 degrees of freedom in Cartesian space, 3 in translation and 3 in
rotation, so robot manipulators commonly have 6 joints or degrees of freedom to allow
arbitrary end-effector pose. The overall manipulator transform0Tn is frequently written as
Tn, or T6 for a 6-axis robot. The forward kinematic solution may be computed for any
manipulator, irrespective of the number of joints or kinematic structure.

Of more use in manipulator path planning is theinverse kinematic solution

q =K −1(T) (5)

which gives the joint angles required to reach the specified end-effector position. In general
this solution is non-unique, and for some classes of manipulator no closed-form solution
exists. If the manipulator has more than 6 joints it is said toberedundant and the solution
for joint angles is under-determined. If no solution can be determined for a particular ma-
nipulator pose that configuration is said to besingular. The singularity may be due to an
alignment of axes reducing the effective degrees of freedom, or the pointT being out of
reach.

The manipulator Jacobian matrix,Jθ, transforms velocities in joint space to velocities of
the end-effector in Cartesian space. For ann-axis manipulator the end-effector Cartesian
velocity is

0ẋn = 0Jθq̇ (6)
tn ẋn = tnJθq̇ (7)

in base or end-effector coordinates respectively and wherex is the Cartesian velocity rep-
resented by a 6-vector. For a 6-axis manipulator the Jacobian is square and provided it is
not singular can be inverted to solve for joint rates in termsof end-effector Cartesian rates.
The Jacobian will not be invertible at a kinematic singularity, and in practice will be poorly

2Many papers when tabulating the ‘modified’ kinematic parameters of manipulators listai−1 andαi−1 not ai

andαi.

4 MANIPULATOR RIGID-BODY DYNAMICS 19

conditioned in the vicinity of the singularity, resulting in high joint rates. A control scheme
based on Cartesian rate control

q̇ = 0J−1
θ

0ẋn (8)

was proposed by Whitney[9] and is known asresolved rate motion control. For two frames
A andB related byATB = [n o a p] the Cartesian velocity in frameA may be transformed to
frameB by

Bẋ = BJA
Aẋ (9)

where the Jacobian is given by Paul[10] as

BJA = f (ATB) =

[

[n o a]T [p×n p×o p×a]T

0 [n o a]T

]

(10)

4 Manipulator rigid-body dynamics

Manipulator dynamics is concerned with the equations of motion, the way in which the
manipulator moves in response to torques applied by the actuators, or external forces. The
history and mathematics of the dynamics of serial-link manipulators is well covered by
Paul[1] and Hollerbach[11]. There are two problems relatedto manipulator dynamics that
are important to solve:

• inverse dynamics in which the manipulator’s equations of motion are solved for given
motion to determine the generalized forces, discussed further in Section 4.1, and

• direct dynamics in which the equations of motion are integrated to determinethe
generalized coordinate response to applied generalized forces discussed further in
Section 4.2.

The equations of motion for ann-axis manipulator are given by

Q = M(q)q̈+C(q, q̇)q̇+F(q̇)+G(q) (11)

where

q is the vector of generalized joint coordinates describing the pose of the manipulator
q̇ is the vector of joint velocities;
q̈ is the vector of joint accelerations

M is the symmetric joint-space inertia matrix, or manipulator inertia tensor
C describes Coriolis and centripetal effects — Centripetal torques are proportional to ˙q2

i ,
while the Coriolis torques are proportional to ˙qiq̇ j

F describes viscous and Coulomb friction and is not generallyconsidered part of the rigid-
body dynamics

G is the gravity loading
Q is the vector of generalized forces associated with the generalized coordinatesq.

The equations may be derived via a number of techniques, including Lagrangian (energy
based), Newton-Euler, d’Alembert[2, 12] or Kane’s[13] method. The earliest reported work
was by Uicker[14] and Kahn[15] using the Lagrangian approach. Due to the enormous com-
putational cost,O(n4), of this approach it was not possible to compute manipulatortorque
for real-time control. To achieve real-time performance many approaches were suggested,
including table lookup[16] and approximation[17, 18]. Themost common approximation
was to ignore the velocity-dependent termC, since accurate positioning and high speed
motion are exclusive in typical robot applications.

4 MANIPULATOR RIGID-BODY DYNAMICS 20

Method Multiplications Additions For N=6

Multiply Add

Lagrangian[22] 321
2n4 +86 5

12n3 25n4 +661
3n3 66,271 51,548

+1711
4n2 +531

3n +1291
2n2 +421

3n

−128 −96

Recursive NE[22] 150n−48 131n−48 852 738

Kane[13] 646 394

Simplified RNE[25] 224 174

Table 1: Comparison of computational costs for inverse dynamics from various sources.

The last entry is achieved by symbolic simplification using the software package ARM.

Orin et al.[19] proposed an alternative approach based on the Newton-Euler (NE) equations
of rigid-body motion applied to each link. Armstrong[20] then showed how recursion might
be applied resulting inO(n) complexity. Luh et al.[21] provided a recursive formulation of
the Newton-Euler equations with linear and angular velocities referred to link coordinate
frames. They suggested a time improvement from 7.9s for the Lagrangian formulation
to 4.5ms, and thus it became practical to implement ‘on-line’. Hollerbach[22] showed
how recursion could be applied to the Lagrangian form, and reduced the computation to
within a factor of 3 of the recursive NE. Silver[23] showed the equivalence of the recursive
Lagrangian and Newton-Euler forms, and that the differencein efficiency is due to the
representation of angular velocity.

“Kane’s equations” [13] provide another methodology for deriving the equations of motion
for a specific manipulator. A number of ‘Z’ variables are introduced, which while not
necessarily of physical significance, lead to a dynamics formulation with low computational
burden. Wampler[24] discusses the computational costs of Kane’s method in some detail.

The NE and Lagrange forms can be written generally in terms ofthe Denavit-Hartenberg
parameters — however the specific formulations, such as Kane’s, can have lower compu-
tational cost for the specific manipulator. Whilst the recursive forms are computationally
more efficient, the non-recursive forms compute the individual dynamic terms (M , C and
G) directly. A comparison of computation costs is given in Table 1.

4.1 Recursive Newton-Euler formulation

The recursive Newton-Euler (RNE) formulation[21] computes the inverse manipulator dy-
namics, that is, the joint torques required for a given set ofjoint angles, velocities and
accelerations. The forward recursion propagates kinematic information — such as angu-
lar velocities, angular accelerations, linear accelerations — from the base reference frame
(inertial frame) to the end-effector. The backward recursion propagates the forces and mo-
ments exerted on each link from the end-effector of the manipulator to the base reference
frame3. Figure 9 shows the variables involved in the computation for one link.

The notation of Hollerbach[22] and Walker and Orin [26] willbe used in which the left
superscript indicates the reference coordinate frame for the variable. The notation of Luh et
al.[21] and later Lee[7, 2] is considerably less clear.

3It should be noted that using MDH notation with its differentaxis assignment conventions the Newton Euler

formulation is expressed differently[8].

4 MANIPULATOR RIGID-BODY DYNAMICS 21

joint i−1 joint i joint i+1

link i−1

link i

T
i−1

T
iai

X i

YiZ i

ai−1

Z i−1

X i−1

Yi−1
p* vi

.
vi

.ωiωi

n fi i

N F
i i

vi

.
vi

_ _
i+1 i+1

n f

si

Figure 9: Notation used for inverse dynamics, based on standard Denavit-Hartenberg nota-

tion.

Outward recursion, 1≤ i ≤ n.

If axis i+1 is rotational
i+1ωi+1 = i+1Ri

(

iωi + z0q̇
i+1

)

(12)

i+1ω̇i+1 = i+1Ri

{

iω̇i + z0q̈
i+1

+ iωi ×
(

z0q̇
i+1

)}

(13)

i+1vi+1 = i+1ωi+1×
i+1p∗

i+1
+ i+1Ri

ivi (14)

i+1v̇i+1 = i+1ω̇i+1×
i+1p∗

i+1
+ i+1ωi+1×

{

i+1ωi+1×
i+1p∗

i+1

}

+ i+1Ri
iv̇i (15)

If axis i+1 is translational
i+1ωi+1 = i+1Ri

iωi (16)
i+1ω̇i+1 = i+1Ri

iω̇i (17)

i+1vi+1 = i+1Ri

(

z0q̇
i+1

+ ivi

)

+ i+1ωi+1×
i+1p∗

i+1
(18)

i+1v̇i+1 = i+1Ri

(

z0q̈
i+1

+ iv̇i

)

+ i+1ω̇i+1×
i+1p∗

i+1
+2 i+1ωi+1×

(

i+1Riz0q̇
i+1

)

+i+1ωi+1×
(

i+1ωi+1×
i+1p∗

i+1

)

(19)

iv̇i = iω̇i × si +
iωi ×

{iωi × si

}

+ iv̇i (20)
iF i = mi

iv̇i (21)
iNi = Ji

iω̇i +
iωi ×

(

Ji
iωi

)

(22)

Inward recursion, n ≥ i ≥ 1.

i f
i

= iRi+1
i+1 f

i+1
+ iF i (23)

ini = iRi+1

{

i+1ni+1 +
(

i+1Ri
i p∗

i

)

× ii+1 f
i+1

}

+
(

i p∗
i
+ si

)

× iF i +
iNi (24)

Q
i

=

(

ini

)T (

iRi+1z0

)

if link i+1 is rotational
(

i f
i

)T
(

iRi+1z0

)

if link i+1 is translational
(25)

where

4 MANIPULATOR RIGID-BODY DYNAMICS 22

i is the link index, in the range 1 ton
Ji is the moment of inertia of linki about its COM
si is the position vector of the COM of linki with respect to framei

ωi is the angular velocity of linki
ω̇i is the angular acceleration of linki
vi is the linear velocity of framei
v̇i is the linear acceleration of framei
vi is the linear velocity of the COM of linki
v̇i is the linear acceleration of the COM of linki
ni is the moment exerted on linki by link i−1
f

i
is the force exerted on linki by link i−1

Ni is the total moment at the COM of linki
F i is the total force at the COM of linki
Q

i
is the force or torque exerted by the actuator at jointi

i−1Ri is the orthonormal rotation matrix defining framei orientation with respect to frame
i−1. It is the upper 3×3 portion of the link transform matrix given in (1).

i−1Ri =

cosθi −cosαi sinθi sinαi sinθi

sinθi cosαi cosθi −sinαi cosθi

0 sinαi cosαi

 (26)

iRi−1 = (i−1Ri)
−1 = (i−1Ri)

T (27)

i p∗
i

is the displacement from the origin of framei−1 to framei with respect to framei.

i p∗
i
=

ai

di sinαi

di cosαi

 (28)

It is the negative translational part of(i−1Ai)
−1.

z0 is a unit vector in Z direction,z0 = [0 0 1]

Note that the COM linear velocity given by equation (14) or (18) does not need to be com-
puted since no other expression depends upon it. Boundary conditions are used to introduce
the effect of gravity by setting the acceleration of the baselink

v̇0 = −g (29)

whereg is the gravity vector in the reference coordinate frame, generally acting in the
negative Z direction, downward. Base velocity is generallyzero

v0 = 0 (30)

ω0 = 0 (31)

ω̇0 = 0 (32)

At this stage the Toolbox only provides an implementation ofthis algorithm using the stan-
dard Denavit-Hartenberg conventions.

4.2 Direct dynamics

Equation (11) may be used to compute the so-called inverse dynamics, that is, actuator
torque as a function of manipulator state and is useful for on-line control. For simulation

REFERENCES 23

the direct, integral orforward dynamic formulation is required giving joint motion in terms
of input torques.

Walker and Orin[26] describe several methods for computingthe forward dynamics, and
all make use of an existing inverse dynamics solution. Usingthe RNE algorithm for in-
verse dynamics, the computational complexity of the forward dynamics using ‘Method 1’
is O(n3) for an n-axis manipulator. Their other methods are increasingly more sophisticated
but reduce the computational cost, though stillO(n3). Featherstone[27] has described the
“articulated-body method” forO(n) computation of forward dynamics, however forn < 9
it is more expensive than the approach of Walker and Orin. Another O(n) approach for
forward dynamics has been described by Lathrop[28].

4.3 Rigid-body inertial parameters

Accurate model-based dynamic control of a manipulator requires knowledge of the rigid-
body inertial parameters. Each link has ten independent inertial parameters:

• link mass,mi;

• three first moments, which may be expressed as the COM location, si, with respect to
some datum on the link or as a momentSi = misi;

• six second moments, which represent the inertia of the link about a given axis, typi-
cally through the COM. The second moments may be expressed inmatrix or tensor
form as

J =

Jxx Jxy Jxz

Jxy Jyy Jyz

Jxz Jyz Jzz

 (33)

where the diagonal elements are themoments of inertia, and the off-diagonals are
products of inertia. Only six of these nine elements are unique: three moments and
three products of inertia.

For any point in a rigid-body there is one set of axes known as theprincipal axes of
inertia for which the off-diagonal terms, or products, are zero. These axes are given
by the eigenvectors of the inertia matrix (33) and the eigenvalues are the principal
moments of inertia. Frequently the products of inertia of the robot links are zero due
to symmetry.

A 6-axis manipulator rigid-body dynamic model thus entails60 inertial parameters. There
may be additional parameters per joint due to friction and motor armature inertia. Clearly,
establishing numeric values for this number of parameters is a difficult task. Many parame-
ters cannot be measured without dismantling the robot and performing careful experiments,
though this approach was used by Armstrong et al.[29]. Most parameters could be derived
from CAD models of the robots, but this information is often considered proprietary and
not made available to researchers.

References

[1] R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control. Cam-
bridge, Massachusetts: MIT Press, 1981.

REFERENCES 24

[2] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee,Robotics. Control, Sensing, Vision and
Intelligence. McGraw-Hill, 1987.

[3] M. Spong and M. Vidyasagar,Robot Dynamics and Control. John Wiley and Sons,
1989.

[4] J. J. Craig,Introduction to Robotics. Addison Wesley, 1986.

[5] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo control,”IEEE
Transactions on Robotics and Automation, vol. 12, pp. 651–670, Oct. 1996.

[6] R. S. Hartenberg and J. Denavit, “A kinematic notation for lower pair mechanisms
based on matrices,”Journal of Applied Mechanics, vol. 77, pp. 215–221, June 1955.

[7] C. S. G. Lee, “Robot arm kinematics, dynamics and control,” IEEE Computer, vol. 15,
pp. 62–80, Dec. 1982.

[8] J. J. Craig,Introduction to Robotics. Addison Wesley, second ed., 1989.

[9] D. Whitney, “The mathematics of coordinated control of prosthetic arms and manipu-
lators,”ASME Journal of Dynamic Systems, Measurement and Control, vol. 20, no. 4,
pp. 303–309, 1972.

[10] R. P. Paul, B. Shimano, and G. E. Mayer, “Kinematic control equations for simple
manipulators,”IEEE Trans. Syst. Man Cybern., vol. 11, pp. 449–455, June 1981.

[11] J. M. Hollerbach, “Dynamics,” inRobot Motion - Planning and Control (M. Brady,
J. M. Hollerbach, T. L. Johnson, T. Lozano-Perez, and M. T. Mason, eds.), pp. 51–71,
MIT, 1982.

[12] C. S. G. Lee, B. Lee, and R. Nigham, “Development of the generalized D’Alembert
equations of motion for mechanical manipulators,” inProc. 22nd CDC, (San Antonio,
Texas), pp. 1205–1210, 1983.

[13] T. Kane and D. Levinson, “The use of Kane’s dynamical equations in robotics,”Int. J.
Robot. Res., vol. 2, pp. 3–21, Fall 1983.

[14] J. Uicker,On the Dynamic Analysis of Spatial Linkages Using 4 by 4 Matrices. PhD
thesis, Dept. Mechanical Engineering and Astronautical Sciences, NorthWestern Uni-
versity, 1965.

[15] M. Kahn, “The near-minimum time control of open-loop articulated kinematic link-
ages,” Tech. Rep. AIM-106, Stanford University, 1969.

[16] M. H. Raibert and B. K. P. Horn, “Manipulator control using the configuration space
method,”The Industrial Robot, pp. 69–73, June 1978.

[17] A. Bejczy, “Robot arm dynamics and control,” Tech. Rep.NASA-CR-136935, NASA
JPL, Feb. 1974.

[18] R. Paul, “Modelling, trajectory calculation and servoing of a computer controlled
arm,” Tech. Rep. AIM-177, Stanford University, Artificial Intelligence Laboratory,
1972.

[19] D. Orin, R. McGhee, M. Vukobratovic, and G. Hartoch, “Kinematics and kinetic
analysis of open-chain linkages utilizing Newton-Euler methods,”Mathematical Bio-
sciences. An International Journal, vol. 43, pp. 107–130, Feb. 1979.

REFERENCES 25

[20] W. Armstrong, “Recursive solution to the equations of motion of an n-link manipula-
tor,” in Proc. 5th World Congress on Theory of Machines and Mechanisms, (Montreal),
pp. 1343–1346, July 1979.

[21] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, “On-line computational scheme for me-
chanical manipulators,”ASME Journal of Dynamic Systems, Measurement and Con-
trol, vol. 102, pp. 69–76, 1980.

[22] J. Hollerbach, “A recursive Lagrangian formulation ofmanipulator dynamics and a
comparative study of dynamics formulation complexity,”IEEE Trans. Syst. Man Cy-
bern., vol. SMC-10, pp. 730–736, Nov. 1980.

[23] W. M. Silver, “On the equivalance of Lagrangian and Newton-Euler dynamics for
manipulators,”Int. J. Robot. Res., vol. 1, pp. 60–70, Summer 1982.

[24] C. Wampler,Computer Methods in Manipulator Kinematics, Dynamics, and Control:
a Comparative Study. PhD thesis, Stanford University, 1985.

[25] J. J. Murray,Computational Robot Dynamics. PhD thesis, Carnegie-Mellon Univer-
sity, 1984.

[26] M. W. Walker and D. E. Orin, “Efficient dynamic computer simulation of robotic
mechanisms,”ASME Journal of Dynamic Systems, Measurement and Control,
vol. 104, pp. 205–211, 1982.

[27] R. Featherstone,Robot Dynamics Algorithms. Kluwer Academic Publishers, 1987.

[28] R. Lathrop, “Constrained (closed-loop) robot simulation by local constraint propoga-
tion.,” in Proc. IEEE Int. Conf. Robotics and Automation, pp. 689–694, 1986.

[29] B. Armstrong, O. Khatib, and J. Burdick, “The explicit dynamic model and inertial
parameters of the Puma 560 arm,” inProc. IEEE Int. Conf. Robotics and Automation,
vol. 1, (Washington, USA), pp. 510–18, 1986.

1

0.4pt0pt

Robotics Toolbox Release 8 Peter Corke, December 2008

2

2
Reference

For an n-axis manipulator the following matrix naming and dimensional conventions apply.

Symbol Dimensions Description
l link manipulator link object
q 1×n joint coordinate vector
q m×n m-point joint coordinate trajectory
qd 1×n joint velocity vector
qd m×n m-point joint velocity trajectory
qdd 1×n joint acceleration vector
qdd m×n m-point joint acceleration trajectory
robot robot robot object
T 4×4 homogeneous transform
T 4×4×m m-point homogeneous transform trajectory
Q quaternion unit-quaternion object
M 1×6 vector with elements of 0 or 1 corresponding to

Cartesian DOF along X, Y, Z and around X, Y, Z.
1 if that Cartesian DOF belongs to the task space,
else 0.

v 3×1 Cartesian vector
t m×1 time vector
d 6×1 differential motion vector

Object names are shown in bold typeface.

A trajectory is represented by a matrix in which each row corresponds to one ofm time
steps. For a joint coordinate, velocity or acceleration trajectory the columns correspond
to the robot axes. For homogeneous transform trajectories we use 3-dimensional matrices
where the last index corresponds to the time step.

Units

All angles are in radians. The choice of all other units is up to the user, and this choice will
flow on to the units in which homogeneous transforms, Jacobians, inertias and torques are
represented.

Robotics Toolbox Release 8 Peter Corke, December 2008

Introduction 3

Homogeneous Transforms
angvec2tr angle/vector form to homogeneous transform
eul2tr Euler angle to homogeneous transform
oa2tr orientation and approach vector to homogeneous transform
rpy2tr Roll/pitch/yaw angles to homogeneous transform
tr2angvec homogeneous transform or rotation matrix to angle/vector

form
tr2eul homogeneous transform or rotation matrix to Euler angles
t2r homogeneous transform to rotation submatrix
tr2rpy homogeneous transform or rotation matrix to

roll/pitch/yaw angles
trotx homogeneous transform for rotation about X-axis
troty homogeneous transform for rotation about Y-axis
trotz homogeneous transform for rotation about Z-axis
transl set or extract the translational component of a homoge-

neous transform
trnorm normalize a homogeneous transform
trplot plot a homogeneous transformas a coordinate frame

Note that functions of the formtr2X will also accept a rotation matrixas the argument.

Rotation matrices
angvecr angle/vector form to rotation matrix
eul2r Euler angle to rotation matrix
oa2r orientation and approach vector to homogeneous transform
rotx rotation matrix for rotation about X-axis
roty rotation matrix for rotation about Y-axis
rotz rotation matrix for rotation about Z-axis
rpy2r Roll/pitch/yaw angles to rotation matrix
r2t rotation matrix to homogeneous transform

Trajectory Generation
ctraj Cartesian trajectory
jtraj joint space trajectory
trinterp interpolate homogeneous transforms

Quaternions
+ elementwise addition
- elementwise addition
/ divide quaternion by quaternion or scalar
* multiply quaternion by a quaternion or vector
inv invert a quaternion
norm norm of a quaternion
plot display a quaternion as a 3D rotation
q2tr quaternion to homogeneous transform
quaternion construct a quaternion
qinterp interpolate quaternions
unit unitize a quaternion

Robotics Toolbox Release 8 Peter Corke, December 2008

Introduction 4

General serial link manipulators
link construct a robot link object
nofriction remove friction from a robot object
perturb randomly modify some dynamic parameters
robot construct a robot object
showlink show link/robot data in detail

Manipulator Models
Fanuc10L Fanuc 10L arm data (DH, kine)
MotomanHP6 Motoman HP6 arm data (DH, kine)
puma560 Puma 560 data (DH, kine, dyn)
puma560akb Puma 560 data (MDH, kine, dyn)
S4ABB2p8 ABB S4 2.8 arm data (DH, kine)
stanford Stanford arm data (DH, kine, dyn)
twolink simple 2-link example (DH, kine)

Kinematics
diff2tr differential motion vector to transform
fkine compute forward kinematics
ftrans transform force/moment
ikine compute inverse kinematics
ikine560 compute inverse kinematics for Puma 560 like arm
jacob0 compute Jacobian in base coordinate frame
jacobn compute Jacobian in end-effector coordinate frame
tr2diff homogeneous transform to differential motion vector
tr2jac homogeneous transform to Jacobian

Graphics
drivebot drive a graphical robot
plot plot/animate robot

Dynamics
accel compute forward dynamics
cinertia compute Cartesian manipulator inertia matrix
coriolis compute centripetal/coriolis torque
fdyn forward dynamics (motion given forces)
friction joint friction
gravload compute gravity loading
inertia compute manipulator inertia matrix
itorque compute inertia torque
rne inverse dynamics (forces given motion)

Robotics Toolbox Release 8 Peter Corke, December 2008

Introduction 5

Other
ishomog test if argument is 4×4
isrot test if argument is 3×3
isvec test if argument is a 3-vector
maniplty compute manipulability
rtdemo toolbox demonstration
unit unitize a vector

Robotics Toolbox Release 8 Peter Corke, December 2008

accel 6

accel

Purpose Compute manipulator forward dynamics

Synopsis qdd = accel(robot, q, qd, torque)

Description Returns a vector of joint accelerations that result from applying the actuatortorque to the
manipulatorrobot with joint coordinatesq and velocitiesqd.

Algorithm Uses the method 1 of Walker and Orin to compute the forward dynamics. This form is
useful for simulation of manipulator dynamics, in conjunction with a numerical integration
function.

See Also rne, robot, fdyn, ode45

References M. W. Walker and D. E. Orin. Efficient dynamic computer simulation of robotic mecha-
nisms.ASME Journal of Dynamic Systems, Measurement and Control, 104:205–211, 1982.

Robotics Toolbox Release 8 Peter Corke, December 2008

angvec2tr, angvec2r 7

angvec2tr, angvec2r

Purpose Convert angle/vector form to a homogeneous transform or rotation matrix

Synopsis T = angvec2tr(theta, v)

R = angvec2r(theta, v)

Description Returns a homogeneous transform or rotation matrix representing a rotation oftheta radi-
ans about the vectorv . For the homogeneous transform the translational component is set
to zero.

See Also rotx, roty, rotz, quaternion

Robotics Toolbox Release 8 Peter Corke, December 2008

cinertia 8

cinertia

Purpose Compute the Cartesian (operational space) manipulator inertia matrix

Synopsis M = cinertia(robot, q)

Description cinertia computes the Cartesian, or operational space, inertia matrix. robot is a robot
object that describes the manipulator dynamics and kinematics, andq is an n-element vector
of joint coordinates.

Algorithm The Cartesian inertia matrix is calculated from the joint-space inertia matrix by

M(x) = J(q)−T M(q)J(q)−1

and relates Cartesian force/torque to Cartesian acceleration

F = M(x)ẍ

See Also inertia, robot, rne

References O. Khatib, “A unified approach for motion and force control ofrobot manipulators: the
operational space formulation,”IEEE Trans. Robot. Autom., vol. 3, pp. 43–53, Feb. 1987.

Robotics Toolbox Release 8 Peter Corke, December 2008

coriolis 9

coriolis

Purpose Compute the manipulator Coriolis/centripetal torque components

Synopsis tau c = coriolis(robot, q, qd)

Description coriolis returns the joint torques due to rigid-body Coriolis and centripetal effects for the
specified joint stateq and velocityqd. robot is a robot object that describes the manipulator
dynamics and kinematics.

If q andqd are row vectors,tau c is a row vector of joint torques. Ifq andqd are matrices,
each row is interpreted as a joint state vector, andtau c is a matrix each row being the
corresponding joint torques.

Algorithm Evaluated from the equations of motion, usingrne , with joint acceleration and gravitational
acceleration set to zero,

τ = C(q, q̇)q̇

Joint friction is ignored in this calculation.

See Also robot, rne, itorque, gravload

References M. W. Walker and D. E. Orin. Efficient dynamic computer simulation of robotic mecha-
nisms.ASME Journal of Dynamic Systems, Measurement and Control, 104:205–211, 1982.

Robotics Toolbox Release 8 Peter Corke, December 2008

ctraj 10

ctraj

Purpose Compute a Cartesian trajectory between two points

Synopsis TC = ctraj(T0, T1, m)

TC = ctraj(T0, T1, r)

Description ctraj returns a Cartesian trajectory (straight line motion)TC from the point represented by
homogeneous transformT0 to T1. The number of points along the path ismor the length of
the given vectorr . For the second caser is a vector of distances along the path (in the range
0 to 1) for each point. The first case has the points equally spaced, but different spacing may
be specified to achieve acceptable acceleration profile.TC is a 4×4×m matrix.

Examples To create a Cartesian path with smooth acceleration we can use thejtraj function to create
the path vectorr with continuous derivitives.

>> T0 = transl([0 0 0]); T1 = transl([-1 2 1]);

>> t= [0:0.056:10];

>> r = jtraj(0, 1, t);

>> TC = ctraj(T0, T1, r);

>> plot(t, transl(TC));

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

Time (s)

See Also trinterp, qinterp, transl

References R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control. Cambridge,
Massachusetts: MIT Press, 1981.

Robotics Toolbox Release 8 Peter Corke, December 2008

diff2tr 11

diff2tr

Purpose Convert a differential motion vector to a homogeneous transform

Synopsis delta = diff2tr(x)

Description Returns a homogeneous transform representing differential translation and rotation corre-
sponding to Cartesian velocityx = [vx vy vz ωx ωy ωz].

Algorithm From mechanics we know that
Ṙ = Sk(Ω)R

whereR is an orthonormal rotation matrix and

Sk(Ω) =

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

and is a skew-symmetric matrix. This can be generalized to

Ṫ =

[

Sk(Ω) Ṗ
000 1

]

T

for the rotational and translational case.

See Also tr2diff

References R. P. Paul. Robot Manipulators: Mathematics, Programming, and Control. MIT Press,
Cambridge, Massachusetts, 1981.

Robotics Toolbox Release 8 Peter Corke, December 2008

drivebot 12

drivebot

Purpose Drive a graphical robot

Synopsis drivebot(robot)

drivebot(robot, q)

Description Pops up a window with one slider for each joint. Operation of the sliders will drive the
graphical robot on the screen. Very useful for gaining an understanding of joint limits and
robot workspace.

The joint coordinate state is kept with the graphical robot and can be obtained using the
plot function. If q is specified it is used as the initial joint angle, otherwise the initial value
of joint coordinates is taken from the graphical robot.

Examples To drive a graphical Puma 560 robot

>> puma560 % define the robot

>> plot(p560,qz) % draw it

>> drivebot(p560) % now drive it

See Also robot/plot,robot

Robotics Toolbox Release 8 Peter Corke, December 2008

eul2tr, eul2r 13

eul2tr, eul2r

Purpose Convert Euler angles to a homogeneous transform or rotationmatrix

Synopsis T = eul2tr([φ θ ψ])

T = eul2tr(φ, θ, ψ)

R = eul2r([φ θ ψ])

R = eul2r(φ, θ, ψ)

Description Returns a homogeneous transform or rotation matrix for the specified Euler angles in radi-
ans.

RZ(φ)RY (θ)RZ(ψ)

For the homogeneous transform value the translational component is set to zero.

Cautionary Note that 12 different Euler angle sets or conventions exist. The convention used here is the
common one for robotics, but is not the one used for example inthe aerospace community.

See Also tr2eul, rpy2tr

References R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control. Cambridge,
Massachusetts: MIT Press, 1981.

Robotics Toolbox Release 8 Peter Corke, December 2008

Fanuc10L 14

Fanuc10L

Purpose Create a Fanuc 10L robot object

Synopsis Fanuc10L

Description Creates therobot objectRwhich describes the kinematic characteristics of a AM120iB/10L
manipulator. The kinematic conventions used are as per Pauland Zhang, and all quantities
are in standard SI units.

Also defined is the joint coordinate vectorq0 corresponding to the mastering position.

See Also robot, puma560akb, stanford, MotomanHP6, S4ABB2p8

Author Wynand Swart, Mega Robots CC, P/O Box 8412, Pretoria, 0001, South Africa,
wynand.swart@gmail.com

Robotics Toolbox Release 8 Peter Corke, December 2008

fdyn 15

fdyn

Purpose Integrate forward dynamics

Synopsis [t q qd] = fdyn(robot, t0, t1)

[t q qd] = fdyn(robot, t0, t1, torqfun)

[t q qd] = fdyn(robot, t0, t1, torqfun, q0, qd0) [t

q qd] = fdyn(robot, t0, t1, torqfun, q0, qd0, arg1,

arg2, ...)

Description fdyn integrates the manipulator equations of motion over the time intervalt0 to t1 us-
ing MATLAB’s ode45 numerical integration function. Manipulator kinematic and dynamic
chacteristics are given by the robot objectrobot . It returns a time vectort , and matrices of
manipulator joint stateq and joint velocitiesqd. These matrices have one row per time step
and one column per joint.

Actuator torque may be specified by a user function

tau = torqfun(t, q, qd, arg1, arg2, ...)

wheret is the current time, andq andqd are the manipulator joint coordinate and velocity
state respectively. Optional arguments passed tofdyn will be passed through to the user
function. Typically this function would be used to implement some axis control scheme
as a function of manipulator state and passed in setpoint information. If torqfun is not
specified then zero torque is applied to the manipulator.

Initial joint coordinates and velocities may be specified bythe optional argumentsq0 and
qd0 respectively.

Algorithm The joint acceleration is a function of joint coordinate andvelocity given by

q̈ = M(q)−1{

τ−C(q, q̇)q̇−G(q)−F(q̇)
}

Example The following example shows howfdyn() can be used to simulate a robot and its controller.
The manipulator is a Puma 560 with simple proportional and derivative controller. The
simulation results are shown in the figure, and further gain tuning is clearly required. Note
that high gains are required on joints 2 and 3 in order to counter the significant disturbance
torque due to gravity.

>> puma560 % load Puma parameters

>> t = [0:.056:5]’; % time vector

>> q_dmd = jtraj(qz, qr,t); % create a path

>> qt = [t q_dmd];

>> Pgain = [20 100 20 5 5 5]; % set gains

>> Dgain = [-5 -10 -2 0 0 0];

>> [tsim,q,qd] = fdyn(nofriction(p560), 0, 5, ’taufunc’, q z, qz, Pgain, Dgain, qt);

Robotics Toolbox Release 8 Peter Corke, December 2008

fdyn 16

Note the use ofqz a zero vector of length 6 defined bypuma560 pads out the two initial condition

arguments, and we place the control gains and the path as optional arguments. Note also the use of

thenofriction() function, see Cautionary note below. The invoked function is

%

% taufunc.m

%

% user written function to compute joint torque as a function

% of joint error. The desired path is passed in via the global

% matrix qt. The controller implemented is PD with the propor tional

% and derivative gains given by the global variables Pgain an d Dgain

% respectively.

%

function tau = taufunc(t, q, qd, Pgain, Dgain, qt)

% interpolate demanded angles for this time

if t > qt(end,1), % keep time in range

t = qt(end,1);

end

q_dmd = interp1(qt(:,1), qt(:,2:7), t)’;

% compute error and joint torque

e = q_dmd - q;

tau = diag(Pgain)*e + diag(Dgain)*qd;

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1

0

1

Time (s)

Jo
in

t 3
 (

ra
d)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

Time (s)

Jo
in

t 2
 (

ra
d)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.05

0

0.05

Time (s)

Jo
in

t 1
 (

ra
d)

Results offdyn() example. Simulated path shown as solid, and reference path as dashed.

Cautionary The presence of non-linear friction in the dynamic model can prevent the integration from converging.

The functionnofriction() can be used to return a Coulomb friction free robot object.

Robotics Toolbox Release 8 Peter Corke, December 2008

fdyn 17

See Also accel, nofriction, rne, robot, ode45

References M. W. Walker and D. E. Orin. Efficient dynamic computer simulation of robotic mechanisms.ASME

Journal of Dynamic Systems, Measurement and Control, 104:205–211, 1982.

Robotics Toolbox Release 8 Peter Corke, December 2008

fkine 18

fkine

Purpose Forward robot kinematics for serial link manipulator

Synopsis T = fkine(robot, q)

Description fkine computes forward kinematics for the joint coordinateq giving a homogeneous transform for

the location of the end-effector.robot is a robot object which contains a kinematic model in either

standard or modified Denavit-Hartenberg notation. Note that the robot object can specify an arbitrary

homogeneous transform for the base of the robot and a tool offset.

If q is a vector it is interpreted as the generalized joint coordinates, andfkine returns a homogeneous

transformation for the final link of the manipulator. Ifq is a matrix each row is interpreted as a joint

state vector, andT is a 4×4×m matrix wheremis the number of rows inq.

Cautionary Note that the dimensional units for the last column of theT matrix will be the same as the dimensional

units used in therobot object. The units can be whatever you choose (metres, inches, cubits or

furlongs) but the choice will affect the numerical value of the elements inthe last column ofT. The

Toolbox definitionspuma560 andstanford all use SI units with dimensions in metres.

See Also link, robot

References R. P. Paul.Robot Manipulators: Mathematics, Programming, and Control. MIT Press, Cambridge,

Massachusetts, 1981.

J. J. Craig,Introduction to Robotics. Addison Wesley, second ed., 1989.

Robotics Toolbox Release 8 Peter Corke, December 2008

link/friction 19

link/friction

Purpose Compute joint friction torque

Synopsis tau f = friction(link, qd)

Description friction computes the joint friction torque based on friction parameter data, if any,in the link

objectlink . Friction is a function only of joint velocityqd

If qd is a vector thentau f is a vector in which each element is the friction torque for the the

corresponding element inqd .

Algorithm The friction model is a fairly standard one comprising viscous friction anddirection dependent

Coulomb friction

Fi(t) =

{

Bi q̇+ τ−i , θ̇ < 0

Bi q̇+ τ+
i , θ̇ > 0

See Also link,robot/friction,nofriction

Robotics Toolbox Release 8 Peter Corke, December 2008

robot/friction 20

robot/friction

Purpose Compute robot friction torque vector

Synopsis tau f = friction(robot, qd)

Description friction computes the joint friction torque vector for the robot objectrobot with a joint velocity

vectorqd .

See Also link, link/friction, nofriction

Robotics Toolbox Release 8 Peter Corke, December 2008

ftrans 21

ftrans

Purpose Force transformation

Synopsis F2 = ftrans(F, T)

Description Transform the force vectorF in the current coordinate frame to force vectorF2 in the second coordi-

nate frame. The second frame is related to the first by the homogeneoustransformT. F2 andF are

each 6-element vectors comprising force and moment components[Fx Fy Fz Mx My Mz].

See Also diff2tr

Robotics Toolbox Release 8 Peter Corke, December 2008

gravload 22

gravload

Purpose Compute the manipulator gravity torque components

Synopsis tau g = gravload(robot, q)

tau g = gravload(robot, q, grav)

Description gravload computes the joint torque due to gravity for the manipulator in poseq.

If q is a row vector,tau g returns a row vector of joint torques. Ifq is a matrix each row is interpreted

as as a joint state vector, andtau g is a matrix in which each row is the gravity torque for the the

corresponding row inq.

The default gravity direction comes from the robot object but may be overridden by the optionalgrav

argument.

See Also robot, link, rne, itorque, coriolis

References M. W. Walker and D. E. Orin. Efficient dynamic computer simulation of robotic mechanisms.ASME

Journal of Dynamic Systems, Measurement and Control, 104:205–211, 1982.

Robotics Toolbox Release 8 Peter Corke, December 2008

ikine 23

ikine

Purpose Inverse manipulator kinematics

Synopsis q = ikine(robot, T)

q = ikine(robot, T, q0)

q = ikine(robot, T, q0, M)

Description ikine returns the joint coordinates for the manipulator described by the objectrobot whose end-

effector homogeneous transform is given byT. Note that the robot’s base can be arbitrarily specified

within the robot object.

If T is a homogeneous transform then a row vector of joint coordinates is returned. The estimate for

the first step isq0 if this is given else 0.

If T is a homogeneous transform trajectory of size 4×4×m thenq will be an n×m matrix where

each row is a vector of joint coordinates corresponding to the last subscript of T. The estimate for the

first step in the sequence isq0 if this is given else 0. The initial estimate ofq for each time step is

taken as the solution from the previous time step.

Note that the inverse kinematic solution is generally not unique, and depends on the initial valueq0

(which defaults to 0).

For the case of a manipulator with fewer than 6 DOF it is not possible for the end-effector to satisfy

the end-effector pose specified by an arbitrary homogeneous transform. This typically leads to non-

convergence inikine . A solution is to specify a 6-element weighting vector,M, whose elements

are 0 for those Cartesian DOF that are unconstrained and 1 otherwise. The elements correspond

to translation along the X-, Y- and Z-axes and rotation about the X-, Y- andZ-axes respectively.

For example, a 5-axis manipulator may be incapable of independantly controlling rotation about the

end-effector’s Z-axis. In this caseM = [1 1 1 1 1 0] would enable a solution in which the end-

effector adopted the poseT except for the end-effector rotation. The number of non-zero elements

should equal the number of robot DOF.

Algorithm The solution is computed iteratively using the pseudo-inverse of the manipulator Jacobian.

q̇ = J+(q)∆
(

F (q)−T
)

where∆ returns the ‘difference’ between two transforms as a 6-element vector of displacements and

rotations (seetr2diff).

Cautionary Such a solution is completely general, though much less efficient than specific inverse kinematic

solutions derived symbolically.

The returned joint angles may be in non-minimum form, ie.q+2nπ.

This approach allows a solution to obtained at a singularity, but the joint coordinates within the null

space are arbitrarily assigned.

Robotics Toolbox Release 8 Peter Corke, December 2008

ikine 24

Note that the dimensional units used for the last column of theT matrix must agree with the dimen-

sional units used in the robot definition. These units can be whatever you choose (metres, inches,

cubits or furlongs) but they must be consistent. The Toolbox definitionspuma560 andstanford

all use SI units with dimensions in metres.

See Also fkine, tr2diff, jacob0, ikine560, robot

References S. Chieaverini, L. Sciavicco, and B. Siciliano, “Control of robotic systems through singularities,” in

Proc. Int. Workshop on Nonlinear and Adaptive Control: Issues in Robotics (C. C. de Wit, ed.),

Springer-Verlag, 1991.

Robotics Toolbox Release 8 Peter Corke, December 2008

ikine560 25

ikine560

Purpose Inverse manipulator kinematics for Puma 560 like arm

Synopsis q = ikine560(robot, config)

Description ikine560 returns the joint coordinates corresponding to the end-effector homogeneous transform

T. It is computed using a symbolic solution appropriate for Puma 560 like robots, that is, all revolute

6DOF arms, with a spherical wrist. The use of a symbolic solution means that it executes over 50

times faster thanikine for a Puma 560 solution.

A further advantage is thatikine560() allows control over the specific solution returned.config

is a string which contains one or more of the configuration control letter codes

’l’ left-handed (lefty) solution (default)

’r’ †right-handed (righty) solution

’u’ †elbow up solution (default)

’d’ elbow down solution

’f’ †wrist flipped solution

’n’ wrist not flipped solution (default)

Cautionary Note that the dimensional units used for the last column of theT matrix must agree with the dimen-

sional units used in therobot object. These units can be whatever you choose (metres, inches, cubits

or furlongs) but they must be consistent. The Toolbox definitionspuma560 andstanford all use

SI units with dimensions in metres.

See Also fkine, ikine, robot

References R. P. Paul and H. Zhang, “Computationally efficient kinematics for manipulators with spherical

wrists,” Int. J. Robot. Res., vol. 5, no. 2, pp. 32–44, 1986.

Author Robert Biro and Gary McMurray, Georgia Institute of Technology, gt2231a@acmex.gatech.edu

Robotics Toolbox Release 8 Peter Corke, December 2008

inertia 26

inertia

Purpose Compute the manipulator joint-space inertia matrix

Synopsis M = inertia(robot, q)

Description inertia computes the joint-space inertia matrix which relates joint torque to joint acceleration

τ = M(q)q̈

robot is a robot object that describes the manipulator dynamics and kinematics,and q is an n-

element vector of joint state. For an n-axis manipulatorMis ann×n symmetric matrix.

If q is a matrix each row is interpreted as a joint state vector, andI is ann×n×m matrix wheremis

the number of rows inq.

Note that if therobot contains motor inertia parameters then motor inertia, referred to the link

reference frame, will be added to the diagonal ofM.

Example To show how the inertia ‘seen’ by the waist joint varies as a function of jointangles 2 and 3 the

following code could be used.

>> [q2,q3] = meshgrid(-pi:0.2:pi, -pi:0.2:pi);

>> q = [zeros(length(q2(:)),1) q2(:) q3(:) zeros(length(q 2(:)),3)];

>> I = inertia(p560, q);

>> surfl(q2, q3, reshape(squeeze(I(1,1,:)), size(q2)));

−4
−2

0
2

4

−4

−2

0

2

4
2

2.5

3

3.5

4

4.5

5

5.5

q2q3

I1
1

See Also robot, rne, itorque, coriolis, gravload

Robotics Toolbox Release 8 Peter Corke, December 2008

inertia 27

References M. W. Walker and D. E. Orin. Efficient dynamic computer simulation of robotic mechanisms.ASME

Journal of Dynamic Systems, Measurement and Control, 104:205–211, 1982.

Robotics Toolbox Release 8 Peter Corke, December 2008

ishomog 28

ishomog

Purpose Test if argument is a homogeneous transform

Synopsis ishomog(x)

Description Returns true ifx is a 4× 4 matrix.

See Also isrot, isvec

Robotics Toolbox Release 8 Peter Corke, December 2008

isrot 29

isrot

Purpose Test if argument is a rotation matrix

Synopsis isrot(x)

Description Returns true ifx is a 3× 3 matrix.

See Also ishomog, isvec

Robotics Toolbox Release 8 Peter Corke, December 2008

isvec 30

isvec

Purpose Test if argument is a 3-vector

Synopsis isvec(x)

Description Returns true ifx is , either a 3×1 or 1×3 matrix.

See Also ishomog, isrot

Robotics Toolbox Release 8 Peter Corke, December 2008

itorque 31

itorque

Purpose Compute the manipulator inertia torque component

Synopsis tau i = itorque(robot, q, qdd)

Description itorque returns the joint torque due to inertia at the specified poseq and accelerationqdd which is

given by

τi = M(q)q̈

If q andqdd are row vectors,itorque is a row vector of joint torques. Ifq andqdd are matrices,

each row is interpreted as a joint state vector, anditorque is a matrix in which each row is the

inertia torque for the corresponding rows ofq andqdd .

robot is a robot object that describes the kinematics and dynamics of the manipulator and drive. If

robot contains motor inertia parameters then motor inertia, referred to the link reference frame, will

be included in the diagonal ofMand influence the inertia torque result.

See Also robot, rne, coriolis, inertia, gravload

Robotics Toolbox Release 8 Peter Corke, December 2008

jacob0 32

jacob0

Purpose Compute manipulator Jacobian in base coordinates

Synopsis jacob0(robot, q)

Description jacob0 returns a Jacobian matrix for the robot objectrobot in the poseq and as expressed in the

base coordinate frame.

The manipulator Jacobian matrix,0Jq, maps differential velocities in joint space, ˙q, to Cartesian

velocity of the end-effector expressed in the base coordinate frame.

0ẋ = 0Jq(q)q̇

For an n-axis manipulator the Jacobian is a 6×n matrix.

See Also jacobn, diff2tr, tr2diff, robot

References R. P. Paul, B. Shimano and G. E. Mayer.Kinematic Control Equations for Simple Manipulators.

IEEE Systems, Man and Cybernetics 11(6), pp 449-455, June 1981.

Robotics Toolbox Release 8 Peter Corke, December 2008

jacobn 33

jacobn

Purpose Compute manipulator Jacobian in end-effector coordinates

Synopsis jacobn(robot, q)

Description jacobn returns a Jacobian matrix for the robot objectrobot in the poseq and as expressed in the

end-effector coordinate frame.

The manipulator Jacobian matrix,0Jq, maps differential velocities in joint space, ˙q, to Cartesian

velocity of the end-effector expressed in the end-effector coordinateframe.

nẋ = nJq(q)q̇

The relationship between tool-tip forces and joint torques is given by

τ = nJq(q)′nF

For an n-axis manipulator the Jacobian is a 6×n matrix.

See Also jacob0, diff2tr, tr2diff, robot

References R. P. Paul, B. Shimano and G. E. Mayer.Kinematic Control Equations for Simple Manipulators.

IEEE Systems, Man and Cybernetics 11(6), pp 449-455, June 1981.

Robotics Toolbox Release 8 Peter Corke, December 2008

jtraj 34

jtraj

Purpose Compute a joint space trajectory between two joint coordinate poses

Synopsis [q qd qdd] = jtraj(q0, q1, n)

[q qd qdd] = jtraj(q0, q1, n, qd0, qd1)

[q qd qdd] = jtraj(q0, q1, t)

[q qd qdd] = jtraj(q0, q1, t, qd0, qd1)

Description jtraj returns a joint space trajectoryq from joint coordinatesq0 to q1 . The number of points isn

or the length of the given time vectort . A 7th order polynomial is used with default zero boundary

conditions for velocity and acceleration.

Non-zero boundary velocities can be optionally specified asqd0 andqd1 .

The trajectory is a matrix, with one row per time step, and one column per joint.The function can

optionally return a velocity and acceleration trajectories asqd andqdd respectively.

See Also ctraj

Robotics Toolbox Release 8 Peter Corke, December 2008

link 35

link

Purpose Link object

Synopsis L = link

L = link([alpha, a, theta, d], convention)

L = link([alpha, a, theta, d, sigma], convention)

L = link(dyn row, convention)

A = link(q)

show(L)

Description The link function constructs alink object. The object contains kinematic and dynamic parameters

as well as actuator and transmission parameters. The first form returns a default object, while the

second and third forms initialize the kinematic model based on Denavit and Hartenberg parameters.

The dynamic model can be initialized using the fourth form of the constructor wheredyn row is a

1×20 matrix which is one row of the legacydyn matrix.

By default the standard Denavit and Hartenberg conventions are assumed but this can be overridden

by the optionalconvention argument which can be set to either’modified’ or ’standard’

(default). Note that any abbreviation of the string can be used, ie.’mod’ or even’m’ .

The second last form given above is not a constructor but a link methodthat returns the link transfor-

mation matrix for the given joint coordinate. The argument is given to the link object using paren-

thesis. The single argument is taken as the link variableq and substituted forθ or D for a revolute or

prismatic link respectively.

The Denavit and Hartenberg parameters describe the spatial relationship between this link and the pre-

vious one. The meaning of the fields for each kinematic convention are summarized in the following

table.

variable DH MDH description

alpha αi αi−1 link twist angle

A Ai Ai−1 link length

theta θi θi link rotation angle

D Di Di link offset distance

sigma σi σi joint type; 0 for revolute, non-zero for prismatic

Since Matlab does not support the concept of public class variables methods have been written to

allow link object parameters to be referenced (r) or assigned (a) as given by the following table

Robotics Toolbox Release 8 Peter Corke, December 2008

link 36

Method Operations Returns

link .alpha r+a link twist angle

link .A r+a link length

link .theta r+a link rotation angle

link .D r+a link offset distance

link .sigma r+a joint type; 0 for revolute, non-zero for prismatic

link .RP r joint type; ’R’ or ’P’

link .mdh r+a DH convention: 0 if standard, 1 if modified

link .I r 3×3 symmetric inertia matrix

link .I a assigned from a 3×3 matrix or a 6-element vec-

tor interpretted as[Ixx Iyy Izz Ixy Iyz Ixz]

link .m r+a link mass

link .r r+a 3×1 link COG vector

link .G r+a gear ratio

link .Jm r+a motor inertia

link .B r+a viscous friction

link .Tc r Coulomb friction, 1×2 vector where[τ+ τ−]

link .Tc a Coulomb friction; for symmetric friction this is

a scalar, for asymmetric friction it is a 2-element

vector for positive and negative velocity

link .dh r+a row of legacy DH matrix

link .dyn r+a row of legacy DYN matrix

link .qlim r+a joint coordinate limits, 2-vector

link .islimit(q) r return true if value ofq is outside the joint limit

bounds

link .offset r+a joint coordinate offset (see discussion for

robot object).

The default is for standard Denavit-Hartenberg conventions, zero friction, mass and inertias.

The display method gives a one-line summary of the link’s kinematic parameters. Theshow

method displays as many link parameters as have been initialized for that link.

Examples

>> L = link([-pi/2, 0.02, 0, 0.15])

L =

-1.570796 0.020000 0.000000 0.150000 R (std)

>> L.RP

ans =

R

>> L.mdh

ans =

0

>> L.G = 100;

>> L.Tc = 5;

>> L

Robotics Toolbox Release 8 Peter Corke, December 2008

link 37

L =

-1.570796 0.020000 0.000000 0.150000 R (std)

>> show(L)

alpha = -1.5708

A = 0.02

theta = 0

D = 0.15

sigma = 0

mdh = 0

G = 100

Tc = 5 -5

>>

Algorithm For the standard Denavit-Hartenberg conventions the homogeneous transform

i−1Ai =

cosθi −sinθi cosαi sinθi sinαi ai cosθi

sinθi cosθi cosαi −cosθi sinαi ai sinθi

0 sinαi cosαi di

0 0 0 1

represents each link’s coordinate frame with respect to the previous link’s coordinate system. For a

revolute jointθi is offset by

For the modified Denavit-Hartenberg conventions it is instead

i−1Ai =

cosθi −sinθi 0 ai−1

sinθi cosαi−1 cosθi cosαi−1 −sinαi−1 −di sinαi−1

sinθi sinαi−1 cosθi sinαi−1 cosαi−1 di cosαi−1

0 0 0 1

See Also showlink, robot

References R. P. Paul.Robot Manipulators: Mathematics, Programming, and Control. MIT Press, Cambridge,

Massachusetts, 1981.

J. J. Craig,Introduction to Robotics. Addison Wesley, second ed., 1989.

Robotics Toolbox Release 8 Peter Corke, December 2008

maniplty 38

maniplty

Purpose Manipulability measure

Synopsis m = maniplty(robot, q)

m = maniplty(robot, q, which)

Description maniplty computes the scalar manipulability index for the manipulator at the given pose. Manipu-

lability varies from 0 (bad) to 1 (good).robot is a robot object that contains kinematic and optionally

dynamic parameters for the manipulator. Two measures are supportedand are selected by the optional

argumentwhich can be either’yoshikawa’ (default) or’asada’ . Yoshikawa’s manipulability

measure is based purely on kinematic data, and gives an indication of how‘far’ the manipulator is

from singularities and thus able to move and exert forces uniformly in all directions.

Asada’s manipulability measure utilizes manipulator dynamic data, and indicates how close the inertia

ellipsoid is to spherical.

If q is a vectormaniplty returns a scalar manipulability index. Ifq is a matrixmaniplty returns

a column vector and each row is the manipulability index for the pose specified by the corresponding

row of q.

Algorithm Yoshikawa’s measure is based on the condition number of the manipulatorJacobian

ηyoshi =
√

|J(q)J(q)′|

Asada’s measure is computed from the Cartesian inertia matrix

M(x) = J(q)−T M(q)J(q)−1

The Cartesian manipulator inertia ellipsoid is

x′M(x)x = 1

and gives an indication of how well the manipulator can accelerate in each of the Cartesian directions.

The scalar measure computed here is the ratio of the smallest/largest ellipsoid axes

ηasada =
minx
maxx

Ideally the ellipsoid would be spherical, giving a ratio of 1, but in practice willbe less than 1.

See Also jacob0, inertia,robot

References T. Yoshikawa, “Analysis and control of robot manipulators with redundancy,” inProc. 1st Int. Symp.

Robotics Research, (Bretton Woods, NH), pp. 735–747, 1983.

Robotics Toolbox Release 8 Peter Corke, December 2008

MotomanHP6 39

MotomanHP6

Purpose Create a Motoman HP 6 robot object

Synopsis MotomanHP6

Description Creates therobot objectRwhich describes the kinematic characteristics of a Motoman HP6 manipu-

lator. The kinematic conventions used are as per Paul and Zhang, and all quantities are in standard SI

units.

Also defined is the joint coordinate vectorq0 corresponding to the zero position.

See Also robot, puma560akb, stanford, Fanuc10L, S4ABB2p8

Author Wynand Swart, Mega Robots CC, P/O Box 8412, Pretoria, 0001, South Africa,

wynand.swart@gmail.com

Robotics Toolbox Release 8 Peter Corke, December 2008

robot/nofriction 40

robot/nofriction

Purpose Remove friction from robot object

Synopsis robot2 = nofriction(robot)

robot2 = nofriction(robot, ’all’)

Description Return a new robot object with modified joint friction properties. The firstform sets the Coulomb

friction values to zero in the constituent links The second form sets viscousand Coulomb friction

values in the constituent links are set to zero.

The resulting robot object has its name string prepended with ’NF/’.

This is important for forward dynamics computation (fdyn()) where the presence of friction can

prevent the numerical integration from converging.

See Also link/nofriction, robot, link, friction, fdyn

Robotics Toolbox Release 8 Peter Corke, December 2008

link/nofriction 41

link/nofriction

Purpose Remove friction from link object

Synopsis link2 = nofriction(link)

link2 = nofriction(link, ’all’)

Description Return a new link object with modified joint friction properties. The first form sets the Coulomb

friction values to zero. The second form sets both viscous and Coulomb friction values to zero.

This is important for forward dynamics computation (fdyn()) where the presence of friction can

prevent the numerical integration from converging.

See Also robot/nofriction, link, friction, fdyn

Robotics Toolbox Release 8 Peter Corke, December 2008

oa2tr, oa2r 42

oa2tr, oa2r

Purpose Convert OA vectors to homogeneous transform or rotation matrix

Synopsis T = oa2tr(o, a)

R = oa2r(o, a)

Description Returns a homogeneous transform or rotation matrix specified in terms ofthe Cartesian orientation

and approach vectorso anda respectively.

Algorithm
R =

[

ô× â ô â
]

where ˆo andâ are unit vectors corresponding too anda respectively.

Cautionary An extra cross-product is used to ensure orthonormality.a is the only column that is guaranteed to be

unchanged from that specified in the call.

See Also rpy2tr, eul2tr

Robotics Toolbox Release 8 Peter Corke, December 2008

perturb 43

perturb

Purpose Perturb robot dynamic parameters

Synopsis robot2 = perturb(robot, p)

Description Return a new robot object with randomly modified dynamic parameters: link mass and inertia. The

perturbation is multiplicative so that values are multiplied by random numbersin the interval (1-p) to

(1+p).

Useful for investigating the robustness of various model-based control schemes where one model

forms the basis of the model-based controller and the peturbed model is used for the actual plant.

The resulting robot object has its name string prepended with ’P/’.

See Also fdyn, rne, robot

Robotics Toolbox Release 8 Peter Corke, December 2008

puma560 44

puma560

Purpose Create a Puma 560 robot object

Synopsis puma560

Description Creates therobot objectp560 which describes the kinematic and dynamic characteristics of a Uni-

mation Puma 560 manipulator. The kinematic conventions used are as per Paul and Zhang, and all

quantities are in standard SI units.

Also defines the joint coordinate vectorsqz , qr andqstretch corresponding to the zero-angle,

ready and fully extended (in X-direction) poses respectively.

Details of coordinate frames used for the Puma 560 shown here in its zeroangle pose.

See Also robot, puma560akb, stanford, Fanuc10L, MotomanHP6, S4ABB2p8

References R. P. Paul and H. Zhang, “Computationally efficient kinematics for manipulators with spherical

wrists,” Int. J. Robot. Res., vol. 5, no. 2, pp. 32–44, 1986.

P. Corke and B. Armstrong-H́elouvry, “A search for consensus among model parameters reported for

the PUMA 560 robot,” inProc. IEEE Int. Conf. Robotics and Automation, (San Diego), pp. 1608–

1613, May 1994.

P. Corke and B. Armstrong-H́elouvry, “A meta-study of PUMA 560 dynamics: A critical appraisal of

literature data,”Robotica, vol. 13, no. 3, pp. 253–258, 1995.

Robotics Toolbox Release 8 Peter Corke, December 2008

puma560akb 45

puma560akb

Purpose Create a Puma 560 robot object

Synopsis puma560akb

Description Creates therobot objectp560m which describes the kinematic and dynamic characteristics of a Uni-

mation Puma 560 manipulator. It uses Craig’s modified Denavit-Hartenberg notation with the partic-

ular kinematic conventions from Armstrong, Khatib and Burdick. All quantities are in standard SI

units.

Also defines the joint coordinate vectorsqz , qr andqstretch corresponding to the zero-angle,

ready and fully extended (in X-direction) poses respectively.

See Also robot, puma560, stanford, Fanuc10L, MotomanHP6, S4ABB2p8

References B. Armstrong, O. Khatib, and J. Burdick, “The explicit dynamic model and inertial parameters of

the Puma 560 arm,” inProc. IEEE Int. Conf. Robotics and Automation, vol. 1, (Washington, USA),

pp. 510–18, 1986.

Robotics Toolbox Release 8 Peter Corke, December 2008

qinterp 46

qinterp

Purpose Interpolate unit-quaternions

Synopsis QI = qinterp(Q1, Q2, r)

Description Return a unit-quaternion that interpolates between Q1 and Q2 asr varies between 0 and 1 inclusively.

This is a spherical linear interpolation (slerp) that can be interpreted as interpolation along a great

circle arc on a sphere.

If r is a vector, then a cell array of quaternions is returned correspondingto successive values ofr .

Examples A simple example

>> q1 = quaternion(rotx(0.3))

q1 =

0.98877 <0.14944, 0, 0>

>> q2 = quaternion(roty(-0.5))

q2 =

0.96891 <0, -0.2474, 0>

>> qinterp(q1, q2, 0)

ans =

0.98877 <0.14944, 0, 0>

>> qinterp(q1, q2, 1)

ans =

0.96891 <0, -0.2474, 0>

>> qinterp(q1, q2, 0.3)

ans =

0.99159 <0.10536, -0.075182, 0>

>>

References K. Shoemake, “Animating rotation with quaternion curves.,” inProceedings of ACM SIGGRAPH,

(San Francisco), pp. 245–254, The Singer Company, Link Flight Simulator Division, 1985.

Robotics Toolbox Release 8 Peter Corke, December 2008

quaternion 47

quaternion

Purpose Quaternion object

Synopsis q = quaternion(qq)

q = quaternion(v, theta)

q = quaternion(R)

q = quaternion([s vx vy vz])

Description quaternion is the constructor for aquaternion object. The first form returns a new object with the

same value as its argument. The second form initializes the quaternion to a rotation of theta about

the vectorv .

Examples A simple example

>> quaternion(1, [1 0 0])

ans =

0.87758 <0.47943, 0, 0>

>> quaternion(rotx(1))

ans =

0.87758 <0.47943, 0, 0>

>>

The third form sets the quaternion to a rotation equivalent to the given 3×3 rotation matrix, or the

rotation submatrix of a 4×4 homogeneous transform.

The fourth form sets the four quaternion elements directly wheres is the scalar component and[vx

vy vz] the vector.

All forms, except the last, return a unit quaternion, ie. one whose magnitude is unity.

Some operators are overloaded for the quaternion class

Robotics Toolbox Release 8 Peter Corke, December 2008

quaternion 48

q1 + q2 returns the elementwise sum of quaternion elements

q1 - q2 returns he elementwise sum of quaternion elements

q1 * q2 returns quaternion product or compounding

q * v returns a quaternion vector product, that is the vectorv is rotated

by the quaternion.v is a 3×3 vector

q1 / q2 returnsq1 ∗q−1
2

q∧j returnsq j where j is an integer exponent. Forj > 0 the result

is obtained by repeated multiplication. Forj < 0 the final result

is inverted.

double(q) returns the quaternion coeffients as a 4-element row vector

inv(q) returns the quaterion inverse

norm(q) returns the quaterion magnitude

plot(q) displays a 3D plot showing the standard coordinate frame after

rotation byq.

unit(q) returns the corresponding unit quaterion

Some public class variables methods are also available for reference only.

method Returns

quaternion .d return 4-vector of quaternion elements

quaternion .s return scalar component

quaternion .v return vector component

quaternion .t return equivalent homogeneous transformation

matrix

quaternion .r return equivalent orthonormal rotation matrix

Examples

>> t = rotx(0.2)

t =

1.0000 0 0 0

0 0.9801 -0.1987 0

0 0.1987 0.9801 0

0 0 0 1.0000

>> q1 = quaternion(t)

q1 =

0.995 <0.099833, 0, 0>

>> q1.r

ans =

1.0000 0 0

0 0.9801 -0.1987

0 0.1987 0.9801

>> q2 = quaternion(roty(0.3))

q2 =

0.98877 <0, 0.14944, 0>

Robotics Toolbox Release 8 Peter Corke, December 2008

quaternion 49

>> q1 * q2

ans =

0.98383 <0.098712, 0.14869, 0.014919>

>> q1*q1

ans =

0.98007 <0.19867, 0, 0>

>> q1ˆ2

ans =

0.98007 <0.19867, 0, 0>

>> q1*inv(q1)

ans =

1 <0, 0, 0>

>> q1/q1

ans =

1 <0, 0, 0>

>> q1/q2

ans =

0.98383 <0.098712, -0.14869, -0.014919>

>> q1*q2ˆ-1

ans =

0.98383 <0.098712, -0.14869, -0.014919>

Cautionary At the moment vectors or arrays of quaternions are not supported. You can however use cell arrays to

hold a number of quaternions.

See Also quaternion/plot

References K. Shoemake, “Animating rotation with quaternion curves.,” inProceedings of ACM SIGGRAPH,

(San Francisco), pp. 245–254, The Singer Company, Link Flight Simulator Division, 1985.

Robotics Toolbox Release 8 Peter Corke, December 2008

quaternion/plot 50

quaternion/plot

Purpose Plot quaternion rotation

Synopsis plot(Q)

Description plot is overloaded forquaternion objects and displays a 3D plot which shows how the standard

axes are transformed under that rotation.

Examples A rotation of 0.3rad about the X axis. Clearly the X axis is invariant under this rotation.

>> q=quaternion(rotx(0.3))

q =

0.85303<0.52185, 0, 0>

>> plot(q)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

X

X

Z

Y

Y

Z

See Also quaternion

Robotics Toolbox Release 8 Peter Corke, December 2008

rne 51

rne

Purpose Compute inverse dynamics via recursive Newton-Euler formulation

Synopsis tau = rne(robot, q, qd, qdd)

tau = rne(robot, [q qd qdd])

tau = rne(robot, q, qd, qdd, grav)

tau = rne(robot, [q qd qdd], grav)

tau = rne(robot, q, qd, qdd, grav, fext)

tau = rne(robot, [q qd qdd], grav, fext)

Description rne computes the equations of motion in an efficient manner, giving joint torque as a function of joint

position, velocity and acceleration.

If q, qd andqdd are row vectors thentau is a row vector of joint torques. Ifq, qd andqdd are

matrices thentau is a matrix in which each row is the joint torque for the corresponding rows of q,

qd andqdd .

Gravity direction is defined by the robot object but may be overridden byproviding a gravity acceler-

ation vectorgrav = [gx gy gz] .

An external force/moment acting on the end of the manipulator may also bespecified by a 6-element

vectorfext = [Fx Fy Fz Mx My Mz] in the end-effector coordinate frame.

The torque computed may contain contributions due to armature inertia and joint friction if these are

specified in the parameter matrixdyn .

The MEX-file version of this function is over 1000 times faster than the M-file. See Section 1 of this

manual for information about how to compile and install the MEX-file.

Algorithm Coumputes the joint torque

τ = M(q)q̈+C(q, q̇)q̇+F(q̇)+G(q)

whereM is the manipulator inertia matrix,C is the Coriolis and centripetal torque,F the viscous and

Coulomb friction, andG the gravity load.

Cautionary The MEX file currently ignores support base and tool transforms.

See Also robot, fdyn, accel, gravload, inertia, friction

Limitations A MEX file is currently only available for Sparc architecture.

Robotics Toolbox Release 8 Peter Corke, December 2008

rne 52

References J. Y. S. Luh, M. W. Walker, and R. P. C. Paul. On-line computational scheme for mechanical manip-

ulators.ASME Journal of Dynamic Systems, Measurement and Control, 102:69–76, 1980.

Robotics Toolbox Release 8 Peter Corke, December 2008

robot 53

robot

Purpose Robot object

Synopsis r = robot

r = robot(rr)

r = robot(link ...)

r = robot(DH ...)

r = robot(DYN ...)

Description robot is the constructor for a robot object. The first form creates a default robot, and the second

form returns a new robot object with the same value as its argument. The third form creates a robot

from a cell array of link objects which define the robot’s kinematics and optionally dynamics. The

fourth and fifth forms create a robot object from legacy DH and DYN format matrices.

The last three forms all accept optional trailing string arguments which are taken in order as being

robot name, manufacturer and comment.

Since Matlab does not support the concept of public class variables methods have been written to

allow robot object parameters to be referenced (r) or assigned (a) as given by the following table

method Operation Returns

robot .n r number of joints

robot .link r+a cell array of link objects

robot .name r+a robot name string

robot .manuf r+a robot manufacturer string

robot .comment r+a general comment string

robot .gravity r+a 3-element vector defining gravity direction

robot .mdh r DH convention: 0 if standard, 1 if modified.

Determined from the link objects.

robot .base r+a homogeneous transform defining base of robot

robot .tool r+a homogeneous transform defining tool of robot

robot .dh r legacy DH matrix

robot .dyn r legacy DYN matrix

robot .q r+a joint coordinates

robot .qlim r+a joint coordinate limits,n×2 matrix

robot .islimit r joint limit vector, for each joint set to -1, 0 or

1 depending if below low limit, OK, or greater

than upper limit

robot .offset r+a joint coordinate offsets

robot .plotopt r+a options forplot()

robot .lineopt r+a line style for robot graphical links

robot .shadowopt r+a line style for robot shadow links

robot .handle r+a graphics handles

Some of these operations at the robot level are actually wrappers around similarly named link object

Robotics Toolbox Release 8 Peter Corke, December 2008

robot 54

functions:offset , qlim , islimit .

The offset vector is added to the user specified joint angles before anykinematic or dynamic function is

invoked (it is actually implemented within the link object). Similarly it is subtracted after an operation

such as inverse kinematics. The need for a joint offset vector arises because of the constraints of

the Denavit-Hartenberg (or modified Denavit-Hartenberg) notation. Thepose of the robot with zero

joint angles is frequently some rather unusual (or even unachievable)pose. The joint coordinate offset

provides a means to make an arbitrary pose correspond to the zero jointangle case.

Default values for robot parameters are:

robot.name ’noname’

robot.manuf ”

robot.comment ”

robot.gravity [009.81]m/s2

robot.offset ones(n,1)

robot.base eye(4,4)

robot.tool eye(4,4)

robot.lineopt ’Color’, ’black’, ’Linewidth’, 4

robot.shadowopt ’Color’, ’black’, ’Linewidth’, 1

The multiplication operator,* , is overloaded and the product of two robot objects is a robot which is

the series connection of the multiplicands. Tool transforms of all but the last robot are ignored, base

transform of all but the first robot are ignored.

Theplot function is also overloaded and is used to provide a robot animation.

Examples

>> L{1} = link([pi/2 0 0 0])

L =

[1x1 link]

>> L{2} = link([0 0 0.5 0])

L =

[1x1 link] [1x1 link]

>> r = robot(L)

r =

(2 axis, RR)

grav = [0.00 0.00 9.81]

standard D&H parameters

alpha A theta D R/P

1.570796 0.000000 0.000000 0.000000 R (std)

0.000000 0.000000 0.500000 0.000000 R (std)

Robotics Toolbox Release 8 Peter Corke, December 2008

robot 55

>>

See Also link,plot

Robotics Toolbox Release 8 Peter Corke, December 2008

robot/plot 56

robot/plot

Purpose Graphical robot animation

Synopsis plot(robot, q)

plot(robot, q, arguments...)

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 Puma 560

xy
z

Description plot is overloaded forrobot objects and displays a graphical representation of the robot given the

kinematic information inrobot . The robot is represented by a simple stick figure polyline where

line segments join the origins of the link coordinate frames. Ifq is a matrix representing a joint-space

trajectory then an animation of the robot motion is shown.

GRAPHICAL ANNOTATIONS

The basic stick figure robot can be annotated with

• shadow on the ‘floor’

• XYZ wrist axes and labels, shown by 3 short orthogonal line segments which are colored:

red (X or normal), green (Y or orientation) and blue (Z or approach).They can be optionally

labelled XYZ or NOA.

• joints, these are 3D cylinders for revolute joints and boxes for prismatic joints

• the robot’s name

All of these require some kind of dimension and this is determined using a simple heuristic from

Robotics Toolbox Release 8 Peter Corke, December 2008

robot/plot 57

the workspace dimensions. This dimension can be changed by setting the multiplicative scale factor

using themagoption below. These various annotations do slow the rate at which animationswill be

rendered.

OPTIONS

Options are specified by a variable length argument list comprising stringsand numeric values. The

allowed values are:

workspace w set the 3D plot bounds or workspace to the matrix[xmin xmax ymin ymax

zmin zmax]

perspective show a perspective view

ortho show an orthogonal view

base, nobase control display of base, a line from the floor upto joint 0

wrist, nowrist control display of wrist axes

name, noname control display of robot name near joint 0

shadow, noshadow control display of a ’shadow’ on the floor

joints, nojoints control display of joints, these are cylinders for revolute joints and boxesfor

prismatic joints

xyz wrist axis labels are X, Y, Z

noa wrist axis labels are N, O, A

mag scale annotation scale factor

erase, noerase control erasure of robot after each change

loop, noloop control whether animation is repeated endlessly

The options come from 3 sources and are processed in the order:

1. Cell array of options returned by the functionPLOTBOTOPTif found on the user’s current

path.

2. Cell array of options returned by the.plotopt method of therobot object. These are set

by the.plotopt method.

3. List of arguments in the command line.

GETTING GRAPHICAL ROBOT STATE

Each graphical robot has a unique tag set equal to the robot’s name. Whenplot is called it looks for

all graphical objects with that name and moves them. The graphical robot holds a copy of therobot

object asUserData . That copy contains the graphical handles of all the graphical sub-elements of

the robot and also the current joint angle state.

This state is used, and adjusted, by thedrivebot function. The current joint angle state can be

obtained byq = plot(robot) . If multiple instances exist, that of the first one returned byfind-

obj() is given.

Examples To animate two Pumas moving in the same figure window.

>> clf

>> p560b = p560; % duplicate the robot

>> p560b.name = ’Another Puma 560’; % give it a unique name

>> p560b.base = transl([-.05 0.5 0]); % move its base

Robotics Toolbox Release 8 Peter Corke, December 2008

robot/plot 58

>> plot(p560, qr); % display it at ready position

>> hold on

>> plot(p560b, qr); % display it at ready position

>> t = [0:0.056:10];

>> jt = jtraj(qr, qstretch, t); % trajectory to stretch pose

>> for q = jt’, % for all points on the path

>> plot(p560, q);

>> plot(p560b, q);

>> end

To show multiple views of the same robot.

>> clf

>> figure % create a new figure

>> plot(p560, qz); % add a graphical robot

>> figure % create another figure

>> plot(p560, qz); % add a graphical robot

>> plot(p560, qr); % both robots should move

Now the two figures can be adjusted to give different viewpoints, for instance, plan and elevation.

Cautionary plot() options are only processed on the first call when the graphical object isestablished, they are

skipped on subsequent calls. Thus if you wish to change options, clear the figure before replotting.

See Also drivebot, fkine, robot

Robotics Toolbox Release 8 Peter Corke, December 2008

rotx, roty, rotz 59

rotx, roty, rotz

Purpose Rotation about X, Y or Z axis

Synopsis R = rotx(theta)

R = roty(theta)

R = rotz(theta)

Description Return a rotation matrix representing a rotation oftheta radians about the X, Y or Z axes.

See Also rotvec

Robotics Toolbox Release 8 Peter Corke, December 2008

rpy2tr, rpy2r 60

rpy2tr, rpy2r

Purpose Roll/pitch/yaw angles to homogeneous transform or rotation matrix

Synopsis T = rpy2tr([r p y])

T = rpy2tr(r,p,y)

R = rpy2r([r p y])

R = rpy2r(r,p,y)

Description Returns a homogeneous transform or rotation matrix for the specified roll/pitch/yaw angles in radians.

RX (r)RY (p)RZ(y)

For the homogeneous transform value the translational component is set to zero.

See Also tr2rpy, eul2tr

References R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control. Cambridge, Mas-

sachusetts: MIT Press, 1981.

Robotics Toolbox Release 8 Peter Corke, December 2008

rtdemo 61

rtdemo

Purpose Robot Toolbox demonstration

Synopsis rtdemo

Description This script provides demonstrations for most functions within the RoboticsToolbox. It pops up a

graphical menu of demos which will run in the command window. The demos display tutorial infor-

mation and require the user to hit the enter key to display the next pageful of text.

Demos can also be accessed throughMATLAB’s own demo system, using thedemos command or

the command menu option. Then the user can navigate to the Robot Toolboxdemo menu.

Cautionary This script clears all variables in the workspace and deletes all figures.It also adds thedemos direc-

tory to yourMATLAB path on first invocation.

Robotics Toolbox Release 8 Peter Corke, December 2008

S4ABB2p8 62

S4ABB2p8

Purpose Create a Motoman HP 6 robot object

Synopsis S4ABB2p8

Description Creates therobot objectRwhich describes the kinematic characteristics of an ABB S4 2.8 manipula-

tor. The kinematic conventions used are as per Paul and Zhang, and allquantities are in standard SI

units.

Also defined is the joint coordinate vectorq0 corresponding to the synchronization position.

See Also robot, puma560akb, stanford, Fanuc10L, MotomanHP6

Author Wynand Swart, Mega Robots CC, P/O Box 8412, Pretoria, 0001, South Africa,

wynand.swart@gmail.com

Robotics Toolbox Release 8 Peter Corke, December 2008

showlink 63

showlink

Purpose Show robot link details

Synopsis showlink(robot)

showlink(link)

Description Displays in detail all the parameters, including all defined inertial parameters, of a link. The first form

provides this level of detail for all links in the specified manipulator. roll/pitch/yaw angles in radians.

Examples To show details of Puma link 2

>> showlink(p560.link{2})

alpha = 0

A = 0.4318

theta = 0

D = 0

sigma = 0

mdh = 0

offset = 0

m = 17.4

r = -0.3638

0.006

0.2275

I = 0.13 0 0

0 0.524 0

0 0 0.539

Jm = 0.0002

G = 107.815

B = 0.000817

Tc = 0.126 -0.071

qlim =

>>

Robotics Toolbox Release 8 Peter Corke, December 2008

stanford 64

stanford

Purpose Create a Stanford manipulator robot object

Synopsis stanford

−2
−1

0
1

2

−2

−1

0

1

2
−2

−1

0

1

2

XY

Z

 Stanford arm
x

y
z

Description Creates therobot objectstan which describes the kinematic and dynamic characteristics of a Stan-

ford manipulator. Specifies armature inertia and gear ratios. All quantitiesare in standard SI units.

See Also robot, puma560, puma560akb, Fanuc10L, MotomanHP6, S4ABB2p8

References R. Paul, “Modeling, trajectory calculation and servoing of a computer controlled arm,” Tech. Rep.

AIM-177, Stanford University, Artificial Intelligence Laboratory, 1972.

R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control. Cambridge, Mas-

sachusetts: MIT Press, 1981.

Robotics Toolbox Release 8 Peter Corke, December 2008

tr2angvec 65

tr2angvec

Purpose Convert a homogeneous transform or rotation matrix to angle/vector form

Synopsis [theta, v] = tr2angvec(T)

Description Converts a homogeneous transform or rotation matrix to a rotation oftheta radians about the vector

v .

See Also rotx, roty, rotz

Robotics Toolbox Release 8 Peter Corke, December 2008

tr2diff 66

tr2diff

Purpose Convert a homogeneous transform to a differential motion vector

Synopsis d = tr2diff(T)

d = tr2diff(T1, T2)

Description The first form oftr2diff returns a 6-element differential motion vector representing the incremental

translation and rotation described by the homogeneous transformT. It is assumed thatT is of the form

0 −δz δy dx

δz 0 −δx dy

−δy δx 0 dz

0 0 0 0

The translational elements ofd are assigned directly. The rotational elements are computed from the

mean of the two values that appear in the skew-symmetric matrix.

The second form oftr2diff returns a 6-element differential motion vector representing the dis-

placement fromT1 to T2, that is,T2 - T1.

d =

[

p
2
− p

1
1/2(n1×n2 +o1×o2 +a1×a2)

]

See Also diff2tr

References R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control. Cambridge, Mas-

sachusetts: MIT Press, 1981.

Robotics Toolbox Release 8 Peter Corke, December 2008

tr2eul 67

tr2eul

Purpose Convert a homogeneous transform or rotation matrix to Euler angles

Synopsis e = tr2eul(M)

Description Returns a vector of Euler angles [φ, θ, ψ], in radians, corresponding toM. Mis either a rotation matrix,

or the rotation part of the homogeneous transform is taken.

R = RZ(φ)RY (θ)RZ(ψ)

Cautionary Note that 12 different Euler angle sets or conventions exist. The convention used here is the common

one for robotics, but is not the one used for example in the aerospace community.

See Also eul2tr, tr2rpy

References R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control. Cambridge, Mas-

sachusetts: MIT Press, 1981.

Robotics Toolbox Release 8 Peter Corke, December 2008

tr2jac 68

tr2jac

Purpose Compute a Jacobian to map differential motion between frames

Synopsis jac = tr2jac(T)

Description tr2jac returns a 6× 6 Jacobian matrix to map differential motions or velocities between frames

related by the homogeneous transformT.

If T represents a homogeneous transformation from frame A to frame B,ATB, then

Bẋ = BJA
Aẋ

whereBJA is given bytr2jac(T) .

See Also tr2diff, diff2tr

References R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control. Cambridge, Mas-

sachusetts: MIT Press, 1981.

Robotics Toolbox Release 8 Peter Corke, December 2008

tr2rpy 69

tr2rpy

Purpose Convert a homogeneous transform or rotation matrix to roll/pitch/yaw angles

Synopsis e = tr2rpy(T)

Description Returns a vector of roll/pitch/yaw angles, [roll, pitch, yaw], in radians, corresponding toM. Mis either

a rotation matrix, or the rotation part of the homogeneous transform is taken.

R = RX (r)RY (p)RZ(y)

See Also rpy2tr, tr2eul

References R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control. Cambridge, Mas-

sachusetts: MIT Press, 1981.

Robotics Toolbox Release 8 Peter Corke, December 2008

transl 70

transl

Purpose Translational transformation

Synopsis T = transl(x, y, z)

T = transl(v)

v = transl(T)

xyz = transl(TC)

Description The first two forms return a homogeneous transformation representing a translation expressed as three

scalarx , y andz , or a Cartesian vectorv .

The third form returns the translational part of a homogeneous transform as a 3-element column vector.

The fourth form returns a matrix whose columns are the X, Y and Z columns of the 4×4×m Cartesian

trajectory matrixTC.

See Also ctraj

Robotics Toolbox Release 8 Peter Corke, December 2008

trinterp 71

trinterp

Purpose Interpolate homogeneous transforms

Synopsis T = trinterp(T0, T1, r)

Description trinterp interpolates between the two homogeneous transformsT0 andT1 asr varies between 0

and 1 inclusively. This is generally used for computing straight line or ‘Cartesian’ motion. Rotational

interpolation is achieved using quaternion spherical linear interpolation.

Examples Interpolation of homogeneous transformations.

>> t1=rotx(.2)

t1 =

1.0000 0 0 0

0 0.9801 -0.1987 0

0 0.1987 0.9801 0

0 0 0 1.0000

>> t2=transl(1,4,5)*roty(0.3)

t2 =

0.9553 0 0.2955 1.0000

0 1.0000 0 4.0000

-0.2955 0 0.9553 5.0000

0 0 0 1.0000

>> trinterp(t1,t2,0) % should be t1

ans =

1.0000 0 0 0

0 0.9801 -0.1987 0

0 0.1987 0.9801 0

0 0 0 1.0000

>> trinterp(t1,t2,1) % should be t2

ans =

0.9553 0 0.2955 1.0000

0 1.0000 0 4.0000

-0.2955 0 0.9553 5.0000

0 0 0 1.0000

Robotics Toolbox Release 8 Peter Corke, December 2008

trinterp 72

>> trinterp(t1,t2,0.5) % ’half way’ in between

ans =

0.9887 0.0075 0.1494 0.5000

0.0075 0.9950 -0.0998 2.0000

-0.1494 0.0998 0.9837 2.5000

0 0 0 1.0000

>>

See Also ctraj, qinterp

References R. P. Paul,Robot Manipulators: Mathematics, Programming, and Control. Cambridge, Mas-

sachusetts: MIT Press, 1981.

Robotics Toolbox Release 8 Peter Corke, December 2008

trnorm 73

trnorm

Purpose Normalize a homogeneous transformation

Synopsis TN = trnorm(T)

Description Returns a normalized copy of the homogeneous transformationT. Finite word length arithmetic can

lead to homogeneous transformations in which the rotational submatrix is not orthogonal, that is,

det(R) 6= −1.

Algorithm Normalization is performed by orthogonalizing the rotation submatrixn = o×a, o = a×n.

See Also oa2tr

References J. Funda, “Quaternions and homogeneous transforms in robotics,” Master’s thesis, University of Penn-

sylvania, Apr. 1988.

Robotics Toolbox Release 8 Peter Corke, December 2008

trplot 74

trplot

Purpose Plot a homogeneous transform

Synopsis trplot(T)

Description Displays a 3D plot which shows how the standard axes are transformed by the transformationT.

Examples Display the coordinate frame represented by a homogeneous transform.

>> tr = trotx(.2)*troty(.3)*transl(1,2,3)

ans =

0.9553 0 0.2955 1.8419

0.0587 0.9801 -0.1898 1.4495

-0.2896 0.1987 0.9363 2.9166

0 0 0 1.0000

>> trplot(tr)

0

1

2

3

4 0
1

2
3

4

0

0.5

1

1.5

2

2.5

3

3.5

4

Y

Y

X

Z

X

Z

See Also @quaternion/plot

Robotics Toolbox Release 8 Peter Corke, December 2008

twolink 75

twolink

Purpose Load kinematic and dynamic data for a simple 2-link mechanism

Synopsis twolink

−2
−1

0
1

2

−2

−1

0

1

2
−2

−1

0

1

2

XY

Z

 Simple two link

xy z

Description Creates therobot object tl which describes the kinematic and dynamic characteristics of a simple

two-link planar manipulator. The manipulator operates in the horizontal (XY) plane and is therefore

not influenced by gravity.

Mass is assumed to be concentrated at the joints. All masses and lengths are unity.

See Also puma560, stanford

References Fig 3-6 of “Robot Dynamics and Control” by M.W. Spong and M. Vidyasagar, 1989.

Robotics Toolbox Release 8 Peter Corke, December 2008

unit 76

unit

Purpose Unitize a vector

Synopsis vn = unit(v)

Description unit returns a unit vector aligned withv .

Algorithm
vn =

v
||v||

Robotics Toolbox Release 8 Peter Corke, December 2008

