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Abstract

In this paper, we propose an efficient method for ro-
bust 3D self-portraits using a single RGBD camera. Bene-
fiting from the proposed PIFusion and lightweight bundle
adjustment algorithm, our method can generate detailed
3D self-portraits in seconds and shows the ability to han-
dle subjects wearing extremely loose clothes. To achieve
highly efficient and robust reconstruction, we propose PIFu-
sion, which combines learning-based 3D recovery with vol-
umetric non-rigid fusion to generate accurate sparse par-
tial scans of the subject. Moreover, a non-rigid volumetric
deformation method is proposed to continuously refine the
learned shape prior. Finally, a lightweight bundle adjust-
ment algorithm is proposed to guarantee that all the par-
tial scans can not only “loop” with each other but also
remain consistent with the selected live key observations.
The results and experiments show that the proposed method
achieves more robust and efficient 3D self-portraits com-
pared with state-of-the-art methods.

1. Introduction

Human body 3D modeling, aiming at reconstructing the
dense 3D surface geometry and texture of the subject, is a
hot topic in both computer vision and graphics and is of
great importance in the area of body measurement, dig-
ital content creation, virtual try-ons, etc. Traditional hu-
man body 3D modeling methods usually rely on experts for
data capture and are therefore hard to use. Compared with
traditional 3D scanning methods, 3D self-portrait methods,
which allow users to capture their own portraits without any
assistance, have significant potential for wide usage.

Current 3D self-portrait methods can be classified into
3 categories: learning-based methods, fusion-based meth-
ods, and bundle-adjustment-based methods. Learning-
based methods mainly focus on 3D human recovery from
a single RGB image ([13, 25]). Thus, the results are still
far from accurate due to occlusions and depth ambiguities.
Fusion-based methods reconstruct scene geometries in an
incremental manner, so error accumulation is inevitable, es-
pecially for non-rigid scenarios [20], which is detrimental
for loop closure reconstruction (e.g., 3D self-portraits). To
suppress the accumulated error in incremental fusion, an-

Figure 1: Our system reconstructs a detailed and textured portrait
after the subject self-rotates in front of an RGBD sensor.

other branch of 3D self-portrait methods also utilizes bun-
dle adjustment algorithms [17, 29, 7, 8, 30, 31]. The whole
sequence is first segmented into several chunks, and then
fusion methods are applied to each chunk to fuse a smooth
partial scan. Finally, non-rigid bundle adjustment is used to
“loop” all the partial scans simultaneously by non-rigid reg-
istration based on explicit loop closure correspondences and
bundling correspondences. Although RGBD bundle adjust-
ment methods have achieved state-of-the-art performance
for 3D self-portraits, they still suffer from complicated
hardware setups (e.g., relying on multiple sensors or electric
turntables [29, 1, 2] or low efficiency [17, 5, 8, 7, 30, 31]).

One of our observations is that a good combination of
non-rigid fusion and bundle adjustment should guarantee
both efficiency and accuracy. However, non-rigid fusion
methods (e.g., [20] etc.) usually suffer from heavy drifts
and error accumulation during tracking, which limit their
ability to generate accurate large partial scans. This lim-
itation has led to the fact that previous bundle adjustment
methods have to be conducted on considerably large num-
bers of small partial scans, which significantly increase the
optimizing variables in the bundling step. For example, in
[8], 40-50 small partial scans need to be bundled together,
which takes approximately 5 hours.

To produce large and accurate partial scans by non-rigid
fusion, a complete shape prior is necessary. To this end, we
propose PIFusion, which utilizes learning-based 3D body
recovery (PIFu [25]) as an inner layer in non-rigid fusion
[20]. Specifically, in each frame, the inner layer generated
by learning-based methods acts as a strong shape prior to
improve the tracking accuracy and robustness, and the fused
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mesh in return improves the accuracy of the inner layer by
the proposed non-rigid volumetric deformation (Sec. 5.3).
We also improve the original PIFu [25] by incorporating
pixel-aligned depth features for more accurate and robust
inner-layer generation (Fig. 3).

Another important observation is that to generate accu-
rate portraits, all the partial scans produced by PIFusion
should not only construct a looped model ([8, 17]) but also
always remain consistent with the real-world observations,
especially the depth point clouds and silhouettes. Instead
of using the dense bundle method in [8, 30], we contribute
a lightweight bundle adjustment method that involves live
terms, key frame selection and joint optimization. Specifi-
cally, during each iteration, all the partial scans are not only
optimized to “loop”’ with each other in the reference frame
but are also warped to fit each key input in live frames. The
key frames are selected adaptively according to the pro-
posed live depth/silhouette energies. This method further
improves the bundle accuracy without losing efficiency.

In summary, by carefully designing the reconstruction
pipeline, our method integrates all the advantages from
learning, fusion and bundle adjustment methods while
avoiding the disadvantages and finally enables efficient and
robust 3D self-portraits using a single RGBD sensor.

The contributions can be summarized as follows:

• A new 3D self-portrait pipeline that leverages fusion,
learning and bundle adjustment methods and achieves ef-
ficient and robust 3D self-portrait reconstruction using a
single RGBD sensor.

• A new non-rigid fusion method, PIFusion, which com-
bines a learning-based shape prior and a non-rigid volu-
metric deformation method to generate large and accurate
partial scans.

• A lightweight bundle adjustment method that involves
key frame selection and new live energy terms to jointly
optimize the loop deformation in the reference frame, as
well as the warp fields to live key frames, and finally im-
proves the bundling accuracy without losing efficiency.

2. Related Work

2.1. Learningbased 3D Human Recovery

Learning-based 3D body reconstruction has become
more and more popular in recent years. By “seeing”
a large amount of ground truth 3D human models, cur-
rent deep neural networks can infer plausible 3D bodies
from various easy-to-obtained inputs, e.g., a single RGB
image[13, 23, 15, 24, 9, 6, 38, 19, 25, 36]. For exam-
ple, Kanazawa et al. [13], Omran et al. [23] and Kolo-
touros et al. [15] proposed to directly regress the param-
eters of a statistical body template from a single RGB im-
age. Zhu et al. [38] and Alldieck et al. [6] took a step
forward by deforming the body template according to shad-
ing and silhouettes in order to capture more surface details.
To address the challenge of varying cloth topology, recent
studies have explored many 3D surface representations for
deep neural networks, including voxel grids[36], multi-view

silhouettes[19], depth maps[9] and implicit functions[25].
Although these methods enable surprisingly convenient 3D
human capture, they fail to generate detailed and accurate
results due to occlusions and inherent depth ambiguities.

2.2. 3D Human Using Fusionbased Methods

In fusion-based methods, given a noisy RGBD sequence,
the scene geometry is first registered to each frame and then
updated based on the observations. As a result, the noise
in the depth map can be significantly filtered out and the
scene can be completed in a incremental manner. The pio-
neer work in this direction is KinectFusion[21], which was
designed for rigid scene scanning using a RGBD sensor.
Thus, when scanning live targets like humans, the subjects
are required to keep absolutely static in order to get ac-
curate portraits, which is not consistent with the fact that
humans are ultimately moving. To handle this problem,
Zeng et al. [34] proposed a method for quasi-rigid fu-
sion, but it still relies on rotating sensors for data capture,
which is hard-to-use. DynamicFusion[20] extended Kinect-
Fusion and contributed the first non-rigid volumetric fusion
method for real-time dynamic scene reconstruction. Fol-
lowing works [12, 26, 27, 10, 16, 32, 35] kept improving
the performance of DynamicFusion by incorporating dif-
ferent types of motion priors or appearance information.
For instance, based on the double-layer surface represen-
tation, DoubleFusion[33] achieved state-of-the-art perfor-
mance for dynamic human body reconstruction (with im-
plicit loop closure) using non-rigid fusion. However, con-
strained by the parametric inner layer representation, Dou-
bleFusion has limited performance for reconstructing ex-
tremely wide clothes like long skirts and coats. Moreover,
the A-pose requirement for system initialization compli-
cates the portrait scanning process for more general poses.

2.3. 3D Selfportrait Using Bundle Adjustment

To suppress the accumulated error in incremental fusion,
another branch of 3D self-portrait methods also utilizes
bundle adjustment algorithms. Based on KinectFusion[21],
Tong et al. [29] used 3 Kinects and a turntable for data
capture and non-rigid bundle adjustment for portrait recon-
struction. Cui et al. [7] achieved self-rotating portrait re-
construction via non-rigid bundle. However, the efficiency
is low due to large partial scan numbers. Wang et al. [30]
conducted bundle adjustment for all point sets without vol-
umetric fusion, which leads to over-smoothed results. The
method in [17] is a very related work to ours for it also fuses
large partial scans for portrait reconstruction. However, it
needs the subject to keep static during the partial scanning
process, thus cannot handle self-rotating reconstructions.

Besides above RGBD methods, using a RGB (without
depth) video of a rotating human to reconstruct a plausi-
ble portrait is also a practical direction. Alldieck et al.
[5, 4, 3] used silhouette-based joint optimization and Zhu
et al. [37] used multi-view stereo technologies. However,
current methods in this direction still rely on offsetting para-
metric models to represent cloth, which inherently limits
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Figure 2: System pipeline. In the first frame, we utilize RGBD-PIFu to generate a roughly correct inner model as a prior. Then we perform
PIFusion to generate large and accurate partial scans while the performer is turning around in front of the RGBD sensor. Finally, we
conduct lightweight bundle adjustment to merge all the partial scans and generate an accurate and detailed 3D portrait.

their performance for more general clothed human recon-
struction. Moreover, sparse feature points from RGB videos
are not sufficient for detailed dense surface reconstruction.

3. Overview

As shown in Fig. 2, given an RGBD sequence with a
naturally self-rotating motion of the subject, our system per-
forms 3 steps sequentially:

1. RGBD-PIFu: In this step, we use a neural network to
infer a roughly accurate model of the subject from the
first RGBD frame.

2. PIFusion: For each frame, we first perform double-
layer-based non-rigid tracking with the inferred model
as the inner layer and then fuse the observations into
the reference frame using the traditional non-rigid fu-
sion method. Finally, non-rigid volumetric deformation
is used to further optimize the inner model to improve
both tracking and the fusion accuracy. The partial scans
are then generated by splitting the whole sequence into
several chunks and fusing each chunk separately.

3. Lightweight bundle adjustment: In each iteration,
we first use key frame selection to select effective key
frames to construct the live depth and silhouette terms.
Then, joint optimization is performed to not only assem-
ble all the partial scans in the reference frame but also
optimize the warping fields to live key frames alternately.

4. RGBD-PIFu

In this work, we extend pixel-aligned implicit functions
(PIFu)[25] and propose RGBD-PIFu for 3D self-portrait in-
ference from an RGBD image. PIFu is a spatially aligned
representation for 3D surfaces. It is a level-set function f
that defines the surface implicitly, e.g., f(X) = 0, X ∈ R

3.

Figure 3: Comparison of RGBD-PIFu and PIFu [25]. (a) Refer-
ence color image; (b) RGBD-PIFu result; (c) PIFu result.

In our RGBD-PIFu method, this function is expressed as
a composite function f , which consists of a fully convolu-
tional RGBD image encoder g and an implicit function h
represented by multilayer perceptrons:

f(X; I) = h(G(x; I), Xz), X ∈ R
3, (1)

where I is the input RGBD image, x = π(X) is the 2D
projection of a 3D point X , G(x; I) is the feature vector
of x on the encoded feature map g(I), and Xz is the depth
value of X . Different from [25], our image encoder also
encodes depth information, which forces the inner model to
be consistent with the depth input, thus resolving the depth
ambiguity problem and improving the reconstruction accu-
racy. The training loss is defined as the mean squared error:

L =
1

n

n
∑

i=1

|f (Xi; I)− f∗ (Xi)|
2
, (2)

where Xi is a sampled point, f∗(Xi) is the ground-truth
value, and n is the number of sampled points.

In the model inference stage, to avoid dense sampling of
the implicit function as in [25], we utilize the depth input to
ignore empty regions and only perform uniform sampling of
the implicit function in the invisible regions. The isosurface
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is extracted by the marching cube algorithm [18]. By in-
corporating depth features, our network is more robust and
accurate than the original RGB-PIFu, thus producing a bet-
ter mesh as the inner model for robust fusion performance,
as shown in Fig. 3.

5. PIFusion

5.1. Initialization

In the first frame, we initialize the TSDF (truncated
signed distance function) volume by direct depth map pro-
jection and then fit the inner model to the initialized TSDF
volume. The deformation node graph ([28]) is then uni-
formly sampled on the inner model using geodesic distance,
which is used to parameterize the non-rigid deformation of
the fused surface and the inner model.

5.2. Doublelayer Nonrigid Tracking

Given the inner model and the fused mesh (i.e., the
double-layer surface) in the (t − 1)-th frame, we need to
deform them to track the depth map in the t-th frame. Dif-
ferent from DynamicFusion [20], an inner layer is used to
assist non-rigid tracking. Hence, there are two types of cor-
respondences: one is between the fused mesh (outer layer)
and the depth observation, and the other is between the inner
model (inner layer) and the depth observation. The energy
function is then formulated as:

Etracking = λouterEouter + λinnerEinner + λsmoothEsmooth, (3)

where Eouter and Einner are the energies of the two
types of correspondences, Esmooth is a smooth term
to regularize local as-rigid-as-possible deformations, and
λouter, λinner, λsmooth are the term weights.
Outer and Inner Term The two terms measure the mis-
alignment between the double layers and the depth map,
and they have similar formulations:

Eouter/inner =
∑

(v,u)∈Couter/inner

∣

∣n̂⊤
v
(v̂ − u)

∣

∣

2
,

(4)

where Couter and Cinner are two types of correspondence sets,
and (v,u) is a correspondence pair; v is a vertex on the
outer layer (fused mesh) or the inner layer (inner model),
and u is the closest point to v on the depth map. Note that
v is the coordinate in the reference frame, while v̂ and n̂v

are the position and normal of v in the live frame warped
by its KNN nodes using dual quaternion blending:

T(v) = SE3





∑

k∈N (v)

w(k,v)dqk



 , (5)

where dqk is the dual quaternion of the k-th node, SE3(·)
maps a dual quaternion to the SE(3) space, N (v) are the
KNN nodes of v, w(k,v) = exp(−‖v − xk‖

2
2/(2r

2)) is
the blending weight, xk is the position of the k-th node, and
r is the active radius.

Smooth Term The smooth term is defined on all edges of
the node graph to guarantee local rigid deformation. This
term is defined as

Esmooth =
∑

i

∑

j∈N (i)

‖Tixj −Tjxj‖
2
2 , (6)

where Ti and Tj are the transformations associated with
the i-th and j-th nodes, and xi and xj are the positions of
the i-th and j-th nodes in the reference frame, respectively.

We solve Eq. 3 by the iterative closest point (ICP) al-
gorithm and use the Gauss-Newton algorithm to solve the
energy optimization problem. After tracking, we use the
typical fusion method [20] to fuse the current depth obser-
vations and update the TSDF volume.

5.3. Nonrigid Volumetric Deformation

The initial inner model inferred by RGBD-PIFu is by no
means accurate enough for double-layer surface tracking,
and the correspondences between the inner model and the
depth map may even reduce the tracking performance. To
deal with this issue, inspired by [33], we conduct a non-
rigid volumetric deformation algorithm to continue correct-
ing the inner model by fitting it to the fused mesh (i.e., the
0-level set of the TSDF) in the reference volume. Moreover,
the weight of the inner term, λinner in Eq. 3, is also designed
to decrease along the ICP iterations to enable a more accu-
rate outer surface fitting performance.

We utilize the initialized node graph to parameterize the
non-rigid deformation of the inner model. Given the up-
dated TSDF volume of the fused mesh, the energy function
of non-rigid volumetric deformation is defined as:

Evol = Etsdf + λsmoothEsmooth, (7)

where Etsdf measures the misalignment error between the
inner model and the isosurface at threshold 0, and Esmooth is
the same as Eq. 6. The TSDF term is defined as

Etsdf =
∑

v∈T

|TSDF(v̂)|2 , (8)

where T is the initial inner model without non-rigid defor-
mations in the reference frame, v is a vertex of T, v̂ is
the position warped by the KNN nodes of v, TSDF(·) is a
trilinear sampling function that takes a point in the refer-
ence frame and returns the interpolated TSDF value. By
minimizing the squared sum of the TSDF values of all the
vertices of the deformed inner model, the inner model will
perfectly align with the fused mesh in the reference frame.

For the next frame, the corrected inner model is warped
to the live frame to search for correspondences in the track-
ing step. This step provides more accurate correspondences
and significantly improves the registration accuracy com-
pared with directly warping the initial inner model.

5.4. Partial Scan Fusion

To guarantee that the following bundle adjustment is
only conducted on a small number of partial scans, we fuse
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Figure 4: Illustration of bundle adjustment with joint optimiza-
tion. The bundle deformations are optimized to “loop” these par-
tial scans in the reference frame, while the live warp fields are
optimized to deform the partial scans to fit live input.

the partial scans within several large chunks of the whole
sequence in the reference frame. Specifically, given a se-
quence of the performer turning around in front of the sen-
sor, we calculate the orientation of the performer and then
split the whole sequence into 5 chunks, which cover the
front, back and two side views of the performer. Due to
the accumulated error, the first and last partial scans that
compose a loop may not align very well. The proposed
lightweight bundle adjustment will resolve this problem and
finally generate accurate 3D portraits.

6. Lightweight Bundle Adjustment

Regarding non-rigid bundle adjustment (BA), we argue
that a well-looped model after typical BA is an accurate
model. Our insight is that after BA, all the partial scans
should not only construct a looped model in the reference
frame but also be well fitted to all the live observations after
non-rigid warping using the live warp fields. To this end, we
propose an efficient algorithm to jointly optimize the bun-
dle deformations (for loop closure reconstruction) and live
warp fields (for live depth fitting), as shown in Fig. 4. Novel
energy terms, including the live depth and silhouette ener-
gies, are incorporated to enforce the consistency between
the warped partial scans and live depth inputs. However,
optimizing the live warp fields corresponding to all the live
frames in bundle adjustment will significantly decrease the
efficiency. In practice, we found that performing live depth
fitting on only several key frames is sufficient for generating
accurate results. Therefore, we propose a key frame selec-
tion strategy to select effective key frames by sorting the
live depth and silhouette energies.

6.1. Joint Optimization

After PIFusion, we can acquire N partial scans. As il-
lustrated in Fig. 4, we first construct a node graph for each
partial scan for describing the bundle deformation, which is
then optimized using loop closure correspondences to de-
form the partial scan to “loop” with the others in the ref-
erence frame. Moreover, all the partial scans are deformed
together to fit each live frame by optimizing the correspond-
ing live warp field, which is similar to the non-rigid tracking

in PIFusion. As a result, each partial scan has its own bun-
dle deformation, and all the partial scans share live warp
fields in common.

We solve the joint optimization problem by optimizing
the bundle deformations and live warp fields alternately.
In each iteration, both bundle deformations and live warp
fields will be updated to minimize the total energy.

6.2. Key Frame Selection

To maintain the efficiency of our algorithm, we propose
a key frame selection strategy for constructing efficient and
effective live depth fitting terms. Specifically, we uniformly
divide the whole sequence into K segments, and before
each iteration of joint optimization, for each frame, we cal-
culate two types of metrics: the geometric misalignment er-
ror and the silhouette error. The first metric is the misalign-
ment between warped partial scans and the corresponding
input depth point cloud. The silhouette error is calculated
by first rendering a mask map in the camera view using all
the warped partial scans and then calculating the difference
between the rendered mask and the input silhouette. We
then select the frames with the largest geometric misalign-
ment error and silhouette error in each segment as depth key
frames Kdep and silhouette key frames Ksil, respectively.

6.3. Formulation

Different from other bundle adjustment algorithms ([8,
30]), we not only “loop”’ these partial scans but also intro-
duce live frame observations into the optimization proce-
dure to improve the accuracy. The total energy function is
defined as

E(Wj
b ,W

i
l) = λloopEloop + λdepthEdepth

+λsilhouetteEsilhouette + λsmoothEsmooth,
(9)

where W
j
b is the bundle deformation corresponding to the

j-th partial scan, Wi
l is the live warp field from the refer-

ence frame to the i-th key frame, and Eloop, Edepth, Esilhouette

and Esmooth are the energies of loop closure, live depth, live
silhouette and smooth regularization terms, respectively.

In each iteration, we optimize the bundle deformation
and live warp fields alternately to minimize Eq. 9. Note
that after PIFusion, although the partial scans have already
been well aligned with the live depth inputs, the live warp
fields are still not accurate enough to guarantee all the fused
partial scans to construct a loop in the reference frame di-
rectly. Thus, the bundle deformation in the reference frame
will conflict with live depth fitting in the live frames without
simultaneously optimizing the live warp fields.

Loop Term The loop term measures the amount of mis-
alignment among these partial scans and is defined as

Eloop =

N
∑

i,j=1

i 6=j

∑

(vp,vq)∈Ci,j

∣

∣

∣
Wi

b(np)
⊤
(

Wi
b(vp)−W

j
b(vq)

)∣

∣

∣

2

,

(10)
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where N is the number of partial scans, Ci,j is the corre-
spondence set between the i-th and j-th partial scans ac-
quired by searching the closest points, (vp,vq) is a corre-
spondence pair, vp and vq are vertices on the i-th and j-th
partial scans, respectively, np is the normal of vp on the i-th
partial scan, and Wi

b(vp) and Wi
b(np) represent the posi-

tion and normal warped by bundle deformation. This term
forces all the partial scans to register with each other in the
reference frame.
Live Depth Term This term measures the misalignment of
all the partial scans with all the depth maps in Kdepth:

Edepth =

K
∑

i=1

N
∑

j=1

∑

(v,u)∈Dj,i

∣

∣

∣
Wi

l(W
j
b(n))

⊤
(

Wi
l(W

j
b(v))− u

)∣

∣

∣

2

,

(11)

where K = |Kdepth| is the number of key frames, Dj,i is the
correspondence set between the j-th partial scan and the
depth map in the i-th key frame, (v,u) is a correspondence
pair, v is a vertex on the j-th partial scan, u is a point on
the depth map, and Wi

l(·) takes a point or normal in the
reference frame as input and returns the warped position or
normal in the i-th key frame. This term is designed to force
partial scans to align with depth point clouds in Kdepth.
Live Silhouette Term This term measures the misalign-
ment between the rendered mask of all the warped partial
scans and the input mask of the body shape in the live
frames. Similar to LiveCap[11], we preprocess the input
mask using the distance transform. For the i-th key frame,
we render a mask image of all partial scans deformed by the
live warp field and then filter a boundary vertex set Bi. We
define the live silhouette term as

Esilhouette =

K
∑

i=1

N
∑

j=1

∑

vj∈Bi

dj ·
∣

∣

∣
IiDT(π(W

i
l(W

j
b(vj))))

∣

∣

∣

2

,

(12)
where K = |Ksil| is the number of key frames, vj is
a boundary vertex on the j-th partial scan (note that the
boundary means that the vertex is projected near the bound-
aries of the rendered mask image rather than the boundary
of this partial scan), dj ∈ {−1,+1} is an indicated value
that indicates the correct direction in the distance field[11],
IiDT is the distance-transformed image of the input mask and
π(·) is the projection function. This term will deform the
shape of the partial scans to fit with the input silhouettes.

The smooth term is defined similarly to Eq. 6. We solve
Eq. 9 using the Gauss-Newton method. Within each itera-
tion, we construct a large sparse system of linear equations
and then utilize an efficient preconditioned conjugate gradi-
ent (PCG) solver on a GPU to obtain the updates.

6.4. Nonrigid Multitexturing

After lightweight bundle adjustment, we fuse all the par-
tial scans into a watertight mesh using Poisson reconstruc-
tion [14]. For each live frame, we project each visible vertex

to the color image to retrieve a color value. After processing
all the frames, we blend the retrieved color values accord-
ing to the normal direction and obtain the final vertex color.
Specifically, for vertex vi, we calculate its color Cvi

as a
weighted average of the color values retrieved from all the
live frames. The blending weight ωi,j is defined as:

ωi,j =

{

0 ,vi is invisible in the j-th frame
|nvi

·ẑ|

|nvi
| ,vi is visible in the j-th frame

, (13)

where nvi
is the normal of vi and ẑ is the direction the

camera is looking. To avoid oversmoothing, for each vertex,
only the top 15% of weighted color values are blended.

7. Results

In this section, we first report the system performance
and our implementation. Then, we compare our method
with current state-of-the-art works. Finally, we evaluate the
core parts of our system. In Fig. 5, we demonstrate several
3D portraits acquired by our system.

7.1. Performance and Implementation

Our 3D self-portrait system is very efficient. The whole
pipeline is implemented on one NVIDIA Geforce RTX
2080Ti GPU. The initialization that generrates the inner
model by RGBD-PIFu and initializing PIFusion takes al-
most 10 seconds. PIFusion runs in real-time (at 30 ms per
frame). For each frame, the tracking, volumetric deforma-
tion and fusion take 20 ms, 3 ms and 6 ms, respectively.

Similar to [25], we adapt a stacked hourglass network
[22] as the image encoder, and the implicit function is pre-
sented by a MLP with 257, 1024, 512, 256, 128, and 1
neurons in each layer. We render the Twindom dataset
(https://web.twindom.com/) to acquire depth and
color images and utilize 3500 images to train this network.
When training, the batch size is 4, the learning rate is
1 × 10−3, and the number of epochs is 28. The training
procedure takes one day on one RTX 2080Ti GPU.

In the tracking of PIFusion, the number of ICP iterations
is 5 per frame, and we set λouter = 1.0, λinner = 1.0, and
λsmooth = 5.0, while λinner will decrease linearly as the iter-
ation continues. For each vertex, we use its 4 nearest neigh-
bors for non-rigid deformation, and the number of neigh-
bors of each node is 8. In bundle adjustment, the numbers of
partial scans and key frames are both 5, we set λloop = 1.0,
λdepth = 0.5, λsilhouette = 0.001 and λsmooth = 2.0, and the
number of iterations is 25. This procedure takes only 15
seconds, and texturing takes 1 second.

7.2. Comparison

Comparison with Fusion Methods We compared our fu-
sion method PIFusion with DynamicFusion [20] and Dou-
bleFusion [33] using sequences captured by a Kinect V2
sensor. Fig. 6 demonstrates that our method improves the
tracking and implicit loop-closure performance compared
to the other methods, especially for subjects wearing loose
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Figure 5: Examples of 3D portraits acquired by our system.

Figure 6: Comparison of the proposed PIFusion, DynamicFusion
[20] and DoubleFusion [33] methods. (a) Reference depth input;
(b), (c) and (d) are the results of PIFusion, DynamicFusion and
DoubleFusion, respectively.

clothes. Note that for this experiment, we use PIFusion to
fuse the whole sequence without generating partial scans.

Comparison with Bundle Adjustment Methods We com-
pare our method with the state-of-the-art non-rigid bundle
adjustment method Wang et al. [30]. As shown in Fig. 7,
our method achieves much more detailed and accurate 3D
self-portraits than [30]. Moreover, as mentioned in the re-
lated work section of [30], although the results are plausi-
ble, [17] requires the subject to remain static several times
during scanning, thus complicating the scanning process.

Figure 7: Comparison of our method (the top row) with the method
proposed by Wang et al. [30] (the bottom row).

7.3. Evaluation

Ablation Studies on Energy Terms
– Inner and Outer Terms in PIFusion Without the inner
term, PIFusion will degenerate into DynamicFusion [20],
which suffers from heavy drifts and tracking errors (Fig. 6).
Moreover, the lack of the outer term makes the final recon-
struction accuracy fully depend on the accuracy of the shape
prior, which is usually not accurate enough.
– Live Silhouette Term in Bundle Adjustment Fig. 8
demonstrates that the live silhouette term could deform par-
tial scans to be consistent with input silhouettes, thus further
improving the accuracy of the optimized partial scans.
Non-rigid Volumetric Deformation We evaluate the non-
rigid volumetric deformation qualitatively, as shown in
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Figure 8: Evaluation of the live silhouette term. (a) Optimized par-
tial scans with (left) and without (right) the live silhouette term, (b)
the mask error maps in the 1st key frame with (left) and without
(right) the live silhouette term, (c) mask error maps in the 3rd key
frame with (left) and without (right) the live silhouette term (non-
black pixels represent errors).

Figure 9: Evaluation of the non-rigid volumetric deformation step.
Fused mesh without (a) and with (b) volumetric deformation; (c)
the original inner model generated by RGBD-PIFu; (d) the inner
model after volumetric deformation.

Fig. 9. The results demonstrate that without volumetric de-
formation, the fused geometry will highly depend on the
original inner model generated by RGBD-PIFu. With non-
rigid volumetric deformation, the outer observations are in-
troduced to update the inner model in each frame. This step
will alleviate the errors brought by the inner model and im-
prove the accuracy of our reconstruction results.

Loop Closure We compare the reconstructed result after
lightweight bundle adjustment with the mesh completely
fused using PIFusion in Fig. 10. This comparison demon-
strates that PIFusion still suffers from loop-closure prob-
lems, especially in the cases of challenging motion (very
articulated motion) and an inaccurate initial inner model.
With the help of bundle adjustment, we can obtain more ac-
curate portraits efficiently than the fusion methods.

Joint Optimization We evaluate the joint optimization by
the total energy of Eq. 9 in each iteration. Fig. 11 demon-
strates that joint optimization of both the bundle deforma-
tion and live warp fields can achieve a lower optimum than
the method without joint optimization.

Body Measurement We quantitatively evaluated the ac-
curacy of our results on body measurements. To evalu-
ate the measurement error, we first utilized a laser scan-
ner to obtain the ground-truth shape of a tight-clothed sub-
ject and then scanned the subject again using our system.
Tab. 1 shows the measurement results of several body parts,
which illustrates that our method acquires more accurate re-

Figure 10: Evaluation of the loop closure. (a) Fused mesh by
PIFusion; (b) the reconstructed mesh after bundle adjustment.

Figure 11: The total energy in each bundle adjustment iteration.

Method chest waist right knee

DoubleFusion[33] 98.7 92.5 43.1

PIFusion 97.6 87.2 40.7

Bundle Adjustment 94.6 84.5 39.6

Ground Truth 91.2 79.7 37.7

Table 1: Evaluation of body measurements on case “lz”: the cir-
cumference of some body parts (cm).

sults than the state-of-the-art fusion-based body reconstruc-
tion method, DoubleFusion[33]. Moreover, the proposed
lightweight bundle adjustment method is effective in further
improving the accuracy of the final reconstruction.

8. Discussion

Conclusion In this paper, we have proposed a new method
for robust and efficient 3D self-portrait reconstruction from
a single RGBD camera. We propose PIFusion, a novel vol-
umetric non-rigid fusion method constrained by a learned
shape prior, for generating large and accurate partial scans.
More importantly, the proposed lightweight bundle adjust-
ment method not only guarantees the generation of a looped
model in the reference frame but also ensures the alignment
with live key observations, which further improves the ac-
curacy of the final portrait without losing efficiency. In con-
clusion, with the proposed method, users can conveniently
obtain detailed and accurate 3D self-portraits in seconds.
Limitations Our method still relies on the completeness of
the shape prior provided by RGBD-PIFu. Specifically, if the
inferred shape prior loses some body parts, the final recon-
struction may also lose these parts. Moreover, if some cases
(e.g., object interactions) are not included in the training
dataset of RGBD-PIFu, they may also not be well handled.
However, growing the deformation node graph according to
live observations may solve these problems.
Acknowledgments This paper is supported by the NSFC
No.61827805, No.61531014 and No.61861166002.
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