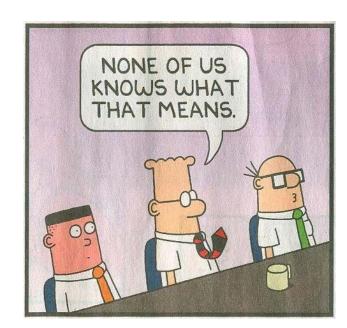
Robust Computing Systems

Resource Management for Heterogeneous Computing Systems

H. J. Siegel, Professor Emeritus Colorado State University Formerly:

Abell Endowed Chair Distinguished Professor of Electrical and Computer Engineering and Professor of Computer Science

Dilbert Feb 14, 2010



Robust Computing Systems

Resource Management for Heterogeneous Computing Systems

H. J. Siegel, Professor Emeritus Colorado State University Formerly:

Abell Endowed Chair Distinguished Professor of Electrical and Computer Engineering and Professor of Computer Science

Outline

- definition and stochastic model of <u>robustness</u>
- use in static resource allocation heuristics
- use in <u>dynamic</u> resource allocation heuristics
- <u>summary</u> and concluding remarks

Applicability of Stochastic Robustness Model

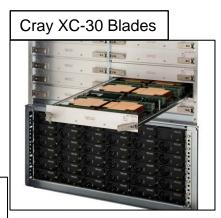
- variety of computing and communication environments, such as
 - cluster
 - grid
 - cloud
 - content distribution networks
 - wireless networks
 - sensor networks
- design problems throughout various scientific and engineering fields
 - examples we are exploring
 - search and rescue
 - smart grids

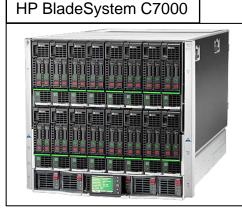
Heterogeneous Computing System

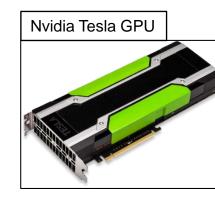
- interconnected machines with different computational capabilities
- workload of tasks with different computational requirements
 - heterogeneity to service diverse computational workloads
- each task may perform differently on each machine
 - machine A better than machine B for task 1 but not for task 2
- research also applies to a cluster of different types (or different ages) of machines, grids, and clouds



Hitachi Blade Server 500



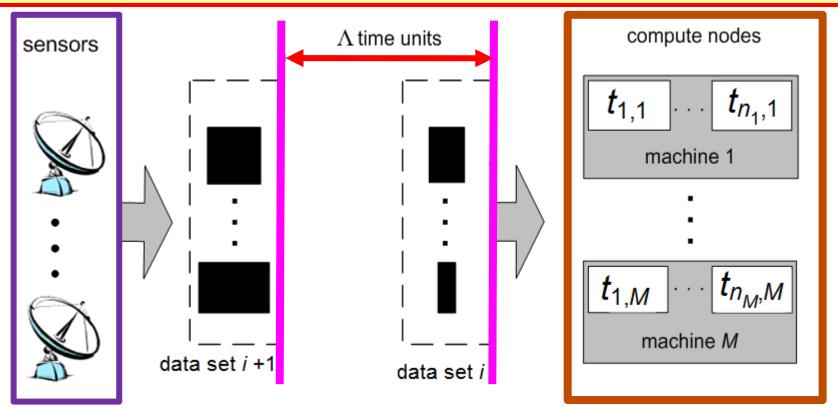




Resource Management

- assign and schedule (map) tasks to machines
 - optimize some performance measure
 - possibly under a system constraint
- in general, known NP-Hard problem
 - cannot find optimal solution in reasonable time
 - ▲ ex.: 5 machines and 30 tasks
 → 5³⁰ possible assignments
 - if it only took 1 nanosecond to evaluate each assignment
 - \sim 5³⁰ nanoseconds > 20,000 years!
 - use heuristics to find near-optimal solutions

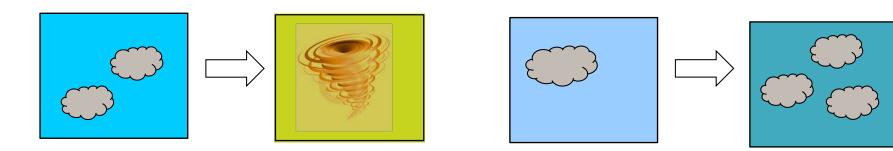
Ex.: Radar Data Processing for Weather Forecasting



- sensors produce periodic data sets, each with multiple data files
- N independent tasks process each data set within Λ time units
- N tasks statically mapped to M heterogeneous machines, N > M
- similar: satellite data maps, security surveillance

Uncertainty in Environment

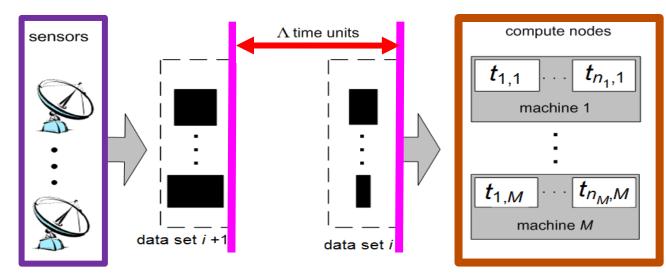
- variability across the data sets results in variability of the execution time of each task even on the same machine
 - examples
 - types of objects found in a radar scan data file
 - increase in number of objects in a radar scan data file



- unable to predict exact execution times of tasks
 - uncertainty parameters in the system
 - history of task exec times on each machine, different data
- use history to find allocation that is robust against uncertainty

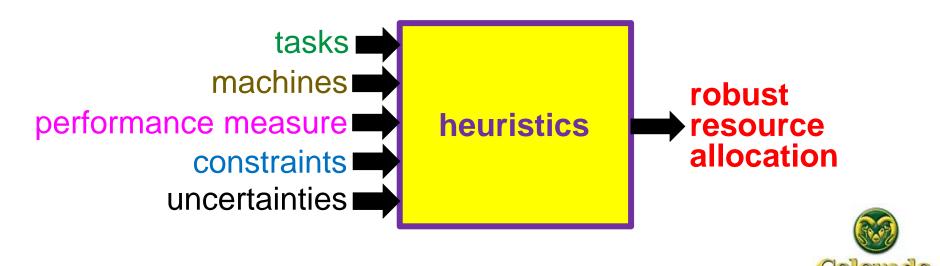
Problem Statement for Static Resource Allocation

- unpredictable execution times of the tasks across data sets
- have a probabilistic guarantee of performance of a mapping
- problem statement
- determine a robust static resource allocation
 - goal: minimize time period (Λ) between data sets
 - <u>constraint</u>: a user-specified probability of 90% that all tasks will complete in Λ time units for each data set



Problem Statement for Static Resource Allocation

- unpredictable execution times of the tasks across data sets
- have a probabilistic guarantee of performance of a mapping
- problem statement
- determine a **robust** static resource allocation
 - goal: minimize time period (Λ) between data sets
 - <u>constraint</u>: a user-specified probability of 90% that all tasks will complete in Λ time units for each data set



Defining Robustness for Static Resource Allocation

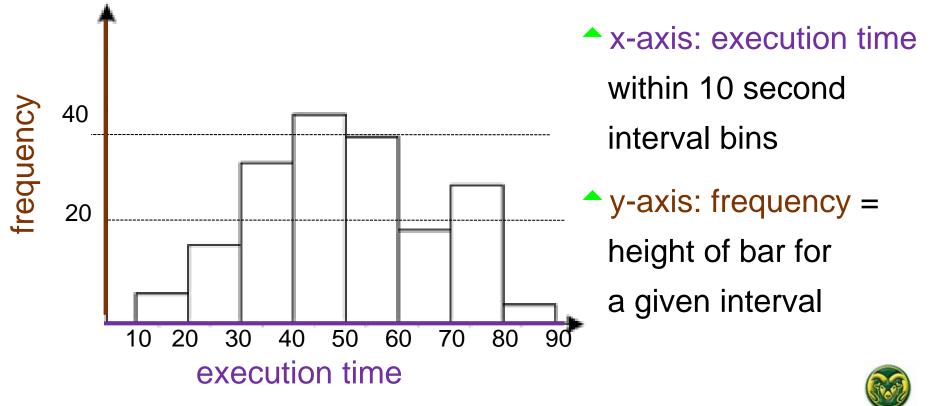
- term "robustness" usually used without explicit definition
- three general robustness questions that should be answered

THE THREE ROBUSTNESS QUESTIONS

- 1. what behavior of the system makes it robust?
 - \blacksquare ex. execute all tasks within Λ time units
- 2. what uncertainty is the system robust against?
 - ex. execution times of tasks vary over different data sets
- 3. how is robustness of the system quantified?
 - ex. probability that the resource allocation will execute all tasks within Λ time units for every data set

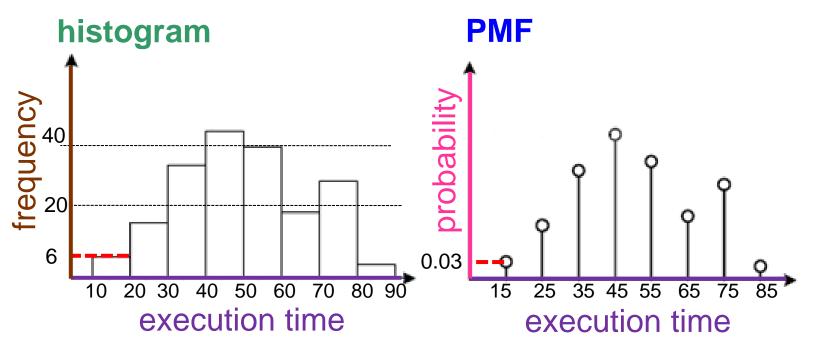
Modeling Uncertain Task Execution Times

- execution of a given task on a given machine is data dependent
- collect in a histogram a history of samples of
 - execution time of a given task on a given machine
 - over different representative data sets

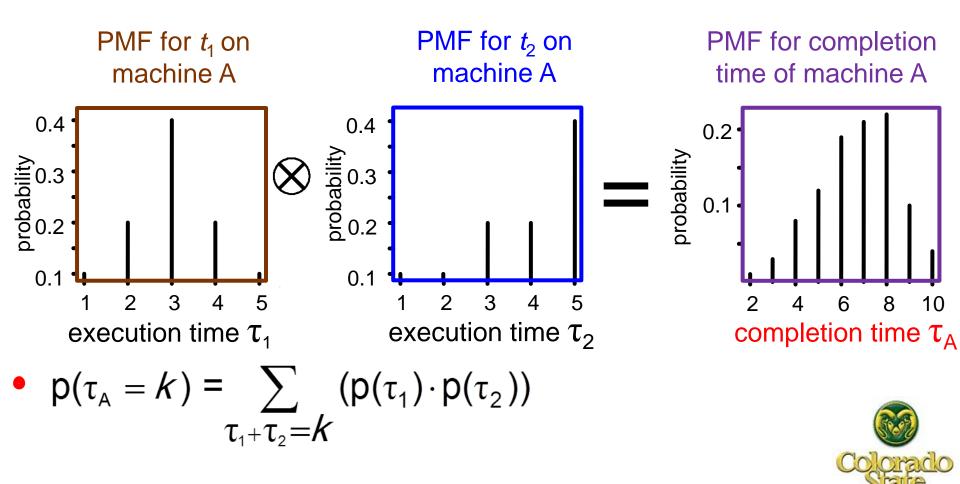


Generating a PMF from a Histogram

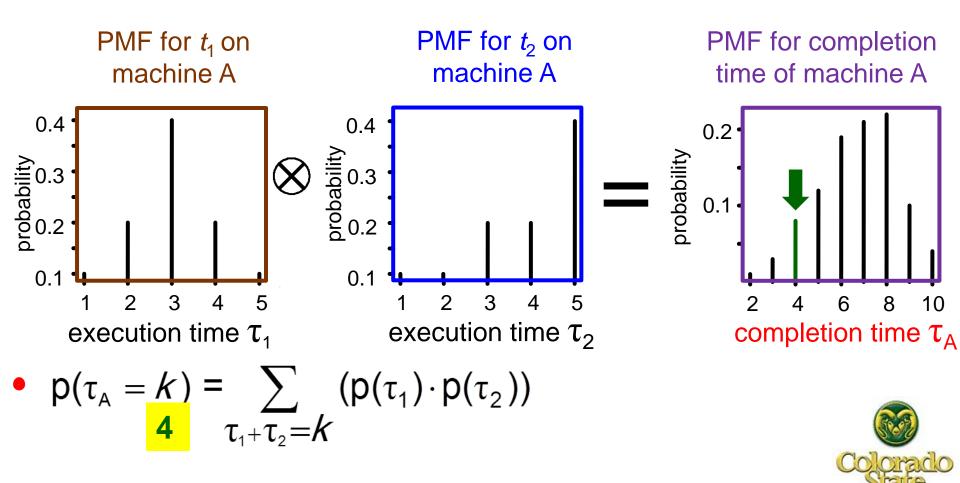
- generate probability mass function (PMF) using a histogram
- convert the frequency to a probability to create PMF
 - probability = frequency/total # samples
- example: probability of value from 10 to 19 = 6/200 = 3%



- assume task 1 and task 2 only tasks assigned to machine A
- can find <u>completion time</u> PMF for machine A to do both tasks
- "convolution" of the <u>execution time</u> PMFs for two tasks



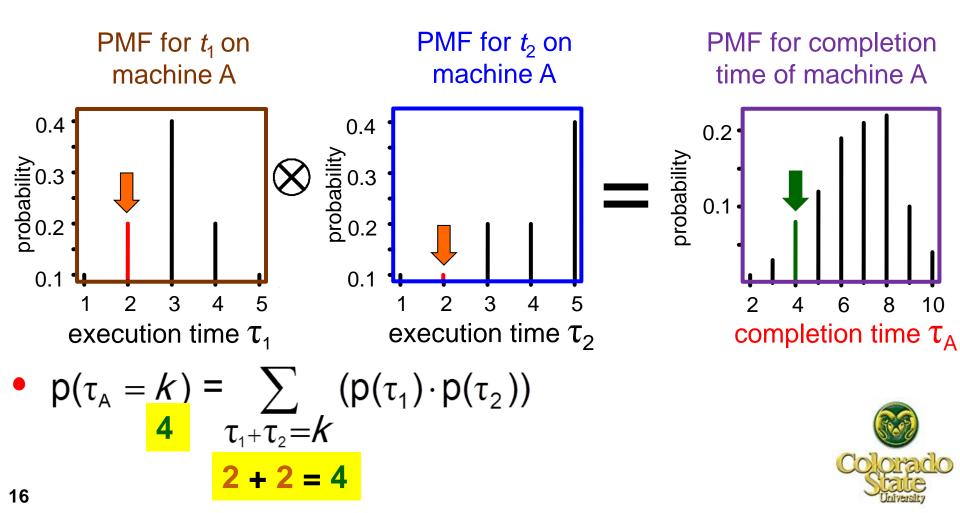
- assume task 1 and task 2 only tasks assigned to machine A
- can find <u>completion time</u> PMF for machine A to do both tasks
- "convolution" of the <u>execution time</u> PMFs for two tasks



- assume task 1 and task 2 only tasks assigned to machine A
- can find <u>completion time</u> PMF for machine A to do both tasks
- "convolution" of the <u>execution time</u> PMFs for two tasks



- assume task 1 and task 2 only tasks assigned to machine A
- can find <u>completion time</u> PMF for machine A to do both tasks
- "convolution" of the <u>execution time</u> PMFs for two tasks

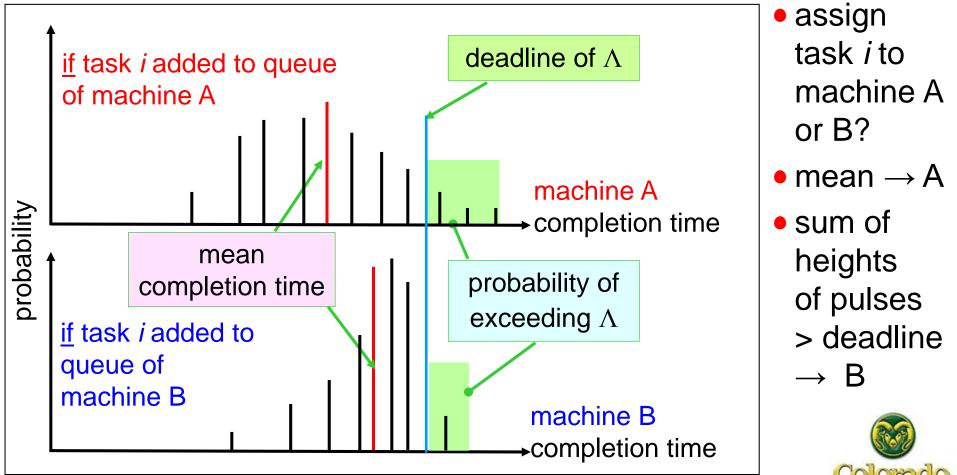


- assume task 1 and task 2 only tasks assigned to machine A
- can find <u>completion time</u> PMF for machine A to do both tasks
- "convolution" of the <u>execution time</u> PMFs for two tasks



Example of Use of Stochastic Model in Allocation

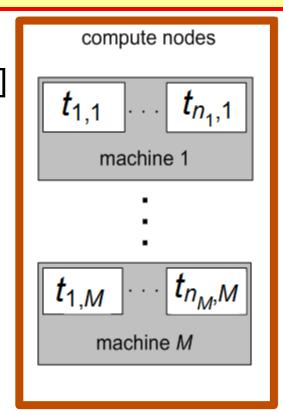
- PMFs for machine completion time based on
 - PMFs for tasks already assigned to that machine
 - PMF for task i which may be assigned to that machine



Stochastic Robustness Heuristic Goals

- Λ : deadline for completing all tasks
- machine *j* stochastic robustness $Prob[S_j \le \Lambda]$
- Stochastic Robustness Metric (SRM) $\prod_{j=1}^{M} \operatorname{Prob}[S_j \leq \Lambda]$
- goal of heuristics

 \uparrow minimize $\underline{\Lambda}$ for a given <u>SRM</u> value



Outline

- definition and stochastic model of <u>robustness</u>
- use in <u>static</u> resource allocation heuristics
- use in <u>dynamic</u> resource allocation heuristics
- <u>summary</u> and concluding remarks

Heuristic: Two-Phase Greedy Heuristic

problem: static assignment of N tasks to M machines
 minimize Λ for a given SRM value, for example 90%

minimize A for a given Skivi value, for example

• while there are still mappable tasks

phase 1: for each of the mappable tasks
 find machine assignment for minimum Λ

• phase 2: among these task/machine pairs

• find task/machine pair with minimum Λ

map this task to its associated machine

Heuristic: Genitor Genetic Algorithm

- chromosome of length N (number of tasks) = a mapping (solution)
 - *i* th element identifies the machine assigned to task *i*

1	2	3	4	5	6	7	8	9	10	
2	1	2	3	1	2	3	1	2	2	

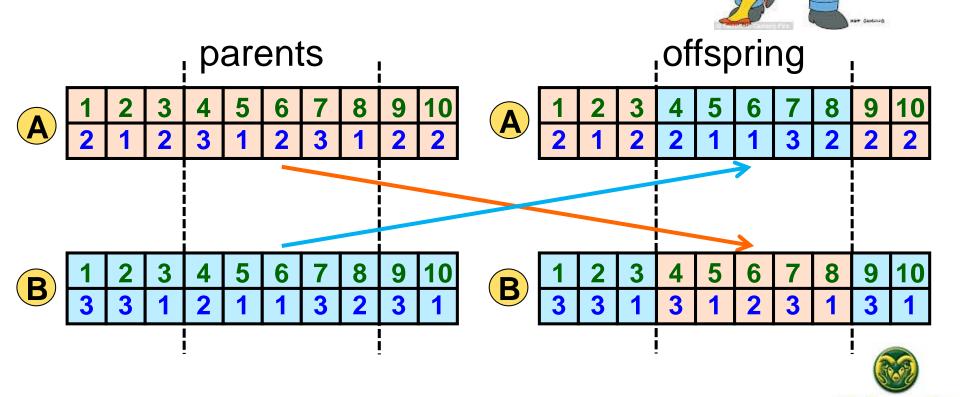
- population size of 200 (decided empirically)
- initial population generation
 - one chromosome: solution from the Two-Phase Greedy heuristic ("seed")
 - other 199: simple greedy heuristic
- population in ascending order based on minimum Λ value for given SRM (probability)

Procedure for Genitor

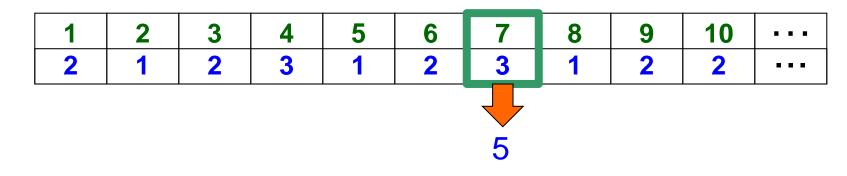
- while stopping criterion
 - select two parent chromosomes from population
 - perform crossover
 - for each offspring chromosome
 - perform mutation
 - apply local search
 - ▲ insert offspring into population based on minimum Λ order
 - trim population to population size
- end of while
- output the best solution

Genitor: Crossover

- selection of parents is done probabilistically
- crossover points are randomly selected
- exchange elements between crossover points
- generates two offspring



Genitor: Mutation

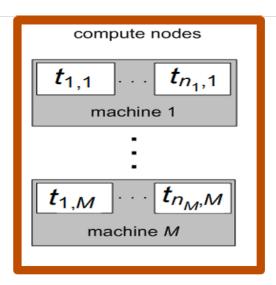


• mutation applied to offspring obtained from the crossover

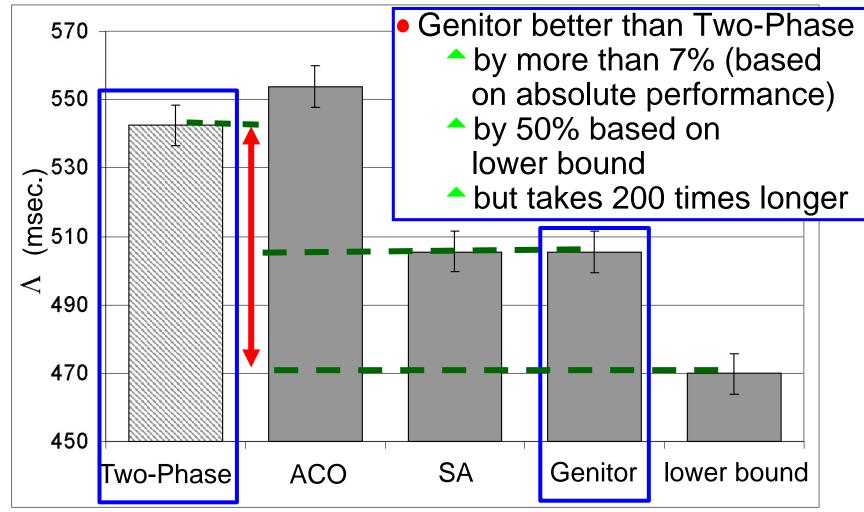
- for each element of each offspring chromosome
 assignment has a 1% probability of mutation
- mutation randomly selects a different machine

Genitor: Local Search

- local search applied to each offspring
 - \uparrow 1. for machine with individual highest Λ
 - consider moving each task to other machines
 - if improvement, move the task that gives smallest overall system Λ
 - 2. repeat 1 until no more improvement



Simulations: Performance of Static Heuristics



• N = 128 tasks, M = 8 machines, SRM value set to 90%

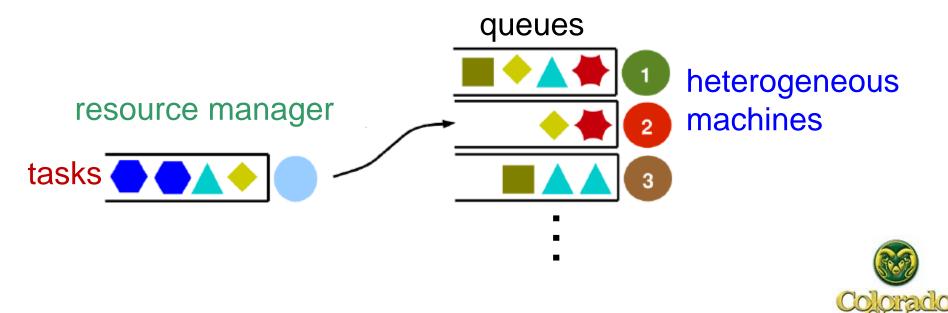
- 50 simulation trials, different PMFs for task/machine pairs
- 95% confidence intervals shown

Outline

- definition and stochastic model of <u>robustness</u>
- use in <u>static</u> resource allocation heuristics
- use in <u>dynamic</u> resource allocation heuristics
- <u>summary</u> and concluding remarks

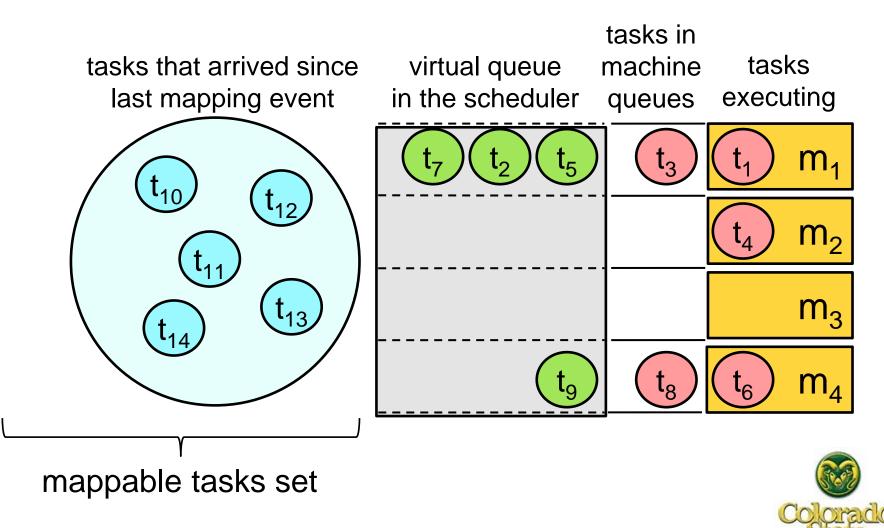
Problem Statement for Dynamic Resource Allocation

- cluster of *M* oversubscribed heterogeneous machines
- each dynamically arriving task has two elements
 - task type: stochastic execution time of the task (PMF)
 - deadline: for completing that <u>individual</u> task
- **goal:** maximize the <u>number of tasks</u> completed by their <u>individual</u> deadlines



Mapping Event

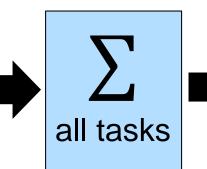
- mapping event: when resource manager assigns to machines
- the batch of mappable tasks considered at an event

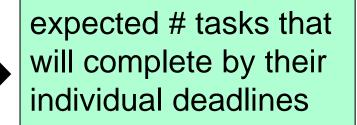


Robustness for Dynamic Resource Allocation

- what behavior makes the system robust?
 - completing all tasks by their individual deadlines
- what uncertainty is the system is robust against?
 - task execution times may vary substantially
- how is robustness of the system quantified?
 - expected number of <u>queued</u> and <u>executing</u> tasks that will complete by their individual deadlines

probability that task *i* completes by its deadline





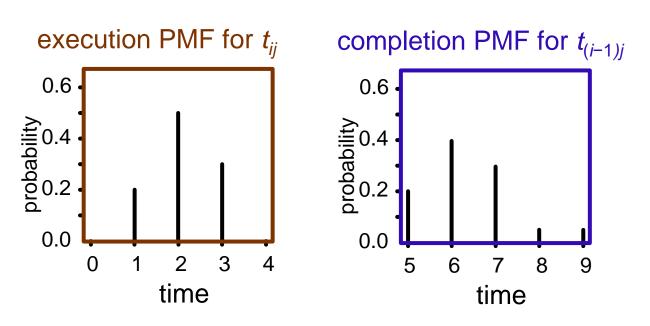
Probability Completing Executing Task by Deadline

machine *j* t_{1j} $t_{ij} \dots t_{3j} \quad t_{2j}$ machine *j* queue executing • new mapping event time k • $\rho(t_{1i})$: probability of t_{1i} completing by its deadline a) time k = current time drop pulses < k</p> renormalize

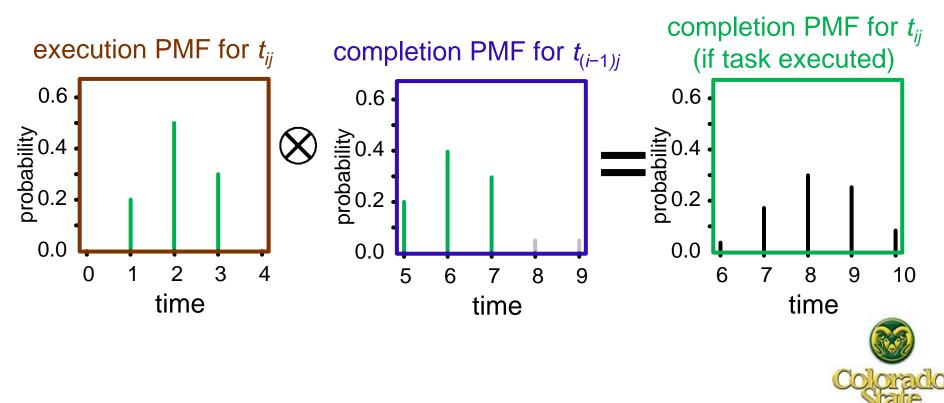
b) sum pulses < deadline D_{1i}



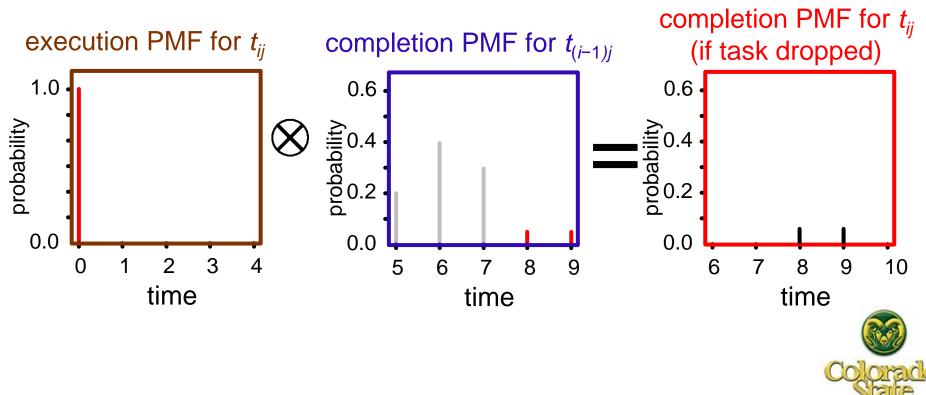
- recall: t_{ij} is *i*th task assigned to machine *j* at time *k*
- iterative procedure for finding <u>completion time</u> of t_{ij} for i > 1
- two cases for t_{ij} with deadline at, for example, time 8
 - executes on machine j
 - cannot start before deadline and is dropped



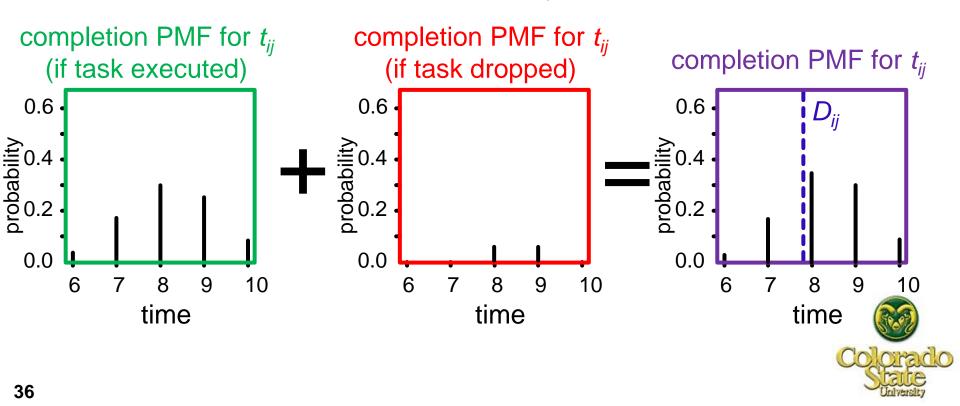
- recall: t_{ij} is *i*th task assigned to machine *j* at time *k*
- iterative procedure for finding <u>completion time</u> of t_{ij} for i > 1
- two cases for t_{ij} with deadline at, for example, time 8
 - executes on machine j
 - cannot start before deadline and is dropped



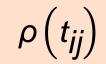
- recall: t_{ij} is *i*th task assigned to machine *j* at time *k*
- iterative procedure for finding <u>completion time</u> of t_{ij} for i > 1
- two cases for t_{ij} with deadline at, for example, time 8
 - executes on machine j
 - cannot start before deadline and is dropped



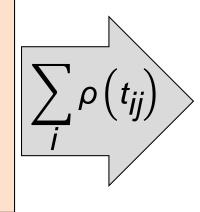
- recall: t_{ij} is *i*th task assigned to machine *j* at time *k*
- iterative procedure for finding <u>completion time</u> of t_{ij} for i > 1
- two cases for t_{ij} with deadline at, for example, time 8
 - executes on machine j
 - cannot start before deadline and is dropped
- sum pulses < deadline D_{ij} to get $\rho(t_{ij})$



Stochastic Robustness for Dynamic Heuristics

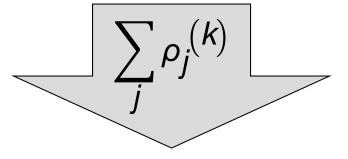


probability that task *t_{ij}* completes before its deadline



expected number of tasks completed by machine *j* before their deadlines measured at time *k*

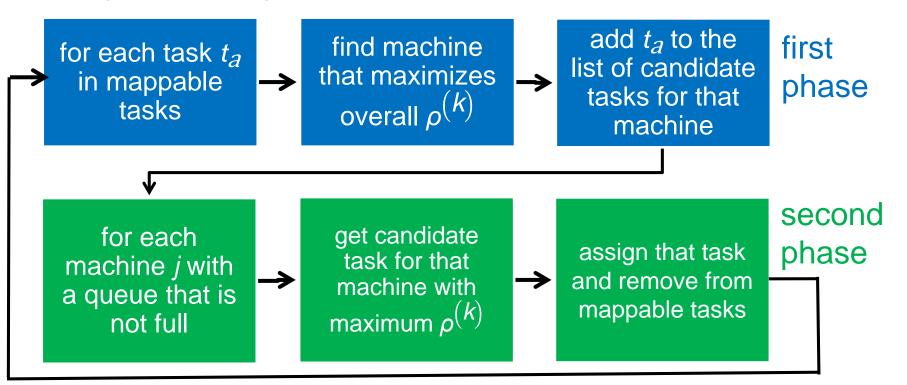
recall: t_{ij} is *i*th task assigned to machine *j* at time *k*

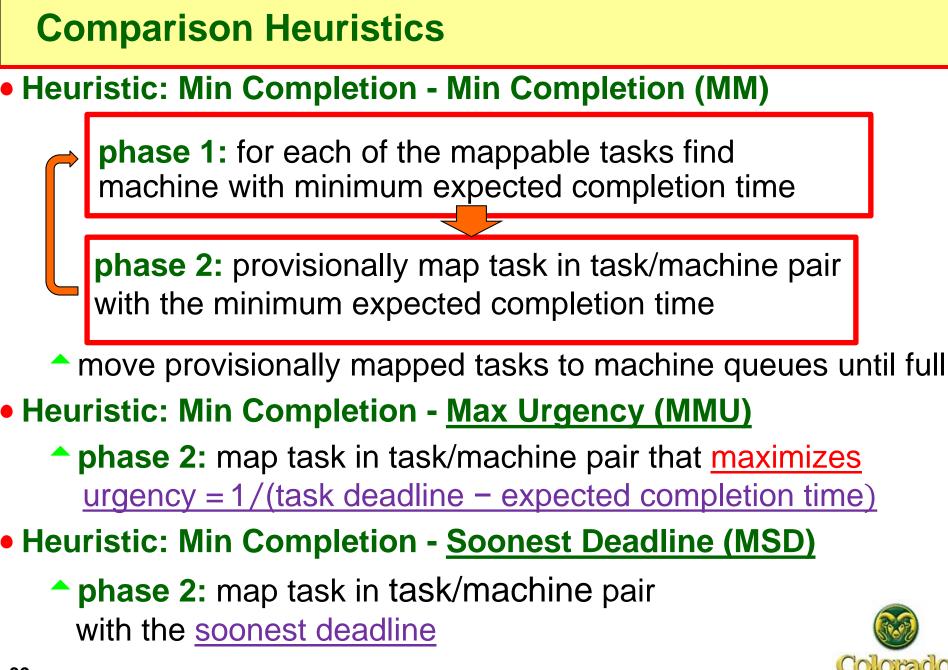


stochastic dynamic robustness: $\rho^{(k)}$ the expected number of tasks that will meet their deadlines measured at time k

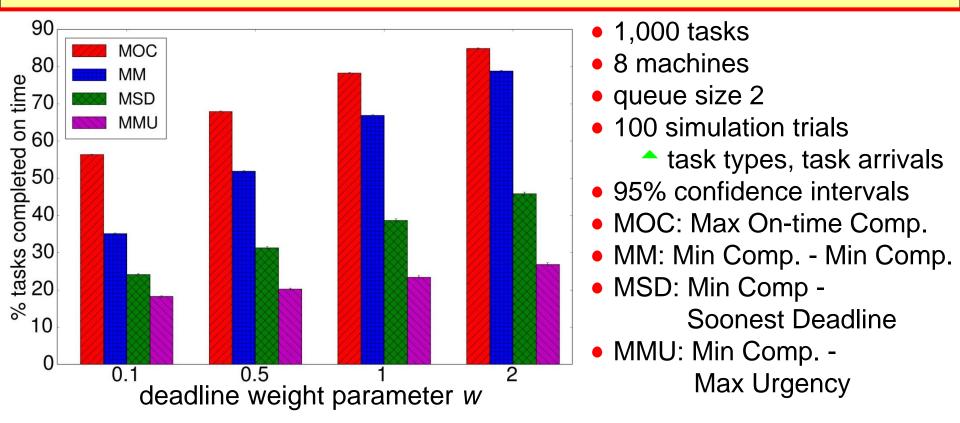
Heuristic: Maximum On-time Completions (MOC)

during a mapping event at time k



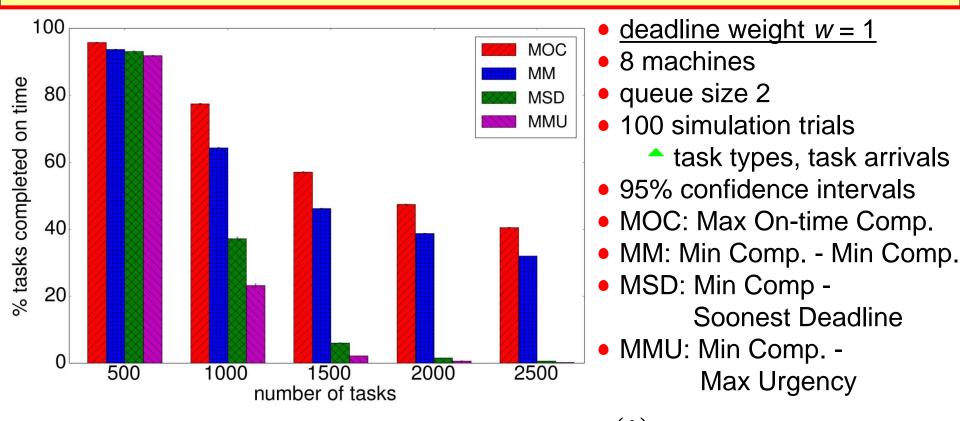


Results: Varied Deadline Weight Parameter (*w***)**



- deadline for task t_i = t_i arrival time + average t_i exec. time + w × (average exec. time over all tasks)
- problem is harder with tighter deadlines (smaller w)
- MOC best performing heuristic uses stochastic robustness

Results: Varied Number of Tasks in Workload

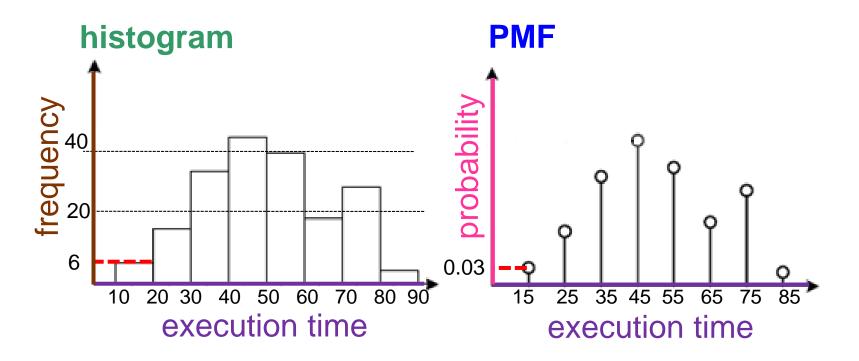


- MOC best because tried to maximized $\rho^{(k)}$ robustness
- MM second best because attempted to min. execution time
- MMU and MSD perform worse because they choose tasks with a high probability to miss their deadlines

Outline

- definition and stochastic model of <u>robustness</u>
- use in <u>static</u> resource allocation heuristics
- use in <u>dynamic</u> resource allocation heuristics
- <u>summary</u> and concluding remarks

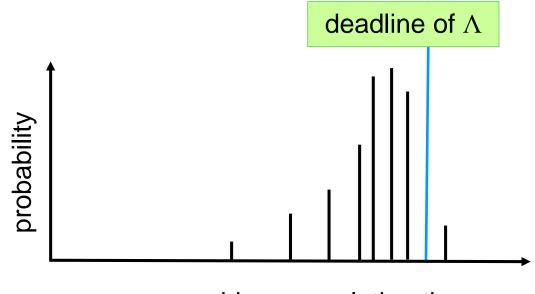
1) build histogram and convert to probability mass function (PMF)



- 1) build histogram and convert to probability mass function (PMF)
- 2) task execution time PMFs to machine completion time PMFs



- 1) build histogram and convert to probability mass function (PMF)
- 2) task execution time PMFs to machine completion time PMFs
- 3) probability given machine will meet common task deadline

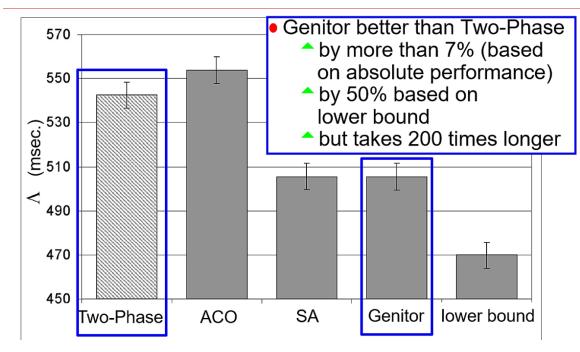


machine completion time

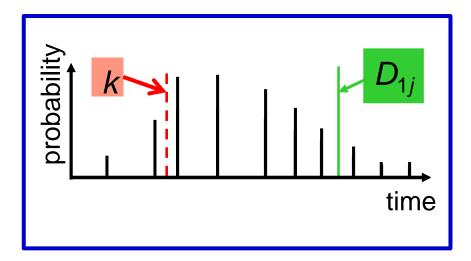
- 1) build histogram and convert to probability mass function (PMF)
- 2) task execution time PMFs to machine completion time PMFs
- 3) probability given machine will meet common task deadline
- 4) probability all machines will meet common task deadline (SRM)

$$\prod_{j=1}^{M} \operatorname{Prob}[S_j \leq \Lambda]$$

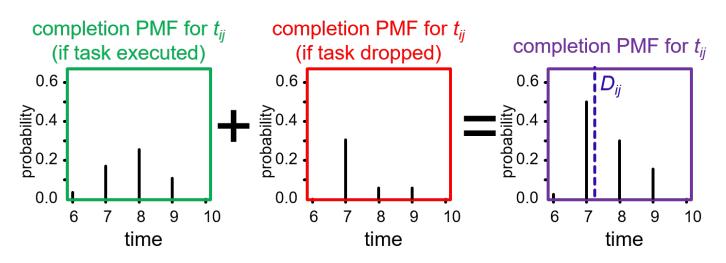
- 1) build histogram and convert to probability mass function (PMF)
- 2) task execution time PMFs to machine completion time PMFs
- 3) probability given machine will meet common task deadline
- 4) probability all machines will meet common task deadline (SRM)
- 5) use SRM in static resource allocation heuristics



- 1) build histogram and convert to probability mass function (PMF)
- 2) task execution time PMFs to machine completion time PMFs
- 3) probability given machine will meet common task deadline
- 4) probability all machines will meet common task deadline (SRM)
- 5) use SRM in static resource allocation heuristics
- 6) probability completing executing task by individual deadline



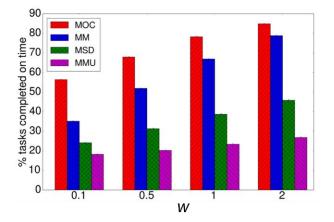
- 1) build histogram and convert to probability mass function (PMF)
- 2) task execution time PMFs to machine completion time PMFs
- 3) probability given machine will meet common task deadline
- 4) probability all machines will meet common task deadline (SRM)
- 5) use SRM in static resource allocation heuristics
- 6) probability completing executing task by individual deadline
- 7) probability completing task *i*+1 by individual deadline



- 1) build histogram and convert to probability mass function (PMF)
- 2) task execution time PMFs to machine completion time PMFs
- 3) probability given machine will meet common task deadline
- 4) probability all machines will meet common task deadline (SRM)
- 5) use SRM in static resource allocation heuristics
- 6) probability completing executing task by individual deadline
- 7) probability completing task *i*+1 by individual deadline
- 8) robustness = expected # tasks meet individual deadlines

$$\sum_{ij} \rho\left(t_{ij}\right)$$

- 1) build histogram and convert to probability mass function (PMF)
- 2) task execution time PMFs to machine completion time PMF
- 3) probability given machine will meet common task deadline
- 4) probability all machines will meet common task deadline (SRM)
- 5) use SRM in static resource allocation heuristics
- 6) probability completing executing task by individual deadline
- 7) probability completing task *i*+1 by individual deadline
- 8) robustness = expected # tasks meet individual deadlines
- 9) use this robustness in dynamic resource allocation heuristic



Concluding Remarks

THE THREE ROBUSTNESS QUESTIONS

- 1. what behavior of the system makes it robust?
- 2. what uncertainties is the system robust against?
- 3. how is robustness of the system quantified?
- work on robust resource allocation problems
 - publish papers about your work!
- thank you for listening
 - The End

References & Sponsors for Our Research Presented

definition and stochastic model of <u>robustness</u>

- J. Smith et al., "Robust Resource Allocation in Heterogeneous Parallel and Distributed Computing Systems," in Wiley Encyclopedia of Computing, 2008
- use in static resource allocation heuristics
 - V. Shestak et al., "Stochastic Robustness Metric and its Use for Static Resource Allocations," *Journal of Parallel & Distributed Computing*, Aug. 2008
- use in <u>dynamic</u> resource allocation heuristics
 - M. Salehi et al., "Stochastic-based Robust Dynamic Resource Allocation for Independent Tasks in a Heterogeneous Computing System," Journal of Parallel & Distributed Computing, Nov. 2016

sponsors of this research

