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Applicability of Stochastic Robustness Model
 variety of computing and communication 

environments, such as
cluster
grid
cloud
content distribution networks
wireless networks
sensor networks

design problems throughout various 
scientific and engineering fields
examples we are exploring

 search and rescue
 smart grids
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Heterogeneous Computing System
 interconnected machines with different computational capabilities
workload of tasks with different computational requirements
heterogeneity to service diverse computational workloads

each task may perform differently on each machine
machine A better than machine B for task 1 but not for task 2

 research also applies to a cluster of different types 
(or different ages) of machines, grids,  and clouds 

Hitachi Blade Server 500

Intel Phi Coprocessor HP BladeSystem C7000
Cray XC-30 Blades Nvidia Tesla GPU
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Resource Management 
assign and schedule (map) tasks to machines 
optimize some performance measure 
possibly under a system constraint

 in general, known NP-Hard problem
 cannot find optimal solution in reasonable time
ex.: 5 machines and 30 tasks 

→  530 possible assignments
 if it only took 1 nanosecond to 

evaluate each assignment
530 nanoseconds > 20,000 years!

use heuristics to find 
near-optimal solutions
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 sensors produce periodic data sets, each with multiple data files
 N independent tasks process each data set within Λ time units
 N tasks statically mapped to M heterogeneous machines, N > M
 similar: satellite data maps, security surveillance

Ex.: Radar Data Processing for Weather Forecasting
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Uncertainty in Environment
variability across the data sets results in variability of the 

execution time of each task even on the same machine
examples

 types of objects found in a radar scan data file
 increase in number of objects in a radar scan data file

unable to predict exact execution times of tasks
uncertainty parameters in the system
history of task exec times on each machine, different data

use history to find allocation that is robust against uncertainty

•77
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Problem Statement for Static Resource Allocation
unpredictable execution times of the tasks across data sets
have a probabilistic guarantee of performance of a mapping 
problem statement
determine a robust static resource allocation 
goal: minimize time period (Λ) between data sets 
constraint: a user-specified probability of 90% that 

all tasks will complete in Λ time units for each data set
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Problem Statement for Static Resource Allocation
unpredictable execution times of the tasks across data sets
have a probabilistic guarantee of performance of a mapping
problem statement
determine a robust static resource allocation 
goal: minimize time period (Λ) between data sets 
constraint: a user-specified probability of 90% that 

all tasks will complete in Λ time units for each data set

robust 
resource 
allocation

machines
performance measure

constraints
uncertainties
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 term “robustness” usually used without explicit definition
 three general robustness questions that should be answered
The Three Robustness Questions

1. what behavior of the system makes it robust?
 ex. execute all tasks within Λ time units

2. what uncertainty is the system robust against?
 ex. execution times of tasks vary over different data sets

3. how is robustness of the system quantified? 
 ex. probability that the resource allocation will 

execute all tasks within Λ time units for every data set

10

Defining Robustness for Static Resource Allocation



fre
qu

en
cy 40

20

execution time
10   20    30    40    50    60    70    80    90

Modeling  Uncertain Task Execution Times
execution of a given task on a given machine is data dependent
 collect in a histogram a history of samples of 
execution time of a given task on a given machine
over different representative data sets

11

x-axis: execution time 
within 10 second 
interval bins

y-axis: frequency = 
height of bar for 
a given interval



Generating a PMF from a Histogram
generate probability mass function (PMF) using a histogram
 convert the frequency to a probability to create PMF
probability = frequency/total # samples

example: probability of value from 10 to 19 = 6/200 = 3%
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assume task 1 and task 2 only tasks assigned to machine A 
 can find completion time PMF for machine A to do both tasks
 “convolution” of the execution time PMFs for two tasks



PMF for Completion Time of Machine
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Example of Use of Stochastic Model in Allocation
PMFs for machine completion time based on
PMFs for tasks already assigned to that machine
PMF for task i – which may be assigned to that machine
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 Λ : deadline for completing all tasks
 machine j stochastic robustness Prob[Sj ≤ Λ]
 Stochastic Robustness Metric (SRM)

 goal of heuristics
minimize Λ for a given SRM value
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Stochastic Robustness Heuristic Goals

•Prob[Sj ≤ Λ]∏
=

M

j 1



 definition and stochastic model of robustness
 use in static resource allocation heuristics
 use in dynamic resource allocation heuristics
 summary and concluding remarks
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Heuristic: Two-Phase Greedy Heuristic

problem: static assignment of N tasks to M machines 
minimize Λ for a given SRM value, for example 90%

while there are still mappable tasks

phase 1: for each of the mappable tasks 
 find machine assignment for minimum Λ

phase 2: among these task/machine pairs 
 find task/machine pair with minimum Λ
 map this task to its associated machine

21



Heuristic: Genitor Genetic Algorithm 
chromosome of length N (number of tasks) = a mapping (solution)
i th element identifies the machine assigned to task i

population size of 200 (decided empirically)
 initial population generation
one chromosome: solution from the 

Two-Phase Greedy heuristic (“seed”)
other 199: simple greedy heuristic

population in ascending order based on 
minimum Λ value for given SRM (probability) 
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Procedure for Genitor
 while stopping criterion
select two parent chromosomes 

from population
perform crossover
 for each offspring chromosome

 perform mutation
 apply local search

 insert offspring into population 
based on minimum Λ order

 trim population to population size
 end of while
 output the best solution

23



A

Genitor: Crossover
 selection of parents is done probabilistically
 crossover points are randomly selected 
 exchange elements between crossover points 
 generates two offspring
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Genitor: Mutation

mutation applied to offspring obtained from the crossover 
 for each element of each offspring chromosome

 assignment has a 1% probability of mutation
mutation randomly selects a different machine
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Genitor: Local Search
 local search applied to each offspring
1. for machine with individual highest Λ

 consider moving each task 
to other machines 

 if improvement, move the task that 
gives smallest overall system Λ

2. repeat 1 until no more improvement



Simulations: Performance of Static Heuristics

•Two-Phase

27

 N = 128 tasks, M = 8 machines, SRM value set to 90%
 50 simulation trials, different PMFs for task/machine pairs
 95% confidence intervals shown

Genitor lower bound

Genitor better than Two-Phase
by more than 7% (based 

on absolute performance)
by 50% based on 

lower bound
but takes 200 times longer
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● definition and stochastic model of robustness
● use in static resource allocation heuristics
● use in dynamic resource allocation heuristics
● summary and concluding remarks
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Problem Statement for Dynamic Resource Allocation
 cluster of M oversubscribed heterogeneous machines
each dynamically arriving task has two elements
task type: stochastic execution time of the task (PMF)
deadline: for completing that individual task

goal: maximize the number of tasks
completed by their individual deadlines

29
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Mapping Event
mapping event: when resource manager assigns to machines
 the batch of mappable tasks considered at an event
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Robustness for Dynamic Resource Allocation
what behavior makes the system robust?
completing all tasks

by their individual deadlines
what uncertainty is the system is robust against?
task execution times may vary substantially

how is robustness of the system quantified?
expected number of queued and executing

tasks that will complete by their individual deadlines

31

probability that 
task i completes 
by its deadline

∑
all tasks

expected # tasks that 
will complete by their 
individual deadlines



time
t1j completion time PMFready time

time
t1j exec. time PMF0

Probability Completing Executing Task by Deadline

new mapping event time k
ρ(t1j): probability of t1j

completing by its deadline
a) time k = current time 

 drop pulses < k
 renormalize

b) sum pulses < deadline D1j
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 recall: tij is i th task assigned to machine j at time k
 iterative procedure for finding completion time of tij for i > 1
 two cases for tij with deadline at, for example, time 8
executes on machine j
cannot start before deadline and is dropped

PMF for Completion Time of Task i for i > 1
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 recall: tij is i th task assigned to machine j at time k
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 recall: tij is i th task assigned to machine j at time k
 iterative procedure for finding completion time of tij for i > 1
 two cases for tij with deadline at, for example, time 8
executes on machine j
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 recall: tij is i th task assigned to machine j at time k
 iterative procedure for finding completion time of tij for i > 1
 two cases for tij with deadline at, for example, time 8
executes on machine j
cannot start before deadline and is dropped

 sum pulses < deadline Dij to get ρ tij
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Stochastic Robustness for Dynamic Heuristics
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ρ tij
probability that
task tij completes 
before its deadline

ρj
k

expected number of tasks 
completed by machine j
before their deadlines 
measured at time k

�
i
ρ tij

�
j
ρj

k

stochastic dynamic robustness: ρ k

the expected number of tasks that will
meet their deadlines measured at time k

recall: tij is i th task assigned 
to machine j at time k



Heuristic: Maximum On-time Completions (MOC)
during a mapping event at time k
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phase 1: for each of the mappable tasks find 
machine with minimum expected completion time

Heuristic: Min Completion - Min Completion (MM)

move provisionally mapped tasks to machine queues until full 
Heuristic: Min Completion - Max Urgency (MMU)
phase 2: map task in task/machine pair that maximizes

urgency = ⁄1 (task deadline − expected completion time)
Heuristic: Min Completion - Soonest Deadline (MSD)
phase 2: map task in task/machine pair 

with the soonest deadline

Comparison Heuristics
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phase 2: provisionally map task in task/machine pair 
with the minimum expected completion time



Results: Varied Deadline Weight Parameter (w)

deadline for task ti = ti arrival time +
average ti exec. time + w × (average exec. time over all tasks)

problem is harder with tighter deadlines (smaller w)
MOC best performing heuristic - uses stochastic robustness
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 1,000 tasks
 8 machines
 queue size 2
 100 simulation trials
 task types, task arrivals

 95% confidence intervals
 MOC: Max On-time Comp.
 MM: Min Comp. - Min Comp.
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Results: Varied Number of Tasks in Workload

MOC best because tried to maximized  ρ k robustness
MM second best because attempted to min. execution time
MMU and MSD perform worse because they choose

tasks with a high probability to miss their deadlines
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 deadline weight w = 1
 8 machines
 queue size 2
 100 simulation trials
 task types, task arrivals

 95% confidence intervals
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 MM: Min Comp. - Min Comp.
 MSD: Min Comp -
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Summary 
1) build histogram and convert to probability mass function (PMF)
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Summary 
1) build histogram and convert to probability mass function (PMF)
2) task execution time PMFs to machine completion time PMFs
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Summary 
1) build histogram and convert to probability mass function (PMF)
2) task execution time PMFs to machine completion time PMFs
3) probability given machine will meet common task deadline
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Summary 
1) build histogram and convert to probability mass function (PMF)
2) task execution time PMFs to machine completion time PMFs
3) probability given machine will meet common task deadline
4) probability all machines will meet common task deadline (SRM) 
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Summary 
1) build histogram and convert to probability mass function (PMF)
2) task execution time PMFs to machine completion time PMFs
3) probability given machine will meet common task deadline
4) probability all machines will meet common task deadline (SRM)
5) use SRM in static resource allocation heuristics

47



Summary 
1) build histogram and convert to probability mass function (PMF)
2) task execution time PMFs to machine completion time PMFs
3) probability given machine will meet common task deadline
4) probability all machines will meet common task deadline (SRM)
5) use SRM in static resource allocation heuristics
6) probability completing executing task by individual deadline

48

pr
ob

ab
ilit

y

time

D1jk



Summary 
1) build histogram and convert to probability mass function (PMF)
2) task execution time PMFs to machine completion time PMFs
3) probability given machine will meet common task deadline
4) probability all machines will meet common task deadline (SRM)
5) use SRM in static resource allocation heuristics
6) probability completing executing task by individual deadline
7) probability completing task i+1 by individual deadline
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Summary 
1) build histogram and convert to probability mass function (PMF)
2) task execution time PMFs to machine completion time PMFs
3) probability given machine will meet common task deadline
4) probability all machines will meet common task deadline (SRM)
5) use SRM in static resource allocation heuristics
6) probability completing executing task by individual deadline
7) probability completing task i+1 by individual deadline
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Summary 
1) build histogram and convert to probability mass function (PMF)
2) task execution time PMFs to machine completion time PMF
3) probability given machine will meet common task deadline
4) probability all machines will meet common task deadline (SRM)
5) use SRM in static resource allocation heuristics
6) probability completing executing task by individual deadline
7) probability completing task i+1 by individual deadline
8) robustness = expected # tasks meet individual deadlines 
9) use this robustness in dynamic resource allocation heuristic
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The Three Robustness Questions
1. what behavior of the system makes it robust?
2. what uncertainties is the system robust against?
3. how is robustness of the system quantified? 

work on robust resource allocation problems
publish papers about your work!

 thank you for listening
The End

Concluding Remarks
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● definition and stochastic model of robustness
● J. Smith et al., “Robust Resource Allocation in 

Heterogeneous Parallel and Distributed Computing Systems,” 
in Wiley Encyclopedia of Computing, 2008

● use in static resource allocation heuristics
● V. Shestak et al., “Stochastic Robustness Metric 

and its Use for Static Resource Allocations,” 
Journal of Parallel & Distributed Computing, Aug. 2008

● use in dynamic resource allocation heuristics
● M. Salehi et al., “Stochastic-based Robust 

Dynamic Resource Allocation for Independent Tasks 
in a Heterogeneous Computing System,” 
Journal of Parallel & Distributed Computing, Nov. 2016

● sponsors of this research 
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