Robust Control

Alireza Karimi
Laboratoire d'Automatique

Course Program

1. Introduction
2. Norms for Signals and Systems
3. Basic Concepts (stability and performance)
4. Uncertainty and Robustness
5. Stabilization (coprime factorization)
6. Design Constraints
7. Loopshaping
8. Model Matching
9. Design for Performance
10. Linear Fractional Transformation
11. H_{∞} Control
12. Model and Controller Reduction
13. Robust Control by Convex Optimization
14. LMIs in Robust Control
15. Robust Pole Placement
16. Parametric uncertainty

References:

- Feedback Control Theory by Doyle, Francis and Tannenbaum (on the website of the course)
- Essentials of Robust Control by Kemin Zhou with Doyle, Prentice-Hall, 1998

Introduction

Qaboratoire d'Automatique-

Robust Control

$$
P=P_{0}+\Delta
$$

P_{0} : nominal model
Δ : plant uncertainty

Uncertainty sources:
Structured: parametric uncertainty, multimodel uncertainty
Unstructured: frequency-domain uncertainty, unmodeled dynamics, nonlinearity
Robust Control Objective: Design a controller satisfying stability and performance for a set of models

Model Uncertainty and Feedback

Coboratoire
d'Automatique-
Feedback control has been used for the first time to overcome the model uncertainty

$T=\frac{C P}{1+C P} \quad$ Transfer function between r and y
$S=\frac{1}{1+C P} \quad$ Transfer function between v and y
For very large $C P, T \approx 1$ (tracking) and $S \approx 0$ (disturbance rejection) whatever the plant model is.
For an open-loop stable system:
$C=0$ robust stability $\longrightarrow C \rightarrow \infty$ robust performance

Loopshaping: $|C(j \omega) P(j \omega)|$ should be large in the frequencies where good performances are desired and small where the stability is critical

Norms for Signals and Systems

Coboratoire
d'Automatique-
Norms for signals: Consider piecewise continuous signals mapping $(-\infty,+\infty)$ to \mathbb{R}. A norm must have the following four properties:

1. $\|u\| \geq 0$ (positivity)
2. $\|a u\|=|a|\|u\|, \forall a \in \mathbb{R}$ (homogenity)
3. $\|u\|=0 \Longleftrightarrow u(t)=0 \quad \forall t$ (positive definiteness)
4. $\|u+v\| \leq\|u\|+\|v\|$ (triangle inequality)

1-Norm: $\|u\|_{1}=\int_{-\infty}^{\infty}|u(t)| d t$
2-Norm: $\|u\|_{2}=\left(\int_{-\infty}^{\infty} u^{2}(t) d t\right)^{1 / 2} \quad\|u\|_{2}^{2}$ is the total signal energy
∞-Norm: $\|u\|_{\infty}=\sup _{t}|u(t)|$
p-Norm: $\|u\|_{p}=\left(\int_{-\infty}^{\infty}|u(t)|^{p} d t\right)^{1 / p} \quad 1 \leq p \leq \infty$

Norms for Signals

Average power of a signal is denoted by:
$\operatorname{pow}(u)=\left(\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} u^{2}(t) d t\right)^{1 / 2}$ pow is not a norm (it is not positive definite)
Remark: One says $u(t) \in \mathcal{L}_{p}$ if $\|u\|_{p}<\infty$ where \mathcal{L}_{p} is an infinite-dimensional Banach space (\mathcal{L}_{2} is an infinite-dimensional Hilbert space as well).

Recall:

- A Banach space is a complete vector space with a norm.
- A Hilbert space is a complete vector space with an inner product $\langle x, y\rangle$ such that the norm defined by $\|x\|=\sqrt{\langle x, x\rangle}$. A Hilbert space is always a Banach space, but the converse need not hold.

Examples: $1(t) \in \mathcal{L}_{\infty}$ but $\notin \mathcal{L}_{1}, \notin \mathcal{L}_{2} \quad u(t)=\left(1-e^{-t}\right) 1(t) \in \mathcal{L}_{\infty}$ but $\notin \mathcal{L}_{1}, \notin \mathcal{L}_{2}$
$u(t)=e^{-t} 1(t) \in \mathcal{L}_{\infty}, \in \mathcal{L}_{1}, \in \mathcal{L}_{2}$ (Besides, $u(t)$ is a power signal pow $(u)=0$)
$u(t)=\sin (t) \in \mathcal{L}_{\infty}$ but $\notin \mathcal{L}_{1}, \notin \mathcal{L}_{2}(u(t)$ is a power signal)
Norms for Signals and Systems

Norms for Systems

We consider linear, time-invariant, causal and usually finite-dimensional systems.
$y(t)=G(t) * u(t), \quad y(t)=\int_{-\infty}^{\infty} G(t-\tau) u(\tau) d \tau, \quad \hat{G}(s)=\mathcal{L}[G]$
Some definitions:

- $\hat{G}(s)$ is stable if it is analytic in the closed RHP $(\operatorname{Re} s \geq 0)$
- $\hat{G}(s)$ is proper if $\hat{G}(j \infty)$ is finite (deg den \geq deg num)
- $\hat{G}(s)$ is strictly proper if $\hat{G}(j \infty)=0$ deg den $>\operatorname{deg}$ num
- $\hat{G}(s)$ is biproper if (deg den = deg num)

Norms for SISO systems:
2-Norm: $\|\hat{G}\|_{2}=\left(\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\hat{G}(j \omega)|^{2} d \omega\right)^{1 / 2} \quad \infty$-Norm: $\|\hat{G}\|_{\infty}=\sup _{\omega}|\hat{G}(j \omega)|$
Parsval's theorem: (for stable systems)
$\|\hat{G}\|_{2}=\left(\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\hat{G}(j \omega)|^{2} d \omega\right)^{1 / 2}=\left(\int_{-\infty}^{\infty}|G(t)|^{2} d t\right)^{1 / 2}$
Norms for Signals and Systems

Norms for Systems

Caboratoire
 d'Automatique-

Remarks:

- \mathcal{L}_{2} is a Hilbert space of scalar-valued functions on $j \mathbb{R}$. The inner product for this Hilbert space is defined as:

$$
<\hat{F}, \hat{G}>=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{F}^{*}(j \omega) \hat{G}(j \omega) d \omega
$$

- We say $\hat{G}(s) \in \mathcal{L}_{2}$ if $\|\hat{G}\|_{2}<\infty$. It is the case iff \hat{G} is strictly proper and has no poles on the imaginary axis.
- We say $\hat{G}(s) \in \mathcal{L}_{\infty}$ if $\|\hat{G}\|_{\infty}<\infty$. It is the case iff \hat{G} is proper and has no poles on the imaginary axis. \mathcal{L}_{∞} is a Banach space of scalar-valued functions on $j \mathbb{R}$.
- $\|\hat{G}\|_{\infty}$ is the peak value of the Bode magnitude plot of \hat{G}. It is also the distance from the origin to the farthest point on the Nyquist plot of \hat{G}.
- \mathcal{H}_{2} and \mathcal{H}_{∞} are respectively subspaces of \mathcal{L}_{2} and \mathcal{L}_{∞} with $\hat{G}(s)$ stable (\mathcal{H}_{p} spaces are usually called Hardy spaces).

Examples: $\frac{1}{s-1} \in \mathcal{L}_{2}, \mathcal{L}_{\infty}$ but $\notin \mathcal{H}_{2}, \mathcal{H}_{\infty} \quad \frac{s+1}{s+2} \in \mathcal{H}_{\infty}$ but $\notin \mathcal{H}_{2} \quad \frac{1}{s^{2}+1} \notin \mathcal{L}_{2}, \mathcal{L}_{\infty}$
Norms for Signals and Systems

Norms for Systems

Norms for matrices:

1-Norm: The maximum absolute column sum norm is defined as $\|A\|_{1}=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$.
2-Norm: The spectral norm or simply the norm of A is defined as: $\|A\|_{2}=\sqrt{\lambda_{\max }\left(A^{*} A\right)}$.
∞-Norm: The maximum absolute row sum norm is defined as $\|A\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|$.
F-Norm: Frobenius norm is defined as $\|A\|_{F}=\sqrt{\operatorname{trace}\left(A^{*} A\right)}$
Induced \mathbf{p}-norm: The induced p -norm is defined from a vector p -norm: $\|A\|_{p}=\max _{x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}}$

Remarks:

- The induced 2-norm and the norm of A are the same and called also the natural norm. This norm is also equal to the maximum singular value of A. $\|A\|=\bar{\sigma}(A)$.
- The spectral radius $\rho(A)=\left|\lambda_{\max }(A)\right|$ is not a norm.

Norms for Systems

Raboratoire
d'Automatique?
Norms for MIMO systems: Given $\hat{G}(s)$ a multi-input multi-output system
2-Norm: This norm is defined as

$$
\|\hat{G}\|_{2}=\left(\frac{1}{2 \pi} \int_{-\infty}^{\infty} \operatorname{trace}\left[\hat{G}^{*}(j \omega) \hat{G}(j \omega)\right] d \omega\right)^{1 / 2}
$$

∞-Norm: The \mathcal{H}_{∞} norm is defined as

$$
\|\hat{G}\|_{\infty}=\sup _{\omega}\|\hat{G}(j \omega)\|=\sup _{\omega} \bar{\sigma}[\hat{G}(j \omega)]
$$

Remark: The infinity norm has an important property (submultiplicative)

$$
\|\hat{G} \hat{H}\|_{\infty} \leq\|\hat{G}\|_{\infty}\|\hat{H}\|_{\infty}
$$

Computing the Norms

How to compute the 2-norm: Suppose that $\hat{G} \in \mathcal{L}_{2}$, we have:

$$
\|\hat{G}\|_{2}^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\hat{G}(j \omega)|^{2} d \omega=\frac{1}{2 \pi j} \int_{-j \infty}^{j \infty} \hat{G}(-s) \hat{G}(s) d s=\frac{1}{2 \pi j} \oint \hat{G}(-s) \hat{G}(s) d s
$$

Then by the residue theorem, $\|\hat{G}\|_{2}^{2}$ equals the sum of the residues of $\hat{G}(-s) \hat{G}(s)$ at its poles in the left half-plane (LHP).

How to compute the ∞-norm:
Choose a fine grid of frequency point $\left\{\omega_{1}, \ldots, \omega_{N}\right\}$, then an estimate for $\|\hat{G}\|_{\infty}$ is:

$$
\max _{1 \leq k \leq N}\left|\hat{G}\left(j \omega_{k}\right)\right|
$$

or for the MIMO systems:

$$
\max _{1 \leq k \leq N} \bar{\sigma}\left[\hat{G}\left(j \omega_{k}\right)\right]
$$

Matlab commands: norm, bode, frsp, vsvd

Computing the Norms

State-space methods for 2-norm: Consider a SISO state-space model $\in \mathcal{H}_{2}$

$$
\begin{gathered}
\dot{x}(t)=A x(t)+B u(t) \stackrel{\mathcal{L}}{\Longrightarrow} s \hat{x}(s)=A \hat{x}(s)+B \hat{u}(s) \\
y(t)=C x(t) \\
\hat{y}(s)=C \hat{x}(s) \\
\hat{G}(s)=C(s I-A)^{-1} B \Longrightarrow \quad \text { impulse response }: G(t)=C e^{t A} B
\end{gathered}
$$

From Parseval's theorem:

$$
\|\hat{G}\|_{2}^{2}=\|G\|_{2}^{2}=\int_{0}^{\infty}\left(C e^{t A} B\right)\left(B^{T} e^{t A^{T}} C^{T}\right) d t=C L C^{T}
$$

where

$$
L=\int_{0}^{\infty} e^{t A} B B^{T} e^{t A^{T}} d t
$$

is the observability Gramian and can be obtained from following Lyapunov equation:

$$
A L+L A^{T}+B B^{T}=0 \text { and the 2-norm is }\|\hat{G}\|_{2}=\left(C L C^{T}\right)^{1 / 2}
$$

$$
\text { For MIMO systems we have }\|\hat{G}\|_{2}=\left[\operatorname{trace}\left(C L C^{T}\right)\right]^{1 / 2}
$$

Computing the Norms

State-space methods for ∞-norm: Consider a SISO strictly proper state-space model $\in \mathcal{L}_{\infty}$. Theorem: $\|\hat{G}\|_{\infty}<\gamma$ iff the Hamiltonian matrix H has no eigenvalues on the imaginary axis:

$$
H=\left(\begin{array}{cc}
A & \gamma^{-2} B B^{T} \\
-C^{T} C & -A^{T}
\end{array}\right)
$$

Bisection algorithm:

1. Select γ_{u} and γ_{l} such that $\gamma_{l} \leq\|\hat{G}\|_{\infty} \leq \gamma_{u}$;
2. If $\left(\gamma_{u}-\gamma_{l}\right) / \gamma_{l} \leq$ specified level., stop and $\|\hat{G}\|_{\infty} \approx\left(\gamma_{u}+\gamma_{l}\right) / 2$. Otherwise continue;
3. Set $\gamma=\left(\gamma_{u}+\gamma_{l}\right) / 2$ and test if $\|\hat{G}\|_{\infty}<\gamma$
4. If H has no eigenvalue on $j \mathbb{R}$, set $\gamma_{u}=\gamma$ otherwise set $\gamma_{l}=\gamma$; go back to step 2 .

For MIMO biproper $(D \neq 0)$ systems:
$H=\left(\begin{array}{cc}A+B R^{-1} D^{T} C & B R^{-1} B^{T} \\ -C^{T}\left(I+D R^{-1} D^{T}\right) C & -\left(A+B R^{-1} D^{T} C\right)^{T}\end{array}\right)$ and $R=\gamma^{2} I-D^{T} D$
Norms for Signals and Systems

Input-output relationships

Caboratoire
d'Automatiquet
If we know how big the input is, how big is the output going to be?
Output Norms for Two Inputs

$u(t)$	$\delta(t)$	$\sin (\omega t)$				
$\\|y\\|_{2}$	$\\|\hat{G}\\|_{2}$	∞				

$\underline{\|y\|_{\infty} \quad\|G\|_{\infty} \quad|\hat{G}(j \omega)|}$

Proofs:

- If $u(t)=\delta(t)$ then $y(t)=\int_{-\infty}^{\infty} G(t-\tau) \delta(\tau) d \tau=G(t)$, so $\|y\|_{2}=\|G\|_{2}=\|\hat{G}\|_{2}$
- If $u(t)=\delta(t)$ then $y(t)=G(t)$, so $\|y\|_{\infty}=\|G\|_{\infty}$
- If $u(t)=\sin (\omega t)$ then $y(t)=|\hat{G}(j \omega)| \sin (\omega t+\phi)$, so $\|y\|_{2}=\infty$ and $\|y\|_{\infty}=|\hat{G}(j \omega)|$

Input-output relationships

System Gain: $\sup \{\|y\|:\|u\| \leq 1\}$

	$u(t) \in \mathcal{L}_{2}$	$u(t) \in \mathcal{L}_{\infty}$						
$\\|y\\|_{2}$	$\\|\hat{G}\\|_{\infty}$	∞						
$\\|y\\|_{\infty}$	$\\|\hat{G}\\|_{2}$	$\\|G\\|_{1}$						

Proofs:
Entry (1,1): We have

$$
\begin{aligned}
\|y\|_{2}^{2}=\|\hat{y}\|_{2}^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\hat{G}(j \omega)|^{2}|\hat{u}(j \omega)|^{2} d \omega & \leq\|\hat{G}\|_{\infty}^{2} \frac{1}{2 \pi} \int_{-\infty}^{\infty}|\hat{u}(j \omega)|^{2} d \omega \\
& =\|\hat{G}\|_{\infty}^{2}\|\hat{u}\|_{2}^{2}=\|\hat{G}\|_{\infty}^{2}\|u\|_{2}^{2}
\end{aligned}
$$

Entry(2,1): According to the Cauchy-Schwartz inequality

$$
\begin{aligned}
|y(t)|=\left|\int_{-\infty}^{\infty} G(t-\tau) u(\tau) d \tau\right| & \leq\left(\int_{-\infty}^{\infty} G^{2}(t-\tau) d \tau\right)^{1 / 2}\left(\int_{-\infty}^{\infty} u^{2}(\tau) d \tau\right)^{1 / 2} \\
& =\|G\|_{2}\|u\|_{2}=\|\hat{G}\|_{2}\|u\|_{2} \Rightarrow\|y\|_{\infty} \leq\|\hat{G}\|_{2}\|u\|_{2}
\end{aligned}
$$

Basic Concepts

Qaboratoire d'Automatique-

Basic Feedback Loop:

$$
\begin{aligned}
& x_{1}=r-F x_{3} \\
& x_{2}=d+C x_{1} \\
& x_{3}=n+P x_{2}
\end{aligned} \quad \Longrightarrow\left(\begin{array}{ccc}
1 & 0 & F \\
-C & 1 & 0 \\
0 & -P & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
r \\
d \\
n
\end{array}\right)
$$

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & F \\
-C & 1 & 0 \\
0 & -P & 1
\end{array}\right)^{-1}\left(\begin{array}{l}
r \\
d \\
n
\end{array}\right)=\frac{1}{1+P C F}\left(\begin{array}{ccc}
1 & -P F & -F \\
C & 1 & -C F \\
P C & P & 1
\end{array}\right)\left(\begin{array}{l}
r \\
d \\
n
\end{array}\right)
$$

Well-posedness: The system is well-posed iff the above matrix is nonsingular. A stronger notion of well-posedness is that all the nine transfer functions be proper. A necessary and sufficient condition for this is that $1+P C F$ not be strictly proper $(P C F(\infty) \neq-1)$

Internal Stability

If the following nine transfer functions are stable then the feedback system is internally stable.

$$
\frac{1}{1+P C F}\left(\begin{array}{ccc}
1 & -P F & -F \\
C & 1 & -C F \\
P C & P & 1
\end{array}\right) \quad P=\frac{N_{P}}{M_{P}}, \quad C=\frac{N_{C}}{M_{C}}, \quad F=\frac{N_{F}}{M_{F}}
$$

Theorem: The feedback system is internally stable iff

- there are no zeros in $\operatorname{Re} s \geq 0$ in the characteristic polynomial

$$
N_{P} N_{C} N_{F}+M_{P} M_{C} M_{F}=0
$$

or

- the following two conditions hold:
(a) The transfer function $1+P C F$ has no zeros in $\operatorname{Re} s \geq 0$.
(b) There is no pole-zero cancellation in $\operatorname{Re} s \geq 0$ when the product $P C F$ is formed.

Asymptotic Tracking

Internal Model Principle: For perfect asymptotic tracking of $r(t)$, the loop transfer function $\hat{L}=\hat{P} \hat{C}$ (with $\hat{F}=1$) must contain the unstable poles of $\hat{r}(s)$.

Theorem: Assume that the feedback system is internally stable and $\mathrm{n}=\mathrm{d}=0$.
(a) If $r(t)$ is a step, then $\lim _{t \rightarrow \infty} e(t)=r(t)-y(t)=0$ iff $\hat{S}=(1+\hat{L})^{-1}$ has at least one zero at the origin.
(b) If $r(t)$ is a ramp, then $\lim _{t \rightarrow \infty} e(t)=0$ iff \hat{S} has at least two zeros at the origin.
(c) If $r(t)=\sin (\omega t)$, then $\lim _{t \rightarrow \infty} e(t)=0$ iff \hat{S} has at least one zero at $s=j \omega$.

Final-Value Theorem: If $\hat{y}(s)$ has no poles in $\operatorname{Re} s \geq 0$ except possibly one pole at $s=0$ then:

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{s \rightarrow 0} s \hat{y}(s)
$$

Proof (a): We have $\hat{r}(s)=\frac{c}{s}$ and $\hat{e}(s)=\hat{S}(s) \frac{c}{s}$ then $\lim _{t \rightarrow \infty} e(t)=\lim _{s \rightarrow 0} s \hat{S}(s) \frac{c}{s}$. The limit is zero iff \hat{S} has at least one zero at origin. For this, \hat{P} or \hat{C} should have a pole at origin.

Performance

Tracking performance can be quantified in terms of a weighted norm of the sensitivity function
Sensitivity Function: Transfer function from r to tracking error e : $\quad S=\frac{1}{1+P C}$
Complementary Sensitivity Function: Transfer function from r to $y: \quad T=\frac{P C}{1+P C}$
S is the relative sensitivity of T with respect to relative perturbations in P :

$$
S=\lim _{\Delta P \rightarrow 0} \frac{\Delta T / T}{\Delta P / P}=\frac{d T}{d P} \frac{P}{T}=\frac{C(1+P C)-P C^{2}}{(1+P C)^{2}} \frac{P(1+P C)}{P C}=\frac{1}{1+P C}
$$

Performance Specification:

1. $r(t)$ is any sinusoid of amplitude ≤ 1 filtered by W_{1}, then the max. amp. of e is $\left\|W_{1} S\right\|_{\infty}$.
2. Suppose that $\left\{r=W_{1} r_{p f},\left\|r_{p f}\right\|_{2} \leq 1\right\}$, then $\sup _{r}\|e\|_{2}=\left\|W_{1} S\right\|_{\infty}$.
3. In some applications good performance is achieved if $|S(j \omega)|<\left|W_{1}(j \omega)\right|^{-1}, \quad \forall \omega$ or

$$
\left\|W_{1} S\right\|_{\infty}<1 \Leftrightarrow\left|W_{1}(j \omega)\right|<|1+L(j \omega)|, \forall \omega
$$

Uncertainty and Robustness

Coboratoire
d'Automatique-
Plant Uncertainty: We cannot exactly model the physical systems so there is always the modeling errors. The best technic is to define a model set which can be structured or unstructured.

- Structured model set such as parametric uncertainty or multiple model set

$$
\mathcal{P}=\left\{\frac{1}{s^{2}+a s+1}: a_{\min } \leq a \leq a_{\max }\right\} \quad \text { or } \quad \mathcal{P}=\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}
$$

- Unstructured model set such as unmodeled dynamics or disk uncertainty

$$
\mathcal{P}=\left\{P_{0}+\Delta: \quad\|\Delta\|_{\infty} \leq \gamma\right\}
$$

Conservatism: Controller design for a model set greater than the real model set leads to a conservative design.

Uncertainty Models (unstructured):
Additive uncertainty Multiplicative uncertainty
Feedback uncertainty
$\tilde{P}=P+\Delta W_{2} \quad \tilde{P}=P\left(1+\Delta W_{2}\right) \quad \tilde{P}=\frac{P}{1+\Delta W_{2} P} \quad$ or $\quad \tilde{P}=\frac{P}{1+\Delta W_{2}}$
\tilde{P} : true model $\quad P$: nominal model $\quad \Delta$: norm-bounded uncertainty $\quad W_{2}$: weighting filter

Examples

Example 1: k frequency-response models are identified. Find the multiplicative uncertainty model and the weighting filter.

$$
\begin{gathered}
\tilde{P}=P\left(1+\Delta W_{2}\right) \Rightarrow \frac{\tilde{P}}{P}-1=\Delta W_{2} \\
\text { if }\|\Delta\|_{\infty} \leq 1 \Rightarrow\left|\frac{\tilde{P}(j \omega)}{P(j \omega)}-1\right| \leq\left|W_{2}(j \omega)\right|
\end{gathered}
$$

Let $\left(M_{i k}, \phi_{i k}\right)$ be the magnitude-phase at ω_{i} in k-th experiment and $\left(M_{i}, \phi_{i}\right)$ that of the nominal model (e.g. the mean value).

$$
\max _{k}\left|\frac{M_{i k} e^{\phi_{i k}}}{M_{i} e^{\phi_{i}}}-1\right| \leq\left|W_{2}\left(j \omega_{i}\right)\right| \quad \forall i
$$

Example 2: Suppose that $\tilde{P}(s)=\left\{\frac{k}{s-2}: 0.1 \leq k \leq 10\right\}$. Represent this model by the multiplicative uncertainty.

$$
P(s)=\frac{k_{0}}{s-2} \Rightarrow\left|\frac{\tilde{P}(j \omega)}{P(j \omega)}-1\right| \leq\left|W_{2}(j \omega)\right| \Rightarrow \max _{0.1 \leq k \leq 10}\left|\frac{k}{k_{0}}-1\right| \leq\left|W_{2}(j \omega)\right|
$$

The best value for k_{0} is 5.05 which gives $W_{2}(s)=4.95 / 5.05$

Examples

Coboratoire
d'Automatique-
Example 3: Assume that $P(s)=\frac{1}{s^{2}}$ and $\tilde{P}(s)=e^{-\tau s} \frac{1}{s^{2}}$ where $0 \leq \tau \leq 0.1$. Find $W_{2}(s)$ for the multiplicative uncertainty model.

$$
\left|\frac{\tilde{P}(j \omega)}{P(j \omega)}-1\right| \leq\left|W_{2}(j \omega)\right| \Rightarrow\left|e^{-\tau j \omega}-1\right| \leq\left|W_{2}(j \omega)\right| \quad \forall \omega, \tau
$$

Using the Bode diagram we can find $W_{2}(s)=\frac{0.21 s}{0.1 s+1}$.
Example 4: Consider the model set $\left\{\frac{1}{s^{2}+a s+1}: 0.4 \leq a \leq 0.8\right\}$. Find $W_{2}(s)$ for Feedback uncertainty model.

Take:

$$
a=0.6+0.2 \Delta, \quad-1 \leq \Delta \leq 1
$$

So

$$
\tilde{P}(s)=\frac{1}{s^{2}+0.6 s+0.2 \Delta s+1}=\frac{P(s)}{1+\Delta W_{2}(s) P(s)}
$$

where

$$
P(s)=\frac{1}{s^{2}+0.6 s+1}, \quad W_{2}(s)=0.2 s
$$

Robust Stability

Robustness: A controller is robust with respect to a closed-loop characteristic, if this characteristic holds for every plant in \mathcal{P}

Robust Stability: A controller is robust in stability if it provides internal stability for every plant in \mathcal{P}
Stability margin: For a given model set with an associate size, it can be defined as the largest model set stabilized by a controller.

Stability margin for an uncertainty model: Given $\tilde{P}=P\left(1+\Delta W_{2}\right)$ with $\|\Delta\|_{\infty} \leq \beta$, the stability margin for a controller C is the least upper bound of β.

Modulus margin: The distance from - 1 to the open-loop Nyquist curve.

$$
\begin{aligned}
M_{m} & =\inf _{\omega}|-1-L(j \omega)|=\inf _{\omega}|1+L(j \omega)| \\
& =\left[\sup _{\omega} \frac{1}{1+L(j \omega)}\right]^{-1}=\|S\|_{\infty}^{-1}
\end{aligned}
$$

Robust Stability

Coboratoire d'Automatique-

Small Gain Theorem: Suppose $H \in \mathcal{R} \mathcal{H}_{\infty}$ and let $\gamma>0$. The following feedback loop is internally stable for all $\Delta(s) \in \mathcal{R} \mathcal{H}_{\infty}$ with

$$
\|\Delta\|_{\infty} \leq 1 / \gamma \text { if and only if }\|H\|_{\infty}<\gamma
$$

Remark: For a given Δ with $\|\Delta\|_{\infty} \leq 1 / \gamma$ the condition $\|H\|_{\infty}<\gamma$ is only sufficient and very conservative. However for all $\Delta \in \mathcal{R} \mathcal{H}_{\infty}$, it is a necessary and sufficient condition.

Robust stability condition for plants with additive uncertainty:

$$
\tilde{P}=P+\Delta W_{2} \Rightarrow H=W_{2} \frac{-C}{1+C P}
$$

Closed-loop system is internally stable for all $\|\Delta\|_{\infty} \leq 1 \quad$ iff $\quad\left\|W_{2} C S\right\|_{\infty}<1$

Robust Stability

Robust stability condition for plants with multiplicative uncertainty:
$\tilde{P}=P\left(1+\Delta W_{2}\right) \Rightarrow H=W_{2} \frac{-C P}{1+C P}$
Closed-loop system is internally stable for all $\|\Delta\|_{\infty} \leq 1 \quad$ iff $\quad\left\|W_{2} T\right\|_{\infty}<1$

Proof: Assume that $\left\|W_{2} T\right\|_{\infty}<1$. We show that the winding number of $1+C P$ around zero is equal to that of $1+C \tilde{P}$.

$$
\begin{gathered}
1+C \tilde{P}=1+C P\left(1+\Delta W_{2}\right)=1+C P+C P \Delta W_{2}=1+C P+(1+C P) T \Delta W_{2} \\
1+C \tilde{P}=(1+C P)\left(1+\Delta W_{2} T\right)
\end{gathered}
$$

so Wno $\{(1+C \tilde{P})\}=\mathrm{Wno}\{(1+C P)\}+\mathrm{Wno}\left\{\left(1+\Delta W_{2} T\right)\right\}$.
But Wno $\left\{\left(1+\Delta W_{2} T\right)\right\}=0$ because $\left\|\Delta W_{2} T\right\|_{\infty}<1$

Robust Stability

Coboratoire d'Automatique-
Robust stability condition for plants with feedback uncertainty (1):

$$
\tilde{P}=\frac{P}{1+\Delta W_{2}} \Rightarrow H=W_{2} \frac{-1}{1+C P}
$$

Closed-loop system is internally stable for all $\|\Delta\|_{\infty} \leq 1 \quad$ iff $\quad\left\|W_{2} S\right\|_{\infty}<1$

Robust stability condition for plants with feedback uncertainty (2):

$$
\tilde{P}=\frac{P}{1+\Delta W_{2} P} \Rightarrow H=W_{2} \frac{-P}{1+C P}
$$

Closed-loop system is internally stable for all $\|\Delta\|_{\infty} \leq 1 \quad$ iff $\quad\left\|W_{2} P S\right\|_{\infty}<1$

Robust Performance

Coboratoire
d'Automatique-
Nominal performance condition: $\left\|W_{1} S\right\|_{\infty}<1$
Robust stability condition for multiplicative uncertainty: $\left\|W_{2} T\right\|_{\infty}<1$
Robust performance for multiplicative uncertainty: $\left\|W_{2} T\right\|_{\infty}<1$ and $\left\|W_{1} \tilde{S}\right\|_{\infty}<1$ where:

$$
\tilde{S}=\frac{1}{1+C \tilde{P}}=\frac{1}{1+C P\left(1+\Delta W_{2}\right)}=\frac{1}{(1+C P)\left(1+\Delta W_{2} T\right)}=\frac{S}{1+\Delta W_{2} T}
$$

Robust performance conditions: $\left\|W_{2} T\right\|_{\infty}<1$ and $\left\|\frac{W_{1} S}{1+\Delta W_{2} T}\right\|_{\infty}<1$
Theorem: A necessary and sufficient condition for robust performance is

$$
\left\|\left|W_{1} S\right|+\left|W_{2} T\right|\right\|_{\infty}<1
$$

Robust performance for additive uncertainty: $\left\|W_{2} C S\right\|_{\infty}<1$ and $\left\|W_{1} \tilde{S}\right\|_{\infty}<1$ where:

$$
\tilde{S}=\frac{1}{1+C \tilde{P}}=\frac{1}{1+C P+C \Delta W_{2}}=\frac{S}{1+\Delta W_{2} C S} \Rightarrow\left\|\frac{W_{1} S}{1+\Delta W_{2} C S}\right\|_{\infty}<1
$$

Or equivalently in one inequality condition: $\left\|\left|W_{1} S\right|+\left|W_{2} C S\right|\right\|_{\infty}<1$

Stabilization

Coboratoire d'Automatique-

The main objective is to parameterize all of the controllers which provide internal stability for a given plant

Theorem: Assume that $P \in \mathcal{R} \mathcal{H}_{\infty}$ (P is stable). The set of all stabilizing controllers is given by:

$$
C:=\left\{\left.\frac{Q}{1-P Q} \right\rvert\, Q \in \mathcal{R} \mathcal{H}_{\infty}\right\}
$$

Proof: $(F=1)$

$$
\frac{1}{1+P C F}\left(\begin{array}{ccc}
1 & -P F & -F \\
C & 1 & -C F \\
P C & P & 1
\end{array}\right)=\left(\begin{array}{ccc}
1-P Q & -P(1-P Q) & -1(1-P Q) \\
Q & 1-P Q & -Q \\
P Q & P(1-P Q) & 1-P Q
\end{array}\right) \in \mathcal{R H}_{\infty}
$$

On the other hand, suppose that C stabilizes P then define

$$
Q:=\frac{C}{1+C P} \in \mathcal{R} \mathcal{H}_{\infty} \text { which leads to } C=\frac{Q}{1-P Q}
$$

In this parameterization sensitivity and complementary sensitivity are

$$
S=1-P Q \quad T=P Q
$$

Coprime Factorization

Objective: Given P, find M, N, X and $Y \in \mathcal{R} \mathcal{H}_{\infty}$ such that:

$$
P=\frac{N}{M} \quad N X+M Y=1
$$

Remarks:

- N and M are called coprime factors of G over $\mathcal{R H} \mathcal{H}_{\infty}$
- N and M can have no common zeros in $\operatorname{Re} s \geq 0$ nor at $s=\infty$

$$
N\left(s_{0}\right) X\left(s_{0}\right)+M\left(s_{0}\right) Y\left(s_{0}\right)=0 \neq 1
$$

- If P is stable we have : $M=1, N=P, X=0, Y=1$
- It is easy to obtain N and M, for example:

$$
P(s)=\frac{1}{s-1}=\frac{N(s)}{M(s)} \Rightarrow N(s)=\frac{1}{(s+1)^{k}}, \quad M(s)=\frac{s-1}{(s+1)^{k}}
$$

if $k>1$ then M and N have a common zero at $s=\infty$, so $k=1$
How to compute $X(s)$ and $Y(s)$?

Coprime Factorization

Euclid's algorithm: Given polynomials $m(\lambda)$ and $n(\lambda)$ (deg $n \leq \operatorname{deg} m)$ find polynomials $x(\lambda)$ and $y(\lambda)$ such that $n x+m y=1$.

Step 1: Divide m into n to get quotient q_{1} and remainder $r_{1}: n=m q_{1}+r_{1}$, $\operatorname{deg} r_{1}<\operatorname{deg} m$
Step 2: Divide r_{1} into m to get quotient q_{2} and remainder $r_{2}: m=r_{1} q_{2}+r_{2}$, $\operatorname{deg} r_{2}<\operatorname{deg} r_{1}$
Step 3: Divide r_{2} into r_{1} to get quotient q_{3} and remainder $r_{3}: r_{1}=r_{2} q_{3}+r_{3}$, $\operatorname{deg} r_{3}<\operatorname{deg} r_{2}$
Continue Stop at step k when r_{k} is a nonzero constant.
Find r_{3} as a function of m, n and q_{i} :

$$
r_{3}=\underbrace{\left(n-m q_{1}\right)}_{r_{1}}-\overbrace{(m-\underbrace{\left(n-m q_{1}\right)}_{r_{1}} q_{2})}^{r_{2}} q_{3}=n\left(1+q_{2} q_{3}\right)+m\left(-q_{3}-q_{1}-q_{1} q_{2} q_{3}\right)
$$

which gives:

$$
x=\frac{1}{r_{3}}\left(1+q_{2} q_{3}\right) \quad \text { and } \quad y=\frac{1}{r_{3}}\left(-q_{3}-q_{1}-q_{1} q_{2} q_{3}\right)
$$

Coprime Factorization

Procedure to find M, N, X and Y for an unstable plant G :
Step 1: Transform $G(s)$ to $\tilde{G}(\lambda)$ under the mapping $s=(1-\lambda) / \lambda$. Write $\tilde{G}=\frac{n(\lambda)}{m(\lambda)}$
Step 2: Using Euclid's algorithm, find $x(\lambda)$ and $y(\lambda)$ such that: $n x+m y=1$
Step 3: Find M, N, X and Y from m, n, x and y under the mapping $\lambda=1 /(s+1)$
State-Space Method:
Step 1: Transform $G(s)$ to A, B, C and D (state space realization)
Step 2: Compute F and H so that $A+B F$ and $A+H C$ are stable ($\mathrm{F}=-\mathrm{place}$ ($\mathrm{A}, \mathrm{B}, \mathrm{Pf}$))
Step 3: Compute M, N, X and Y as follows:

$$
\begin{array}{ll}
M(s):=\left[\begin{array}{c|c}
A+B F & B \\
\hline F & 1
\end{array}\right] & N(s):=\left[\begin{array}{c|c}
A+B F & B \\
\hline C+D F & D
\end{array}\right] \\
X(s):=\left[\begin{array}{c|c}
A+H C & H \\
\hline F & 0
\end{array}\right] & Y(s):=\left[\begin{array}{c|c}
A+H C & -B-H D \\
\hline F & 1
\end{array}\right]
\end{array}
$$

Controller Parametrization

Theorem: The set of all C s for which the feedback system is internally stable equal:

$$
C=\left\{\frac{X+M Q}{Y-N Q}: \quad Q \in \mathcal{R} \mathcal{H}_{\infty}\right\}
$$

Proof: For $C=\frac{N_{c}}{M_{c}}$, the stability condition is: $\left(N N_{c}+M M_{c}\right)^{-1} \in \mathcal{R} \mathcal{H}_{\infty}$, but we have:

$$
N(X+M Q)+M(Y-N Q)=N X+M Y=1 \Rightarrow\left(N N_{c}+M M_{c}\right)^{-1} \in \mathcal{R} \mathcal{H}_{\infty}
$$

Conversely, if C stabilizes the closed-loop system we should show that it belongs to the above set. C is stabilizing $\Rightarrow V:=\left(N N_{c}+M M_{c}\right)^{-1} \in \mathcal{R} \mathcal{H}_{\infty} \Rightarrow N N_{c} V+M M_{c} V=1$ Let Q be the solution of $M_{c} V=Y-N Q$. From the above equation and $N X+M Y=1$ we find that $N_{c} V=X+M Q$ so the controller $C=\frac{N_{c} V}{M_{c} V} \in$ the set of all stabilizing controller. It is easy to verify that $Q \in \mathcal{R} \mathcal{H}_{\infty}$

Remark: The sensitivity functions are:

$$
S=\frac{1}{1+C P}=M(Y-N Q) \quad T=\frac{C P}{1+C P}=N(X+M Q)
$$

Example

Let

$$
P(s)=\frac{1}{(s-1)(s-2)}
$$

Compute a proper controller C so that:

1. The feedback system is internally stable.
2. Perfect asymptotic tracking of step reference $(d=0)$.
3. Perfect asymptotic disturbance rejection when $d=\sin 10 t(r=0)$.

Procedure:

- Parameterize all stabilizing controllers.
- Reduce the asymptotic specs to interpolation constraints on the parameters.
- Find (if possible) a parameter to satisfy these constraints.
- Back-substitute to get the controller.

Design Constraints

Algebraic Constraints:

- $S+T=1$ so $|S(j \omega)|$ and $|T(j \omega)|$ cannot both be less than $1 / 2$ at the same frequency.
- A necessary condition for robust performance is that:

$$
\min \left\{\left|W_{1}(j \omega)\right|,\left|W_{2}(j \omega)\right|\right\}<1, \quad \forall \omega
$$

So at every frequency either $\left|W_{1}\right|$ or $\left|W_{2}\right|$ must be less than 1. Typically $\left|W_{1}\right|$ is monotonically decreasing and $\left|W_{2}\right|$ is monotonically increasing.

- If p is a pole and z a zero of L both in $\operatorname{Re} s \geq 0$ then:

$$
S(p)=0 \quad S(z)=1 \quad T(p)=1 \quad T(z)=0
$$

Analytic Constraints:

- Bounds on the weights W_{1} and W_{2} :

$$
\left\|W_{1} S\right\|_{\infty} \geq\left|W_{1}(z)\right| \quad\left\|W_{2} T\right\|_{\infty} \geq\left|W_{2}(p)\right|
$$

Proof from the Maximum Modulus Theorem: $\|F\|_{\infty}=\sup _{\operatorname{Re} s>0}|F(s)|$

Analytic Constraints

All-Pass and Minimum-Phase Transfer Functions:

- $F(s) \in \mathcal{R} \mathcal{H}_{\infty}$ is all-pass if $|F(j \omega)|=1 \quad \forall \omega$
- $G(s) \in \mathcal{R} \mathcal{H}_{\infty}$ is minimum-phase if it has no zeros in $\operatorname{Re} s>0$. It has the minimum phase among all transfer functions with the same magnitude ($F G$ where F is all-pass).
- Every function G in $\mathcal{R H} \mathcal{H}_{\infty}$ can be presented as $G=G_{a p} G_{m p}$
- Suppose that $L=C P$ has no poles on the imaginary axis, so $S=(1+L)^{-1}=S_{a p} S_{m p}$ and $S_{m p}$ has no zeros on the imaginary axis. Thus $S_{m p}^{-1} \in \mathcal{R} \mathcal{H}_{\infty}$.
- Suppose that z and p are the only zero and pole of P in the closed RHP and C has neither poles nor zeros there. Then:

$$
S_{a p}=\frac{s-p}{s+p} \quad S(z)=1 \Rightarrow S_{m p}(z)=S_{a p}^{-1}(z)=\frac{z+p}{z-p}
$$

Then: $\left\|W_{1} S\right\|_{\infty}=\left\|W_{1} S_{m p}\right\|_{\infty} \geq\left|W_{1}(z) S_{m p}(z)\right|=\left|W_{1}(z) \frac{z+p}{z-p}\right|$
Similarly: $T_{a p}=\frac{s-z}{s+z}$ and $T(p)=1 \Rightarrow\left\|W_{2} T\right\|_{\infty} \geq\left|W_{2}(p) \frac{p+z}{p-z}\right|$

Analytic Constraints

Example: Consider the inverse pendulum problem.

$$
\begin{aligned}
(M+m) \ddot{x}+m l\left(\ddot{\theta} \cos \theta-\dot{\theta}^{2} \sin \theta\right) & =u \\
m(\ddot{x} \cos \theta+l \ddot{\theta}-g \sin \theta) & =d
\end{aligned}
$$

Linearized model:

$$
\begin{gathered}
\binom{x}{\theta}=\frac{1}{s^{2}\left[M l s^{2}-(M+m) g\right]}\left(\begin{array}{cc}
l s^{2}-g & -l s^{2} \\
-s^{2} & \frac{M+m}{m} s^{2}
\end{array}\right)\binom{u}{d} \\
T_{u x}=\frac{l s^{2}-g}{s^{2}\left[M l s^{2}-(M+m) g\right]} \quad \text { RHP poles and zeros: } z=\sqrt{g / l} \quad p=0,0, \sqrt{\frac{(M+m) g}{M l}} \\
T_{u \theta}=\frac{-1}{M l s^{2}-(M+m) g} \quad T_{u y}=\frac{-g}{s^{2}\left[M l s^{2}-(M+m) g\right]} \quad \text { no RHP zero }
\end{gathered}
$$

For $T_{u x}$ if $m \ll M \Rightarrow\left\|W_{2} T\right\|_{\infty} \gg 1$ (| $\left|W_{2}(p)\right|$ is an increasing function) the system is difficult to control. The best case is m / M and l large.
For $T_{u \theta}$ and $T_{u y}$ a larger l gives a smaller p so the system is easier to stabilize.

Analytic Constraints

Coboratoire
d'Automatiqué

The Waterbed Effect

Lemma: For every point $s_{0}=\sigma_{0}+j \omega_{0}$ with $\sigma_{0}>0$,

$$
\log \left|S_{m p}\left(s_{0}\right)\right|=\frac{1}{\pi} \int_{-\infty}^{\infty} \log |S(j \omega)| \frac{\sigma_{0}}{\sigma_{0}^{2}+\left(\omega-\omega_{0}\right)^{2}} d \omega
$$

Theorem: Suppose that P has a zero at z with $\operatorname{Re} z>0$ and:

$$
M_{1}:=\max _{\omega_{1} \leq \omega \leq \omega_{2}}|S(j \omega)| \quad M_{2}:=\|S\|_{\infty}
$$

Then there exist positive constants c_{1} and c_{2}, depending only on ω_{1}, ω_{2} and z, such that :

$$
c_{1} \log M_{1}+c_{2} \log M_{2} \geq \log \left|S_{a p}^{-1}(z)\right| \geq 0
$$

Theorem (The Area Formula): Assume that the relative degree of L is at least 2. Then

$$
\int_{0}^{\infty} \log |S(j \omega)| d \omega=\pi(\log \mathrm{e}) \sum_{i} \operatorname{Re} p_{i}
$$

where $\left\{p_{i}\right\}$ denotes the set of poles of L in $\operatorname{Re} s>0$.
Design Constraints

Loopshaping

Objective: Given P, W_{1} and W_{2} find controller C providing internal stability and robust performance:

$$
\left\|\left|W_{1} S\right|+\left|W_{2} T\right|\right\|_{\infty}<1 \quad \text { or } \quad \Gamma(j \omega):=\left|\frac{W_{1}(j \omega)}{1+L(j \omega)}\right|+\left|\frac{W_{2}(j \omega) L(j \omega)}{1+L(j \omega)}\right|<1 \quad \forall \omega
$$

Idea: Find graphically $L(j \omega)$ satisfying the above condition and then compute $C=L / P$
Note that we assume P is minimum phase and stable.
We have: $\Gamma|1+L|=\left|W_{1}\right|+\left|W_{2} L\right|$ and $|1-|L|| \leq|1+L| \leq 1+|L|$

$$
\Rightarrow \frac{\left|W_{1}\right|+\left|W_{2} L\right|}{1+|L|} \leq \Gamma \leq \frac{\left|W_{1}\right|+\left|W_{2} L\right|}{|1-|L||}
$$

So if $\left|W_{1}\right|+\left|W_{2} L\right|<|1-|L|| \Rightarrow \Gamma<1$:
In low frequencies $\quad|L|>1 \Rightarrow \quad|L|>\frac{\left|W_{1}\right|+1}{1-\left|W_{2}\right|} \simeq \frac{\left|W_{1}\right|}{1-\left|W_{2}\right|} \quad\left|W_{1}\right| \gg 1>\left|W_{2}\right|$

In high frequencies $|L|<1 \Rightarrow \quad|L|<\frac{1-\left|W_{1}\right|}{1+\left|W_{2}\right|} \simeq \frac{1-\left|W_{1}\right|}{\left|W_{2}\right|} \quad\left|W_{2}\right| \gg 1>\left|W_{1}\right|$

Procedure

step 1: Plot two curves on log-log scale:

$$
\text { at } \mathrm{LF}\left(\left|W_{1}\right|>1>\left|W_{2}\right|\right) \frac{\left|W_{1}\right|}{1-\left|W_{2}\right|} \quad \text { and at } \mathrm{HF} \quad\left(\left|W_{2}\right|>1>\left|W_{1}\right|\right) \quad \frac{1-\left|W_{1}\right|}{\left|W_{2}\right|}
$$

step 2: Fit the graph of $|L|$ on the same plot such that:

- at low frequency it lies above the first curve and also $\gg 1$
- at high frequency it lies below the second curve and $\ll 1$
- at very high frequency let it roll off at least as fast as does $|P|$ (so C is proper)
- near crossover frequency do a smooth transition, keeping the slope as gentle as possible.

Because the slope of $|L|$ determines the phase of L (Bode's integral):

$$
\angle L\left(j \omega_{0}\right)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d \ln |L|}{d \nu} \ln \operatorname{coth} \frac{|\nu|}{2} d \nu \quad \text { where } \nu=\ln \left(\omega / \omega_{0}\right)
$$

The steeper the graph of L near the crossover frequency, the smaller the value of $\angle L$ and larger the phase margin
step 3: Get a stable, minimum-phase TF for L such that $L(0)>0$ and compute $C=L / P$

Example

Coboratoire d'Automatique-
Assume that the relative degree of P equals 1 . Find L for robust performance if the objective is to track sinusoidal signals over the frequency range from 0 to $1 \mathrm{rad} / \mathrm{s}$ and the weighting function W_{2} is:

$$
W_{2}(s)=\frac{s+1}{20(0.01 s+1)}
$$

We can define W_{1} as follows (in loopshaping design it is not necessary to have a rational TF for W_{1}):

$$
\left|W_{1}(j \omega)\right|=\left\{\begin{array}{ll}
a & 0 \leq \omega \leq 1 \\
0 & \text { else }
\end{array} \quad \text { The larger the value of } a,\right. \text { the smaller the tracking error }
$$

- LF $\left(\left|W_{1}\right|>1\right): \omega<1 \quad \operatorname{HF}\left(\left|W_{2}\right|>1\right): \omega \geq 20$
- Plot $\frac{\left|W_{1}\right|}{1-\left|W_{2}\right|}$ in LF $(\omega<1)$ and $\frac{1-\left|W_{1}\right|}{\left|W_{2}\right|}$ in HF $(\omega>20)$
- Choose $L=\frac{b}{s+1}$ and find b such that in $\mathrm{HF}|L| \leq \frac{1-\left|W_{1}\right|}{\left|W_{2}\right|}=\frac{1}{\left|W_{2}\right|}(\Rightarrow|b| \leq 20)$
- Find the maximum value of a such that in $\mathrm{LF}|L| \geq \frac{\left|W_{1}\right|}{1-\left|W_{2}\right|}=\frac{a}{1-\left|W_{2}\right|} \Rightarrow a=13.15$

Model Matching

Raboratoire d'Automatique-

Objective: Given $T_{1}(s)$ and $T_{2}(s)$, stable proper transfer functions, find a stable $Q(s)$ to minimize $\left\|T_{1}-T_{2} Q\right\|_{\infty}$
Trivial case: If T_{1} / T_{2} is stable then the unique optimal Q is T_{1} / T_{2} and

$$
\gamma_{\mathrm{opt}}=\min \left\|T_{1}-T_{2} Q\right\|_{\infty}=0
$$

Simplest nontrivial case: T_{2} has only one RHP zero at $s=s_{0}$. Then by the maximum modulus theorem:

$$
\left\|T_{1}-T_{2} Q\right\|_{\infty} \geq\left|T_{1}\left(s_{0}\right)-T_{2}\left(s_{0}\right) Q\left(s_{0}\right)\right|=\left|T_{1}\left(s_{0}\right)\right| \Rightarrow \gamma_{\mathrm{opt}} \geq\left|T_{1}\left(s_{0}\right)\right|
$$

Note that $Q=\frac{T_{1}-T_{1}\left(s_{0}\right)}{T_{2}}$ is stable and leads to $\gamma_{\mathrm{opt}}=\left|T_{1}\left(s_{0}\right)\right|$.
Example: $T_{1}(s)=\frac{4}{s+3}, \quad T_{2}(s)=\frac{s-2}{(s+1)^{3}} \Rightarrow Q=\frac{T_{1}-T_{1}(2)}{T_{2}}=-\frac{4(s+1)^{3}}{5(s+3)}$

Nevanlinna-Pick Problem

Problem: Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a set of points in the open RHP and $\left\{b_{1}, \ldots, b_{n}\right\}$ a set of distinct points in complex plane. Find a stable, proper, complex-rational function G satisfying:

$$
\|G\|_{\infty} \leq 1 \quad \text { and } \quad G\left(a_{i}\right)=b_{i}, \quad i=1, \ldots, n
$$

Solvability: The NP problem is solvable iff the $n \times n$ Pick matrix Q, whose $i j$ th element is $\frac{1-b_{i} \overline{b_{j}}}{a_{i}+\overline{a_{j}}}$ is positive semidefinite ($Q \geq 0$). Note that Q is Hermitian ($Q=Q^{*}$ where Q^{*} is the complex conjugate transpose of Q). $Q \geq 0$ iff all its eigenvalues are ≥ 0.

Mobius Function: A Mobius function has the form:

$$
M_{b}(z)=\frac{z-b}{1-z \bar{b}} \quad \text { where }|b|<1
$$

- M_{b} has a zero at $z=b$ and a pole at $z=1 / \bar{b}$ so M_{b} is analytic in open unit disk..
- M_{b} maps the unit disk onto the unit disk and the unit circle onto the unit circle.
- The inverse map $M_{b}^{-1}=\frac{z+b}{1+z \bar{b}}=M_{-b}$ is a Mobius function too.

Nevanlinna-Pick Problem

NP problem for $n=1$: Find a stable, proper $\mathrm{G}(\mathrm{s})$ such that $\|G\|_{\infty} \leq 1$ and $G\left(a_{1}\right)=b_{1}$ where $\left|b_{1}\right| \leq 1$ and $\operatorname{Re} a_{1}>0$.

Case $1\left|b_{1}\right|=1$: The unique solution is $G(s)=b_{1}$.
Case $2\left|b_{1}\right|<1$: The set of all solutions is:

$$
\left.\left\{G: G(s)=M_{-b_{1}}\left[G_{1}(s) A_{a_{1}}(s)\right], G_{1} \in \mathcal{C R} \mathcal{H}_{\infty},\left\|G_{1}\right\|_{\infty} \leq 1\right]\right\}
$$

where the all-pass function $A_{a}(s):=\frac{s-a}{s+\bar{a}}$
Example: For $a_{1}=2$ and $b_{1}=0.6$ we have: $G(s)=\frac{G_{1}(s) \frac{s-2}{s+2}+0.6}{1+0.6 G_{1}(s) \frac{s-2}{s+2}}$
$G_{1}(s)=1$ results in $G(s)=\frac{s-0.5}{s+0.5}$
Remark 1: If G_{1} is an all-pass function, so is G
Remark 2: When a_{i} are the complex-conjugate pairs, if $G=G_{R}+j G_{I}$ is the solution of the NP problem then G_{R} is also a solution to the NP problem.

Nevanlinna-Pick Problem

Consider the NP problem with n points:
Case $1\left|b_{1}\right|=1: G(s)=b_{1}$ is the unique solution (and hence $b_{1}=b_{2}=\cdots=b_{n}$).
Case $2\left|b_{1}\right|<1$: Pose the NP' problem with $n-1$ data points: $\left\{a_{2}, \ldots a_{n}\right\}$ and $\left\{b_{2}^{\prime}, \ldots, b_{n}^{\prime}\right\}$ where $b_{i}^{\prime}:=M_{b_{1}}\left(b_{i}\right) / A_{a_{1}}\left(a_{i}\right) \quad i=2, \ldots, n$
Lemma: The set of all solutions to the NP problem is $G(s)=M_{-b_{1}}\left[G_{1}(s) A_{a_{1}}(s)\right]$ where $G_{1}(s)$ ranges over the solutions to the NP' problem.
Example: Consider the NP problem with $a=\{1,2\}$ and $b=\{1 / 2,1 / 3\}$.
Solvability: The problem is solvable, because
$Q=\left(\begin{array}{cc}\frac{1-b_{1}^{2}}{2 a_{1}} & \frac{1-b_{1} b_{2}}{a_{1}+a_{2}} \\ \frac{1-b_{2} b_{1}}{a_{2}+a_{1}} & \frac{1-b_{2}^{2}}{2 a_{2}}\end{array}\right)=\left(\begin{array}{cc}3 / 8 & 5 / 18 \\ 5 / 18 & 2 / 9\end{array}\right) \Rightarrow \operatorname{eig}(Q)=\left[\begin{array}{ll}0.5867 & 0.0105\end{array}\right] \Rightarrow Q \geq 0$
NP' problem: $a_{2}=2, b_{2}^{\prime}=\frac{\frac{b_{2}-b_{1}}{1-b_{2} b_{1}}}{\frac{a_{2}-a_{1}}{a_{2}+a_{1}}}=\frac{-0.2}{1 / 3}=-0.6 \Rightarrow G_{1}(s)=\frac{\frac{s-2}{s+2}-0.6}{1-0.6 \frac{s-2}{s+2}}=\frac{s-8}{s+8}$
NP problem: $G(s)=\frac{\frac{s-8}{s+8} \frac{s-1}{s+1}+\frac{1}{2}}{1+\frac{1}{2} \frac{s-8}{s+8} \frac{s-1}{s+1}}=\frac{s^{2}-3 s+8}{s^{2}+3 s+8}$

Model Matching Problem

Find Q such that

$$
\gamma_{\mathrm{opt}}=\min _{\gamma}\left\{\left\|T_{1}-T_{2} Q\right\|_{\infty} \leq \gamma\right\} \quad \text { Define: } \quad G=\frac{1}{\gamma}\left(T_{1}-T_{2} Q\right)
$$

We find first G such that $\|G\|_{\infty} \leq 1$ then we compute $Q=\frac{T_{1}-\gamma G}{T_{2}}$. However, to ensure the stability of $Q, T_{1}-\gamma G$ should contain the RHP zeros of T_{2} (i.e. z_{i}), that is:

$$
\gamma G\left(z_{i}\right)=T_{1}\left(z_{i}\right) \Rightarrow G\left(z_{i}\right)=\frac{1}{\gamma} T_{1}\left(z_{i}\right)
$$

This is a NP problem and $\gamma_{o p t}$ is the smallest γ for which the problem has a solution. That is, the associated Pick matrix is positive semidefinite. $A-\gamma^{-2} B \geq 0$ where :

$$
A_{i j}=\frac{1}{z_{i}+\overline{z_{j}}} \quad B_{i j}=\frac{T_{1}\left(z_{i}\right) \overline{T_{1}\left(z_{j}\right)}}{z_{i}+\overline{z_{j}}}
$$

Lemma: $\gamma_{\text {opt }}$ equals the square root of the largest eigenvalue of the matrix $A^{-1 / 2} B A^{-1 / 2}$.

Model Matching Problem

Caboratoire
d'Automatique-
Procedure: Given T_{1} and T_{2} find a stable Q to minimize $\left\|T_{1}-T_{2} Q\right\|_{\infty}(\mathrm{T} 1=\mathrm{tf}$ (num, den))
Step 1: Determine z_{i} the zeros of T_{2} in Res >0.

$$
\mathrm{zz}=\mathrm{zero}(\mathrm{~T} 2) ; \mathrm{z}=\mathrm{zz}(\text { find }(\text { real }(\mathrm{zz})>0))
$$

Step 2: Form the matrices A and B :

$$
A_{i j}=\frac{1}{z_{i}+\overline{z_{j}}} \quad B_{i j}=\frac{T_{1}\left(z_{i}\right) \overline{T_{1}\left(z_{j}\right)}}{z_{i}+\overline{z_{j}}}
$$

Step 3: Compute $\gamma_{\text {opt }}$ as the square root of the largest eigenvalue of the matrix $A^{-1 / 2} B A^{-1 / 2}$. $\operatorname{gamma}=\operatorname{sqrt}(\max (\operatorname{eig}(\operatorname{inv}(\operatorname{sqrtm}(A)) * B * \operatorname{inv}(\operatorname{sqrtm}(A)))))$

Step 4: Find G, the solution of the NP problem with data:

$$
\begin{array}{ccc}
z_{1} & \ldots & z_{n} \\
\gamma_{\text {opt }}^{-1} T_{1}\left(z_{1}\right) & \ldots & \gamma_{\text {opt }}^{-1} T_{1}\left(z_{n}\right)
\end{array}
$$

Step 5: Set $\quad Q=\frac{T_{1}-\gamma_{\mathrm{opt}} G}{T_{2}} \quad \mathrm{Q}=$ minreal ((T1-gamma $\left.\left.* \mathrm{G}\right) / \mathrm{T} 2,0.01\right)$

Model Matching Problem

State-Space Procedure:

Step 1: Factor T_{2} as the product of an all-pass $T_{2 a p}$ and a minimum phase factor $T_{2 m p}$
Step 2: Define $R:=\frac{T_{1}}{T_{2 a p}}$ and factor R as $R=R_{1}+R_{2}$ with R_{1} strictly proper with all poles in
RHP and $R_{2} \in \mathcal{H}_{\infty}$ and find a minimum realization of $R_{1}(s)=\left[\begin{array}{c|c}A & B \\ \hline C & 0\end{array}\right]$
Step 3: Solve the Lyapunove equations:

$$
\begin{aligned}
A L_{c}+L_{c} A^{\prime} & =B B^{\prime} \\
A^{\prime} L_{o}+L_{o} A & =C^{\prime} C
\end{aligned}
$$

Step 4: Find the maximum eigenvalue λ^{2} of $L_{c} L_{o}$ and a corresponding eigenvector w.
Step 5: Define: $f(s)=\left[\begin{array}{c|c}A & w \\ \hline C & 0\end{array}\right] \quad g(s)=\left[\begin{array}{c|c}-A^{\prime} & \lambda^{-1} L_{o} w \\ \hline B^{\prime} & 0\end{array}\right]$
Step 6: Then $\gamma_{\mathrm{opt}}=\lambda$ and $Q=\left(R-\lambda \frac{f(s)}{g(s)}\right) / T_{2 m p}$

Design for Performance

Objective: Find a proper C for which the feedback system is internally stable and $\left\|W_{1} S\right\|_{\infty}<1$ Lemma: If G is stable and strictly proper, then $\lim _{\tau \rightarrow 0}\|G(1-J)\|_{\infty}=0$ where $J(s)=\frac{1}{(\tau s+1)^{k}}$ P and P^{-1} stable: In this case the set of all stabilizing controller is:

$$
C=\frac{Q}{1-P Q} \quad Q \in \mathcal{H}_{\infty} \quad \text { and } \quad W_{1} S=W_{1}(1-P Q)
$$

Clearly, $Q=P^{-1}$ is stable but not proper, so let's try $Q=P^{-1} J$ to make it proper. Then $W_{1} S=W_{1}(1-J)$ whose ∞-norm is less than 1 for sufficiently small τ.
P^{-1} stable:

- Do a coprime factorization of $P=N / M, \quad N X+M Y=1$
- Set $J=(\tau s+1)^{-k}$ with $k=$ the relative degree of P
- Choose τ so small that $\left\|W_{1} M Y(1-J)\right\|_{\infty}<1$
- Set $Q=Y N^{-1} J$ and $C=(X+M Q) /(Y-N Q)$

P^{-1} Unstable (General Case)

Assumptions: P has no poles or zeros on the imaginary axis, only distinct poles and zeros in the RHP and at least one zero in the RHP. W_{1} is stable and strictly proper.

Procedure:
Step 1: Do a coprime factorization of $P=N / M, \quad N X+M Y=1$
Step 2: Find a stable improper $Q_{\text {im }}$ such that:

$$
\left\|W_{1} S\right\|_{\infty}=\left\|W_{1} M\left(Y-N Q_{\mathrm{im}}\right)\right\|_{\infty}<1
$$

It is a standard model matching problem that can be solved using the NP algorithm.
Step 3: Set $J=\frac{1}{(\tau s+1)^{k}}$ with $k=$ large enough that Q is proper and τ small enough that

$$
\left\|W_{1} M\left(Y-N Q_{\mathrm{im}} J\right)\right\|_{\infty}<1
$$

Step 4: Set $Q=Q_{\mathrm{im}} J$
Step 5: Set $C=(X+M Q) /(Y-N Q)$

Design Example

Flexible Beam: Consider the following simplified plant transfer function:
$P(s)=\frac{-6.47 s^{2}+4.03 s+176}{s\left(5 s^{3}+3.57 s^{2}+140 s+0.093\right)}\left\{\begin{array}{cccc}\text { zeros } & -4.91 & 5.53 \\ \text { poles } & 0 & -0.0007 & -0.356 \pm 5.27 j\end{array}\right.$
Performance Specification: Settling time ≈ 8 s and overshoot $\leq 10 \%$
Assume that the ideal $T(s)$ is a standard second-order system:
$T_{\mathrm{id}}(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \quad \frac{4.6}{\zeta \omega_{n}} \approx 8 \quad \exp \left(\frac{-\zeta \pi}{\sqrt{1-\zeta^{2}}}\right)=0.1 \Rightarrow \zeta=0.6 \quad \omega_{n}=1$
Then the ideal sensitivity function is $S_{\mathrm{id}}(s)=1-T_{\mathrm{id}}(s)=\frac{s(s+1.2)}{s^{2}+1.2 s+1}$
We take the weighting function $W_{1}(s)$ to be $S_{\text {id }}^{-1}(s)$:
$W_{1}(s)=\frac{s^{2}+1.2 s+1}{s(s+1.2)}$ stable, strictly proper $W_{1}(s)=\frac{s^{2}+1.2 s+1}{(s+0.0001)(s+1.2)(0.0001 s+1)}$

Design Example

Step 1: $P(s)$ has a pole on the imaginary axis $(s=0)$ so we perturb P to fix the problem (we add 10^{-6} to the denominator)

Step 2: The model matching problem is to minimize: $\left\|W_{1} S\right\|_{\infty}=\left\|W_{1}\left(1-P Q_{\mathrm{im}}\right)\right\|_{\infty}$ P has only one RHP zero at 5.53 , thus $\min \left\|W_{1}\left(1-P Q_{\text {im }}\right)\right\|_{\infty}=\left|W_{1}(5.53)\right|=1.02$ and the specification is not achievable.
Step 3: Let us scale W_{1} as $W_{1}:=\frac{0.9}{1.02} W_{1}$. Then the optimal $Q_{\mathrm{im}}=\frac{W_{1}-0.9}{W_{1} P}$
Step 4: Set $J(s)=\frac{1}{(\tau s+1)^{3}}$ and compute $\left\|W_{1}\left(1-P Q_{\mathrm{im}} J\right)\right\|_{\infty}$ for decreasing values of τ
$\tau \quad \infty-$ norm
$0.1 \quad 1.12$
$0.05 \quad 1.01$
$0.04 \quad 0.988$
Step 5: $C=\frac{Q}{1-P Q}=\frac{\left(W_{1}-0.9\right) J}{W_{1}(1-J)+0.9 J} P^{-1}$

2-Norm Minimization

Objective: Given P and W, find a proper stabilizing controller to minimize the 2-norm of a weighted closed-loop transfer function: e.g. min $\|W P S\|_{2}$

Define: The subspace of functions in \mathcal{L}_{2} that are analytic in the open RHP (all poles with $\operatorname{Re} s \geq 0$) is the orthogonal complement of \mathcal{H}_{2} and is denoted by $\mathcal{H} \frac{\perp}{2}$. Every function $F \in \mathcal{L}_{2}$ can be expressed as $F=F_{\text {st }}+F_{\text {un }}$ where $F_{\text {st }} \in \mathcal{H}_{2}, F_{\text {un }} \in \mathcal{H}_{2}^{\perp}$

Lemma: If $F \in \mathcal{H}_{2}$ and $G \in \mathcal{H}_{2}^{\perp}$, then $\|F+G\|_{2}^{2}=\|F\|_{2}^{2}+\|G\|_{2}^{2}$
Problem: Obtain $Q \in \mathcal{H}_{\infty}$ to minimize $\|W P S\|_{2}=\left\|W N Y-W N^{2} Q\right\|_{2}$
Idea: Factor $U:=W N^{2}=U_{\mathrm{ap}} U_{\mathrm{mp}}$, then we have:

$$
\begin{aligned}
\left\|W N Y-W N^{2} Q\right\|_{2}^{2} & =\left\|W N Y-U_{\mathrm{ap}} U_{\mathrm{mp}} Q\right\|_{2}^{2}=\left\|U_{\mathrm{ap}}^{-1} W N Y-U_{\mathrm{mp}} Q\right\|_{2}^{2} \\
& =\left\|\left(U_{\mathrm{ap}}^{-1} W N Y\right)_{\mathrm{un}}+\left(U_{\mathrm{ap}}^{-1} W N Y\right)_{\mathrm{st}}-U_{\mathrm{mp}} Q\right\|_{2}^{2} \\
& =\left\|\left(U_{\mathrm{ap}}^{-1} W N Y\right)_{\mathrm{un}}\right\|_{2}^{2}+\left\|\left(U_{\mathrm{ap}}^{-1} W N Y\right)_{\mathrm{st}}-U_{\mathrm{mp}} Q\right\|_{2}^{2}
\end{aligned}
$$

which leads to: $Q_{\mathrm{im}}=U_{\mathrm{mp}}^{-1}\left(U_{\mathrm{ap}}^{-1} W N Y\right)_{\mathrm{st}}$ and the minimum of the criterion: $\left\|\left(U_{\mathrm{ap}}^{-1} W N Y\right)_{\mathrm{un}}\right\|_{2}$ To get a proper suboptimal $Q, Q_{\text {im }}$ should be rolled off at high frequency.

Optimal Robust Stability

Objective: Given $P_{\epsilon}=\left(1+\Delta W_{2}\right) P$ where $\|\Delta\|_{\infty} \leq \epsilon$, find the controller C that stabilizes every plant in P_{ϵ} and maximizes the stability margin:

$$
\gamma_{\mathrm{inf}}:=\inf _{C}\left\|W_{2} T\right\|_{\infty} \quad \epsilon_{\mathrm{sup}}=1 / \gamma_{\mathrm{inf}}
$$

Procedure: Input P and W_{2}
Step 1: Do a coprime factorization of $P=N / M, N X+M Y=1$
Step 2: Solve the model-matching problem:

$$
\left\|W_{2} T\right\|_{\infty}=\left\|W_{2} N(X+M Q)\right\|_{\infty} \quad \text { with } \quad T_{1}=W_{2} N X \quad T_{2}=-W_{2} N M
$$

and find Q_{im} and $\epsilon_{\text {sup }}=1 / \gamma_{\mathrm{opt}}$
Step 3: Let $\epsilon<\epsilon_{\text {sup }}$ and set $J(s)=(\tau s+1)^{-k}$ where k is large enough that $Q_{\mathrm{im}} J$ is proper and
τ small enough that:

$$
\left\|W_{2} N\left(X+M Q_{\mathrm{im}} J\right)\right\|_{\infty}<\frac{1}{\epsilon}
$$

Step 4: Set $Q=Q_{\mathrm{im}} J$ and $C=(X+M Q) /(Y-N Q)$

Robust Performance Problem

Objective: Given P, W_{1}, W_{2} find a proper controller C so that the feedback system for the nominal plant is internally stable and that:

$$
\left\|\left|W_{1} S\right|+\left|W_{2} T\right|\right\|_{\infty}<1
$$

This problem cannot be solved!

Modified Problem: Consider the following inequality:

$$
\left\|\left|W_{1} S\right|^{2}+\left|W_{2} T\right|^{2}\right\|_{\infty}<1 / 2
$$

The robust performance problem with this inequality can be converted to a model matching problem (See Feedback Control Theory chapter 12.3)

This inequality is a sufficient condition for the inequality in the exact problem.
General framework: The inequality in the modified problem can be presented also as:

$$
\left\|\begin{array}{l}
W_{1} S \\
W_{2} T
\end{array}\right\|_{\infty}=\max _{\omega} \sigma_{\max }\left[\begin{array}{l}
\left|W_{1} S(j \omega)\right| \\
\left|W_{2} T(j \omega)\right|
\end{array}\right]<\frac{1}{\sqrt{2}}
$$

