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Classical Control Robust Control

� P0
�

u(t) y(t)
� P0

∆�

�� �
u(t) y(t)+

P = P0 + ∆

P0: nominal model ∆: plant uncertainty

Uncertainty sources:

Structured: parametric uncertainty, multimodel uncertainty

Unstructured: frequency-domain uncertainty, unmodeled dynamics, nonlinearity

Robust Control Objective: Design a controller satisfying stability and
performance for a set of models
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Feedback control has been used for the first time to overcome the model uncertainty

C P� � �
�

� �r(t)

v(t)

u(t) y(t)e(t)

-
+

T = CP
1+CP Transfer function between r and y

S = 1
1+CP Transfer function between v and y

For very large CP , T ≈ 1 (tracking) and S ≈ 0 (disturbance rejection) whatever the plant model is.

For an open-loop stable system:

C = 0 robust stability C → ∞ robust performance�

Loopshaping: |C(jω)P (jω)| should be large in the frequencies where good performances are

desired and small where the stability is critical
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Norms for signals: Consider piecewise continuous signals mapping (−∞, +∞) to R. A

norm must have the following four properties:

1. ‖u‖ ≥ 0 (positivity)

2. ‖au‖ = |a| ‖u‖, ∀a ∈ R (homogenity)

3. ‖u‖ = 0 ⇐⇒ u(t) = 0 ∀t (positive definiteness)

4. ‖u + v‖ ≤ ‖u‖ + ‖v‖ (triangle inequality)

1-Norm: ‖u‖1 =
∫ ∞

−∞
|u(t)|dt

2-Norm: ‖u‖2 =
(∫ ∞

−∞
u2(t)dt

)1/2

‖u‖2
2 is the total signal energy

∞-Norm: ‖u‖∞ = sup
t

|u(t)|

p-Norm: ‖u‖p =
(∫ ∞

−∞
|u(t)|pdt

)1/p

1 ≤ p ≤ ∞
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Average power of a signal is denoted by:

pow(u) =

(
lim

T→∞
1

2T

∫ T

−T

u2(t)dt

)1/2

pow is not a norm (it is not positive definite)

Remark: One says u(t) ∈ Lp if ‖u‖p < ∞ where Lp is an infinite-dimensional Banach space (L2

is an infinite-dimensional Hilbert space as well).

Recall:

• A Banach space is a complete vector space with a norm.

• A Hilbert space is a complete vector space with an inner product < x, y > such that the norm

defined by ‖x‖ =
√

< x, x >. A Hilbert space is always a Banach space, but the converse need

not hold.

Examples: 1(t) ∈ L∞ but /∈ L1, /∈ L2 u(t) = (1 − e−t)1(t) ∈ L∞ but /∈ L1, /∈ L2

u(t) = e−t1(t) ∈ L∞,∈ L1,∈ L2 (Besides, u(t) is a power signal pow(u) = 0)

u(t) = sin(t) ∈ L∞ but /∈ L1, /∈ L2 (u(t) is a power signal)
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We consider linear, time-invariant, causal and usually finite-dimensional systems.

y(t) = G(t) ∗ u(t), y(t) =
∫ ∞

−∞
G(t − τ)u(τ)dτ , Ĝ(s) = L[G]

Some definitions:

• Ĝ(s) is stable if it is analytic in the closed RHP (Re s ≥ 0)

• Ĝ(s) is proper if Ĝ(j∞) is finite (deg den ≥ deg num)

• Ĝ(s) is strictly proper if Ĝ(j∞) = 0 deg den > deg num

• Ĝ(s) is biproper if (deg den = deg num)

Norms for SISO systems:

2-Norm: ‖Ĝ‖2 =
(

1
2π

∫ ∞

−∞
|Ĝ(jω)|2dω

)1/2

∞-Norm: ‖Ĝ‖∞ = sup
ω

|Ĝ(jω)|
Parsval’s theorem: (for stable systems)

‖Ĝ‖2 =
(

1
2π

∫ ∞

−∞
|Ĝ(jω)|2dω

)1/2

=
(∫ ∞

−∞
|G(t)|2dt

)1/2
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Remarks:

• L2 is a Hilbert space of scalar-valued functions on jR. The inner product for this Hilbert space is

defined as:

< F̂ , Ĝ >=
1
2π

∫ ∞

−∞
F̂ ∗(jω)Ĝ(jω)dω

• We say Ĝ(s) ∈ L2 if ‖Ĝ‖2 < ∞. It is the case iff Ĝ is strictly proper and has no poles on the

imaginary axis.

• We say Ĝ(s) ∈ L∞ if ‖Ĝ‖∞ < ∞. It is the case iff Ĝ is proper and has no poles on the

imaginary axis. L∞ is a Banach space of scalar-valued functions on jR.

• ‖Ĝ‖∞ is the peak value of the Bode magnitude plot of Ĝ. It is also the distance from the origin to

the farthest point on the Nyquist plot of Ĝ.

• H2 and H∞ are respectively subspaces of L2 and L∞ with Ĝ(s) stable (Hp spaces are

usually called Hardy spaces).

Examples: 1
s−1 ∈ L2,L∞ but /∈ H2,H∞ s+1

s+2 ∈ H∞ but /∈ H2
1

s2+1 /∈ L2,L∞
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Norms for matrices:

1-Norm: The maximum absolute column sum norm is defined as ‖A‖1 = max
j

n∑
i=1

|aij |.

2-Norm: The spectral norm or simply the norm of A is defined as: ‖A‖2 =
√

λmax(A∗A).

∞-Norm: The maximum absolute row sum norm is defined as ‖A‖∞ = max
i

n∑
j=1

|aij |.

F-Norm: Frobenius norm is defined as ‖A‖F =
√

trace(A∗A)

Induced p-norm: The induced p-norm is defined from a vector p-norm: ‖A‖p = max
x�=0

‖Ax‖p

‖x‖p

Remarks:

• The induced 2-norm and the norm of A are the same and called also the natural norm. This norm

is also equal to the maximum singular value of A. ‖A‖ = σ̄(A).

• The spectral radius ρ(A) = |λmax(A)| is not a norm.
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Norms for MIMO systems: Given Ĝ(s) a multi-input multi-output system

2-Norm: This norm is defined as

‖Ĝ‖2 =
(

1
2π

∫ ∞

−∞
trace

[
Ĝ∗(jω)Ĝ(jω)

]
dω

)1/2

∞-Norm: The H∞ norm is defined as

‖Ĝ‖∞ = sup
ω

‖Ĝ(jω)‖ = sup
ω

σ̄[Ĝ(jω)]

Remark: The infinity norm has an important property (submultiplicative)

‖ĜĤ‖∞ ≤ ‖Ĝ‖∞ ‖Ĥ‖∞
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How to compute the 2-norm: Suppose that Ĝ ∈ L2, we have:

‖Ĝ‖2
2 =

1
2π

∫ ∞

−∞
|Ĝ(jω)|2dω =

1
2πj

∫ j∞

−j∞
Ĝ(−s)Ĝ(s)ds =

1
2πj

∮
Ĝ(−s)Ĝ(s)ds

Then by the residue theorem, ‖Ĝ‖2
2 equals the sum of the residues of Ĝ(−s)Ĝ(s) at its poles in the

left half-plane (LHP).

How to compute the ∞-norm:

Choose a fine grid of frequency point {ω1, . . . , ωN}, then an estimate for ‖Ĝ‖∞ is:

max
1≤k≤N

|Ĝ(jωk)|

or for the MIMO systems:

max
1≤k≤N

σ̄[Ĝ(jωk)]

Matlab commands: norm, bode, frsp, vsvd
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State-space methods for 2-norm: Consider a SISO state-space model ∈ H2

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

L
=⇒ sx̂(s) = Ax̂(s) + Bû(s)

ŷ(s) = Cx̂(s)

Ĝ(s) = C(sI − A)−1B =⇒ impulse response : G(t) = CetAB

From Parseval’s theorem:

‖Ĝ‖2
2 = ‖G‖2

2 =
∫ ∞

0

(
CetAB

) (
BT etAT

CT
)

dt = CLCT

where

L =
∫ ∞

0

etABBT etAT

dt

is the observability Gramian and can be obtained from following Lyapunov equation:

AL + LAT + BBT = 0 and the 2-norm is ‖Ĝ‖2 = (CLCT )1/2

For MIMO systems we have ‖Ĝ‖2 =
[
trace(CLCT )

]1/2
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State-space methods for ∞-norm: Consider a SISO strictly proper state-space model ∈ L∞.

Theorem: ‖Ĝ‖∞ < γ iff the Hamiltonian matrix H has no eigenvalues on the imaginary axis:

H =


 A γ−2BBT

−CT C −AT




Bisection algorithm:

1. Select γu and γl such that γl ≤ ‖Ĝ‖∞ ≤ γu;

2. If (γu − γl)/γl ≤ specified level., stop and ‖Ĝ‖∞ ≈ (γu + γl)/2. Otherwise continue;

3. Set γ = (γu + γl)/2 and test if ‖Ĝ‖∞ < γ

4. If H has no eigenvalue on jR, set γu = γ otherwise set γl = γ; go back to step 2.

For MIMO biproper (D 
= 0) systems:

H =


 A + BR−1DT C BR−1BT

−CT (I + DR−1DT )C −(A + BR−1DT C)T


 and R = γ2I − DT D
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If we know how big the input is, how big is the output going to be?

Output Norms for Two Inputs

u(t) δ(t) sin(ωt)

‖y‖2 ‖Ĝ‖2 ∞
‖y‖∞ ‖G‖∞ |Ĝ(jω)|

Proofs:

• If u(t) = δ(t) then y(t) =
∫ ∞

−∞
G(t − τ)δ(τ)dτ = G(t), so ‖y‖2 = ‖G‖2 = ‖Ĝ‖2

• If u(t) = δ(t) then y(t) = G(t), so ‖y‖∞ = ‖G‖∞
• If u(t) = sin(ωt) then y(t) = |Ĝ(jω)| sin(ωt + φ), so ‖y‖2 = ∞ and ‖y‖∞ = |Ĝ(jω)|
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System Gain: sup{‖y‖ : ‖u‖ ≤ 1}
u(t) ∈ L2 u(t) ∈ L∞

‖y‖2 ‖Ĝ‖∞ ∞
‖y‖∞ ‖Ĝ‖2 ‖G‖1

Proofs:

Entry (1,1): We have

‖y‖2
2 = ‖ŷ‖2

2 =
1
2π

∫ ∞

−∞
|Ĝ(jω)|2|û(jω)|2dω ≤ ‖Ĝ‖2

∞
1
2π

∫ ∞

−∞
|û(jω)|2dω

= ‖Ĝ‖2
∞‖û‖2

2 = ‖Ĝ‖2
∞‖u‖2

2

Entry(2,1): According to the Cauchy-Schwartz inequality

|y(t)| =
∣∣∣∣
∫ ∞

−∞
G(t − τ)u(τ)dτ

∣∣∣∣ ≤
(∫ ∞

−∞
G2(t − τ)dτ

)1/2 (∫ ∞

−∞
u2(τ)dτ

)1/2

= ‖G‖2‖u‖2 = ‖Ĝ‖2‖u‖2 ⇒ ‖y‖∞ ≤ ‖Ĝ‖2‖u‖2



Basic Concepts

16Robust Control

Basic Feedback Loop:

C P

�

�� �

��F

��
� ��r

d
x2 y

nx3v

x1 u
-

x1 = r − Fx3

x2 = d + Cx1

x3 = n + Px2

=⇒




1 0 F

−C 1 0

0 −P 1







x1

x2

x3


 =




r

d

n







x1

x2

x3


 =




1 0 F

−C 1 0

0 −P 1




−1 


r

d

n


 =

1
1 + PCF




1 −PF −F

C 1 −CF

PC P 1







r

d

n




Well-posedness: The system is well-posed iff the above matrix is nonsingular. A stronger notion of

well-posedness is that all the nine transfer functions be proper. A necessary and sufficient condition

for this is that 1 + PCF not be strictly proper (PCF (∞) 
= −1)
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If the following nine transfer functions are stable then the feedback system is internally stable.

1
1 + PCF




1 −PF −F

C 1 −CF

PC P 1


 P =

NP

MP
, C =

NC

MC
, F =

NF

MF

Theorem: The feedback system is internally stable iff

• there are no zeros in Re s ≥ 0 in the characteristic polynomial

NP NCNF + MP MCMF = 0

or

• the following two conditions hold:

(a) The transfer function 1 + PCF has no zeros in Re s ≥ 0.

(b) There is no pole-zero cancellation in Re s ≥ 0 when the product PCF is formed.
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Internal Model Principle: For perfect asymptotic tracking of r(t), the loop transfer function L̂ = P̂ Ĉ

(with F̂ = 1) must contain the unstable poles of r̂(s).

Theorem: Assume that the feedback system is internally stable and n=d=0.

(a) If r(t) is a step, then lim
t→∞ e(t) = r(t) − y(t) = 0 iff Ŝ = (1 + L̂)−1 has at least one zero at

the origin.

(b) If r(t) is a ramp, then lim
t→∞ e(t) = 0 iff Ŝ has at least two zeros at the origin.

(c) If r(t) = sin(ωt), then lim
t→∞ e(t) = 0 iff Ŝ has at least one zero at s = jω.

Final-Value Theorem: If ŷ(s) has no poles in Re s ≥ 0 except possibly one pole at s = 0 then:

lim
t→∞ y(t) = lim

s→0
sŷ(s)

Proof (a): We have r̂(s) =
c

s
and ê(s) = Ŝ(s)

c

s
then lim

t→∞ e(t) = lim
s→0

sŜ(s)
c

s
. The limit is zero

iff Ŝ has at least one zero at origin. For this, P̂ or Ĉ should have a pole at origin.
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Tracking performance can be quantified in terms of a weighted norm of the sensitivity
function

Sensitivity Function: Transfer function from r to tracking error e : S =
1

1 + PC

Complementary Sensitivity Function: Transfer function from r to y : T =
PC

1 + PC

S is the relative sensitivity of T with respect to relative perturbations in P:

S = lim
∆P→0

∆T/T

∆P/P
=

dT

dP

P

T
=

C(1 + PC) − PC2

(1 + PC)2
P (1 + PC)

PC
=

1
1 + PC

Performance Specification:

1. r(t) is any sinusoid of amplitude ≤ 1 filtered by W1, then the max. amp. of e is ‖W1S‖∞.

2. Suppose that {r = W1rpf , ‖rpf‖2 ≤ 1}, then supr ‖e‖2 = ‖W1S‖∞.

3. In some applications good performance is achieved if |S(jω)| < |W1(jω)|−1, ∀ω or

‖W1S‖∞ < 1 ⇔ |W1(jω)| < |1 + L(jω)|, ∀ω
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Plant Uncertainty: We cannot exactly model the physical systems so there is always the modeling

errors. The best technic is to define a model set which can be structured or unstructured.

• Structured model set such as parametric uncertainty or multiple model set

P = { 1
s2 + as + 1

: amin ≤ a ≤ amax} or P = {P0, P1, P2, P3}

• Unstructured model set such as unmodeled dynamics or disk uncertainty

P = {P0 + ∆ : ‖∆‖∞ ≤ γ}

Conservatism: Controller design for a model set greater than the real model set leads to a

conservative design.

Uncertainty Models (unstructured):

Additive uncertainty Multiplicative uncertainty Feedback uncertainty

P̃ = P + ∆W2 P̃ = P (1 + ∆W2) P̃ =
P

1 + ∆W2P
or P̃ =

P

1 + ∆W2

P̃ : true model P : nominal model ∆: norm-bounded uncertainty W2: weighting filter
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Example 1: k frequency-response models are identified. Find the multiplicative uncertainty model and

the weighting filter.

P̃ = P (1 + ∆W2) ⇒ P̃

P
− 1 = ∆W2

if ‖∆‖∞ ≤ 1 ⇒
∣∣∣∣∣ P̃ (jω)
P (jω)

− 1

∣∣∣∣∣ ≤ |W2(jω)|

Let (Mik, φik) be the magnitude-phase at ωi in k-th experiment and (Mi, φi) that of the nominal

model (e.g. the mean value).

max
k

∣∣∣∣Mikeφik

Mieφi
− 1

∣∣∣∣ ≤ |W2(jωi)| ∀i

Example 2: Suppose that P̃ (s) = { k
s−2 : 0.1 ≤ k ≤ 10}. Represent this model by the

multiplicative uncertainty.

P (s) =
k0

s − 2
⇒

∣∣∣∣∣ P̃ (jω)
P (jω)

− 1

∣∣∣∣∣ ≤ |W2(jω)| ⇒ max
0.1≤k≤10

∣∣∣∣ k

k0
− 1

∣∣∣∣ ≤ |W2(jω)|

The best value for k0 is 5.05 which gives W2(s) = 4.95/5.05
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Example 3: Assume that P (s) = 1
s2 and P̃ (s) = e−τs 1

s2 where 0 ≤ τ ≤ 0.1. Find W2(s) for the

multiplicative uncertainty model.∣∣∣∣∣ P̃ (jω)
P (jω)

− 1

∣∣∣∣∣ ≤ |W2(jω)| ⇒ |e−τjω − 1| ≤ |W2(jω)| ∀ω, τ

Using the Bode diagram we can find W2(s) = 0.21s
0.1s+1 .

Example 4: Consider the model set { 1
s2+as+1 : 0.4 ≤ a ≤ 0.8}. Find W2(s) for Feedback

uncertainty model.

Take:

a = 0.6 + 0.2∆, −1 ≤ ∆ ≤ 1

So

P̃ (s) =
1

s2 + 0.6s + 0.2∆s + 1
=

P (s)
1 + ∆W2(s)P (s)

where

P (s) =
1

s2 + 0.6s + 1
, W2(s) = 0.2s
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Robustness: A controller is robust with respect to a closed-loop characteristic, if this characteristic

holds for every plant in P
Robust Stability: A controller is robust in stability if it provides internal stability for every plant in P
Stability margin: For a given model set with an associate size, it can be defined as the largest model

set stabilized by a controller.

Stability margin for an uncertainty model: Given P̃ = P (1 + ∆W2) with ‖∆‖∞ ≤ β, the

stability margin for a controller C is the least upper bound of β.

Modulus margin: The distance from -1 to the

open-loop Nyquist curve.

Mm = inf
ω

| − 1 − L(jω)| = inf
ω

|1 + L(jω)|

=
[
sup

ω

1
1 + L(jω)

]−1

= ‖S‖−1
∞

Im L

Re L1−1

Mm

L(jω)
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Small Gain Theorem: Suppose H ∈ RH∞
and let γ > 0. The following feedback loop is

internally stable for all ∆(s) ∈ RH∞ with

‖∆‖∞ ≤ 1/γ if and only if ‖H‖∞ < γ

� H(s)

∆(s) �

Remark: For a given ∆ with ‖∆‖∞ ≤ 1/γ the condition ‖H‖∞ < γ is only sufficient and very

conservative. However for all ∆ ∈ RH∞, it is a necessary and sufficient condition.

Robust stability condition for plants with additive uncertainty:

P̃ = P + ∆W2 ⇒ H = W2
−C

1 + CP

Closed-loop system is internally stable for

all ‖∆‖∞ ≤ 1 iff ‖W2CS‖∞ < 1

C P

∆ W2
� �

� � �
�

� �r(t) y(t)
-

+
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Robust stability condition for plants with multiplicative uncertainty:

P̃ = P (1+∆W2) ⇒ H = W2
−CP

1 + CP

Closed-loop system is internally stable for

all ‖∆‖∞ ≤ 1 iff ‖W2T‖∞ < 1

C P

∆ W2
� �

� � ��
�

� �r(t) y(t)
-

+

Proof: Assume that ‖W2T‖∞ < 1. We show that the winding number of 1 + CP around zero is

equal to that of 1 + CP̃ .

1 + CP̃ = 1 + CP (1 + ∆W2) = 1 + CP + CP∆W2 = 1 + CP + (1 + CP )T∆W2

1 + CP̃ = (1 + CP )(1 + ∆W2T )

so Wno { (1 + CP̃ )} = Wno{(1 + CP )} + Wno{(1 + ∆W2T )}.

But Wno {(1 + ∆W2T )} = 0 because ‖∆W2T‖∞ < 1
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Robust stability condition for plants with feedback uncertainty (1):

P̃ =
P

1 + ∆W2
⇒ H = W2

−1
1 + CP

Closed-loop system is internally stable for

all ‖∆‖∞ ≤ 1 iff ‖W2S‖∞ < 1

C P

∆W2

�

� �

� � � �
�

�r(t) y(t)
-

-

Robust stability condition for plants with feedback uncertainty (2):

P̃ =
P

1 + ∆W2P
⇒ H = W2

−P

1 + CP

Closed-loop system is internally stable for

all ‖∆‖∞ ≤ 1 iff ‖W2PS‖∞ < 1

C P

∆W2

�

�

� �� �
�

�r(t) y(t)
-

-
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Nominal performance condition: ‖W1S‖∞ < 1

Robust stability condition for multiplicative uncertainty: ‖W2T‖∞ < 1

Robust performance for multiplicative uncertainty: ‖W2T‖∞ < 1 and ‖W1S̃‖∞ < 1 where:

S̃ =
1

1 + CP̃
=

1
1 + CP (1 + ∆W2)

=
1

(1 + CP )(1 + ∆W2T )
=

S

1 + ∆W2T

Robust performance conditions: ‖W2T‖∞ < 1 and

∥∥∥∥ W1S

1 + ∆W2T

∥∥∥∥
∞

< 1

Theorem: A necessary and sufficient condition for robust performance is

‖ |W1S| + |W2T | ‖∞ < 1

Robust performance for additive uncertainty: ‖W2CS‖∞ < 1 and ‖W1S̃‖∞ < 1 where:

S̃ =
1

1 + CP̃
=

1
1 + CP + C∆W2

=
S

1 + ∆W2CS
⇒

∥∥∥∥ W1S

1 + ∆W2CS

∥∥∥∥
∞

< 1

Or equivalently in one inequality condition: ‖ |W1S| + |W2CS| ‖∞ < 1
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The main objective is to parameterize all of the controllers which provide internal stability for a

given plant

Theorem: Assume that P ∈ RH∞ (P is stable). The set of all stabilizing controllers is given by:

C :=
{

Q

1 − PQ
|Q ∈ RH∞

}
Proof: (F = 1)

1
1 + PCF




1 −PF −F

C 1 −CF

PC P 1


 =




1 − PQ −P (1 − PQ) −1(1 − PQ)

Q 1 − PQ −Q

PQ P (1 − PQ) 1 − PQ


 ∈ RH∞

On the other hand, suppose that C stabilizes P then define

Q :=
C

1 + CP
∈ RH∞ which leads to C =

Q

1 − PQ

In this parameterization sensitivity and complementary sensitivity are

S = 1 − PQ T = PQ



Coprime Factorization

29Stabilization

Objective: Given P , find M, N, X and Y ∈ RH∞ such that:

P =
N

M
NX + MY = 1

Remarks:

• N and M are called coprime factors of G over RH∞

• N and M can have no common zeros in Re s ≥ 0 nor at s = ∞
N(s0)X(s0) + M(s0)Y (s0) = 0 
= 1

• If P is stable we have : M = 1, N = P, X = 0, Y = 1

• It is easy to obtain N and M , for example:

P (s) =
1

s − 1
=

N(s)
M(s)

⇒ N(s) =
1

(s + 1)k
, M(s) =

s − 1
(s + 1)k

if k > 1 then M and N have a common zero at s = ∞, so k = 1

How to compute X(s) and Y (s)?
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Euclid’s algorithm: Given polynomials m(λ) and n(λ) (deg n ≤ deg m ) find polynomials x(λ)
and y(λ) such that nx + my = 1.

Step 1: Divide m into n to get quotient q1 and remainder r1: n = mq1 + r1, deg r1 < deg m

Step 2: Divide r1 into m to get quotient q2 and remainder r2: m = r1q2 + r2, deg r2 < deg r1

Step 3: Divide r2 into r1 to get quotient q3 and remainder r3: r1 = r2q3 + r3, deg r3 < deg r2

Continue Stop at step k when rk is a nonzero constant.

Find r3 as a function of m, n and qi:

r3 = (n − mq1)︸ ︷︷ ︸
r1

−
r2︷ ︸︸ ︷

(m − (n − mq1)︸ ︷︷ ︸
r1

q2) q3 = n(1 + q2q3) + m(−q3 − q1 − q1q2q3)

which gives:

x =
1
r3

(1 + q2q3) and y =
1
r3

(−q3 − q1 − q1q2q3)
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Procedure to find M, N, X and Y for an unstable plant G:

Step 1: Transform G(s) to G̃(λ) under the mapping s = (1 − λ)/λ. Write G̃ =
n(λ)
m(λ)

Step 2: Using Euclid’s algorithm, find x(λ) and y(λ) such that: nx + my = 1

Step 3: Find M, N, X and Y from m, n, x and y under the mapping λ = 1/(s + 1)

State-Space Method:

Step 1: Transform G(s) to A, B, C and D (state space realization)

Step 2: Compute F and H so that A + BF and A + HC are stable (F=-place(A,B,Pf))

Step 3: Compute M, N, X and Y as follows:

M(s) :=


 A + BF B

F 1


 N(s) :=


 A + BF B

C + DF D




X(s) :=


 A + HC H

F 0


 Y (s) :=


 A + HC −B − HD

F 1



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Theorem: The set of all Cs for which the feedback system is internally stable equal:

C =
{

X + MQ

Y − NQ
: Q ∈ RH∞

}

Proof: For C =
Nc

Mc
, the stability condition is: (NNc + MMc)−1 ∈ RH∞, but we have:

N(X + MQ) + M(Y − NQ) = NX + MY = 1 ⇒ (NNc + MMc)−1 ∈ RH∞

Conversely, if C stabilizes the closed-loop system we should show that it belongs to the above set.

C is stabilizing ⇒ V := (NNc + MMc)−1 ∈ RH∞ ⇒ NNcV + MMcV = 1

Let Q be the solution of McV = Y − NQ. From the above equation and NX + MY = 1 we find

that NcV = X + MQ so the controller C =
NcV

McV
∈ the set of all stabilizing controller. It is easy

to verify that Q ∈ RH∞

Remark: The sensitivity functions are:

S =
1

1 + CP
= M(Y − NQ) T =

CP

1 + CP
= N(X + MQ)
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Let

P (s) =
1

(s − 1)(s − 2)
Compute a proper controller C so that:

1. The feedback system is internally stable.

2. Perfect asymptotic tracking of step reference (d = 0).

3. Perfect asymptotic disturbance rejection when d = sin 10t (r = 0).

Procedure:

• Parameterize all stabilizing controllers.

• Reduce the asymptotic specs to interpolation constraints on the parameters.

• Find (if possible) a parameter to satisfy these constraints.

• Back-substitute to get the controller.
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Algebraic Constraints:

• S + T = 1 so |S(jω)| and |T (jω)| cannot both be less than 1/2 at the same frequency.

• A necessary condition for robust performance is that:

min{|W1(jω)|, |W2(jω)|} < 1, ∀ω

So at every frequency either |W1| or |W2| must be less than 1. Typically |W1| is monotonically

decreasing and |W2| is monotonically increasing.

• If p is a pole and z a zero of L both in Re s ≥ 0 then:

S(p) = 0 S(z) = 1 T (p) = 1 T (z) = 0

Analytic Constraints:

• Bounds on the weights W1 and W2:

‖W1S‖∞ ≥ |W1(z)| ‖W2T‖∞ ≥ |W2(p)|
Proof from the Maximum Modulus Theorem: ‖F‖∞ = sup

Re s>0

|F (s)|
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All-Pass and Minimum-Phase Transfer Functions:

• F (s) ∈ RH∞ is all-pass if |F (jω)| = 1 ∀ω

• G(s) ∈ RH∞ is minimum-phase if it has no zeros in Re s > 0. It has the minimum phase

among all transfer functions with the same magnitude (FG where F is all-pass).

• Every function G in RH∞ can be presented as G = GapGmp

• Suppose that L = CP has no poles on the imaginary axis, so S = (1 + L)−1 = SapSmp and

Smp has no zeros on the imaginary axis. Thus S−1
mp ∈ RH∞.

• Suppose that z and p are the only zero and pole of P in the closed RHP and C has neither poles

nor zeros there. Then:

Sap =
s − p

s + p
S(z) = 1 ⇒ Smp(z) = S−1

ap (z) =
z + p

z − p

Then: ‖W1S‖∞ = ‖W1Smp‖∞ ≥ |W1(z)Smp(z)| =
∣∣∣∣W1(z)

z + p

z − p

∣∣∣∣
Similarly: Tap =

s − z

s + z
and T (p) = 1 ⇒ ‖W2T‖∞ ≥

∣∣∣∣W2(p)
p + z

p − z

∣∣∣∣
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Example: Consider the inverse pendulum problem.

(M + m)ẍ + ml(θ̈ cos θ − θ̇2 sin θ) = u

m(ẍ cos θ + lθ̈ − g sin θ) = d

Linearized model:
x

θ


 =

1
s2[Mls2 − (M + m)g]


ls2 − g −ls2

−s2 M+m
m s2





u

d




�

�

��

�� m

u

x

y

M

θ l

d

Tux =
ls2 − g

s2[Mls2 − (M + m)g]
RHP poles and zeros: z =

√
g/l p = 0, 0,

√
(M + m)g

Ml

Tuθ =
−1

Mls2 − (M + m)g
Tuy =

−g

s2[Mls2 − (M + m)g]
no RHP zero

For Tux if m � M ⇒ ‖W2T‖∞ � 1 (|W2(p)| is an increasing function) the system is difficult to

control. The best case is m/M and l large.

For Tuθ and Tuy a larger l gives a smaller p so the system is easier to stabilize.
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The Waterbed Effect

Lemma: For every point s0 = σ0 + jω0 with σ0 > 0,

log |Smp(s0)| =
1
π

∫ ∞

−∞
log |S(jω)| σ0

σ2
0 + (ω − ω0)2

dω

Theorem: Suppose that P has a zero at z with Re z > 0 and:

M1 := max
ω1≤ω≤ω2

|S(jω)| M2 := ‖S‖∞

Then there exist positive constants c1 and c2, depending only on ω1, ω2 and z, such that :

c1 log M1 + c2 log M2 ≥ log |S−1
ap (z)| ≥ 0

Theorem (The Area Formula): Assume that the relative degree of L is at least 2. Then∫ ∞

0

log |S(jω)|dω = π(log e)
∑

i

Re pi

where {pi} denotes the set of poles of L in Re s > 0.
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Objective: Given P, W1 and W2 find controller C providing internal stability and robust performance:

‖ |W1S| + |W2T | ‖∞ < 1 or Γ(jω) :=
∣∣∣∣ W1(jω)
1 + L(jω)

∣∣∣∣ +
∣∣∣∣W2(jω)L(jω)

1 + L(jω)

∣∣∣∣ < 1 ∀ω

Idea: Find graphically L(jω) satisfying the above condition and then compute C = L/P

Note that we assume P is minimum phase and stable.

We have: Γ|1 + L| = |W1| + |W2L| and |1 − |L| | ≤ |1 + L| ≤ 1 + |L|

⇒ |W1| + |W2L|
1 + |L| ≤ Γ ≤ |W1| + |W2L|

|1 − |L| |

So if |W1| + |W2L| < |1 − |L| | ⇒ Γ < 1:

In low frequencies |L| > 1 ⇒ |L| >
|W1| + 1
1 − |W2| �

|W1|
1 − |W2| |W1| � 1 > |W2|

In high frequencies |L| < 1 ⇒ |L| <
1 − |W1|
1 + |W2| �

1 − |W1|
|W2| |W2| � 1 > |W1|
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step 1: Plot two curves on log-log scale:

at LF (|W1| > 1 > |W2|) |W1|
1 − |W2| and at HF (|W2| > 1 > |W1|) 1 − |W1|

|W2|
step 2: Fit the graph of |L| on the same plot such that:

• at low frequency it lies above the first curve and also � 1

• at high frequency it lies below the second curve and � 1

• at very high frequency let it roll off at least as fast as does |P | (so C is proper)

• near crossover frequency do a smooth transition, keeping the slope as gentle as possible.

Because the slope of |L| determines the phase of L (Bode’s integral):

∠L(jω0) =
1
π

∫ ∞

−∞

d ln |L|
d ν

ln coth
|ν|
2

dν where ν = ln(ω/ω0)

The steeper the graph of L near the crossover frequency, the smaller the value of ∠L and

larger the phase margin

step 3: Get a stable, minimum-phase TF for L such that L(0) > 0 and compute C = L/P
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Assume that the relative degree of P equals 1. Find L for robust performance if the objective is to

track sinusoidal signals over the frequency range from 0 to 1 rad/s and the weighting function W2 is:

W2(s) =
s + 1

20(0.01s + 1)

We can define W1 as follows (in loopshaping design it is not necessary to have a rational TF for W1):

|W1(jω)| =


 a 0 ≤ ω ≤ 1

0 else
The larger the value of a, the smaller the tracking error

• LF (|W1| > 1): ω < 1 HF (|W2| > 1): ω ≥ 20

• Plot
|W1|

1 − |W2| in LF (ω < 1) and
1 − |W1|
|W2| in HF (ω > 20)

• Choose L =
b

s + 1
and find b such that in HF |L| ≤ 1 − |W1|

|W2| =
1

|W2| (⇒ |b| ≤ 20)

• Find the maximum value of a such that in LF |L| ≥ |W1|
1 − |W2| =

a

1 − |W2| ⇒ a = 13.15
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Objective: Given T1(s) and T2(s), stable

proper transfer functions, find a stable Q(s) to

minimize ‖T1 − T2Q‖∞
Trivial case: If T1/T2 is stable then the unique

optimal Q is T1/T2 and

γopt = min ‖T1 − T2Q‖∞ = 0

T1

Q T2
� �

� � �r(t) ε(t)-

Simplest nontrivial case: T2 has only one RHP zero at s = s0. Then by the maximum modulus

theorem:

‖T1 − T2Q‖∞ ≥ |T1(s0) − T2(s0)Q(s0)| = |T1(s0)| ⇒ γopt ≥ |T1(s0)|

Note that Q =
T1 − T1(s0)

T2
is stable and leads to γopt = |T1(s0)|.

Example: T1(s) = 4
s+3 , T2(s) = s−2

(s+1)3 ⇒ Q = T1−T1(2)
T2

= − 4(s+1)3

5(s+3)
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Problem: Let {a1, . . . , an} be a set of points in the open RHP and {b1, . . . , bn} a set of distinct

points in complex plane. Find a stable, proper, complex-rational function G satisfying:

‖G‖∞ ≤ 1 and G(ai) = bi, i = 1, . . . , n

Solvability: The NP problem is solvable iff the n × n Pick matrix Q, whose ijth element is
1 − bibj

ai + aj

is positive semidefinite (Q ≥ 0). Note that Q is Hermitian (Q = Q∗ where Q∗ is the complex

conjugate transpose of Q). Q ≥ 0 iff all its eigenvalues are ≥ 0.

Mobius Function: A Mobius function has the form:

Mb(z) =
z − b

1 − zb
where |b| < 1

• Mb has a zero at z = b and a pole at z = 1/b so Mb is analytic in open unit disk..

• Mb maps the unit disk onto the unit disk and the unit circle onto the unit circle.

• The inverse map M−1
b =

z + b

1 + zb
= M−b is a Mobius function too.
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NP problem for n = 1: Find a stable, proper G(s) such that ‖G‖∞ ≤ 1 and G(a1) = b1 where

|b1| ≤ 1 and Re a1 > 0.

Case 1 |b1| = 1: The unique solution is G(s) = b1.

Case 2 |b1| < 1: The set of all solutions is:

{G : G(s) = M−b1 [G1(s)Aa1(s)], G1 ∈ CRH∞, ‖G1‖∞ ≤ 1]}

where the all-pass function Aa(s) :=
s − a

s + a

Example: For a1 = 2 and b1 = 0.6 we have: G(s) =
G1(s) s−2

s+2 + 0.6

1 + 0.6G1(s) s−2
s+2

G1(s) = 1 results in G(s) =
s − 0.5
s + 0.5

Remark 1: If G1 is an all-pass function, so is G

Remark 2: When ai are the complex-conjugate pairs, if G = GR + jGI is the solution of the NP

problem then GR is also a solution to the NP problem.
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Consider the NP problem with n points:

Case 1 |b1| = 1: G(s) = b1 is the unique solution (and hence b1 = b2 = · · · = bn).

Case 2 |b1| < 1: Pose the NP’ problem with n − 1 data points: {a2, . . . an} and {b′2, . . . , b′n}
where b′i := Mb1(bi)/Aa1(ai) i = 2, . . . , n

Lemma: The set of all solutions to the NP problem is G(s) = M−b1 [G1(s)Aa1(s)] where G1(s)
ranges over the solutions to the NP’ problem.

Example: Consider the NP problem with a = {1, 2} and b = {1/2, 1/3}.

Solvability: The problem is solvable, because

Q =


 1−b2

1
2a1

1−b1b2
a1+a2

1−b2b1
a2+a1

1−b2
2

2a2


 =


 3/8 5/18

5/18 2/9


 ⇒ eig(Q) = [0.5867 0.0105] ⇒ Q ≥ 0

NP’ problem: a2 = 2, b′2 =
b2−b1
1−b2b1
a2−a1
a2+a1

=
−0.2
1/3

= −0.6 ⇒ G1(s) =
s−2
s+2 − 0.6

1 − 0.6 s−2
s+2

=
s − 8
s + 8

NP problem: G(s) =
s−8
s+8

s−1
s+1 + 1

2

1 + 1
2

s−8
s+8

s−1
s+1

=
s2 − 3s + 8
s2 + 3s + 8
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Find Q such that

γopt = min
γ

{‖T1 − T2Q‖∞ ≤ γ} Define: G =
1
γ

(T1 − T2Q)

We find first G such that ‖G‖∞ ≤ 1 then we compute Q =
T1 − γG

T2
. However, to ensure the

stability of Q, T1 − γG should contain the RHP zeros of T2 (i.e. zi), that is:

γG(zi) = T1(zi) ⇒ G(zi) =
1
γ

T1(zi)

This is a NP problem and γopt is the smallest γ for which the problem has a solution. That is, the

associated Pick matrix is positive semidefinite. A − γ−2B ≥ 0 where :

Aij =
1

zi + zj
Bij =

T1(zi)T1(zj)
zi + zj

Lemma: γopt equals the square root of the largest eigenvalue of the matrix A−1/2 B A−1/2.
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Procedure: Given T1 and T2 find a stable Q to minimize ‖T1 − T2Q‖∞ (T1=tf(num,den))

Step 1: Determine zi the zeros of T2 in Res > 0.

zz=zero(T2);z=zz(find(real(zz)>0))

Step 2: Form the matrices A and B:

Aij =
1

zi + zj
Bij =

T1(zi)T1(zj)
zi + zj

Step 3: Compute γopt as the square root of the largest eigenvalue of the matrix A−1/2 B A−1/2.

gamma=sqrt(max(eig(inv(sqrtm(A))*B*inv(sqrtm(A)))))

Step 4: Find G, the solution of the NP problem with data:

z1 . . . zn

γ−1
optT1(z1) . . . γ−1

optT1(zn)

Step 5: Set Q =
T1 − γoptG

T2
Q=minreal((T1-gamma*G)/T2,0.01)
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State-Space Procedure:

Step 1: Factor T2 as the product of an all-pass T2ap and a minimum phase factor T2mp

Step 2: Define R :=
T1

T2ap
and factor R as R = R1 + R2 with R1 strictly proper with all poles in

RHP and R2 ∈ H∞ and find a minimum realization of R1(s) =


 A B

C 0




Step 3: Solve the Lyapunove equations:

ALc + LcA
′ = BB′

A′Lo + LoA = C′C

Step 4: Find the maximum eigenvalue λ2 of LcLo and a corresponding eigenvector w.

Step 5: Define: f(s) =


 A w

C 0


 g(s) =


 −A′ λ−1Low

B′ 0




Step 6: Then γopt = λ and Q = (R − λ f(s)
g(s) )/T2mp
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Objective: Find a proper C for which the feedback system is internally stable and ‖W1S‖∞ < 1

Lemma: If G is stable and strictly proper, then lim
τ→0

‖G(1 − J)‖∞ = 0 where J(s) =
1

(τs + 1)k

P and P−1 stable: In this case the set of all stabilizing controller is:

C =
Q

1 − PQ
Q ∈ H∞ and W1S = W1(1 − PQ)

Clearly, Q = P−1 is stable but not proper, so let’s try Q = P −1J to make it proper. Then

W1S = W1(1 − J) whose ∞-norm is less than 1 for sufficiently small τ .

P−1 stable:

• Do a coprime factorization of P = N/M, NX + MY = 1

• Set J = (τs + 1)−k with k = the relative degree of P

• Choose τ so small that ‖W1MY (1 − J)‖∞ < 1

• Set Q = Y N−1J and C = (X + MQ)/(Y − NQ)
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Assumptions: P has no poles or zeros on the imaginary axis, only distinct poles and zeros in the

RHP and at least one zero in the RHP. W1 is stable and strictly proper.

Procedure:

Step 1: Do a coprime factorization of P = N/M, NX + MY = 1

Step 2: Find a stable improper Qim such that:

‖W1S‖∞ = ‖W1M(Y − NQim)‖∞ < 1

It is a standard model matching problem that can be solved using the NP algorithm.

Step 3: Set J =
1

(τs + 1)k
with k = large enough that Q is proper and τ small enough that

‖W1M(Y − NQimJ)‖∞ < 1

Step 4: Set Q = QimJ

Step 5: Set C = (X + MQ)/(Y − NQ)
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Flexible Beam: Consider the following simplified plant transfer function:

P (s) =
−6.47s2 + 4.03s + 176

s(5s3 + 3.57s2 + 140s + 0.093)


 zeros −4.91 5.53

poles 0 −0.0007 −0.356 ± 5.27j

Performance Specification: Settling time ≈ 8s and overshoot ≤ 10%

Assume that the ideal T (s) is a standard second-order system:

Tid(s) =
ω2

n

s2 + 2ζωns + ω2
n

4.6
ζωn

≈ 8 exp

(
−ζπ√
1 − ζ2

)
= 0.1 ⇒ ζ = 0.6 ωn = 1

Then the ideal sensitivity function is Sid(s) = 1 − Tid(s) =
s(s + 1.2)

s2 + 1.2s + 1

We take the weighting function W1(s) to be S−1
id (s):

W1(s) =
s2 + 1.2s + 1

s(s + 1.2)
stable, strictly proper

=⇒ W1(s) =
s2 + 1.2s + 1

(s + 0.0001)(s + 1.2)(0.0001s + 1)
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Step 1: P (s) has a pole on the imaginary axis (s = 0) so we perturb P to fix the problem (we add

10−6 to the denominator)

Step 2: The model matching problem is to minimize: ‖W1S‖∞ = ‖W1(1 − PQim)‖∞
P has only one RHP zero at 5.53, thus min ‖W1(1 − PQim)‖∞ = |W1(5.53)| = 1.02 and

the specification is not achievable.

Step 3: Let us scale W1 as W1 :=
0.9
1.02

W1. Then the optimal Qim =
W1 − 0.9

W1P

Step 4: Set J(s) =
1

(τs + 1)3
and compute ‖W1(1 − PQimJ)‖∞ for decreasing values of τ

τ ∞− norm

0.1 1.12

0.05 1.01

0.04 0.988

take τ = 0.04 and set Q = QimJ

Step 5: C =
Q

1 − PQ
=

(W1 − 0.9)J
W1(1 − J) + 0.9J

P−1
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Objective: Given P and W , find a proper stabilizing controller to minimize the 2-norm of a weighted

closed-loop transfer function: e.g. min ‖WPS‖2

Define: The subspace of functions in L2 that are analytic in the open RHP (all poles with Res ≥ 0) is

the orthogonal complement of H2 and is denoted by H⊥
2 . Every function F ∈ L2 can be expressed

as F = Fst + Fun where Fst ∈ H2, Fun ∈ H⊥
2

Lemma: If F ∈ H2 and G ∈ H⊥
2 , then ‖F + G‖2

2 = ‖F‖2
2 + ‖G‖2

2

Problem: Obtain Q ∈ H∞ to minimize ‖WPS‖2 = ‖WNY − WN2Q‖2

Idea: Factor U := WN2 = UapUmp, then we have:

‖WNY − WN2Q‖2
2 = ‖WNY − UapUmpQ‖2

2 = ‖U−1
ap WNY − UmpQ‖2

2

= ‖(U−1
ap WNY )un + (U−1

ap WNY )st − UmpQ‖2
2

= ‖(U−1
ap WNY )un‖2

2 + ‖(U−1
ap WNY )st − UmpQ‖2

2

which leads to: Qim = U−1
mp(U−1

ap WNY )st and the minimum of the criterion: ‖(U−1
ap WNY )un‖2

To get a proper suboptimal Q, Qim should be rolled off at high frequency.



Optimal Robust Stability

53Robust Control

Objective: Given Pε = (1 + ∆W2)P where ‖∆‖∞ ≤ ε, find the controller C that stabilizes every

plant in Pε and maximizes the stability margin:

γinf := inf
C

‖W2T‖∞ εsup = 1/γinf

Procedure: Input P and W2

Step 1: Do a coprime factorization of P = N/M , NX + MY = 1

Step 2: Solve the model-matching problem:

‖W2T‖∞ = ‖W2N(X + MQ)‖∞ with T1 = W2NX T2 = −W2NM

and find Qim and εsup = 1/γopt

Step 3: Let ε < εsup and set J(s) = (τs + 1)−k where k is large enough that QimJ is proper and

τ small enough that:

‖W2N(X + MQimJ)‖∞ <
1
ε

Step 4: Set Q = QimJ and C = (X + MQ)/(Y − NQ)



Robust Performance Problem
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Objective: Given P, W1, W2 find a proper controller C so that the feedback system for the nominal

plant is internally stable and that:

‖ |W1S| + |W2T | ‖∞ < 1

This problem cannot be solved !

Modified Problem: Consider the following inequality:

‖ |W1S|2 + |W2T |2 ‖∞ < 1/2

The robust performance problem with this inequality can be converted to a model matching problem

(See Feedback Control Theory chapter 12.3)

This inequality is a sufficient condition for the inequality in the exact problem.

General framework: The inequality in the modified problem can be presented also as:∥∥∥∥∥∥
W1S

W2T

∥∥∥∥∥∥
∞

= max
ω

σmax


 |W1S(jω)|

|W2T (jω)|


 <

1√
2


