

Robust Control

Alireza Karimi

Laboratoire d'Automatique

Course Program

- 1. Introduction
- 2. Norms for Signals and Systems
- 3. Basic Concepts (stability and performance)
- 4. Uncertainty and Robustness
- 5. Stabilization (coprime factorization)
- 6. Design Constraints
- 7. Loopshaping
- 8. Model Matching
- 9. Design for Performance

References:

- **10. Linear Fractional Transformation**
- 11. H_{∞} Control
- 12. Model and Controller Reduction
- 13. Robust Control by Convex Optimization

Laboratoire

- 14. LMIs in Robust Control
- **15. Robust Pole Placement**
- 16. Parametric uncertainty

- Feedback Control Theory by Doyle, Francis and Tannenbaum (on the website of the course)
- Essentials of Robust Control by Kemin Zhou with Doyle, Prentice-Hall, 1998
 Robust Control

Robust Control Objective: Design a controller satisfying stability and performance for a set of models

Robust Control

Model Uncertainty and Feedback

Feedback control has been used for the first time to overcome the model uncertainty

$$T = \frac{CP}{1+CP}$$
 Transfer function between r and y

 $S = \frac{1}{1+CP}$ Transfer function between v and y

For very large CP, $T \approx 1$ (tracking) and $S \approx 0$ (disturbance rejection) whatever the plant model is. For an open-loop stable system:

C = 0 robust stability

• $C \to \infty$ robust performance

Loopshaping: $|C(j\omega)P(j\omega)|$ should be large in the frequencies where good performances are desired and small where the stability is critical

Laboratoire

Norms for Signals and Systems

Norms for signals: Consider piecewise continuous signals mapping $(-\infty, +\infty)$ to \mathbb{R} . A norm must have the following four properties:

- 1. $||u|| \ge 0$ (positivity)
- 2. $\|au\| = |a| \, \|u\|, orall a \in \mathbb{R}$ (homogenity)
- 3. $||u|| = 0 \iff u(t) = 0 \quad \forall t \text{ (positive definiteness)}$
- 4. $\|u+v\| \leq \|u\| + \|v\|$ (triangle inequality)

1-Norm:
$$||u||_1 = \int_{-\infty}^{\infty} |u(t)| dt$$

2-Norm: $||u||_2 = \left(\int_{-\infty}^{\infty} u^2(t) dt\right)^{1/2}$

 $\|u\|_2^2$ is the total signal energy

p-Norm:
$$||u||_p = \left(\int_{-\infty}^{\infty} |u(t)|^p dt\right)^{1/p}$$
 $1 \le p \le \infty$

Robust Control

 ∞ -Norm: $||u||_{\infty} = \sup |u(t)|$

Laboratoire

Norms for Signals

Average power of a signal is denoted by:

$$pow(u) = \left(\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} u^2(t) dt\right)^{1/2} pow \text{ is not a norm (it is not positive definite)}$$

Remark: One says $u(t) \in \mathcal{L}_p$ if $||u||_p < \infty$ where \mathcal{L}_p is an infinite-dimensional *Banach space* (\mathcal{L}_2 is an infinite-dimensional *Hilbert space* as well).

Recall:

- A Banach space is a complete vector space with a norm.
- A Hilbert space is a complete vector space with an inner product < x, y > such that the norm defined by ||x|| = √< x, x >. A Hilbert space is always a Banach space, but the converse need not hold.

Examples: $1(t) \in \mathcal{L}_{\infty}$ but $\notin \mathcal{L}_{1}, \notin \mathcal{L}_{2}$ $u(t) = (1 - e^{-t})1(t) \in \mathcal{L}_{\infty}$ but $\notin \mathcal{L}_{1}, \notin \mathcal{L}_{2}$ $u(t) = e^{-t}1(t) \in \mathcal{L}_{\infty}, \in \mathcal{L}_{1}, \in \mathcal{L}_{2}$ (Besides, u(t) is a power signal pow(u) = 0) $u(t) = \sin(t) \in \mathcal{L}_{\infty}$ but $\notin \mathcal{L}_{1}, \notin \mathcal{L}_{2}$ (u(t) is a power signal)

Laboratoire

We consider linear, time-invariant, causal and usually finite-dimensional systems.

$$y(t) = G(t) * u(t), \qquad y(t) = \int_{-\infty}^{\infty} G(t-\tau)u(\tau)d\tau, \qquad \hat{G}(s) = \mathcal{L}[G]$$

Some definitions:

- $\hat{G}(s)$ is *stable* if it is analytic in the closed RHP (Re $s \ge 0$)
- $\hat{G}(s)$ is proper if $\hat{G}(j\infty)$ is finite (deg den \geq deg num)
- $\hat{G}(s)$ is strictly proper if $\hat{G}(j\infty)=0$ deg den > deg num
- $\hat{G}(s)$ is *biproper* if (deg den = deg num)

Norms for SISO systems:

2-Norm:
$$\|\hat{G}\|_2 = \left(\frac{1}{2\pi}\int_{-\infty}^{\infty}|\hat{G}(j\omega)|^2d\omega\right)^{1/2}$$
 ∞ -Norm: $\|\hat{G}\|_{\infty} = \sup_{\omega}|\hat{G}(j\omega)|^2d\omega$

Parsval's theorem: (for stable systems)

$$\|\hat{G}\|_{2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{G}(j\omega)|^{2} d\omega\right)^{1/2} = \left(\int_{-\infty}^{\infty} |G(t)|^{2} dt\right)^{1/2}$$

Norms for Signals and Systems

Laboratoire

Remarks:

• \mathcal{L}_2 is a *Hilbert space* of scalar-valued functions on $j\mathbb{R}$. The inner product for this Hilbert space is defined as:

$$\langle \hat{F}, \hat{G} \rangle = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{F}^*(j\omega) \hat{G}(j\omega) d\omega$$

- We say $\hat{G}(s) \in \mathcal{L}_2$ if $\|\hat{G}\|_2 < \infty$. It is the case iff \hat{G} is strictly proper and has no poles on the imaginary axis.
- We say $\hat{G}(s) \in \mathcal{L}_{\infty}$ if $\|\hat{G}\|_{\infty} < \infty$. It is the case iff \hat{G} is proper and has no poles on the imaginary axis. \mathcal{L}_{∞} is a *Banach space* of scalar-valued functions on $j\mathbb{R}$.
- $\|\hat{G}\|_{\infty}$ is the peak value of the Bode magnitude plot of \hat{G} . It is also the distance from the origin to the farthest point on the Nyquist plot of \hat{G} .
- \mathcal{H}_2 and \mathcal{H}_∞ are respectively subspaces of \mathcal{L}_2 and \mathcal{L}_∞ with $\hat{G}(s)$ stable (\mathcal{H}_p spaces are usually called Hardy spaces).

Examples: $\frac{1}{s-1} \in \mathcal{L}_2, \mathcal{L}_\infty$ but $\notin \mathcal{H}_2, \mathcal{H}_\infty$ $\frac{s+1}{s+2} \in \mathcal{H}_\infty$ but $\notin \mathcal{H}_2$ $\frac{1}{s^2+1} \notin \mathcal{L}_2, \mathcal{L}_\infty$ Norms for Signals and Systems

Laboratoire

Norms for matrices:

1-Norm: The maximum absolute column sum norm is defined as $||A||_1 = \max_j \sum_{i=1}^j |a_{ij}|$.

2-Norm: The spectral norm or simply *the norm* of A is defined as: $||A||_2 = \sqrt{\lambda_{\max}(A^*A)}$.

 ∞ -Norm: The maximum absolute row sum norm is defined as $||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$.

F-Norm: Frobenius norm is defined as $||A||_F = \sqrt{\operatorname{trace}(A^*A)}$

Induced p-norm: The induced p-norm is defined from a vector p-norm: $||A||_p = \max_{x \neq 0} \frac{||Ax||_p}{||x||_p}$

Remarks:

- The induced 2-norm and the norm of A are the same and called also the natural norm. This norm is also equal to the maximum *singular value* of A. $||A|| = \overline{\sigma}(A)$.
- The spectral radius $\rho(A) = |\lambda_{\max}(A)|$ is not a norm.

Laboratoire

Norms for MIMO systems: Given $\hat{G}(s)$ a multi-input multi-output system

2-Norm: This norm is defined as

$$\|\hat{G}\|_{2} = \left(\frac{1}{2\pi}\int_{-\infty}^{\infty} \operatorname{trace}\left[\hat{G}^{*}(j\omega)\hat{G}(j\omega)\right]d\omega\right)^{1/2}$$

 $\infty ext{-Norm:}$ The \mathcal{H}_∞ norm is defined as

$$\|\hat{G}\|_{\infty} = \sup_{\omega} \|\hat{G}(j\omega)\| = \sup_{\omega} \bar{\sigma}[\hat{G}(j\omega)]$$

Remark: The infinity norm has an important property (submultiplicative)

$$\|\hat{G}\hat{H}\|_{\infty} \le \|\hat{G}\|_{\infty} \, \|\hat{H}\|_{\infty}$$

Caboratoire

Computing the Norms

How to compute the 2-norm: Suppose that $\hat{G} \in \mathcal{L}_2$, we have:

$$\|\hat{G}\|_{2}^{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{G}(j\omega)|^{2} d\omega = \frac{1}{2\pi j} \int_{-j\infty}^{j\infty} \hat{G}(-s)\hat{G}(s)ds = \frac{1}{2\pi j} \oint \hat{G}(-s)\hat{G}(s)ds$$

Then by the residue theorem, $\|\hat{G}\|_2^2$ equals the sum of the residues of $\hat{G}(-s)\hat{G}(s)$ at its poles in the left half-plane (LHP).

How to compute the ∞ -norm:

Choose a fine grid of frequency point $\{\omega_1, \ldots, \omega_N\}$, then an estimate for $\|\hat{G}\|_{\infty}$ is:

 $\max_{1 \le k \le N} |\hat{G}(j\omega_k)|$

or for the MIMO systems:

$$\max_{1 \le k \le N} \bar{\sigma}[\hat{G}(j\omega_k)]$$

Matlab commands: norm, bode, frsp, vsvd

Laboratoire

Computing the Norms

State-space methods for 2-norm: Consider a SISO state-space model $\in \mathcal{H}_2$

$$\begin{split} \dot{x}(t) &= Ax(t) + Bu(t) & \stackrel{\mathcal{L}}{\Longrightarrow} s\hat{x}(s) = A\hat{x}(s) + B\hat{u}(s) \\ y(t) &= Cx(t) & \hat{y}(s) = C\hat{x}(s) \\ \hat{G}(s) &= C(sI - A)^{-1}B & \Longrightarrow \text{ impulse response} : G(t) = Ce^{tA}B \end{split}$$

From Parseval's theorem:

$$\|\hat{G}\|_{2}^{2} = \|G\|_{2}^{2} = \int_{0}^{\infty} \left(Ce^{tA}B\right) \left(B^{T}e^{tA^{T}}C^{T}\right) dt = CLC^{T}$$

where

$$L = \int_0^\infty e^{tA} B B^T e^{tA^T} dt$$

is the observability Gramian and can be obtained from following Lyapunov equation:

$$AL + LA^T + BB^T = 0$$
 and the 2-norm is $\|\hat{G}\|_2 = (CLC^T)^{1/2}$
For MIMO systems we have $\|\hat{G}\|_2 = \left[\operatorname{trace}(CLC^T)\right]^{1/2}$

Raboratoire

Computing the Norms

State-space methods for ∞ -norm: Consider a SISO strictly proper state-space model $\in \mathcal{L}_{\infty}$.

Theorem: $\|\hat{G}\|_{\infty} < \gamma$ iff the *Hamiltonian matrix* H has no eigenvalues on the imaginary axis:

$$H = \begin{pmatrix} A & \gamma^{-2}BB^T \\ -C^TC & -A^T \end{pmatrix}$$

Bisection algorithm:

- 1. Select γ_u and γ_l such that $\gamma_l \leq \|\hat{G}\|_{\infty} \leq \gamma_u$;
- 2. If $(\gamma_u \gamma_l)/\gamma_l \leq \text{specified level., stop and } \|\hat{G}\|_{\infty} \approx (\gamma_u + \gamma_l)/2$. Otherwise continue;
- 3. Set $\gamma = (\gamma_u + \gamma_l)/2$ and test if $\|\hat{G}\|_\infty < \gamma$
- 4. If H has no eigenvalue on $j\mathbb{R}$, set $\gamma_u = \gamma$ otherwise set $\gamma_l = \gamma$; go back to step 2.

For MIMO biproper (
$$D
eq 0$$
) systems:

$$H = \begin{pmatrix} A + BR^{-1}D^{T}C & BR^{-1}B^{T} \\ -C^{T}(I + DR^{-1}D^{T})C & -(A + BR^{-1}D^{T}C)^{T} \end{pmatrix} \text{ and } R = \gamma^{2}I - D^{T}D$$

Norms for Signals and Systems

Laboratoire

Input-output relationships

If we know how big the input is, how big is the output going to be?

Output Norms for Two Inputs

u(t)	$\delta(t)$	$\sin(\omega t)$
$\ y\ _{2}$	$\ \hat{G}\ _2$	∞
$\ y\ _{\infty}$	$\ G\ _{\infty}$	$ \hat{G}(j\omega) $

Proofs:

• If
$$u(t) = \delta(t)$$
 then $y(t) = \int_{-\infty}^{\infty} G(t - \tau)\delta(\tau)d\tau = G(t)$, so $\|y\|_2 = \|G\|_2 = \|\hat{G}\|_2$

• If
$$u(t) = \delta(t)$$
 then $y(t) = G(t)$, so $\|y\|_{\infty} = \|G\|_{\infty}$

• If $u(t) = \sin(\omega t)$ then $y(t) = |\hat{G}(j\omega)| \sin(\omega t + \phi)$, so $\|y\|_2 = \infty$ and $\|y\|_{\infty} = |\hat{G}(j\omega)|$

Caboratoire

Input-output relationships

System Gain: $\sup\{\|y\|: \|u\| \le 1\}$ $u(t) \in \mathcal{L}_2 \quad u(t) \in \mathcal{L}_{\infty}$ $\|y\|_2 \quad \|\hat{G}\|_{\infty} \quad \infty$ $\|y\|_{\infty} \quad \|\hat{G}\|_2 \quad \|G\|_1$

Proofs:

Entry (1,1): We have

$$\begin{aligned} \|y\|_{2}^{2} &= \|\hat{y}\|_{2}^{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{G}(j\omega)|^{2} |\hat{u}(j\omega)|^{2} d\omega &\leq \|\hat{G}\|_{\infty}^{2} \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{u}(j\omega)|^{2} d\omega \\ &= \|\hat{G}\|_{\infty}^{2} \|\hat{u}\|_{2}^{2} = \|\hat{G}\|_{\infty}^{2} \|u\|_{2}^{2} \end{aligned}$$

Entry(2,1): According to the Cauchy-Schwartz inequality

$$\begin{aligned} |y(t)| &= \left| \int_{-\infty}^{\infty} G(t-\tau)u(\tau)d\tau \right| &\leq \left(\int_{-\infty}^{\infty} G^2(t-\tau)d\tau \right)^{1/2} \left(\int_{-\infty}^{\infty} u^2(\tau)d\tau \right)^{1/2} \\ &= \|G\|_2 \|u\|_2 = \|\hat{G}\|_2 \|u\|_2 \Rightarrow \|y\|_{\infty} \le \|\hat{G}\|_2 \|u\|_2 \end{aligned}$$

15

Taboratoire

for this is that 1 + PCF not be strictly proper ($PCF(\infty) \neq -1$)

Robust Control

Internal Stability

If the following nine transfer functions are stable then the feedback system is *internally stable*.

$$\frac{1}{1+PCF} \begin{pmatrix} 1 & -PF & -F \\ C & 1 & -CF \\ PC & P & 1 \end{pmatrix} \qquad P = \frac{N_P}{M_P}, \quad C = \frac{N_C}{M_C}, \quad F = \frac{N_F}{M_F}$$

Theorem: The feedback system is internally stable iff

• there are no zeros in Re $s \ge 0$ in the characteristic polynomial

 $N_P N_C N_F + M_P M_C M_F = 0$

or

- the following two conditions hold:
 - (a) The transfer function 1 + PCF has no zeros in Re $s \ge 0$.
 - (b) There is no pole-zero cancellation in Re $s \ge 0$ when the product PCF is formed.

Laboratoire

Asymptotic Tracking

Internal Model Principle: For perfect asymptotic tracking of r(t), the loop transfer function $\hat{L} = \hat{P}\hat{C}$ (with $\hat{F} = 1$) must contain the unstable poles of $\hat{r}(s)$.

Theorem: Assume that the feedback system is internally stable and n=d=0.

(a) If r(t) is a step, then $\lim_{t\to\infty} e(t) = r(t) - y(t) = 0$ iff $\hat{S} = (1 + \hat{L})^{-1}$ has at least one zero at the origin.

(b) If r(t) is a ramp, then $\lim_{t\to\infty}e(t)=0$ iff \hat{S} has at least two zeros at the origin.

(c) If $r(t) = \sin(\omega t)$, then $\lim_{t \to \infty} e(t) = 0$ iff \hat{S} has at least one zero at $s = j\omega$.

Final-Value Theorem: If $\hat{y}(s)$ has no poles in Re $s \ge 0$ except possibly one pole at s = 0 then:

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} s\hat{y}(s)$$

Proof (a): We have $\hat{r}(s) = \frac{c}{s}$ and $\hat{e}(s) = \hat{S}(s)\frac{c}{s}$ then $\lim_{t \to \infty} e(t) = \lim_{s \to 0} s\hat{S}(s)\frac{c}{s}$. The limit is zero iff \hat{S} has at least one zero at origin. For this, \hat{P} or \hat{C} should have a pole at origin.

Basic Concepts

Laboratoire

Performance

Tracking performance can be quantified in terms of a weighted norm of the sensitivity function

Sensitivity Function: Transfer function from *r* to tracking error *e* : $S = \frac{1}{1 + PC}$

Complementary Sensitivity Function: Transfer function from *r* to *y*: $T = \frac{PC}{1 + PC}$

S is the relative sensitivity of T with respect to relative perturbations in P:

$$S = \lim_{\Delta P \to 0} \frac{\Delta T/T}{\Delta P/P} = \frac{dT}{dP} \frac{P}{T} = \frac{C(1+PC) - PC^2}{(1+PC)^2} \frac{P(1+PC)}{PC} = \frac{1}{1+PC}$$

Performance Specification:

- 1. r(t) is any sinusoid of amplitude ≤ 1 filtered by W_1 , then the max. amp. of e is $||W_1S||_{\infty}$.
- 2. Suppose that $\{r = W_1 r_{pf}, \|r_{pf}\|_2 \le 1\}$, then $\sup_r \|e\|_2 = \|W_1 S\|_{\infty}$.
- 3. In some applications good performance is achieved if $|S(j\omega)| < |W_1(j\omega)|^{-1}, \quad \forall \omega$ or

$$||W_1S||_{\infty} < 1 \Leftrightarrow |W_1(j\omega)| < |1 + L(j\omega)|, \forall \omega$$

Laboratoire

Uncertainty and Robustness

Plant Uncertainty: We cannot exactly model the physical systems so there is always the modeling errors. The best technic is to define a model set which can be *structured* or *unstructured*.

• Structured model set such as parametric uncertainty or multiple model set

$$\mathcal{P} = \{ \frac{1}{s^2 + as + 1} : a_{\min} \le a \le a_{\max} \} \text{ or } \mathcal{P} = \{ P_0, P_1, P_2, P_3 \}$$

• Unstructured model set such as unmodeled dynamics or disk uncertainty

$$\mathcal{P} = \{ P_0 + \Delta : \|\Delta\|_{\infty} \le \gamma \}$$

Conservatism: Controller design for a model set greater than the real model set leads to a *conservative* design.

Uncertainty Models (unstructured):

Examples

Laboratoire d'Automatique

Example 1: k frequency-response models are identified. Find the multiplicative uncertainty model and the weighting filter.

$$\tilde{P} = P(1 + \Delta W_2) \Rightarrow \frac{\tilde{P}}{P} - 1 = \Delta W_2$$

if $\|\Delta\|_{\infty} \le 1 \Rightarrow \left|\frac{\tilde{P}(j\omega)}{P(j\omega)} - 1\right| \le |W_2(j\omega)|$

Let (M_{ik}, ϕ_{ik}) be the magnitude-phase at ω_i in k-th experiment and (M_i, ϕ_i) that of the nominal model (e.g. the mean value).

$$\max_{k} \left| \frac{M_{ik} e^{\phi_{ik}}}{M_{i} e^{\phi_{i}}} - 1 \right| \le |W_2(j\omega_i)| \qquad \forall i$$

Example 2: Suppose that $\tilde{P}(s) = \{\frac{k}{s-2} : 0.1 \le k \le 10\}$. Represent this model by the multiplicative uncertainty.

$$P(s) = \frac{k_0}{s-2} \Rightarrow \left| \frac{\tilde{P}(j\omega)}{P(j\omega)} - 1 \right| \le |W_2(j\omega)| \Rightarrow \max_{0.1 \le k \le 10} \left| \frac{k}{k_0} - 1 \right| \le |W_2(j\omega)|$$

The best value for k_0 is 5.05 which gives $W_2(s) = 4.95/5.05$

Uncertainty and Robustness

Examples

Example 3: Assume that $P(s) = \frac{1}{s^2}$ and $\tilde{P}(s) = e^{-\tau s} \frac{1}{s^2}$ where $0 \le \tau \le 0.1$. Find $W_2(s)$ for the multiplicative uncertainty model.

$$\left|\frac{\tilde{P}(j\omega)}{P(j\omega)} - 1\right| \le |W_2(j\omega)| \Rightarrow |e^{-\tau j\omega} - 1| \le |W_2(j\omega)| \quad \forall \omega, \tau$$

Using the Bode diagram we can find $W_2(s) = \frac{0.21s}{0.1s+1}$.

Example 4: Consider the model set $\{\frac{1}{s^2+as+1}: 0.4 \le a \le 0.8\}$. Find $W_2(s)$ for Feedback uncertainty model.

Take:

$$a = 0.6 + 0.2\Delta, \quad -1 \le \Delta \le 1$$

So

$$\tilde{P}(s) = \frac{1}{s^2 + 0.6s + 0.2\Delta s + 1} = \frac{P(s)}{1 + \Delta W_2(s)P(s)}$$

where

$$P(s) = \frac{1}{s^2 + 0.6s + 1}, \quad W_2(s) = 0.2s$$

Uncertainty and Robustness

22

Laboratoire

Robustness: A controller is robust with respect to a closed-loop characteristic, if this characteristic holds for every plant in \mathcal{P}

Robust Stability: A controller is robust in stability if it provides internal stability for every plant in ${\cal P}$

Stability margin: For a given model set with an associate size, it can be defined as the largest model set stabilized by a controller.

Stability margin for an uncertainty model: Given $\tilde{P} = P(1 + \Delta W_2)$ with $\|\Delta\|_{\infty} \leq \beta$, the stability margin for a controller *C* is the least upper bound of β .

Modulus margin: The distance from -1 to the open-loop Nyquist curve.

$$M_m = \inf_{\omega} |-1 - L(j\omega)| = \inf_{\omega} |1 + L(j\omega)|$$
$$= \left[\sup_{\omega} \frac{1}{1 + L(j\omega)}\right]^{-1} = ||S||_{\infty}^{-1}$$

Laboratoire

Small Gain Theorem: Suppose $H \in \mathcal{RH}_{\infty}$ and let $\gamma > 0$. The following feedback loop is internally stable for all $\Delta(s) \in \mathcal{RH}_{\infty}$ with

 $\|\Delta\|_{\infty} \leq 1/\gamma \quad \text{if and only if} \quad \|H\|_{\infty} < \gamma$

Laboratoire

Remark: For a given Δ with $\|\Delta\|_{\infty} \leq 1/\gamma$ the condition $\|H\|_{\infty} < \gamma$ is only sufficient and very conservative. However for all $\Delta \in \mathcal{RH}_{\infty}$, it is a necessary and sufficient condition.

Robust stability condition for plants with additive uncertainty:

$$\begin{split} \tilde{P} &= P + \Delta W_2 \Rightarrow H = W_2 \frac{-C}{1 + CP} \\ \text{Closed-loop system is internally stable for} \\ \text{all } \|\Delta\|_{\infty} &\leq 1 \quad \text{iff} \quad \|W_2 CS\|_{\infty} < 1 \end{split} \qquad \overbrace{} \begin{array}{c} r(t) & \overbrace{} \\ r(t) & \overbrace{} \\ \hline \\ \end{array}$$

Robust stability condition for plants with multiplicative uncertainty:

$$\tilde{P} = P(1 + \Delta W_2) \Rightarrow H = W_2 \frac{-CP}{1 + CP}$$

Closed-loop system is internally stable for all $\|\Delta\|_{\infty} \leq 1$ iff $\|W_2 T\|_{\infty} < 1$

Proof: Assume that $||W_2T||_{\infty} < 1$. We show that the winding number of 1 + CP around zero is equal to that of $1 + C\tilde{P}$.

$$\begin{split} 1+C\tilde{P} &= 1+CP(1+\Delta W_2) = 1+CP+CP\Delta W_2 = 1+CP+(1+CP)T\Delta W_2 \\ & 1+C\tilde{P} = (1+CP)(1+\Delta W_2T) \\ \text{so Wno } \{ (1+C\tilde{P}) \} = \text{Wno}\{(1+CP)\} + \text{Wno}\{(1+\Delta W_2T)\}. \\ \text{But Wno } \{ (1+\Delta W_2T) \} = 0 \text{ because } \|\Delta W_2T\|_{\infty} < 1 \end{split}$$

Caboratoire

Robust stability condition for plants with feedback uncertainty (1):

$$\tilde{P} = \frac{P}{1 + \Delta W_2} \Rightarrow H = W_2 \frac{-1}{1 + CP}$$

Closed-loop system is internally stable for all $\|\Delta\|_{\infty} \leq 1$ iff $\|W_2 S\|_{\infty} < 1$

Robust stability condition for plants with feedback uncertainty (2):

$$\tilde{P} = \frac{P}{1 + \Delta W_2 P} \Rightarrow H = W_2 \frac{-P}{1 + CP}$$
Closed-loop system is internally stable for all $\|\Delta\|_{\infty} \leq 1$ iff $\|W_2 PS\|_{\infty} < 1$

Taboratoire

Robust Performance

Nominal performance condition: $\|W_1S\|_{\infty} < 1$

Robust stability condition for multiplicative uncertainty: $||W_2T||_{\infty} < 1$

Robust performance for multiplicative uncertainty: $||W_2T||_{\infty} < 1$ and $||W_1\tilde{S}||_{\infty} < 1$ where:

$$\tilde{S} = \frac{1}{1 + C\tilde{P}} = \frac{1}{1 + CP(1 + \Delta W_2)} = \frac{1}{(1 + CP)(1 + \Delta W_2T)} = \frac{S}{1 + \Delta W_2T}$$

Robust performance conditions: $||W_2T||_{\infty} < 1$ and $\left\|\frac{W_1S}{1+\Delta W_2T}\right\|_{\infty} < 1$

Theorem: A necessary and sufficient condition for robust performance is

 $\| |W_1 S| + |W_2 T| \|_{\infty} < 1$

Robust performance for additive uncertainty: $||W_2CS||_{\infty} < 1$ and $||W_1\tilde{S}||_{\infty} < 1$ where:

$$\tilde{S} = \frac{1}{1 + C\tilde{P}} = \frac{1}{1 + CP + C\Delta W_2} = \frac{S}{1 + \Delta W_2 CS} \Rightarrow \left\| \frac{W_1 S}{1 + \Delta W_2 CS} \right\|_{\infty} < 1$$

Or equivalently in one inequality condition: $\| \left| W_1 S \right| + \left| W_2 C S \right| \|_{\infty} < 1$

Laboratoire

Stabilization

The main objective is to parameterize all of the controllers which provide internal stability for a given plant

Theorem: Assume that $P \in \mathcal{RH}_{\infty}$ (*P* is stable). The set of all stabilizing controllers is given by:

$$C := \left\{ \frac{Q}{1 - PQ} | Q \in \mathcal{RH}_{\infty} \right\}$$

Proof: (F = 1)

$$\frac{1}{1+PCF} \begin{pmatrix} 1 & -PF & -F \\ C & 1 & -CF \\ PC & P & 1 \end{pmatrix} = \begin{pmatrix} 1-PQ & -P(1-PQ) & -1(1-PQ) \\ Q & 1-PQ & -Q \\ PQ & P(1-PQ) & 1-PQ \end{pmatrix} \in \mathcal{RH}_{\infty}$$

On the other hand, suppose that C stabilizes P then define

$$Q:=rac{C}{1+CP}\in\mathcal{RH}_\infty$$
 which leads to $C=rac{Q}{1-PQ}$

In this parameterization sensitivity and complementary sensitivity are

$$S = 1 - PQ \qquad T = PQ$$

Robust Control

28

Coprime Factorization

Objective: Given P, find M, N, X and $Y \in \mathcal{RH}_{\infty}$ such that:

$$P = \frac{N}{M} \qquad NX + MY = 1$$

Remarks:

- N and M are called coprime factors of G over \mathcal{RH}_∞
- N and M can have no common zeros in $\operatorname{Re} s\geq 0$ nor at $s=\infty$

$$N(s_0)X(s_0) + M(s_0)Y(s_0) = 0 \neq 1$$

- $\bullet~$ If P is stable we have : M=1, N=P, X=0, Y=1
- $\bullet\,$ It is easy to obtain N and M, for example:

$$P(s) = \frac{1}{s-1} = \frac{N(s)}{M(s)} \quad \Rightarrow N(s) = \frac{1}{(s+1)^k}, \quad M(s) = \frac{s-1}{(s+1)^k}$$

if k>1 then M and N have a common zero at $s=\infty,$ so k=1

How to compute X(s) and Y(s)?

Stabilization

Laboratoire

Coprime Factorization

Euclid's algorithm: Given polynomials $m(\lambda)$ and $n(\lambda)$ (deg $n \leq \deg m$) find polynomials $x(\lambda)$ and $y(\lambda)$ such that nx + my = 1.

Laboratoire

d'Automatique

3(

Step 1: Divide *m* into *n* to get quotient q_1 and remainder r_1 : $n = mq_1 + r_1$, deg $r_1 < \deg m$

Step 2: Divide r_1 into m to get quotient q_2 and remainder r_2 : $m = r_1q_2 + r_2$, deg $r_2 < \deg r_1$

Step 3: Divide r_2 into r_1 to get quotient q_3 and remainder r_3 : $r_1 = r_2q_3 + r_3$, deg $r_3 < \deg r_2$ **Continue** Stop at step k when r_k is a nonzero constant.

Find r_3 as a function of m, n and q_i :

$$r_3 = \underbrace{(n - mq_1)}_{r_1} - \underbrace{(m - \underbrace{(n - mq_1)}_{r_1} q_2)}_{r_1} q_3 = n(1 + q_2q_3) + m(-q_3 - q_1 - q_1q_2q_3)$$

which gives:

$$x = \frac{1}{r_3}(1+q_2q_3)$$
 and $y = \frac{1}{r_3}(-q_3-q_1-q_1q_2q_3)$

Stabilization

Coprime Factorization

Procedure to find M, N, X and Y for an unstable plant G:

Step 1: Transform G(s) to $\tilde{G}(\lambda)$ under the mapping $s = (1 - \lambda)/\lambda$. Write $\tilde{G} = \frac{n(\lambda)}{m(\lambda)}$

Step 2: Using Euclid's algorithm, find $x(\lambda)$ and $y(\lambda)$ such that: nx + my = 1

Step 3: Find M, N, X and Y from m, n, x and y under the mapping $\lambda = 1/(s+1)$

State-Space Method:

Step 1: Transform G(s) to A, B, C and D (state space realization)

Step 2: Compute F and H so that A + BF and A + HC are stable (F=-place(A, B, Pf))

Step 3: Compute M, N, X and Y as follows:

$$M(s) := \begin{bmatrix} A + BF & B \\ \hline F & 1 \end{bmatrix} \qquad N(s) := \begin{bmatrix} A + BF & B \\ \hline C + DF & D \end{bmatrix}$$
$$X(s) := \begin{bmatrix} A + HC & H \\ \hline F & 0 \end{bmatrix} \qquad Y(s) := \begin{bmatrix} A + HC & -B - HD \\ \hline F & 1 \end{bmatrix}$$

Stabilization

Laboratoire

Controller Parametrization

Theorem: The set of all Cs for which the feedback system is internally stable equal:

$$C = \left\{ \frac{X + MQ}{Y - NQ} : \quad Q \in \mathcal{RH}_{\infty} \right\}$$

Proof: For $C = \frac{N_c}{M_c}$, the stability condition is: $(NN_c + MM_c)^{-1} \in \mathcal{RH}_{\infty}$, but we have: $N(X + MQ) + M(Y - NQ) = NX + MY = 1 \Rightarrow (NN_c + MM_c)^{-1} \in \mathcal{RH}_{\infty}$

Conversely, if C stabilizes the closed-loop system we should show that it belongs to the above set. C is stabilizing $\Rightarrow V := (NN_c + MM_c)^{-1} \in \mathcal{RH}_{\infty} \Rightarrow NN_cV + MM_cV = 1$ Let Q be the solution of $M_cV = Y - NQ$. From the above equation and NX + MY = 1 we find that $N_cV = X + MQ$ so the controller $C = \frac{N_cV}{M_cV} \in$ the set of all stabilizing controller. It is easy to verify that $Q \in \mathcal{RH}_{\infty}$

Remark: The sensitivity functions are:

$$S = \frac{1}{1+CP} = M(Y - NQ)$$
 $T = \frac{CP}{1+CP} = N(X + MQ)$

Stabilization

32

Laboratoire

Example

Let

$$P(s) = \frac{1}{(s-1)(s-2)}$$

Compute a proper controller C so that:

- 1. The feedback system is internally stable.
- 2. Perfect asymptotic tracking of step reference (d = 0).
- 3. Perfect asymptotic disturbance rejection when $d = \sin 10t$ (r = 0).

Procedure:

- Parameterize all stabilizing controllers.
- Reduce the asymptotic specs to interpolation constraints on the parameters.
- Find (if possible) a parameter to satisfy these constraints.
- Back-substitute to get the controller.

Laboratoire

Design Constraints

Algebraic Constraints:

- S+T=1 so $|S(j\omega)|$ and $|T(j\omega)|$ cannot both be less than 1/2 at the same frequency.
- A necessary condition for robust performance is that:

 $\min\{|W_1(j\omega)|, |W_2(j\omega)|\} < 1, \quad \forall \omega$

So at every frequency either $|W_1|$ or $|W_2|$ must be less than 1. Typically $|W_1|$ is monotonically decreasing and $|W_2|$ is monotonically increasing.

• If p is a pole and z a zero of L both in $\operatorname{Re} s \geq 0$ then:

$$S(p) = 0$$
 $S(z) = 1$ $T(p) = 1$ $T(z) = 0$

Analytic Constraints:

• Bounds on the weights W_1 and W_2 :

```
||W_1S||_{\infty} \ge |W_1(z)| \qquad ||W_2T||_{\infty} \ge |W_2(p)|
```

Proof from the Maximum Modulus Theorem: $||F||_{\infty} = \sup_{\substack{Re \ s > 0}} |F(s)|$

Robust Control

Laboratoire

Analytic Constraints

All-Pass and Minimum-Phase Transfer Functions:

- $F(s) \in \mathcal{RH}_{\infty}$ is all-pass if $|F(j\omega)| = 1 \quad \forall \omega$
- $G(s) \in \mathcal{RH}_{\infty}$ is *minimum-phase* if it has no zeros in Re s > 0. It has the minimum phase among all transfer functions with the same magnitude (FG where F is all-pass).
- Every function G in \mathcal{RH}_{∞} can be presented as $G = G_{ap}G_{mp}$
- Suppose that L = CP has no poles on the imaginary axis, so $S = (1 + L)^{-1} = S_{ap}S_{mp}$ and S_{mp} has no zeros on the imaginary axis. Thus $S_{mp}^{-1} \in \mathcal{RH}_{\infty}$.
- Suppose that *z* and *p* are the only zero and pole of *P* in the closed RHP and *C* has neither poles nor zeros there. Then:

$$S_{ap} = \frac{s - p}{s + p} \qquad S(z) = 1 \Rightarrow S_{mp}(z) = S_{ap}^{-1}(z) = \frac{z + p}{z - p}$$

Then: $\|W_1 S\|_{\infty} = \|W_1 S_{mp}\|_{\infty} \ge |W_1(z) S_{mp}(z)| = \left|W_1(z) \frac{z + p}{z - p}\right|$
Similarly: $T_{ap} = \frac{s - z}{s + z}$ and $T(p) = 1 \Rightarrow \|W_2 T\|_{\infty} \ge \left|W_2(p) \frac{p + z}{p - z}\right|$

Design Constraints

Laboratoire

Analytic Constraints

Example: Consider the inverse pendulum problem.

$$(M+m)\ddot{x} + ml(\ddot{\theta}\cos\theta - \dot{\theta}^2\sin\theta) = u$$
$$m(\ddot{x}\cos\theta + l\ddot{\theta} - g\sin\theta) = d$$

Linearized model:

$$\begin{pmatrix} x \\ \theta \end{pmatrix} = \frac{1}{s^2 [Mls^2 - (M+m)g]} \begin{pmatrix} ls^2 - g & -ls^2 \\ -s^2 & \frac{M+m}{m}s^2 \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix}$$

$$T_{ux} = \frac{ls^2 - g}{s^2[Mls^2 - (M+m)g]}$$
 RHP poles and zeros: $z = \sqrt{g/l} \quad p = 0, 0, \sqrt{\frac{(M+m)g}{Ml}}$

$$T_{u\theta} = \frac{-1}{Mls^2 - (M+m)g} \qquad T_{uy} = \frac{-g}{s^2[Mls^2 - (M+m)g]} \qquad \text{no RHP zero}$$

For T_{ux} if $m \ll M \Rightarrow ||W_2T||_{\infty} \gg 1$ ($|W_2(p)|$ is an increasing function) the system is difficult to control. The best case is m/M and l large.

For $T_{u\theta}$ and T_{uy} a larger l gives a smaller p so the system is easier to stabilize. — Design Constraints —

36

Laboratoire

y

x

M

d'Automatique

m

Analytic Constraints

The Waterbed Effect

Lemma: For every point $s_0 = \sigma_0 + j\omega_0$ with $\sigma_0 > 0$,

$$\log|S_{mp}(s_0)| = \frac{1}{\pi} \int_{-\infty}^{\infty} \log|S(j\omega)| \frac{\sigma_0}{\sigma_0^2 + (\omega - \omega_0)^2} d\omega$$

Theorem: Suppose that *P* has a zero at *z* with Re z > 0 and:

$$M_1 := \max_{\omega_1 \le \omega \le \omega_2} |S(j\omega)| \qquad M_2 := ||S||_{\infty}$$

Then there exist positive constants c_1 and c_2 , depending only on ω_1, ω_2 and z, such that :

$$c_1 \log M_1 + c_2 \log M_2 \ge \log |S_{ap}^{-1}(z)| \ge 0$$

Theorem (The Area Formula): Assume that the relative degree of L is at least 2. Then

$$\int_0^\infty \log |S(j\omega)| d\omega = \pi(\log \mathbf{e}) \sum_i \operatorname{Re} p_i$$

where $\{p_i\}$ denotes the set of poles of L in Re s > 0.

Design Constraints

Laboratoire

Loopshaping

Objective: Given P, W_1 and W_2 find controller C providing internal stability and robust performance:

$$\| \left| W_1 S \right| + \left| W_2 T \right| \|_{\infty} < 1 \quad \text{or} \quad \Gamma(j\omega) := \left| \frac{W_1(j\omega)}{1 + L(j\omega)} \right| + \left| \frac{W_2(j\omega)L(j\omega)}{1 + L(j\omega)} \right| < 1 \qquad \forall \omega$$

Idea: Find graphically $L(j\omega)$ satisfying the above condition and then compute C = L/PNote that we assume P is minimum phase and stable.

We have: $\Gamma|1 + L| = |W_1| + |W_2L|$ and $|1 - |L|| \le |1 + L| \le 1 + |L|$ $\Rightarrow \frac{|W_1| + |W_2L|}{1 + |L|} \le \Gamma \le \frac{|W_1| + |W_2L|}{|1 - |L||}$

So if $|W_1| + |W_2L| < |1 - |L|| \Rightarrow \Gamma < 1$:

In low frequencies $|L| > 1 \Rightarrow |L| > \frac{|W_1| + 1}{1 - |W_2|} \simeq \frac{|W_1|}{1 - |W_2|} |W_1| \gg 1 > |W_2|$

In high frequencies
$$|L| < 1 \Rightarrow |L| < \frac{1 - |W_1|}{1 + |W_2|} \simeq \frac{1 - |W_1|}{|W_2|} |W_2| \gg 1 > |W_1|$$

Robust Control

Laboratoire

Procedure

step 1: Plot two curves on log-log scale:

 $\text{ at LF } \left(|W_1| > 1 > |W_2| \right) \quad \frac{|W_1|}{1 - |W_2|} \quad \text{ and at HF } \quad \left(|W_2| > 1 > |W_1| \right) \quad \frac{1 - |W_1|}{|W_2|}$

step 2: Fit the graph of |L| on the same plot such that:

- at low frequency it lies above the first curve and also $\gg 1$
- at high frequency it lies below the second curve and $\ll 1$
- at very high frequency let it roll off at least as fast as does |P| (so C is proper)
- near crossover frequency do a smooth transition, keeping the slope as gentle as possible. Because the slope of |L| determines the phase of L (Bode's integral):

$$\angle L(j\omega_0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d \ln |L|}{d \nu} \ln \coth \frac{|\nu|}{2} d\nu \quad \text{where } \nu = \ln(\omega/\omega_0)$$

The steeper the graph of L near the crossover frequency, the smaller the value of $\angle L$ and larger the phase margin

step 3: Get a stable, minimum-phase TF for L such that L(0) > 0 and compute C = L/PLoopshaping

Laboratoire

Example

Assume that the relative degree of P equals 1. Find L for robust performance if the objective is to track sinusoidal signals over the frequency range from 0 to 1 rad/s and the weighting function W_2 is:

$$W_2(s) = \frac{s+1}{20(0.01s+1)}$$

We can define W_1 as follows (in loopshaping design it is not necessary to have a rational TF for W_1):

$$|W_1(j\omega)| = \begin{cases} a & 0 \le \omega \le 1 \\ 0 & \text{else} \end{cases}$$
 The larger the value of a , the smaller the tracking error

• LF ($|W_1| > 1$): $\omega < 1$ HF ($|W_2| > 1$): $\omega \ge 20$

• Plot
$$\frac{|W_1|}{1-|W_2|}$$
 in LF ($\omega < 1$) and $\frac{1-|W_1|}{|W_2|}$ in HF ($\omega > 20$)

• Choose
$$L = \frac{b}{s+1}$$
 and find b such that in HF $|L| \le \frac{1-|W_1|}{|W_2|} = \frac{1}{|W_2|} \iff |b| \le 20$)

• Find the maximum value of a such that in LF $|L| \geq \frac{|W_1|}{1 - |W_2|} = \frac{a}{1 - |W_2|} \Rightarrow a = 13.15$

Loopshaping

40

Laboratoire

Model Matching

Objective: Given $T_1(s)$ and $T_2(s)$, stable proper transfer functions, find a stable Q(s) to minimize $||T_1 - T_2Q||_{\infty}$ **Trivial case:** If T_1/T_2 is stable then the unique optimal Q is T_1/T_2 and

 $\gamma_{\mathsf{opt}} = \min \|T_1 - T_2 Q\|_{\infty} = 0$

Laboratoire

d'Automatique

41

Simplest nontrivial case: T_2 has only one RHP zero at $s = s_0$. Then by the maximum modulus theorem:

$$\|T_1 - T_2 Q\|_{\infty} \ge |T_1(s_0) - T_2(s_0)Q(s_0)| = |T_1(s_0)| \Rightarrow \gamma_{\text{opt}} \ge |T_1(s_0)|$$
Note that $Q = \frac{T_1 - T_1(s_0)}{T_2}$ is stable and leads to $\gamma_{\text{opt}} = |T_1(s_0)|$.
Example: $T_1(s) = \frac{4}{s+3}$, $T_2(s) = \frac{s-2}{(s+1)^3} \Rightarrow Q = \frac{T_1 - T_1(2)}{T_2} = -\frac{4(s+1)^3}{5(s+3)}$
Robust Control

Nevanlinna-Pick Problem

Problem: Let $\{a_1, \ldots, a_n\}$ be a set of points in the open RHP and $\{b_1, \ldots, b_n\}$ a set of distinct points in complex plane. Find a stable, proper, complex-rational function *G* satisfying:

 $||G||_{\infty} \leq 1$ and $G(a_i) = b_i, \quad i = 1, \dots, n$

Solvability: The NP problem is solvable iff the $n \times n$ Pick matrix Q, whose ijth element is $\frac{1 - b_i \overline{b_j}}{a_i + \overline{a_j}}$ is positive semidefinite ($Q \ge 0$). Note that Q is Hermitian ($Q = Q^*$ where Q^* is the complex conjugate transpose of Q). $Q \ge 0$ iff all its eigenvalues are ≥ 0 .

Mobius Function: A Mobius function has the form:

$$M_b(z) = \frac{z-b}{1-z\overline{b}} \quad \text{ where } |b| < 1$$

• M_b has a zero at z = b and a pole at $z = 1/\overline{b}$ so M_b is analytic in open unit disk..

• M_b maps the unit disk onto the unit disk and the unit circle onto the unit circle.

• The inverse map
$$M_b^{-1} = \frac{z+b}{1+z\overline{b}} = M_{-b}$$
 is a Mobius function too.

Model Matching

42

Laboratoire

Nevanlinna-Pick Problem

NP problem for n = 1: Find a stable, proper G(s) such that $||G||_{\infty} \leq 1$ and $G(a_1) = b_1$ where $|b_1| \leq 1$ and Re $a_1 > 0$.

Case 1 $|b_1| = 1$: The unique solution is $G(s) = b_1$.

Case 2 $|b_1| < 1$: The set of all solutions is:

 $\{G: G(s) = M_{-b_1}[G_1(s)A_{a_1}(s)], G_1 \in \mathcal{CRH}_{\infty}, \|G_1\|_{\infty} \le 1]\}$

where the all-pass function $A_a(s) := \frac{s-a}{s+\overline{a}}$

Example: For $a_1 = 2$ and $b_1 = 0.6$ we have: $G(s) = \frac{G_1(s)\frac{s-2}{s+2} + 0.6}{1 + 0.6G_1(s)\frac{s-2}{s+2}}$

$$G_1(s) = 1$$
 results in $G(s) = \frac{s - 0.5}{s + 0.5}$

Remark 1: If G_1 is an all-pass function, so is G

Remark 2: When a_i are the complex-conjugate pairs, if $G = G_R + jG_I$ is the solution of the NP problem then G_R is also a solution to the NP problem.

Model Matching

43

Laboratoire

Nevanlinna-Pick Problem

Consider the NP problem with n points:

Case 1 $|b_1| = 1$: $G(s) = b_1$ is the unique solution (and hence $b_1 = b_2 = \cdots = b_n$).

Case 2 $|b_1| < 1$: Pose the NP' problem with n - 1 data points: $\{a_2, \ldots a_n\}$ and $\{b'_2, \ldots, b'_n\}$ where $b'_i := M_{b_1}(b_i)/A_{a_1}(a_i)$ $i = 2, \ldots, n$

Lemma: The set of all solutions to the NP problem is $G(s) = M_{-b_1}[G_1(s)A_{a_1}(s)]$ where $G_1(s)$ ranges over the solutions to the NP' problem.

Example: Consider the NP problem with $a = \{1, 2\}$ and $b = \{1/2, 1/3\}$.

Solvability: The problem is solvable, because

$$Q = \begin{pmatrix} \frac{1-b_1^2}{2a_1} & \frac{1-b_1b_2}{a_1+a_2} \\ \frac{1-b_2b_1}{a_2+a_1} & \frac{1-b_2^2}{2a_2} \end{pmatrix} = \begin{pmatrix} 3/8 & 5/18 \\ 5/18 & 2/9 \end{pmatrix} \Rightarrow eig(Q) = \begin{bmatrix} 0.5867 & 0.0105 \end{bmatrix} \Rightarrow Q \ge 0$$

NP' problem:
$$a_2 = 2, b'_2 = \frac{\frac{b_2 - b_1}{1 - b_2 b_1}}{\frac{a_2 - a_1}{a_2 + a_1}} = \frac{-0.2}{1/3} = -0.6 \Rightarrow G_1(s) = \frac{\frac{s - 2}{s + 2} - 0.6}{1 - 0.6\frac{s - 2}{s + 2}} = \frac{s - 8}{s + 8}$$

NP problem: $G(s) = \frac{\frac{s - 8}{s + 8}\frac{s - 1}{s + 1} + \frac{1}{2}}{1 + \frac{1}{2}\frac{s - 8}{s + 8}\frac{s - 1}{s + 1}} = \frac{s^2 - 3s + 8}{s^2 + 3s + 8}$

Model Matching

Laboratoire

Model Matching Problem

Find \boldsymbol{Q} such that

$$\gamma_{\text{opt}} = \min_{\gamma} \{ \|T_1 - T_2 Q\|_{\infty} \le \gamma \}$$
 Define: $G = \frac{1}{\gamma} (T_1 - T_2 Q)$

We find first G such that $||G||_{\infty} \leq 1$ then we compute $Q = \frac{T_1 - \gamma G}{T_2}$. However, to ensure the stability of Q, $T_1 - \gamma G$ should contain the RHP zeros of T_2 (i.e. z_i), that is:

$$\gamma G(z_i) = T_1(z_i) \Rightarrow G(z_i) = \frac{1}{\gamma} T_1(z_i)$$

This is a NP problem and γ_{opt} is the smallest γ for which the problem has a solution. That is, the associated Pick matrix is positive semidefinite. $A - \gamma^{-2}B \ge 0$ where :

$$A_{ij} = \frac{1}{z_i + \overline{z_j}} \qquad B_{ij} = \frac{T_1(z_i)\overline{T_1(z_j)}}{z_i + \overline{z_j}}$$

Lemma: γ_{opt} equals the square root of the largest eigenvalue of the matrix $A^{-1/2} B A^{-1/2}$.

Laboratoire

Model Matching Problem

Procedure: Given T_1 and T_2 find a stable Q to minimize $||T_1 - T_2Q||_{\infty}$ (T1=tf(num,den))

Step 1: Determine z_i the zeros of T_2 in Res > 0. zz=zero(T2); z=zz(find(real(zz)>0))

Step 2: Form the matrices A and B:

$$A_{ij} = \frac{1}{z_i + \overline{z_j}} \qquad B_{ij} = \frac{T_1(z_i)\overline{T_1(z_j)}}{z_i + \overline{z_j}}$$

Step 3: Compute γ_{opt} as the square root of the largest eigenvalue of the matrix $A^{-1/2} B A^{-1/2}$. gamma=sqrt(max(eig(inv(sqrtm(A))*B*inv(sqrtm(A)))))

Step 4: Find G, the solution of the NP problem with data:

$$z_1 \qquad \dots \qquad z_n$$

 $\gamma_{\mathsf{opt}}^{-1}T_1(z_1) \qquad \dots \qquad \gamma_{\mathsf{opt}}^{-1}T_1(z_n)$

Step 5: Set $Q = \frac{T_1 - \gamma_{opt}G}{T_2}$ Q=minreal((T1-gamma*G)/T2,0.01)

Model Matching

46

Laboratoire

Model Matching Problem

State-Space Procedure:

Step 1: Factor T_2 as the product of an all-pass T_{2ap} and a minimum phase factor T_{2mp}

Step 2: Define $R := \frac{T_1}{T_{2ap}}$ and factor R as $R = R_1 + R_2$ with R_1 strictly proper with all poles in

RHP and $R_2 \in \mathcal{H}_{\infty}$ and find a minimum realization of $R_1(s) = \left| \begin{array}{c|c} A & B \\ \hline C & 0 \end{array} \right|$

Step 3: Solve the Lyapunove equations:

$$AL_c + L_c A' = BB'$$
$$A'L_o + L_o A = C'C$$

Step 4: Find the maximum eigenvalue λ^2 of $L_c L_o$ and a corresponding eigenvector w.

Step 5: Define:
$$f(s) = \begin{bmatrix} A & w \\ \hline C & 0 \end{bmatrix}$$
 $g(s) = \begin{bmatrix} -A' & \lambda^{-1}L_ow \\ \hline B' & 0 \end{bmatrix}$

Step 6: Then $\gamma_{\text{opt}} = \lambda$ and $Q = (R - \lambda \frac{f(s)}{g(s)})/T_{2mp}$

Model Matching

Laboratoire

Design for Performance

Objective: Find a proper C for which the feedback system is internally stable and $||W_1S||_{\infty} < 1$ **Lemma:** If G is stable and strictly proper, then $\lim_{\tau \to 0} ||G(1-J)||_{\infty} = 0$ where $J(s) = \frac{1}{(\tau s + 1)^k}$

P and P^{-1} stable: In this case the set of all stabilizing controller is:

$$C = \frac{Q}{1 - PQ} \qquad Q \in \mathcal{H}_{\infty} \quad \text{and} \quad W_1 S = W_1 (1 - PQ)$$

Clearly, $Q = P^{-1}$ is stable but not proper, so let's try $Q = P^{-1}J$ to make it proper. Then $W_1S = W_1(1-J)$ whose ∞ -norm is less than 1 for sufficiently small τ . P^{-1} stable:

- Do a coprime factorization of $P = N/M, \quad NX + MY = 1$
- Set $J = (\tau s + 1)^{-k}$ with k = the relative degree of P
- Choose τ so small that $\|W_1 M Y(1-J)\|_{\infty} < 1$
- Set $Q = Y N^{-1} J$ and C = (X + MQ)/(Y NQ)

Robust Control

Laboratoire

P^{-1} Unstable (General Case)

Assumptions: P has no poles or zeros on the imaginary axis, only distinct poles and zeros in the RHP and at least one zero in the RHP. W_1 is stable and strictly proper.

Procedure:

Step 1: Do a coprime factorization of P = N/M, NX + MY = 1

Step 2: Find a stable improper Q_{im} such that:

$$\|W_1 S\|_{\infty} = \|W_1 M (Y - NQ_{\rm im})\|_{\infty} < 1$$

It is a standard model matching problem that can be solved using the NP algorithm.

Step 3: Set $J = \frac{1}{(\tau s + 1)^k}$ with k = large enough that Q is proper and τ small enough that

$$|W_1 M (Y - NQ_{\mathsf{im}}J)||_{\infty} < 1$$

Step 4: Set $Q = Q_{im}J$ Step 5: Set C = (X + MQ)/(Y - NQ)

49

Design Example

Flexible Beam: Consider the following simplified plant transfer function:

$$P(s) = \frac{-6.47s^2 + 4.03s + 176}{s(5s^3 + 3.57s^2 + 140s + 0.093)} \begin{cases} \text{zeros} & -4.91 & 5.53 \\ \text{poles} & 0 & -0.0007 & -0.356 \pm 5.27j \end{cases}$$

Performance Specification: Settling time ≈ 8 s and overshoot $\leq 10\%$

Assume that the ideal T(s) is a standard second-order system:

$$T_{\mathsf{id}}(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \qquad \frac{4.6}{\zeta\omega_n} \approx 8 \qquad \exp\left(\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}\right) = 0.1 \Rightarrow \zeta = 0.6 \quad \omega_n = 1$$

Then the ideal sensitivity function is $S_{\mathsf{id}}(s) = 1 - T_{\mathsf{id}}(s) = \frac{s(s+1.2)}{s^2 + 1.2s + 1}$
We take the weighting function $W_1(s)$ to be $S_{\mathsf{id}}^{-1}(s)$:
 $W_1(s) = \frac{s^2 + 1.2s + 1}{s(s+1.2)} \xrightarrow{\text{stable, strictly proper}} W_1(s) = \frac{s^2 + 1.2s + 1}{(s+0.0001)(s+1.2)(0.0001s+1)}$

Caboratoire

Design Example

Step 1: P(s) has a pole on the imaginary axis (s = 0) so we perturb P to fix the problem (we add 10^{-6} to the denominator)

Laboratoire

d'Automatique

Step 2: The model matching problem is to minimize: $||W_1S||_{\infty} = ||W_1(1 - PQ_{\text{im}})||_{\infty}$ P has only one RHP zero at 5.53, thus $\min ||W_1(1 - PQ_{\text{im}})||_{\infty} = |W_1(5.53)| = 1.02$ and the specification is not achievable.

Step 3: Let us scale
$$W_1$$
 as $W_1 := \frac{0.9}{1.02} W_1$. Then the optimal $Q_{\text{im}} = \frac{W_1 - 0.9}{W_1 P}$
Step 4: Set $J(s) = \frac{1}{(\tau s + 1)^3}$ and compute $||W_1(1 - PQ_{\text{im}}J)||_{\infty}$ for decreasing values of τ
 $\frac{\tau \quad \infty - \text{norm}}{0.1 \quad 1.12}$
 $0.05 \quad 1.01$
 $0.04 \quad 0.988$
Step 5: $C = \frac{Q}{1 - PQ} = \frac{(W_1 - 0.9)J}{W_1(1 - J) + 0.9J}P^{-1}$

2-Norm Minimization

Objective: Given P and W, find a proper stabilizing controller to minimize the 2-norm of a weighted closed-loop transfer function: e.g. $\min ||WPS||_2$

Define: The subspace of functions in \mathcal{L}_2 that are analytic in the open RHP (all poles with $\operatorname{Re} s \geq 0$) is the orthogonal complement of \mathcal{H}_2 and is denoted by \mathcal{H}_2^{\perp} . Every function $F \in \mathcal{L}_2$ can be expressed as $F = F_{st} + F_{un}$ where $F_{st} \in \mathcal{H}_2, F_{un} \in \mathcal{H}_2^{\perp}$

Lemma: If $F \in \mathcal{H}_2$ and $G \in \mathcal{H}_2^{\perp}$, then $\|F + G\|_2^2 = \|F\|_2^2 + \|G\|_2^2$

Problem: Obtain $Q \in \mathcal{H}_{\infty}$ to minimize $\|WPS\|_2 = \|WNY - WN^2Q\|_2$

Idea: Factor $U := WN^2 = U_{ap}U_{mp}$, then we have:

$$|WNY - WN^{2}Q||_{2}^{2} = ||WNY - U_{ap}U_{mp}Q||_{2}^{2} = ||U_{ap}^{-1}WNY - U_{mp}Q||_{2}^{2}$$
$$= ||(U_{ap}^{-1}WNY)_{un} + (U_{ap}^{-1}WNY)_{st} - U_{mp}Q||_{2}^{2}$$
$$= ||(U_{ap}^{-1}WNY)_{un}||_{2}^{2} + ||(U_{ap}^{-1}WNY)_{st} - U_{mp}Q||_{2}^{2}$$

which leads to: $Q_{\text{im}} = U_{\text{mp}}^{-1}(U_{\text{ap}}^{-1}WNY)_{\text{st}}$ and the minimum of the criterion: $||(U_{\text{ap}}^{-1}WNY)_{\text{un}}||_2$ To get a proper suboptimal Q, Q_{im} should be rolled off at high frequency.

52

aboratoire

Optimal Robust Stability

Objective: Given $P_{\epsilon} = (1 + \Delta W_2)P$ where $\|\Delta\|_{\infty} \leq \epsilon$, find the controller *C* that stabilizes every plant in P_{ϵ} and maximizes the stability margin:

$$\gamma_{\inf} := \inf_{C} \|W_2 T\|_{\infty} \quad \epsilon_{\sup} = 1/\gamma_{\inf}$$

Procedure: Input P and W_2

Step 1: Do a coprime factorization of P = N/M, NX + MY = 1

Step 2: Solve the model-matching problem:

 $\|W_2 T\|_{\infty} = \|W_2 N (X + MQ)\|_{\infty} \quad \text{with} \quad T_1 = W_2 N X \quad T_2 = -W_2 N M$

and find $Q_{\rm im}$ and $\epsilon_{\rm sup}=1/\gamma_{\rm opt}$

Step 3: Let $\epsilon < \epsilon_{sup}$ and set $J(s) = (\tau s + 1)^{-k}$ where k is large enough that $Q_{im}J$ is proper and τ small enough that:

$$\|W_2 N(X + MQ_{\mathsf{im}}J)\|_{\infty} < \frac{1}{\epsilon}$$

Step 4: Set $Q = Q_{\text{im}}J$ and C = (X + MQ)/(Y - NQ)

Robust Control

53

Laboratoire

Robust Performance Problem

Objective: Given P, W_1, W_2 find a proper controller C so that the feedback system for the nominal plant is internally stable and that:

 $\| |W_1 S| + |W_2 T| \|_{\infty} < 1$

This problem cannot be solved !

Modified Problem: Consider the following inequality:

 $\||W_1S|^2 + |W_2T|^2\|_{\infty} < 1/2$

The robust performance problem with this inequality can be converted to a model matching problem (See Feedback Control Theory chapter 12.3)

This inequality is a sufficient condition for the inequality in the exact problem.

General framework: The inequality in the modified problem can be presented also as:

$$\left|\begin{array}{c} W_1 S \\ W_2 T \end{array}\right|_{\infty} = \max_{\omega} \sigma_{\max} \left[\begin{array}{c} |W_1 S(j\omega)| \\ |W_2 T(j\omega)| \end{array}\right] < \frac{1}{\sqrt{2}}$$

Robust Control