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1. Introduction 

In most of the modern drive systems with alternating current (AC) machines which require 
rotor speed control, the main task is to design and develop different controllers, able to 
achieve high dynamic performance and to maintain the system response within specified 
tolerances, for a wide range of speed and torque values, for parameter variations and for 
external perturbations like: total inertia moment, friction coefficient, etc. (Leonhard, 1985). 
Various concepts for controlled AC drives without speed sensor (sensorless control) have 
been developed in the past few years (Holtz, 2002; Rajashekara et al., 1996; Vas, 1998). 
Ongoing research has focused on providing sustained operation at high dynamic 
performance at very low speed, including zero speed and zero stator frequency (Akatsu & 
Kawamura, 2000; Holtz & Quan, 2002; Hurst et al., 1998; Lascu et al., 2005). In speed 
sensorless control, motor parameter sensitivity is an important and large discussed and 
analyzed problem (Akpolat et al., 2000; Toliyat et al., 2003). In many existing speed 
identification algorithms, the rotor speed is estimated based on the rotor flux observer. 
Therefore, these algorithms are, to a certain degree, machine parameter dependent. The 
solution proposed in this chapter is to apply robust control to sensorless AC drive systems.  
The designing procedure of the speed controllers can be very difficult, if a complex 
mathematical model of the plant (here of the AC machine) is used. But robust controllers 
keep the dynamic and stability performance of the controlled system even if structured or 
unstructured uncertainties appear. That's why, robust speed controllers can be designed by 
using simplified models of the AC machines, and have to be used in a complex structure 
based on the field-oriented control (FOC) principle (Birou & Pavel, 2008). Thus, the 
requirements of a digital control application are: a flexible control structure, reduced 
hardware configuration and a good dynamic behavior of the controlled process. The last 
two aspects can be realized by finding a compromise between the reducing of the control 
cycle times and the increasing of controller complexity. For industrial applications the 
hardware costs are also important.  
Two different algorithms will be presented to estimate the rotor speed in this chapter, one 
based on the model reference adaptive system (MRAS) and the other on a full order 
observer (FOO). The speed identification algorithms, the designing procedure of the optimal 

H controller and the robust control of the sensorless driving system will be accomplished 
by simulated and experimental results. Based on the results obtained, advantages and 
disadvantages of the proposed control structures will be discussed. 
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2. Control of AC machines 

Electrical machines are the major and most efficient source to generate motion for a large 

number of applications in a wide range of power (from μW to several hundred of MW). 

Among all types of electromechanical converters, the AC machines are now, from fare, the 

most produced and used in variable speed applications, because of their high 

performance/cost ratio. If for low power applications (i.e. servo drives), generally 

permanent magnet synchronous machines (PM-SM) and for very high powers electrical 

excited synchronous machines (SM) are used, the largest number of applications use rotor 

cage induction machines (IM) because of their higher mechanical robustness and lower cost 

(Birou et al., 2010; Holtz, 2002; Kelemen & Imecs, 1991; Leonhard, 1985; Moreira et al., 1991; 

Wieser, 1998; Trzynadlowski, 1994). The main disadvantage of using in the past the IM as 

motion source in variable speed applications, namely the difficulty to precisely control 

speed and/or torque, is now compensate by using: 

- power electronics in wide power range (voltage-source or current-source converters), to 
fed AC machines with variable amplitude/frequency power signals (voltage or 
current); 

- modern control methods, like field oriented based vector control (VC) or direct torque 
control (DTC) strategies of AC drive systems; 

- high frequency, real-time, digital computing systems, based on microcontrollers (μC) or 
digital signal processors (DSP), able to implement an perform the designed strategies 
and control methods. 

Depending on the dynamic performances, energy efficiency demands and final cost of the 
electrical drive system, following control strategies can be used: 
- scalar control (SC) of AC machines, considering the two torque producing components 

of the electrical machine (the current and the electromagnetic flux) only as scalar 
variables, without information about their phasorial positions. The current, speed or 
position control loops are able to impose good enough dynamic performances for a 
large number of applications; 

- vector control (VC) of AC machines, based on the field-oriented control (FOC) 
principle, where the motion control loop (position, speed or torque loop) and the 
magnetizing control loop (flux loop) are decoupled by using the flux phasor (vector) as 
reference system and splitting the current phasor into an active and a reactive 
component. This control strategy is the most computer time and effort demanding 
(revealed also in the costs of the system) but ensure the best dynamic performances and 
energy efficiency in variable speed control; 

- direct torque control (DTC) of AC machines, used widely in variable torque 
applications like electric traction systems, based on the direct control of the torque 
producing current, considering the limited number of possible topologic configurations 
of one of the power converter components, namely the pulse width modulated (PWM) 
inverter. 

In the designing procedure of the controllers, it is important to know the transfer function of 
the process. A transfer function which describes exactly the behavior of the AC machine is 
almost impossible to obtain, because of the nonlinearities of the mathematical model of the 
machine. Consequently a simplified transfer function of the process is used to design the 
speed controller. Then, the control law is introduced in the not simplified and nonlinear 
"original" control structure, in order to simulate and analyze the dynamic behavior of the 
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mechanical and electrical variables (speed, torque, currents, voltages, etc.). In our drive 
system, the simplified transfer function describes the linear model of the AC machine 
corresponding to a steady state working point and is presented in Fig. 1. A vector control 
strategy will be applied to control the variable speed electrical drive systems discussed in 
this chapter. For the proposed FOC of the AC machine, the rotor flux vector is considered to 
be the reference system. In this case the speed controller has as input the speed error Δnr and 
computes the control variable as the active component of the stator current i*Active=isqλr, as 
described by Equation 1. 
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Fig. 1. Simplified speed close-loop control structure of an ac machine. 

Using the torque producing expression: 
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with Lm and Lr the magnetic (mutual) and rotor inductance respectively, zp the number of 
pole pairs and the motion equation 

 e r r rm = Js + B + m  ,  (2) 

where J is the total moment of inertia, B the friction coefficient, s the derivate symbol and ωr 
the rotor angular velocity 
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with ω the electrical angular velocity and nr the rotor speed. The simplified transfer function 
of the rotor-flux oriented AC machine can be written: 
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If we apply to the speed control loop presented in Fig. 1 the module criteria and consider the 
non compensable component described by the dead-time transfer function: 
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the speed controller will have a transfer function as follows: 

   1
1PI P

i

C s K
T s

      .  (6) 

It results a classical PI controller, having Kp - the proportional coefficient and Ki=Kp/Ti - the 
integrator coefficient. Considering the two first-order integrator type transfer functions of 

the direct loop having constant times of different ranges, with m  Tm , 

 ( )m m mT s T s
m mK e K e   ,  (7) 

the equivalent closed-loop transfer function of Fig.1 becomes: 
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3. Sensorless control of AC machines based on adaptive identification 

The common accepted definition of sensorless control for electrical drives means the need of 
speed and/or torque control of an electrical machine without using any mechanical speed or 
position measuring device placed on the rotor ax. Recently, sensorless control of AC drives 
is a prolific research area and many viable solutions have been proposed and implemented. 
It combines favorably the cost advantage with increased reliability due to the absence of the 
mechanical sensor and its communication cable. Speed sensorless AC drives are today well 
established in industrial applications where no persistent operation at lower speed occurs. 
The main philosophy in sensorless control is to use the electrical machine itself as a “sensor” 

by offering the necessary information able to estimate its position or speed (Consoli et al., 

2003; Lorenz 2010). Several techniques have been developed and published in application 

with both FOC and DTC of AC drives. A first category comprises signal injection 

techniques, based on spectral analysis which use either the natural (if it exists), or an 

artificial created, anisotropy of the magnetic field of the AC machine (Briz et al., 2004; 

Degner & Lorenz, 2000; Holtz 2006; Kim & Lorenz, 2004). By injecting appropriate voltage 

signals in the stator (mainly high frequency signals) and analyzing the obtained current or 

voltage harmonics, valuable information can be extracted to determine the rotor position. A 

second category comprises techniques which estimate the rotor position/speed starting 

from the real process (drive system) and from the mathematical model of the machine by 

using different identification algorithms, like: 

- open-loop state estimation using simple models and improved schemes with 

compensation of nonlinearities and disturbances (Holtz & Quan, 2002); 

- model reference adaptive system based techniques (Birou & Pavel, 2008; Cirrincione & 

Pucci, 2005; Landau, 1979; Lascu et al., 2005); 

- adaptive and robust observer (mainly Kalman filter or Lueneberger observers) based on 

fundamental excitation and advanced models (Caruana et al., 2003; Hinkkanen, 2004; 

Jansen et al., 1994); 

- estimators using artificial intelligence, in particular fuzzy-logic systems, neural 

networks and genetic algorithms (Zadeh, 1996) .  
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The proposed solution is based on a FOC structure with AC machine, using for speed 
estimation a model reference adaptive system (MRAS) algorithm and a full order observer 
(FOO) respectively, like presented in Fig. 2. 
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Fig. 2. Block diagram of the speed sensorless vector control of the induction machine 

3.1 Model reference adaptive system algorithm for speed identification 

In order to achieve sensorless control, the rotor speed estimation has to be indirectly derived 
based on the measured stator voltages and currents. Therefore, a mathematical model of the 
induction machine is needed. The model is described in the stationary (stator) reference 
frame. The block diagram of the MRAS speed identification is shown in Fig. 3. It contains a 
reference model, an adjustable model and an adaptive algorithm. Both models have as 
inputs the stator voltages and currents. The reference model outputs a performance index p 

and the adjustable model a performance index p


. The difference between the two values is 

used by the adaptive algorithm to converge the estimated speed   to its real value. 
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Fig. 3. Model reference adaptive system algorithm (MRAS) for speed identification. 

In order to estimate the rotor speed accurately, the performance index of the reference 
model has to be robust over the entire speed range and insensitive to the machine 
parameters. According to the equations of the induction machine, we can obtain the value of 
the rotor flux phasor based on stator equations: 
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where Lσ is the equivalent inductance and Rs is the stator resistance. The same rotor flux 
phasor based on the rotor equations: 
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where τr=Lr/Rr is the rotor time constant. Considering the electromotive induced voltage 
(back EMF) being: 
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and decoupling Equation 9 on the stationary (stator-fixed) reference frame d-q, we obtain: 
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Considering a formal magnetizing current 
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and decupling Equation 10 on the fix reference frame d-q, we have: 
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The reference model is described based on Equations 12 and 13 and is parameter 
dependent, namely with the stator resistance Rs and the equivalent inductance L. In the 
reference model there are no integral operations, so the model can be used also for low 
speed estimation. To improve the robustness of the reference model, one of the two 
machine parameters can be avoided by choosing an optimal way to define the reference 
model performance index p. To eliminate the effect of the inductance L, Equations 12 and 
13 are cross multiplied by the derivates of the two stator current components and we 
obtain: 

 
sq sqsd sd

sd sq s sd sq

di didi di
p u u R i i

dt dt dt dt

        . (17) 

Equation 17 describes the performance index of the reference model. To obtain the 
performance index of the adjustable model, same mathematical operations applied to 
Equations 15 and 16 give: 
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having the two formal magnetizing current components described by: 
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Equation 17 is used for the reference model and Equation 18 for the adjustable model. The 
error between the two performance indexes 

 
^

p p    (21) 

is the input for the adaptive algorithm, see Fig. 3. This algorithm estimates the   rotor 

speed in order to converge the performance index of the adjustable model to the 

performance index of the reference model (converge the error  to zero). In designing the 
adaptive mechanism of the presented MRAS structure, it is necessary to ensure the stability 
of the control system and the convergence of the estimated speed to the real one. Based on 
the hyper-stability theory (Landau, 1979), following adaptive mechanism is used in order to 
guarantee the system stability: 

 
^

p iK K dt     , (22) 

where, Kp and Ki are the gain parameters of the adaptive algorithm, limited only by noise 

considerations and having for our control structure the particular values Kp=3 and Ki=10. 

The MRAS algorithm presented above can also be used for on-line identification of some 

parameter of the induction machine, namely the stator resistance, the equivalent inductance 

or the rotor time constant.  

3.2 Speed and rotor flux estimator based on a full order observer 

The speed estimation strategy with full order observer (FOO) is based on the fundamental 
excitation variables as information source, like presented in Fig. 4. The rotor speed estimator 

is based on comparing the stator current estimate value si


 to the actual stator current is and 

updating the estimated speed   such that the error is- si


 is minimized in some sense. This 

will be done by using a full-order observer for the estimated stator current, rotor flux and 
rotor speed, described by equations: 
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where  is the speed of the reference frame and k1, k2 and k3 are the gain parameters of the 
algorithm, calculated from the Ricatti equation.  
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Fig. 4. Full order observer (FOO), for speed and rotor flux estimation 

The speed estimator must converge significantly faster than the mechanical speed control 
loop in order to ensure good tracking. So, the dynamics of the speed estimator can be 
neglected as seen from the much slower flux and speed dynamics and thus it can be 
considered only that value of estimated speed and stator current which have converged to 
quasi steady-state values. The control structure based on the MRAS algorithm presented in 
3.1 will be implemented on a driving system, composed of an induction machine with the 
following main catalog values:  
- rated power   PN  2,2 kW,  
- rated speed   nN 1435 rpm.,  
- nominal stator current  IsN 4,9 A, 
- rated stator voltage  UsN 400V,  
- nominal load torque  MN 14,7 Nm.  
Simulated results of the MRAS algorithm are presented in Fig. 5, where the reference model 

performance index p, the adjustable model performance index p


 (Equations 17 and 18), and 

error ε (Equation 21) are for a starting process to the rated speed with rated load torque.  
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Fig. 5. The performance index of reference model p, adjustable model p


 and error index . 
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The simulated speed of this process, the estimated speed based on the MRAS algorithm and 
the speed error estimation are presented in Fig. 6. Problems that may occur by derivation of 
the measured stator currents can be avoided using specific digital algorithms.  
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Fig. 6. Rotor speed, estimated speed based on the MRAS algorithm and speed error for a 
starting process at rated speed with rated torque. 

Simulated results confirm that the advantage of using the MRAS algorithm, for the control 

of a sensorless driving system, is a high dynamic performance at speed and torque steps. 

The error of the estimated speed in the starting process is relative big, because of the 

sensitivity of the control structure with speed estimators to parameter variations (rotor time 

constant) and external perturbations (moment of inertia, friction coefficient). By modifying 

the gain parameters from Equation 22 we can avoid this, but we disturb the control 

performance parameters (overshooting, stationary error). So, increasing robustness of the 

sensorless control is needed. The proposed solution is to apply the robust control theory to 

the AC drive, by designing an optimal H controller, to ensure the stability and robustness 

performances of the driving system.  

4. Robust control of AC drives 

A control system is considered to be robust if it is insensitive to internal process parameter 
variations or external perturbations (McFarlene & Glover, 1990; Safonov, 1980). In driving 
systems with AC machines, the most sensible elements are: 
- rotor resistance or rotor time  constant because of their strong variation due to the inner 

temperature of the machine and because of their influence in the machine model; 
- mutual inductance (magnetic inductance) because of his nonlinearity (saturation effect); 
- total inertia moment of the system with possible nonlinear or even random variations 

(especially by robot arms); 
- load torque for a wide range of applications. 
The main goal of a robust controller is to compensate the effects introduced by the 
variations of the sensitive elements described above to the dynamic process of the controlled 
system 
The designing process of a robust controller may follow different methods, applying various 
robust control system synthesis techniques (Ball & Helton, 1993; Chiang & Safonov, 1992; 
Doyle et al., 1989; Morari & Zafiriou, 1990; Zames, 1996). The main methods are based on 
geometric-analytical, frequency domain or steady-state approaches like: Hardy space based, 
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optimal H2 and H techniques (Green & Limebeer, 1995; Ionescu et al., 1998; Kwakernaak, 
1993; Mita et al., 1998), linear quadratic optimal LQG (Kucera, 1993), LQG/LTR (Doyle et al., 

1989) or LQR (Chiang & Safonov, 1992) techniques and square root based  synthesis 

techniques (Apkarian & Morris, 1993). An optimal H technique will be used in this chapter 
for the robust control of the driving system because of the relative simple designing process 
of the controller and the high robust performances obtained (Bryson, 1996). The designing 
procedure for the optimal controller will start by describing the driving system with AC 
machine in steady state equations as a linear multivariable system. 

4.1 Mathematical model of the real driving system with AC machine 

Fig. 1 presents the closed loop control system of an AC drive. The controlled process is 
described by a simplified model P(s) of the AC machine (valuable for both the induction and 
the synchronous machine). The robust control problem is to design an optimal speed 
controller C(s) able to satisfy the robust-stability and robust-performance criteria of the 
controlled system. The difference between the real physical system (in our case the AC 
driving system) and his mathematical model, difference defined as mathematical 
uncertainty may have several causes, namely: 
- the AC driving system (like most of the real systems) is nonlinear, while the 

mathematical model is linear around a static working point, so the model exactly 
describes the process only around this working point; 

- simplification constrains in modeling the process (AC machine in our case) based on 
high number of variables and parameter involved; 

- process parameter variations and external perturbations are difficult to be exactly 
modeled; 

- dynamic behavior of the driving system can not be exactly modeled. 
The mathematical uncertainties can be structural uncertainties, based on parameter 
variations of the dynamic process like rotor time constant and nonstructural uncertainties, 
frequency dependent like magnetic saturation or external perturbations (moment of inertia, 

load torque). The study of system robustness based on the Hcontrol theory is based on 
describing the model uncertainty as transfer function (matrix) different from the nominal 
one. The most used methods to describe them are like additive uncertainties, multiplicative 
uncertainties or a superposition of both uncertainties, like presented in Fig. 7. Using them, 
the real process can be written based on the modeled one (nominal plant) as: 

 ( ) ( ) ( )N AP s P s s    (26) 

in the case of additive uncertainties, and : 

 ( ) ( ( )) ( )M NP s I s P s    (27) 

in the case of multiplicative uncertainties, where PN(s) is the nominal (rated) plant, P(s) is the 

real plant (perturbed process), A(s) is the additive uncertainty and M(s) is the 
multiplicative uncertainty. Analyzing the dynamic behavior of the process in frequency 
domain by using additive or multiplicative uncertainties, the model will describe better the 
real system in stationary frame or at lower frequencies and the uncertainties will increase at 
higher frequencies. 
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Fig. 7. Diagram of the controlled process using the additive and multiplicative uncertainty. 

4.2 Optimal H controller design for the driving system 

The extended H control theory is used to design a robust speed-control solution for AC 
driving systems. It has to satisfy the robust stability characteristics of the control structure as 
well as the dynamic performances of the driving system. Considering a Laplace transform 

matrix G(s)Cmxn of a multivariable system with n inputs and m outputs and  (G) the 

greatest singular value of matrix G, the Hnorm of G(s) can be defined as: 

 sup [ ( )]G G j


 
 
 . (28) 

For a single input-single output system the H norm of a transfer function can be defined as: 

 max ( )G G j   . (29) 

The H optimal control designing problem in the particular case of applying the small gain 
problem is to form an augmented plant of the process, P(s) like in Fig. 8, with the weighting 
functions W1(s), W2(s), W3(s) applied to the signals: error e, command u and output y 
respectively, so that the weighted (y11, y12, y13) and not weighted y2 system outputs can be 
defined as: 
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           
 (30) 

and the real, perturbed process P(s) can be described as: 
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Fig. 8. Structure of speed control system with weighted process.  
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Fig. 9. Robust H controller 

The second step of the robust control designing problem is to find an optimal stabilizing H 

controller having the structure presented in Fig. 9. The optimal stabilizing H controller is 
described by the control law: 

 2 2( ) ( ) ( )u s C s y s  (32) 

so that the infinity norm of the cost function Ty1u1, defined as: 

 
1

1 1 2

3

( ) ( )

( ) ( ) ( )

( ) ( )
y u

W s S s

T s W s R s

W s T s

       
 (33) 

is minimized and is less then one (Doyle et al., 1989; Kwakernaak, 1993): 

 111 uyT , (34) 

where 
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




            
. (35) 
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Considering the robust stability and robust performance criteria, the weighting functions for 

the optimal H controller are chosen and then the iterative computing process continues, 
until the norm condition is full fit. The performance design specifications of the speed 

control loop with the H controller are imposed in frequency domain (Ionescu et al., 1998; 
Morari & Zafiriou, 1990): 
- robust performance specifications: minimizing the sensitivity function S (reducing it at 

least 100 times to approximate 0.3333 rad/sec). 
- robust stability specifications: -40 dB/decade roll-off and at least -20dB at a crossover 

band of 100 rad/sec. 
According to them, following weighting functions have been considered to describe the 
perturbed AC drive system with variable moment of inertia and friction coefficient: 

 

2
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1
1

1
3

3

1 1 (3 1)
( )

( ) 100

1 150
( )

( ) 145

s
W s

W s

W s
W s s





      
,  (36) 

where  represents the actual step value. The iterative process continues, until the graphic 
representation in Bode diagram of cost function Ty1u1 reach its maximum value in the 

proximity of 0 dB axis. In our case, for =39,75 we obtain the infinite norm 

 1 1 0,9999y uT   .  (37) 

Respecting condition imposed by Equation 34 the corresponding H speed controller is: 

 
2

3 2

2327 22211 16495
( )

822951 548632 91442

s s
H s

s s s


     .  (38) 

The inverse weighting functions W1-1(s) and W3-1(s) and the sensitivity functions S(s) and 
T(s) are presented in Fig. 10. From the diagram results the influence of the weighting 
function W3-1(s) to limit the peak value of T(s) function. The output of the speed controller, 
i.e. the active current component, was limited.  
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Fig. 10. Weighting functions W1-1(s), W3-1(s) and sensitivity functions S(s) and T(s). 
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The logarithmic Bode diagram and the Nyquist diagram of the direct-loop transfer function 
of the weighted process are presented in Fig. 11. According to them we establish the 

following stability parameters: crossover band  153,7 rad./sec., stability margins: gain 
margin = 130,3 dB, phase margin = 86,8°. For the same performance and robust stability 
specifications, a great number of weighting functions described by Equation 36 can be 

chosen, so the solution of designing an optimal H controller is not unique (Chiang & 

Safonov, 1992; Zames, 1996). To analyze if the speed control structure with the H controller 
presented in Equation 38 is robust stable, we apply the stability theorem for a perturbation 
in the drive system, namely a highest variation of total inertia moment from Jmot to 10Jmot 
and of the friction coefficient  Bmot to 100*Bmot. The condition  

 ( ) ( ) 1s T sM    (39) 

must be tested, where ( )M s  represents the greatest multiplicative uncertainty for the 

nominal plant. 

4.2.1 Stability analyze for a variation from Jmot to 10Jmot 

Considering the calculus way of the transfer function of the process, a ten times growing of 
the inertial moment, practically means a ten time growing of the time constant of the fixed 
part. The transfer functions of the nominal process and of the disturbed process are: 
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, (40) 

Using Equation 27 and considering Tm=1,232 sec., the maximum multiplicative uncertainty 
in the case of ten times growing the inertial moment J, can be modeled: 
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Fig. 11. Direct-loop transfer function of the weighted process in Bode and Nyquist diagram. 
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Knowing the expression of the complementary sensibility function T(s), the condition of 
robust stability can be determined, and is: 

 ( ) ( ) 0,9359M s T s   . (42) 

Concluding, the control system with H controller remains robust stable for a variation of 10 
times of the total inertial moment of the system, related to the catalogue one. Fig. 12 shows 
the direct-loop transfer function Hd(s) family curves for the PI controller and for the optimal 

H, controller, at variations of the inertial moment of the synchronous motor, starting at  Jmot 
value, from 3, 5, 7 and 10 times of this value. As we can see from the presented graphs, at 
the variations of J, though the PI controller doesn’t go in instability, thus it is more sensitive 

at the parameter variations than the H controller. This shows a better robustness of the H 
optimal regulator. 

4.2.2 Stability analyze for a variation from Bmot to 100Bmot 

Considering that the largest variation of the friction coefficient of the mechanical system is 
100*Bmot catalogue value. A greater friction coefficient practically means a smaller value of 
the time constant as like of the amplification factor of the fixed part. Considering the above 
mentioned, the transfer functions of the nominal process and of the disturbed processes are: 
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. (43) 

Using Equation 27 and the time constant of the nominal process, the maximal multiplicative 

uncertainty, in the case of 100*Bmot friction coefficient, can be written as: 
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Fig. 12. Bode diagram of direct-loop transfer functions for PI (left) and H controller (right), 
at different inertia moment values. 
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The robust stability condition will be expressed as: 

 ( ) ( ) 0,9999M s T s   . (45) 

We can find that the control system with the H controller remains robust stable for a 100 
times variation of the friction coefficient.  

5. Simulated and experimental results 

Some results of the sensorless control of AC machines based on adaptive identification are 
presented in main paragraph 3. Because of its sensitivity to parameter variations and 
external perturbations, a robust solution for the speed controller was proposed and 
discussed in paragraph 4.  Simulated results of an AC drive system controlled by a robust 

optimal H controller (chapter 5.1) will demonstrate the advantage of using robust control 
in applications with permanent variation of system parameter or external perturbations, (i.e. 
robot arms, traction systems, etc.). Finally, some experimental results of a robust control 
system, with sensorless AC drive, based on adaptive identification, will be presented. 

5.1 Simulated results of robust controlled driving system with permanent magnet 
synchronous machine 

A variable speed, FOC structure, of the PM-SM with cancelled longitudinal reaction, fed by 
a PWM voltage source inverter is presented in Fig.13. The stator current vector split into 
components leads to the characteristic loops of a FOC system. Rotor position information is 
obtained from the encoder and rotor speed is computed. The control system was simulated 
in Matlab/Simulink. The speed controller was designed and simulated using more 

optimizations criteria, to be compared with. The designed optimal robust H controller was 
implemented (see Equation 33), a PI controller (see Equation 6) and an optimal H2 controller 

based on the same performance design specifications like the optimal robust H controller.  
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Fig. 13. Variable speed VC structure of PM-SM with different types of speed controller. 
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The power converter is a 1kW voltage source converter, composed by a diode rectifier  

and a PWM inverter. The PM-SM is a three phase machine, having following catalog  

values: 
- rated speed   nN 3000 rev/min, 

- rated torque   MN 1,7 Nm, 

- electromotive constant kE 110 V/(1000 rpm.), 

- rated power   PN 530 W, 

- motor constant  kM 1,05 Nm/A, 

- magnetic induction  B 1,3 T, 

- rated stator current  IN 1,6 A, 

- pole pairs   zp 3, 

- PM flux   ƹPM 0,2334 Wb, 

- d ax stator inductance  Lsd 0,049 H, 

- q ax stator inductance  Lsq 0,046 H, 

- stator resistence  Rs 10 ƺ, 

- inertia moment  Jmot 1,85*10-4 kgm2, 

- friction coefficient  Bmot 5*10-5 Nm(rad/sec)-1. 

Fig. 14 presents the simulated results for a speed control of the synchronous machine with 

the designed PI, H2, and H controller, having all parameters at the nominal value, for a 

starting process to the rated rotor speed with no load torque (left diagram) and with rated 

load torque (right diagram). In Fig. 15 the speed response is for a perturbed plant with total 

friction coefficient Btot=50Bmot for the same imposed speed step without (left) and with 

nominal load torque (right). The speed response for a similar simulation of a perturbed 

plant with total moment of inertia variation Jtot=11Jmot is presented in Fig. 16 for a no load 

start (left) and a rated load start (right).  

For the nominal plant the dynamic performances at a speed step are similar for all three 

controllers. It is normal to be so, because the controllers have been designed using a 

simplified model of the machine, working in the steady-state nominal point. The advantage 

of using optimal H robust controller is evident in the presented simulations when the 

nominal plant is perturbed, by changing the load torque, the total moment of inertia or the 

friction coefficient.  

Fig. 17 presents the speed response for a speed control of the synchronous machine with the 

designed PI, H2, and H controllers for a starting process at rated speed with no load 

followed at 0.3 sec. by a rated load step (1.7 Nm). Fig. 18 details the imposed torque step mr 

and the obtained electromagnetic torque me and dynamic torque mj. A starting process at 

rated speed, followed by a stopping process for the PM-SM without load and with rated 

load is presented in Fig. 19. A simulation of the starting process with low speed step is also 

presented in Fig. 20 for all three types of designed controllers.  

In conclusion, we consider that the H optimal robust controller ensures good dynamical 

performances and stability for a domain of variation large enough of the parameters that 

can be modified in the process. In applications, where electromechanical parameter 

variations or load perturbations appear (such as robot control), performant drive systems 

with AC machines can be considered, by using robust speed (or position) controllers. 
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Fig. 14. Starting process with PI, H2 and H controller for a nominal plant without load 
torque (left) and with rated torque (right). 
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Fig. 15. Starting process with PI, H2 and H controller for a perturbed plant (moment of 
inertia Jtot=11Jmot ) without load torque (left) and with rated torque (right). 
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Fig. 16. Starting process with PI, H2 and H controller for a perturbed plant (friction 
coefficient B=50Bmot) without load torque (left) and with rated torque (right). 
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Fig. 17. Speed response for speed and torque steps Fig. 18. Torque diagrams. 

 
 

time (sec)

nr (rev/min) 

H2,

PI

H 

 

 

 
time (sec)

nr (rev/min) 

H2 
PI 

H 

H 

PI 

H2 

 

Fig. 19. Starting and fast stopping process with PI, H2 and H controllers for a nominal plant 
with no load (left) and with rated load (right). 
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Fig. 20. Speed response at low speed step (300 rev/min) with PI, H2 and H controllers. 
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5.2 Experimental results of robust controlled sensorless driving system with 
induction machine and adaptive speed estimation  

The control unit is based on the fixed-point TMS320C50 Digital Motor Control Board 
developed by Texas Instruments. The complete schematic of the control architecture is 
presented in Fig. 21. It is composed of: 

 a high speed TDM type serial bus for interconnection with the master processor and 
with the other dedicated processors. 

 the control board (target hardware) consisting in a microcomputer, based on the 
TMS320C5x signal processor and the following dedicated modules: 

- a PWM unit controlled by the processor and realized in FPGA technologies, which 
generates the three output signals for the power converter; 

- a interfacing unit to the incremental encoder giving the position of the rotor (used to 
confirm the speed estimation algorithm), also implemented in FPGA technologies; 

- an analogic signal acquisition unit consisting in a A/D converter and an analogic 
multiplexer for 8 channels, used for the input of the stator currents and voltages. 

 the AC drive system composed by a frequency voltage source PWM converter with 
current reaction and a induction machine having following main parameters: 

- rated power   PN  2,2 kW,  
- rated speed   nN 1435 rpm.,  
- nominal stator current  IsN 4,9 A, 
- rated stator voltage  UsN 400V,  
- nominal load torque  MN 14,7 Nm.  

 a debugging computer interfaced to the target hardware through a serial RS232 driver 
and an emulation and debugging module XDS510. This computer will be used only in 
the software developing and debugging phase. 
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Fig. 21. Hardware structure of the robust controlled sensorless driving system with 
induction machine and adaptive speed estimation. 
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The three control loops (presented also in Fig. 13), namely: speed control loop, implemented 
with a robust controller; minor loop, necessary for the field-orientation based on the rotor flux 
and the stator current control loop of the PWM generator are software implemented. In order 
to obtain the best approach speed and accuracy a fixed point, fractional arithmetic was used. 
The program modules are:  main( ) the main loop realizing the hardware initialization and the 
communication functions with the main processor and the other dedicated processors; tint( ) 
interrupt handling routine executing the current control loop and minor control loop and 
int_4( ) interrupt handling routine executing the PWM current control loop. The TMS320C5x 
assembler language was used to achieve an effective software implementation for the main 
routine and ANSI-C language was used for the control routines tint and int_4. Library 
functions (in C or assembly language) are used for handling the incremental encoder, the A/D 
converter, the PWM control signal generator and the communication through the serial 
interface with the screen terminal. The interrupts are generated by programmable counters. So 

tint interrupt is generated by processor internal programmable counter and has a 100s 

period. Int_4 interrupt is generated by the PWM module and has a 10s period. 
The dynamic evolution of rotor speed, estimated speed based on the MRAS algorithm and 

speed error for a robust controlled (using the optimal H controller) starting process of the 
sensorless driving system with induction machine at rated speed step with no load torque is 
presented in Fig. 22. It can be observed, that the maximum speed error in the dynamic 
process (starting process) is less then 9 rpm, that means a relative error (speed error/real 
speed) of around 0,6%, which is a considerable  better value then the results obtained for the 
same sensorless drive system, without a robust speed controller. The relative sped error of 
the sensorless robust control, after the transitory dynamic process is ended and the drive 
system works at stabilized speed, is less then 0.05%, which means a really performant 
estimation (less then 0,7 rpm.). The differences between the two sensorless control 
structures, the one without a robust control (speed control results presented in Fig.6) and 
the one with robust control (speed control results presented in Fig. 22), can be explained by 

the increased robustness imposed by the optimal H controller, to a process (the AC drive 
system) which is sensitive to parameter variations (rotor time constant) and external 
perturbations (moment of inertia, friction coefficient), because of the adaptive estimation 
algorithm used to determine the rotor speed.  
 

 

Fig. 22. Speed, estimated speed and speed error for a robust controlled  starting process. 
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The speed and estimation speed error for the same control structure at a full loaded starting 
process (with nominal imposed torque) are presented in Fig. 23. The time constant of the 
transitory starting process is as expected a few times bigger than in the starting process with 
no load (Fig.22.) and the relative speed error is around 0,3%, that means less then at no-load 
start. That can be explained, due to the fact that the speed estimator itself is less sensitive to 
parameter variations when it works with nominal inputs. The dynamic evolution of the 
different currents of the induction machine for the same process are presented in Fig. 24, 
namely the stator current, the active (torque producing) and reactive (flux producing) 
components of the stator current and the estimated magnetizing current. 
 

 

Fig. 23. Rotor speed and speed error at rated load starting process. 

 

 

Fig. 24. Different currents of the IM at a starting process with rated load. 

The dynamic behavior of the AC drive, if a rated load step is imposed to the system running 
at a stable rotor speed (rated speed), is tested. Fig. 25 presents the performance indexes of 
the MRAS based speed identification algorithm (the reference model performance index p, 
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the adjustable model performance index p


, and the error ε), the imposed load torque step at 

0,31 sec. and the developed electromagnetic torque of the AC machine. The stator current 
was limited in the starting process to a 3,5 times value of the rated current (Is,max=17A). The 
estimated speed, the rotor speed and the speed error are presented in Fig. 26. The maximum 
relative speed error in the transitory process (around 1,4%), is significantly greater as for a 
rated speed step and the zero convergence time of the speed error is significantly longer. It 
is an expected result because in all presented FOC structures, by using a speed controller in 
the active control loop of the AC drive (Fig. 2 and Fig. 13), the rotor speed is directly 
controlled while the electromagnetic torque is indirectly controlled. In applications where a 
direct torque control is needed, the dynamic performances of torque response can be 
improved. 
 

  

Fig. 25. Performance indexes of MRAS algorithm (left diagram), imposed load torque step 
and developed electromagnetic torque (right diagram). 

 
 

 
 

Fig. 26. Speed evolution for a starting process and a rated load step at t=0.3 sec. 
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The results confirm, that the robust control, using an optimal H speed controller, of the 
sensorless AC drives, based on adaptive identification with MRAS algorithm for speed 
estimation, assure:  
- good estimation in steady state and transient operations; 
- robustness to electrical parameter variations as stator resistance and mutual inductance 

(reference model) or rotor time constant (adjustable model); 
- robustness to external perturbations (moment of inertia, friction coefficient), 
but needs greater computing time for the control loop, that means more powerful real time 
computing systems (with high frequency digital signal processors) and increasing costs.  

6. Conclusion 

Sensorless control of AC drive systems became in the last years a challenge for intelligent 
motion control. To estimate rotor speed or position, by using adaptive identification 
algorithms based on model reference, is a relative easy task and became therefore a valuable 
solution for applications where not high precision of speed/position estimation is needed. 
The main disadvantage of the MRAS identification algorithms is the relative high sensitivity 
to machine parameter variations (i.e. rotor time constant) and to external perturbations (i.e. 
moment of inertia, friction coefficient). Using the robust control theory seams to be a good 
solution to increase the speed/position estimation accuracy and to apply the same 

estimation method for a large number of motion control applications. The optimal H speed 
controller makes the AC drive system stable to a large scale of parameter variations and 
perturbations and provides high dynamic performance as well as accurate speed estimation 
to the sensorless control structure. 
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