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Robust distributed linear programming
Dean Richert Jorge Cortés

Abstract—This paper presents a robust, distributed algorithm
to solve general linear programs. The algorithm design builds
on the characterization of the solutions of the linear program
as saddle points of a modified Lagrangian function. We show
that the resulting continuous-time saddle-point algorithm is
provably correct but, in general, not distributed because of a
global parameter associated with the nonsmooth exact penalty
function employed to encode the inequality constraints of the
linear program. This motivates the design of a discontinuous
saddle-point dynamics that, while enjoying the same convergence
guarantees, is fully distributed and scalable with the dimension
of the solution vector. We also characterize the robustness
against disturbances and link failures of the proposed dynamics.
Specifically, we show that it is integral-input-to-state stable but
not input-to-state stable. The latter fact is a consequence of a
more general result, that we also establish, which states that
no algorithmic solution for linear programming is input-to-
state stable when uncertainty in the problem data affects the
dynamics as a disturbance. Our results allow us to establish the
resilience of the proposed distributed dynamics to disturbances
of finite variation and recurrently disconnected communication
among the agents. Simulations in an optimal control application
illustrate the results.

I. INTRODUCTION

Linear optimization problems, or simply linear programs,
model a broad array of engineering and economic problems
and find numerous applications in diverse areas such as opera-
tions research, network flow, robust control, microeconomics,
and company management. In this paper, we are interested
in both the synthesis of distributed algorithms that can solve
standard form linear programs and the characterization of their
robustness properties. Our interest is motivated by multi-agent
scenarios that give rise to linear programs with an intrinsic
distributed nature. In such contexts, distributed approaches
have the potential to offer inherent advantages over central-
ized solvers. Among these, we highlight the reduction on
communication and computational overhead, the availability
of simple computation tasks that can be performed by inex-
pensive and low-performance processors, and the robustness
and adaptive behavior against individual failures. Here, we
consider scenarios where individual agents interact with their
neighbors and are only responsible for computing their own
component of the solution vector of the linear program. We
study the synthesis of provably correct, distributed algorithms
that make the aggregate of the agents’ states converge to a
solution of the linear program and are robust to disturbances
and communication link failures.

Literature review. Linear programs play an important role
in a wide variety of applications, including perimeter pa-
trolling [1], task allocation [2], [3], operator placement [4],

The authors are with the Department of Mechanical and Aerospace
Engineering, University of California, San Diego, CA 92093, USA,
{drichert,cortes}@ucsd.edu

process control [5], routing in communication networks [6],
and portfolio optimization [7]. This relevance has historically
driven the design of efficient methods to solve linear op-
timization problems, see e.g., [8], [9], [10]. More recently,
the interest on networked systems and multi-agent coordi-
nation has stimulated the synthesis of distributed strategies
to solve linear programs [11], [12], [13] and more general
optimization problems with constraints, see e.g., [14], [15],
[16] and references therein. The aforementioned works build
on consensus-based dynamics [17], [18], [19], [20] whereby
individual agents agree on the global solution to the optimiza-
tion problem. This is a major difference with respect to our
work here, in which each individual agent computes only its
own component of the solution vector by communicating with
its neighbors. This feature makes the messages transmitted
over the network independent of the size of the solution vector,
and hence scalable (a property which would not be shared
by a consensus-based distributed optimization method for the
particular class of problems considered here). Some algorithms
that enjoy a similar scalability property exist in the literature.
In particular, the recent work [21] introduces a partition-based
dual decomposition algorithm for network optimization. Other
discrete-time algorithms for non-strict convex problems are
proposed in [22], [23], but require at least one of the exact
solutions of a local optimization problem at each iteration,
bounded feasibility sets, or auxiliary variables that increase
the problem dimension. The algorithms in [24], [25], [26] on
the other hand only achieves convergence to an approximate
solution of the optimization problem. Closer to our approach,
although without equality constraints, the works [27], [28]
build on the saddle-point dynamics of a smooth Lagrangian
function to propose algorithms for linear programming. The
resulting dynamics are discontinuous because of the projec-
tions taken to keep the evolution within the feasible set. Both
works establish convergence in the primal variables under
the assumption that the solution of the linear program is
unique [28] or that Slater’s condition is satisfied [27], but do
not characterize the properties of the final convergence point
in the dual variables, which might indeed not be a solution
of the dual problem. We are unaware of works that explicitly
address the problem of studying the robustness of linear pro-
gramming algorithms, particularly from a systems and control
perspective. This brings up another point of connection of the
present treatment with the literature, which is the body of work
on robustness of dynamical systems against disturbances. In
particular, we explore the properties of our proposed dynamics
with respect to notions such as robust asymptotic stability [29],
input-to-state stability (ISS) [30], and integral input-to-state
stability (iISS) [31]. The term ‘robust optimization’ often
employed in the literature, see e.g. [32], refers instead to worst-
case optimization problems where uncertainty in the data is
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explicitly included in the problem formulation. In this context,
‘robust’ refers to the problem formulation and not to the actual
algorithm employed to solve the optimization.

Statement of contributions. We consider standard form lin-
ear programs, which contain both equality and non-negativity
constraints on the decision vector. Our first contribution is
an alternative formulation of the primal-dual solutions of the
linear program as saddle points of a modified Lagrangian
function. This function incorporates an exact nonsmooth
penalty function to enforce the inequality constraints. Our
second contribution concerns the design of a continuous-
time dynamics that find the solutions of standard form linear
programs. Our alternative problem formulation motivates the
study of the saddle-point dynamics (gradient descent in one
variable, gradient ascent in the other) associated with the
modified Lagrangian. It should be noted that, in general, saddle
points are only guaranteed to be stable (and not necessarily
asymptotically stable) for the corresponding saddle-point dy-
namics. Nevertheless, in our case, we are able to establish the
global asymptotic stability of the (possibly unbounded) set of
primal-dual solutions of the linear program and, moreover,
the pointwise convergence of the trajectories. Our analysis
relies on the set-valued LaSalle Invariance Principle and, in
particular, a careful use of the properties of weakly and
strongly invariant sets of the saddle-point dynamics. In gen-
eral, knowledge of the global parameter associated with the
nonsmooth exact penalty function employed to encode the
inequality constraints is necessary for the implementation
of the saddle-point dynamics. To circumvent this need, we
propose an alternative discontinuous saddle-point dynamics
that does not require such knowledge and is fully distributed
over a multi-agent system in which each individual computes
only its own component of the solution vector. We show
that the discontinuous dynamics share the same convergence
properties of the regular saddle-point dynamics by establishing
that, for sufficiently large values of the global parameter,
the trajectories of the former are also trajectories of the
latter. Two key advantages of our methodology are that it
(i) allows us to establish global asymptotic stability of the
discontinuous dynamics without establishing any regularity
conditions on the switching behavior and (ii) sets the stage for
the characterization of novel and relevant algorithm robustness
properties. This latter point bring us to our third contribution,
which pertains the robustness of the discontinuous saddle-
point dynamics against disturbances and link failures. We
establish that no continuous-time algorithm that solves gen-
eral linear programs can be input-to-state stable (ISS) when
uncertainty in the problem data affects the dynamics as a
disturbance. As our technical approach shows, this fact is
due to the intrinsic properties of the primal-dual solutions
to linear programs. Nevertheless, when the set of primal-
dual solutions is compact, we show that our discontinuous
saddle-point dynamics possesses an ISS-like property against
small constant disturbances and, more importantly, is integral
input-to-state stable (iISS) – and thus robust to finite energy
disturbances. Our proof method is based on identifying a
suitable iISS Lyapunov function, which we build by combining
the Lyapunov function used in our LaSalle argument and

results from converse Lyapunov theory. We conclude that one
cannot expect better disturbance rejection properties from a
linear programming algorithm than those we establish for our
discontinuous saddle-point dynamics. These results allow us to
establish the robustness of our dynamics against disturbances
of finite variation and communication failures among agents
modeled by recurrently connected graphs. Simulations in an
optimal control problem illustrate the results.

Organization. Section II introduces basic preliminaries.
Section III presents the problem statement. Section IV pro-
poses the discontinuous saddle-point dynamics, establishes
its convergence, and discusses its distributed implementation.
Sections V and VI study the algorithm robustness against
disturbances and communication link failures, respectively.
Simulations illustrate our results in Section VII. Finally, Sec-
tion VIII summarizes our results and ideas for future work.

II. PRELIMINARIES

Here, we introduce notation and basic notions on nonsmooth
analysis and dynamical systems. This section may be safely
skipped by the reader familiar with these areas.

A. Notation and basic notions

The set of real numbers is R. For x ∈ Rn, x ≥ 0 (resp.
x > 0) means that all components of x are nonnegative
(resp. positive). For x ∈ Rn, we define max{0, x} =
(max{0, x1}, . . . ,max{0, xn}) ∈ Rn≥0. We let 1n ∈ Rn
denote the vector of ones. We use ‖ · ‖ and ‖ · ‖∞ to denote
the 2- and ∞-norms in Rn. The Euclidean distance from a
point x ∈ Rn to a set A ⊂ Rn is denoted by ‖ · ‖A. The
set B(x, δ) ⊂ Rn is the open ball centered at x ∈ Rn with
radius δ > 0. The set A ⊂ Rn is convex if it fully contains
the segment connecting any two points in A.

A function V : Rn → R is positive definite with respect
to A ⊂ Rn if (i) V (x) = 0 for all x ∈ A and V (x) > 0 for
all x /∈ A. If A = {0}, we refer to V as positive definite.
V : Rn → R is radially unbounded with respect to A if
V (x) → ∞ when ‖x‖A → ∞. If A = {0}, we refer to V
as radially unbounded. A function V is proper with respect to
A if it is both positive definite and radially unbounded with
respect to A. A set-valued map F : Rn ⇒ Rn maps elements
in Rn to subsets of Rn. A function V : X → R defined on
the convex set X ⊂ Rn is convex if V (kx + (1 − k)y) ≤
kV (x) + (1 − k)V (y) for all x, y ∈ X and k ∈ [0, 1]. V is
concave iff −V is convex. Given ρ ∈ R, we define V −1(≤
ρ) = {x ∈ X | V (x) ≤ ρ}. The function L : X × Y → R
defined on the convex set X × Y ⊂ Rn × Rm is convex-
concave if it is convex on its first argument and concave on
its second. A point (x̄, ȳ) ∈ X × Y is a saddle point of L if
L(x, ȳ) ≥ L(x̄, ȳ) ≥ L(x̄, y) for all (x, y) ∈ X × Y .

Comparison functions are useful to formalize stability prop-
erties. The class of K functions is composed by functions
[0,∞)→ [0,∞) that are continuous, zero at zero, and strictly
increasing. The subset of unbounded class K functions are
called class K∞. A class KL function [0,∞) × [0,∞) →
[0,∞) is class K in its first variable and continuous, decreas-
ing, and converging to zero in its second variable.
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An undirected graph is a pair G = (V, E), where V =
{1, . . . , n} is a set of vertices and E ⊆ V × V is a set of
edges. Given a matrix A ∈ Rm×n, we call a graph connected
with respect to A if for each ` ∈ {1, . . . ,m} such that a`,i 6= 0
and a`,j 6= 0, it holds that (i, j) ∈ E .

B. Nonsmooth analysis

Here we review some basic notions from nonsmooth anal-
ysis following [33]. A function V : Rn → R is locally
Lipschitz at x ∈ Rn if there exist δx > 0 and Lx ≥ 0 such
that |V (y1) − V (y2)| ≤ Lx‖y1 − y2‖ for y1, y2 ∈ B(x, δx).
If V is locally Lipschitz at all x ∈ Rn, we refer to V as
locally Lipschitz. If V is convex, then it is locally Lipschitz. A
locally Lipschitz function is differentiable almost everywhere.
Let ΩV ⊂ Rn be then the set of points where V is not
differentiable. The generalized gradient of a locally Lipschitz
function V at x ∈ Rn is

∂V (x) = co
{

lim
i→∞

∇V (xi) : xi → x, xi /∈ S ∪ ΩV

}
,

where co{·} denotes the convex hull and S ⊂ Rn is any set
with zero Lebesgue measure. A critical point x ∈ Rn of V
satisfies 0 ∈ ∂V (x). For a convex function V , the first-order
condition of convexity states that V (y) ≥ V (x) + (y − x)T g
for all g ∈ ∂V (x) and x, y ∈ Rn. For V : Rn ×Rn → R and
(x, y) ∈ Rn×Rn, we use ∂xV (x, y) and ∂yV (x, y) to denote
the generalized gradients of the maps x′ 7→ V (x′, y) at x and
y′ 7→ V (x, y′) at y, respectively.

A set-valued map F : X ⊂ Rn ⇒ Rn is upper semi-
continuous if for all x ∈ X and ε ∈ (0,∞) there exists δx ∈
(0,∞) such that F (y) ⊆ F (x) +B(0, ε) for all y ∈ B(x, δx).
Conversely, F is lower semi-continuous if for all x ∈ X , ε ∈
(0,∞), and any open set A intersecting F (x) there exists a δ ∈
(0,∞) such that F (y) intersects A for all y ∈ B(x, δ). If F is
both upper and lower semi-continuous then it is continuous.
Also, F is locally bounded if for every x ∈ X there exist
ε ∈ (0,∞) and M > 0 such that ‖z‖ ≤ M for all z ∈ F (y)
and all y ∈ B(x, ε).

Lemma II.1 (Properties of the generalized gradient). If V :
Rn → R is locally Lipschitz at x ∈ Rn, then ∂V (x) is
nonempty, convex, and compact. Moreover, x 7→ ∂V (x) is
locally bounded and upper semi-continuous.

C. Set-valued dynamical systems

Our exposition on basic concepts for set-valued dynamical
systems follows [34]. A time-invariant set-valued dynamical
system is represented by the differential inclusion

ẋ ∈ F (x), (1)

where t ∈ R≥0 and F : Rn ⇒ Rn is a set valued
map. If F is locally bounded, upper semi-continuous and
takes nonempty, convex, and compact values, then from any
initial condition in Rn, there exists an absolutely continuous
curve x : R≥0 → Rn, called solution, satisfying (1) almost
everywhere. The solution is maximal if it cannot be extended
forward in time. The set of equilibria of F is defined as

{x ∈ Rn | 0 ∈ F (x)}. A set M is strongly (resp. weakly)
invariant with respect to (1) if, for each x0 ∈M,M contains
all (resp. at least one) maximal solution(s) of (1) with initial
condition x0. The set-valued Lie derivative of a differentiable
function V : Rn → R along the trajectories of (1) is

LFV (x) = {∇V (x)T v : v ∈ F (x)}.
The following result helps establish the asymptotic conver-
gence properties of (1).

Theorem II.2 (Set-valued LaSalle Invariance Principle).
Let X ⊂ Rn be compact and strongly invariant with respect
to (1). Assume V : Rn → R is differentiable and F is locally
bounded, upper semi-continuous and takes nonempty, convex,
and compact values. If LFV (x) ⊂ (−∞, 0] for all x ∈ X ,
then any solution of (1) starting in X converges to the largest
weakly invariant setM contained in {x ∈ X : 0 ∈ LFV (x)}.

Differential inclusions are specially useful to handle differ-
ential equations with discontinuities. Specifically, let f : X ⊂
Rn → Rn be a piecewise continuous vector field and consider

ẋ = f(x). (2)

The classical notion of solution is not applicable to (2)
because of the discontinuities. Instead, consider the Krasovskii
set-valued map associated to f , defined by K [f ](x) :=⋂
δ>0 co{f(B(x, δ))}, where co{·} denotes the closed convex

hull. One can show that the set-valued map K [f ] is locally
bounded, upper semi-continuous and takes nonempty, convex,
and compact values, and hence solutions exist to

ẋ ∈ K [f ](x) (3)

starting from any initial condition. The solutions of (2) in the
sense of Krasovskii are, by definition, the solutions of the
differential inclusion (3).

III. PROBLEM STATEMENT AND EQUIVALENT
FORMULATION

This section introduces standard form linear programs and
describes an alternative formulation that is useful later in
fulfilling our main objective, which is the design of robust,
distributed algorithms to solve them. Consider the following
standard form linear program,

min cTx (4a)
s.t. Ax = b, x ≥ 0, (4b)

where x, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. We only consider
feasible linear programs with finite optimal value. The set of
solutions to (4) is X ⊂ Rn. The dual formulation is

max − bT z (5a)

s.t. AT z + c ≥ 0. (5b)

The set of solutions to (5) is denoted by Z ⊂ Rm. We use x∗
and z∗ to denote a solution of (4) and (5), respectively. The
following result is a fundamental relationship between primal
and dual solutions of linear programs and can be found in
many optimization references, see e.g., [10].
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Theorem III.1 (Complementary slackness and strong du-
ality). Suppose that x ∈ Rn is feasible for (4) and z ∈ Rm is
feasible for (5). Then x is a solution to (4) and z is a solution
to (5) if and only if (AT z + c)Tx = 0. In compact form,

X × Z = {(x, z) ∈ Rn × Rm | Ax = b, x ≥ 0,

AT z + c ≥ 0, (AT z + c)Tx = 0}. (6)

Moreover, for any (x∗, z∗) ∈ X × Z , cTx∗ = −bT z∗.

The equality (AT z+ c)Tx = 0 is called the complementary
slackness condition whereas the property that cTx∗ = −bT z∗
is called strong duality. One remarkable consequence of
Theorem III.1 is that the set on the right-hand side of (6)
is convex (because X ×Z is convex). This fact is not obvious
since the complementary slackness condition is not affine in
the variables x and z. This observation will allow us to use
a simplified version of Danskin’s Theorem (see Lemma A.2)
in the proof of a key result of Section V. The next result
establishes the connection between the solutions of (4) and (5)
and the saddle points of a modified Lagrangian function. Its
proof can be deduced from results on penalty functions that
appear in optimization, see e.g. [35], but we include it here
for completeness and consistency of the presentation.

Proposition III.2 (Solutions of linear program as saddle
points). For K ≥ 0, let LK : Rn × Rm → R be defined by

LK(x, z) = cTx+
1

2
(Ax− b)T (Ax− b) + zT (Ax− b)

+K1
T
n max{0,−x}. (7)

Then, LK is convex in x and concave (in fact, linear) in z.
Moreover,

(i) if x∗ ∈ Rn is a solution of (4) and z∗ ∈ Rm is a solution
of (5), then the point (x∗, z∗) is a saddle point of LK

for any K ≥ ‖AT z∗ + c‖∞,
(ii) if (x̄, z̄) ∈ Rn ×Rm is a saddle point of LK with K >
‖AT z∗ + c‖∞ for some z∗ ∈ Rm solution of (5), then
x̄ ∈ Rn is a solution of (4).

Proof: One can readily see from (7) that LK is a convex-
concave function. Let x∗ be a solution of (4) and let z∗ be
a solution of (5). To show (i), using the characterization of
X × Z described in Theorem III.1 and the fact that K ≥
‖AT z∗ + c‖∞, we can write for any x ∈ Rn,

LK(x, z∗) = cTx+ (Ax− b)T (Ax− b) + zT∗ (Ax− b)
+K1

T
n max{0,−x},

≥ cTx+ zT∗ (Ax− b)+(AT z∗ + c)T max{0,−x},
≥ cTx+ zT∗ (Ax− b)− (AT z∗ + c)Tx,

= cTx+ zT∗ A(x− x∗)− (AT z∗ + c)T (x− x∗),
= cTx− cT (x− x∗) = cTx∗ = LK(x∗, z∗).

The fact that LK(x∗, z) = LK(x∗, z∗) for any z ∈ Rm is
immediate. These two facts together imply that (x∗, z∗) is a
saddle point of LK .

We prove (ii) by contradiction. Let (x̄, z̄) be a saddle point
of LK with K > ‖AT z∗+c‖∞ for some z∗ ∈ Z , but suppose

x̄ is not a solution of (4). Let x∗ ∈ X . Since for fixed x, z 7→
LK(x, z) is concave and differentiable, a necessary condition
for (x̄, z̄) to be a saddle point of LK is that Ax̄−b = 0. Using
this fact, LK(x∗, z̄) ≥ LK(x̄, z̄) can be expressed as

cTx∗ ≥ cT x̄+K1
T
n max{0,−x̄}. (8)

Now, if x̄ ≥ 0, then cTx∗ ≥ cT x̄, and thus x̄ would be a
solution of (4). If, instead, x̄ 6≥ 0,

cT x̄ = cTx∗ + cT (x̄− x∗),
= cTx∗ − zT∗ A(x̄− x∗) + (AT z∗ + c)T (x̄− x∗),
= cTx∗ − zT∗ (Ax̄− b) + (AT z∗ + c)T x̄,

> cTx∗ −K1
T
n max{0,−x̄},

which contradicts (8), concluding the proof.
The relevance of Proposition III.2 is two-fold. On the one

hand, it justifies searching for the saddle points of LK instead
of directly solving the constrained optimization problem (4).
On the other hand, given that LK is convex-concave, a
natural approach to find the saddle points is via the associated
saddle-point dynamics. However, for an arbitrary function,
such dynamics is known to render saddle points only stable,
not asymptotically stable (in fact, the saddle-point dynamics
derived using the standard Lagrangian for a linear program
does not converge to a solution of the linear program, see
e.g., [36], [28]). Interestingly [28], the convergence properties
of saddle-point dynamics can be improved using penalty
functions associated with the constraints to augment the cost
function. In our case, we augment the linear cost function
cTx with a quadratic penalty for the equality constraints and
a nonsmooth penalty function for the inequality constraints.
This results in the nonlinear optimization problem,

min
Ax=b

cTx+ ‖Ax− b‖2 +K1
T
n max{0,−x},

whose standard Lagrangian is equivalent to LK . We use the
nonsmooth penalty function to ensure that there is an exact
equivalence between saddle points of LK and the solutions
of (4). Instead, the use of smooth penalty functions such as
the logarithmic barrier function used in [16], results only in
approximate solutions. In the next section, we show that indeed
the saddle-point dynamics of LK asymptotically converges to
saddle points.

Remark III.3 (Bounds on the parameter K). It is worth
noticing that the lower bounds on K in Proposition III.2 are
characterized by certain dual solutions, which are unknown
a priori. Nevertheless, our discussion later shows that this
problem can be circumvented and that knowledge of such
bounds is not necessary for the design of robust, distributed
algorithms that solve linear programs. •

IV. SADDLE-POINT DYNAMICS FOR DISTRIBUTED LINEAR
PROGRAMMING

In this section, we design a continuous-time algorithm
to find the solutions of (4) and discuss its distributed im-
plementation in a multi-agent system. We further build on
the elements of analysis introduced here to characterize the
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robustness properties of linear programming dynamics in
the forthcoming sections. Building on the result in Proposi-
tion III.2, we consider the saddle-point dynamics (gradient
descent in one argument, gradient ascent in the other) of
the modified Lagrangian LK . Our presentation proceeds by
characterizing the properties of this dynamics and observing
its limitations, leading up to the main contribution, which
is the introduction of a discontinuous saddle-point dynamics
amenable to distributed implementation.

The nonsmooth character of LK means that its saddle-point
dynamics takes the form of the following differential inclusion,

ẋ+ c+AT (z +Ax− b) ∈ −K∂max{0,−x}, (9a)
ż = Ax− b. (9b)

For notational convenience, we use FKsdl : Rn × Rm ⇒ Rn ×
Rm to denote the set-valued vector field which defines the
differential inclusion (9). The following result characterizes the
asymptotic convergence of (9) to the set of solutions to (4)-(5).

Theorem IV.1 (Asymptotic convergence to the primal-dual
solution set). Let (x∗, z∗) ∈ X×Z and define V : Rn×Rm →
R≥0 as

V (x, z) =
1

2
(x− x∗)T (x− x∗) +

1

2
(z − z∗)T (z − z∗).

For ∞ > K > ‖AT z∗ + c‖∞, it holds that LFK
sdl
V (x, z) ⊂

(−∞, 0] for all (x, z) ∈ Rn × Rm and any trajectory t 7→
(x(t), z(t)) of (9) converges asymptotically to the set X ×Z .

Proof: Our proof strategy is based on verifying the
hypotheses of the LaSalle Invariance Principle, cf. Theo-
rem II.2, and identifying the set of primal-dual solutions as
the corresponding largest weakly invariant set. First, note that
Lemma II.1 implies that FKsdl is locally bounded, upper semi-
continuous and takes nonempty, convex, and compact values.
By Proposition III.2(i), (x∗, z∗) is a saddle point of LK when
K ≥ ‖AT z∗+c‖∞. Consider the quadratic function V defined
in the theorem statement, which is continuously differentiable
and radially unbounded. Let a ∈ LFK

sdl
V (x, z). By definition,

there exists v = (−c − AT (z + Ax − b) − gx, Ax − b) ∈
FKsdl(x, z), with gx ∈ K∂max{0,−x}, such that

a = vT∇V (x, z) = (x− x∗)T (− c−AT (z +Ax− b)− gx)

+ (z − z∗)(Ax− b). (10)

Since LK is convex in its first argument, and c + AT (z +
Ax− b) + gx ∈ ∂xLK(x, z), using the first-order condition of
convexity, we have

LK(x, z) ≤ LK(x∗, z)+(x−x∗)T
(
c+AT (z+Ax−b)+gx

)
.

Since LK is linear in z, we have LK(x, z) = LK(x, z∗) +
(z − z∗)T (Ax− b). Using these facts in (10), we get

a ≤ LK(x∗, z)− LK(x, z∗)

= LK(x∗, z)− LK(x∗, z∗) + LK(x∗, z∗)− LK(x, z∗) ≤ 0,

since (x∗, z∗) is a saddle point of LK . Since a is arbitrary, we
deduce that LFK

sdl
V (x, z) ⊂ (−∞, 0]. For any given ρ ≥ 0, this

implies that the sublevel set V −1(≤ ρ) is strongly invariant
with respect to (9). Since V is radially unbounded, V −1(≤ ρ)
is also compact. The conditions of Theorem II.2 are then
satisfied with X = V −1(≤ ρ), and therefore any trajectory
of (9) starting in V −1(≤ ρ) converges to the largest weakly
invariant set M in {(x, z) ∈ V −1(≤ ρ) : 0 ∈ LFK

sdl
V (x, z)}

(note that for any initial condition (x0, z0) one can choose
a ρ such that (x0, z0) ∈ V −1(≤ ρ)). This set is closed,
which can be justified as follows. Since FKsdl is upper semi-
continuous and V is continuously differentiable, the map
(x, z) 7→ LFK

sdl
V (x, z) is also upper semi-continuous. Closed-

ness then follows from [37, Convergence Theorem]. We now
show that M ⊆ X × Z . To start, take (x′, z′) ∈ M. Then
LK(x∗, z∗)− LK(x′, z∗) = 0, which implies

L̃K(x′, z∗)− (Ax′ − b)T (Ax′ − b) = 0, (11)

where L̃K(x′, z∗) = cTx∗ − cTx′ − zT∗ (Ax′ − b) −
K1

T
n max{0,−x′}. Using strong duality, the expression

of L̃K can be simplified to L̃K(x′, z∗) = −(AT z∗ +
c)Tx′ − K1

T
n max{0,−x′}. In addition, AT z∗ + c ≥ 0

by dual feasibility. Thus, when K ≥ ‖AT z∗ + c‖∞, we
have L̃K(x, z∗) ≤ 0 for all (x, z) ∈ V −1(≤ ρ). This
implies that (Ax′ − b)T (Ax′ − b) = 0 for (11) to be true,
which further implies that Ax′ − b = 0. Moreover, from
the definition of L̃K and the bound on K, one can see that
if x′ 6≥ 0, then L̃K(x′, z∗) < 0. Therefore, for (11) to be
true, it must be that x′ ≥ 0. Finally, from (11), we get that
L̃K(x′, z∗) = cTx∗ − cTx′ = 0. In summary, if (x′, z′) ∈ M
then cTx∗ = cTx′, Ax′ − b = 0, and x′ ≥ 0. Therefore,
x′ is a solution of (4). Now, we show that z′ is a solution
of (5). BecauseM is weakly invariant, there exists a trajectory
starting from (x′, z′) that remains inM. The fact that Ax′ = b
implies that ż = 0, and hence z(t) = z′ is constant. For any
given i ∈ {1, . . . , n}, we consider the cases (i) x′i > 0 and (ii)
x′i = 0. In case (i), the dynamics of the ith component of x is
ẋi = −(c + AT z′)i where (c + AT z′)i is constant. It cannot
be that −(c + AT z′)i > 0 because this would contradict the
fact that t 7→ xi(t) is bounded. Therefore, (c + AT z′)i ≥ 0.
If ẋi = −(c+AT z′)i < 0, then xi(t) will eventually become
zero, which we consider in case (ii). In fact, since the solution
remains in M, without loss of generality, we can assume that
(x′, z′) is such that either x′i > 0 and (c + AT z′)i = 0 or
x′i = 0 for each i ∈ {1, . . . , n}. Consider now case (ii).
Since xi(t) must remain non-negative in M, it must be that
ẋi(t) ≥ 0 when xi(t) = 0. That is, in M, we have ẋi(t) ≥ 0
when xi(t) = 0 and ẋi(t) ≤ 0 when xi(t) > 0. Therefore,
for any trajectory t 7→ xi(t) in M starting at x′i = 0, the
unique Krasovskii solution is that xi(t) = 0 for all t ≥ 0. As
a consequence, (c+AT z′)i ∈ [0,K] if x′i = 0. To summarize
cases (i) and (ii), we have
• Ax′ = b and x′ ≥ 0 (primal feasibility),
• AT z′ + c ≥ 0 (dual feasibility),
• (AT z′+ c)i = 0 if x′i > 0 and x′i = 0 if (AT z′+ c)i > 0

(complementary slackness),
which is sufficient to show that z ∈ Z (cf. Theorem III.1).
Hence M⊆ X ×Z . Since the trajectories of (9) converge to
M, this completes the proof.
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Using a slightly more complicated lower bound on the
parameter K, we are able to show point-wise convergence
of the saddle-point dynamics. We state this result next.

Corollary IV.2 (Point-wise convergence of saddle-point dy-
namics). Let ρ > 0. Then, with the notation of Theorem IV.1,
for

∞ > K > max
(x,z)∈(X×Z)∩V −1(≤ρ)

‖AT z + c‖∞, (12)

it holds that any trajectory t 7→ (x(t), z(t)) of (9) starting in
V −1(≤ ρ) converges asymptotically to a point in X × Z .

Proof: If K satisfies (12), then in particular K >
‖AT z∗+c‖∞. Thus, V −1(≤ ρ) is strongly invariant under (9)
since LFK

sdl
V (x, z) ⊂ (−∞, 0] for all (x, z) ∈ V −1(≤ ρ) (cf.

Theorem IV.1). Also, V −1(≤ ρ) is bounded because V is
quadratic. Therefore, by the Bolzano-Weierstrass theorem [38,
Theorem 3.6], there exists a subsequence (x(tk), z(tk)) ∈
V −1(≤ρ) that converges to a point (x̃, z̃) ∈ (X ×Z)∩V −1(≤
ρ). Given ε > 0, let k∗ be such that ‖(x(tk∗), z(tk∗)) −

(x̃, z̃)‖ ≤ ε. Consider the function Ṽ (x, z) = 1
2 (x− x̃)T (x−

x̃) + 1
2 (z − z̃)T (z − z̃). When K satisfies (12), again it holds

that K ≥ ‖AT z̃ + c‖∞. Applying Theorem IV.1 once again,
Ṽ −1(≤ ρ) is strongly invariant under (9). Consequently, for
t ≥ tk∗ , we have (x(t), z(t)) ∈ Ṽ −1(≤ Ṽ (x(tk∗), z(tk∗))) =
B
(
(x̃, z̃), ‖(x(tk∗), z(tk∗)) − (x̃, z̃)‖

)
⊂ B((x̃, z̃), ε). Since ε

can be taken arbitrarily small, this implies that (x(t), z(t))
converges to the point (x̃, z̃) ∈ X × Z .

Remark IV.3 (Choice of parameter K). The bound (12) for
the parameter K depends on (i) the primal-dual solution set
X × Z as well as (ii) the initial condition, since the result is
only valid when the dynamics start in V −1(≤ ρ). However,
if the set X ×Z is compact, the parameter K can be chosen
independently of the initial condition since the maximization
in (12) would be well defined when taken over the whole
set X × Z . We should point out that, in Section IV-A we
introduce a discontinuous version of the saddle-point dynamics
which does not involve K. •

A. Discontinuous saddle-point dynamics

Here, we propose an alternative dynamics to (9) that does
not rely on knowledge of the parameter K and also converges
to the solutions of (4)-(5). We begin by defining the nominal
flow function fnom : Rn≥0 × Rm → Rn by

fnom(x, z) := −c−AT (z +Ax− b).
This definition is motivated by the fact that, for (x, z) ∈ Rn>0×
Rm, the set ∂xLK(x, z) is the singleton {−fnom(x, z)}. The
discontinuous saddle-point dynamics is, for i ∈ {1, . . . , n},

ẋi =

{
fnomi (x, z), if xi > 0,

max{0, fnomi (x, z)}, if xi = 0,
(13a)

ż = Ax− b. (13b)

When convenient, we use the notation fdis : Rn≥0 × Rm →
Rn × Rm to refer to the discontinuous dynamics (13). Note

that the discontinuous function that defines the dynamics (13a)
is simply the positive projection operator, i.e., when xi = 0,
it corresponds to the projection of fnomi (x, z) onto R≥0.
We understand the solutions of (13) in the Krasovskii sense.
We begin our analysis by establishing a relationship between
the Krasovskii set-valued map of fdis and the saddle-point
dynamics FKsdl which allows us to relate the trajectories of (13)
and (9).

Proposition IV.4 (Trajectories of the discontinuous saddle-
point dynamics are trajectories of the saddle-point dynam-
ics). Let ρ > 0 and (x∗, z∗) ∈ X×Z be given and the function
V be defined as in Theorem IV.1. Then, for any

∞ > K ≥ K1 := max
(x,z)∈V −1(≤ρ)

‖fnom(x, z)‖∞,

the inclusion K [fdis](x, z) ⊆ FKsdl(x, z) holds for every
(x, z) ∈ V −1(≤ ρ). Thus, the trajectories of (13) starting
in V −1(≤ ρ) are also trajectories of (9).

Proof: The projection onto the ith component of the
Krasovskii set-valued map K [fdis] is

proji(K [fdis](x, z)) =



{fnomi (x, z)},
if i ∈ {1, . . . , n} and xi > 0,

[fnomi (x, z),max{0, fnomi (x, z)}],
if i ∈ {1, . . . , n} and xi = 0,

{(Ax− b)i},
if i ∈ {n+ 1, . . . , n+m}.

As a consequence, for any i ∈ {n+ 1, . . . , n+m}, we have

proji(F
K
sdl(x, z)) = (Ax− b)i = proji(K [fdis](x, z)),

and, for any i ∈ {1, . . . , n} such that xi > 0, we have

proji(F
K
sdl(x, z)) = (−c−AT (Ax− b+ z))i

= {fnomi (x, z)} = proji(K [fdis](x, z)).

Thus, let us consider the case when xi = 0 for some i ∈
{1, . . . , n}. In this case, note that

proji(K [fdis](x, z)) = [fnomi (x, z),max{0, fnomi (x, z)}]
⊆ [fnomi (x, z), fnomi (x, z)+|fnomi (x, z)|],

proji(F
K
sdl(x, z)) = [fnomi (x, z), fnomi (x, z) +K].

The choice K ≥ |fnomi (x, z)| for each i ∈ {1, . . . , n} makes
K [fdis](x, z) ⊆ FKsdl(x, z). More generally, since V −1(ρ) is
compact and fnom is continuous, the choice

∞ > K ≥ max
(x,z)∈V −1(ρ)

‖fnom(x, z)‖∞,

guarantees K [fdis](x, z) ⊆ FKsdl(x, z) for all (x, z) ∈ V −1(ρ).
By Theorem IV.1, we know that V is non-increasing along (9),
implying that V −1(≤ ρ) is strongly invariant with respect
to (9), and hence (13) too. Therefore, any trajectory of (13)
starting in V −1(≤ ρ) is a trajectory of (9).

Note that the inclusion in Proposition IV.4 may be strict
and that the set of trajectories of (9) is, in general, richer
than the set of trajectories of (13). Figure 1 illustrates the
effect that increasing K has on (9). From a given initial
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condition, at some point the value of K is large enough, cf.
Proposition IV.4, to make the trajectories of (13) (which never
leave Rn≥0 × Rm) also be a trajectory of (9).

Building on Proposition IV.4, the next result characterizes
the asymptotic convergence of (13).

Corollary IV.5 (Asymptotic convergence of the discontinu-
ous saddle-point dynamics). The trajectories of (13) starting
in Rn≥0 × Rm converge asymptotically to a point in X × Z .

Proof: Let V be defined as in Theorem IV.1. Given any
initial condition (x0, z0) ∈ Rn×Rm, let t 7→ (x(t), z(t)) be a
trajectory of (13) starting from (x0, z0) and let ρ = V (x0, z0).
Note that t 7→ (x(t), z(t)) does not depend on K because (13)
does not depend on K. Proposition IV.4 establishes that
t 7→ (x(t), z(t)) is also a trajectory of (9) for any K ≥ K1.
Imposing the additional condition that

∞ > K > max
{
K1, max

(x∗,z∗)∈(X×Z)∩V −1(≤ρ)
‖AT z∗ + c‖∞

}
,

Corollary IV.2 implies that the trajectories of (9) (which
include t 7→ (x(t), z(t)) converge asymptotically to a point
in X × Z .

0

x
i

Time, t

increasing K →

Fig. 1. Illustration of the effect that increasing K has on (9). For a fixed
initial condition, the trajectory of (9) has increasingly smaller “incursions”
into the region where xi < 0 as K increases, until a finite value is reached
where the corresponding trajectory of (13) is also a trajectory of (9).

One can also approach the convergence analysis of (13)
from a switched systems perspective, which would require
checking that certain regularity conditions hold for the switch-
ing behavior of the system. We have been able to circumvent
this complexity by relying on the powerful stability tools avail-
able for set-valued dynamics to analyze (9) and by relating its
solutions with those of (13). Moreover, the interpretation of
the trajectories of (13) in the Krasovskii sense is instrumental
for our analysis in Section V where we study the robustness
against disturbances using powerful Lyapunov-like tools for
differential inclusions.

Remark IV.6 (Comparison to existing dynamics for linear
programming). Though a central motivation for the devel-
opment of our linear programming algorithm is the estab-
lishment of various robustness properties which we study
next, the dynamics (13) and associated convergence results
of this section are both novel and have distinct contributions.
The work [28] builds on the saddle-point dynamics of a
smooth Lagrangian function to introduce an algorithm for
linear programming. Instead of exact penalty functions, this

approach uses projections to keep the evolution within the
feasible set, resulting in a discontinuous dynamics in both
the primal and dual variables. The work [27] employs a
similar approach to deal with non-strictly convex programs
under inequality constraints, where projection is used instead
employed to keep nonnegative the value of the dual variables.
These works establish convergence in the primal variables
([28] under the assumption that the solution of the linear
program is unique, [27] under the assumption that Slater’s
condition is satisfied) to a solution of the linear program.
In both cases, the dual variables converge to some unknown
point which might not be a solution to the dual problem.
This is to be contrasted with the convergence properties of
the dynamics (13) stated in Corollary IV.5 which only require
the linear program to be feasible with finite optimal value. •

B. Distributed implementation

An important advantage of the dynamics (13) over other
linear programming methods is that it is well-suited for
distributed implementation. To make this statement precise,
consider a scenario where each component of x ∈ Rn
corresponds to an independent decision maker or agent and
the interconnection between the agents is modeled by an
undirected graph G = (V, E). To see under what conditions
the dynamics (13) can be implemented by this multi-agent
system, let us express it component-wise. First, the nominal
flow function in (13a) for agent i ∈ {1, . . . , n} is,

fnomi (x, z) = −ci −
m∑
`=1

a`,i

[
z` +

n∑
k=1

a`,kxk − b`
]
,

= −ci −
∑

{` : a`,i 6=0}

a`,i

[
z` +

∑
{k : a`,k 6=0}

a`,kxk − b`
]
,

and the dynamics (13b) for each ` ∈ {1, . . . ,m} is

ż` =
∑

{i : a`,i 6=0}

a`,ixi − b`. (14)

According to these expressions, in order for agent i ∈
{1, . . . , n} to be able to implement its corresponding dynamics
in (13a), it also needs access to certain components of z
(specifically, those components z` for which a`,i 6= 0), and
therefore needs to implement their corresponding dynam-
ics (14). We say that the dynamics (13) is distributed over
G when the following holds

(D1) for each i ∈ V , agent i knows
a) ci ∈ R,
b) every b` ∈ R for which a`,i 6= 0,
c) the non-zero elements of every row of A for which

the ith component, a`,i, is non-zero,
(D2) agent i ∈ V has control over the variable xi ∈ R,
(D3) G is connected with respect to A, and
(D4) agents have access to the variables controlled by neigh-

boring agents.

Note that (D3) guarantees that the agents that implement (14)
for a particular ` ∈ {1, . . . ,m} are neighbors in G.
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Remark IV.7 (Scalability of the nominal saddle-point dy-
namics). A different approach to solve (4) is the follow-
ing: reformulate the optimization problem as the constrained
minimization of a sum of convex functions all of the form
1
nc
Tx and use the algorithms developed in, for instance, [14],

[15], [11], [12], [16], for distributed convex optimization.
However, in this case, this approach would lead to agents
storing and communicating with neighbors estimates of the
entire solution vector in Rn, and hence would not scale well
with the number of agents of the network. In contrast, to
execute the discontinuous saddle-point dynamics, agents only
need to store the component of the solution vector that they
control and communicate it with neighbors. Therefore, the
dynamics scales well with respect to the number of agents
in the network. •

V. ROBUSTNESS AGAINST DISTURBANCES

Here we explore the robustness properties of the discontin-
uous saddle-point dynamics (13) against disturbances. Such
disturbances may correspond to noise, unmodeled dynamics,
or incorrect agent knowledge of the data defining the linear
program. Note that the global asymptotic stability of X × Z
under (13) characterized in Section IV naturally provides
a robustness guarantee on this dynamics: when X × Z is
compact, sufficiently small perturbations do not destroy the
global asymptotic stability of the equilibria, cf. [29]. Our
objective here is to go beyond this qualitative statement to
obtain a more precise, quantitative description of robustness.
To this end, we consider the notions of input-to-state stability
(ISS) and integral-input-to-state stability (iISS). Section V-A
shows that, when the disturbances correspond to uncertainty in
the problem data, no dynamics for linear programming can be
ISS. This motivates us to explore the weaker notion of iISS.
Section V-B shows that (13) with additive disturbances is iISS.

Remark V.1 (Robust dynamics versus robust optimiza-
tion). We make a note of the distinction between the notion
of algorithm robustness, which is what we study here, and the
term robust (or worst-case) optimization, see e.g., [32]. The
latter refers to a type of problem formulation in which some
notion of variability (which models uncertainty) is explicitly
included in the problem statement. Mathematically,

min cTx s.t. f(x, ω) ≤ 0, ∀ω ∈ Ω,

where ω is an uncertain parameter. Building on the observation
that one only has to consider the worst-case values of ω, one
can equivalently cast the optimization problem with constraints
that only depend on x, albeit at the cost of a loss of structure in
the formulation. Another point of connection with the present
work is the body of research on stochastic approximation in
discrete optimization, where the optimization parameters are
corrupted by disturbances, see e.g. [39]. •

Without explicitly stating it from here on, we make the
following assumption along the section:
(A) The solution sets to (4) and (5) are compact (i.e., X ×Z

is compact).

The justification for this assumption is twofold. On the techni-
cal side, our study of the iISS properties of (15) in Section V-B
builds on a Converse Lyapunov Theorem [29] which requires
the equilibrium set to be compact (the question of whether
the Converse Lyapunov Theorem holds when the equilibrium
set is not compact and the dynamics is discontinuous is an
open problem). On the practical side, one can add box-type
constraints to (4), ensuring that (A) holds.

We now formalize the disturbance model considered in this
section. Let w = (wx, wz) : R≥0 → Rn × Rm be locally
essentially bounded and enter the dynamics as follows,

ẋi =

{
fnomi (x, z) + (wx)i, if xi > 0,

max{0, fnomi (x, z) + (wx)i}, if xi = 0,
∀i, (15a)

ż = Ax− b+ wz. (15b)

For notational purposes, we use fwdis : R2(n+m) → Rn+m to
denote (15). We exploit the fact that fnom is affine to state
that the additive disturbance w captures unmodeled dynamics,
measurement and computation noise, and any error in an
agent’s knowledge of the problem data (b or c). For example, if
agent i ∈ {1, . . . , n} uses an estimate ĉi of ci when computing
its dynamics, this can be modeled in (15) by considering
(wx(t))i = ci − ĉi. To make precise the correspondence
between the disturbance w and uncertainties in the problem
data, we provide the following convergence result when the
disturbance is constant.

Corollary V.2 (Convergence under constant disturbances).
For constant w = (wx, wz) ∈ Rn×Rm, consider the perturbed
linear program,

min (c− wx −ATwz)Tx (16a)
s.t. Ax = b− wz, x ≥ 0, (16b)

and, with a slight abuse in notation, let X (w) × Z(w) be
its primal-dual solution set. Suppose that X (w) × Z(w) is
nonempty. Then each trajectory of (15) starting in Rn≥0×Rm
with constant disturbance w(t) = w = (wx, wz) converges
asymptotically to a point in X (w)×Z(w).

Proof: Note that (15) with disturbance w corresponds to
the undisturbed dynamics (13) for the perturbed problem (16).
Since X (w)×Z(w) 6= ∅, Corollary IV.5 implies the result.

A. No dynamics for linear programming is input-to-state sta-
ble

The notion of input-to-state stability (ISS) is a natural
starting point to study the robustness of dynamical systems
against disturbances. Informally, if a dynamics is ISS, then
bounded disturbances give rise to bounded deviations from
the equilibrium set. Here we show that any dynamics that (i)
solve any feasible linear program and (ii) where uncertainties
in the problem data (A, b, and c) enter as disturbances is not
input-to-state stable (ISS). Our analysis relies on the properties
of the solution set of a linear program. To make our discussion
precise, we start by recalling the definition of ISS.
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Definition V.3 (Input-to-state stability [30]). The dynam-
ics (15) is ISS with respect to X ×Z if there exist β ∈ KL and
γ ∈ K such that, for any trajectory t 7→ (x(t), z(t)) of (15),
one has

‖(x(t), z(t))‖X×Z ≤ β(‖(x(0), z(0)‖X×Z , t) + γ(‖w‖∞),

for all t ≥ 0. Here, ‖w‖∞ := esssups≥0 ‖w(s)‖ is the
essential supremum of w(t).

Our method to show that no dynamics is ISS is constructive.
We find a constant disturbance such that the primal-dual
solution set to some perturbed linear program is unbounded.
Since any point in this unbounded solution set is a stable
equilibrium by assumption, this precludes the possibility of
the dynamics from being ISS.

Theorem V.4 (No dynamics for linear programming is
ISS). Consider the generic dynamics

(ẋ, ż) = Φ(x, z, v) (17)

with disturbance t 7→ v(t). Assume uncertainties in the
problem data are modeled by v. That is, there exists a
surjective function g = (g1, g2) : Rn+m → Rn × Rm with
g(0) = (0, 0) such that, for v̄ ∈ Rn+m, the primal-dual
solution set X (v̄)×Z(v̄) of the linear program

min (c+ g1(v̄))Tx (18a)
s.t. Ax = b+ g2(v̄), x ≥ 0. (18b)

is the stable equilibrium set of (ẋ, ż) = Φ(x, z, v̄) whenever
X (v̄) × Z(v̄) 6= ∅. Then, the dynamics (17) is not ISS with
respect to X × Z .

Proof: We divide the proof in two cases depending on
whether {Ax = b, x ≥ 0} is (i) unbounded or (ii) bounded.
In both cases, we design a constant disturbance v(t) = v̄ such
that the equilibria of (17) contains points arbitrarily far away
from X ×Z . This would imply that the dynamics is not ISS.
Consider case (i). Since {Ax = b, x ≥ 0} is unbounded, con-
vex, and polyhedral, there exists a point x̂ ∈ Rn and direction
νx ∈ Rn \ {0} such that x̂+ λνx ∈ bd({Ax = b, x ≥ 0}) for
all λ ≥ 0. Here bd(·) refers to the boundary of the set. Let
η ∈ Rn be such that ηT νx = 0 and x̂+εη /∈ {Ax = b, x ≥ 0}
for any ε > 0 (geometrically, η is normal to and points out of
{Ax = b, x ≥ 0} at x̂). Now that these quantities have been
defined, consider the following linear program,

min ηTx s.t. Ax = b, x ≥ 0. (19)

Because g is surjective, there exists v̄ such that g(v̄) =
(−c + η, 0). In this case, the program (19) is exactly the
program (18), with primal-dual solution set X (v̄)×Z(v̄). We
show next that x̂ is a solution to (19) and thus in X (v̄). Clearly,
x̂ satisfies the constraints of (19). Since ηT νx = 0 and points
outward of {Ax = b, x ≥ 0}, it must be that ηT (x̂−x) ≤ 0 for
any x ∈ {Ax = b, x ≥ 0}, which implies that ηT x̂ ≤ ηTx.
Thus, x̂ is a solution to (19). Moreover, x̂ + λνx is also a
solution to (19) for any λ ≥ 0 since (i) ηT (x̂+λνx) = ηT x̂ and
(ii) x̂+ λνx ∈ {Ax = b, x ≥ 0}. That is, X (v̄) is unbounded.
Therefore, there is a point (x0, z0) ∈ X (v̄)× Z(v̄), which is

also an equilibrium of (17) by assumption, that is arbitrarily
far from the set X ×Z . Clearly, t 7→ (x(t), z(t)) = (x0, z0) is
an equilibrium trajectory of (17) starting from (x0, z0) when
v(t) = v̄. The fact that (x0, z0) can be made arbitrarily far
from X × Z precludes the possibility of the dynamics from
being ISS.

Next, we deal with case (ii), when {Ax = b, x ≥ 0} is
bounded. Consider the linear program

max −bT z s.t. AT z ≥ 0.

Since {Ax = b, x ≥ 0} is bounded, Lemma A.1 implies that
{AT z ≥ 0} is unbounded. Using an analogous approach as in
case (i), one can find η ∈ Rm such that the set of solutions to

max ηT z s.t. AT z ≥ 0, (20)

is unbounded. Because g is surjective, there exists v̄ such that
g(v̄) = (−c,−b−η). In this case, the program (20) is the dual
to (18), with primal-dual solution set X (v̄)×Z(v̄). Since Z(v̄)
is unbounded, one can find equilibrium trajectories of (17)
under the disturbance v(t) = v̄ that are arbitrarily far away
from X × Z , which contradicts ISS.

Note that, in particular, the perturbed problem (16) and (18)
coincide when

g(w) = g(wx, wz) = (−wx −ATwz,−wz).

Thus, by Theorem V.4, the discontinuous saddle-point dynam-
ics (15) is not ISS. Nevertheless, one can establish an ISS-
like result for this dynamics under small enough and constant
disturbances. We state this result next, where we also provide
a quantifiable upper bound on the disturbances in terms of the
solution set of some perturbed linear program.

Proposition V.5 (ISS of discontinuous saddle-point dynam-
ics under small constant disturbances). Suppose there exists
δ > 0 such that the primal-dual solution set X (w)×Z(w) of
the perturbed problem (16) is nonempty for w ∈ B(0, δ) and
∪w∈B(0,δ)X (w)×Z(w) is compact. Then there exists a contin-
uous, zero-at-zero, and increasing function γ : [0, δ] → R≥0
such that, for all trajectories t 7→ (x(t), z(t)) of (15) with
constant disturbance w ∈ B(0, δ), it holds that

lim
t→∞

‖(x(t), z(t))‖X×Z ≤ γ(‖w‖).

Proof: Let γ : [0, δ]→ R≥0 be given by

γ(r) := max

{
‖(x, z)‖X×Z : (x, z) ∈

⋃
w∈B(0,r)

X (w)×Z(w)

}
.

By hypotheses, γ is well-defined. Note also that γ is increasing
and satisfies γ(0) = 0. Next, we show that γ is continuous.
By assumption, X (w) × Z(w) is nonempty and bounded for
every w ∈ B(0, δ). Moreover, it is clear that X (w)×Z(w) is
closed for every w ∈ B(0, δ) since we are considering linear
programs in standard form. Thus, X (w)×Z(w) is nonempty
and compact for every w ∈ B(0, δ). By [40, Corollary 11],
these two conditions are sufficient for the set-valued map w 7→
X (w)×Z(w) to be continuous on B(0, δ). Since r 7→ B(0, r)
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is also continuous, [37, Proposition 1, pp. 41] ensures that the
following set-valued composition map

r 7→
⋃

w∈B(0,r)

X (w)×Z(w)

is continuous (with compact values, by assumption). There-
fore, [37, Theorem 6, pp. 53] guarantees then that γ is
continuous on B(0, δ). Finally, to establish the bound on the
trajectories, recall from Corollary V.2 that each trajectory
t 7→ (x(t), z(t)) of (15) with constant disturbance w ∈ B(0, δ)
converges asymptotically to a point in X (w) × Z(w). The
distance between X × Z and the point in X (w) × Z(w) to
which the trajectory converges is upper bounded by

lim
t→∞

‖(x(t), z(t))‖X×Z ≤ max
{
‖(x, z)‖X×Z :

(x, z) ∈ X (w)×Z(w)
}
≤ γ(‖w‖),

which concludes the proof.

B. Discontinuous saddle-point dynamics is integral input-to-
state stable

Here we establish that the dynamics (15) possess a notion
of robustness weaker than ISS, namely, integral input-to-state
stability (iISS). Informally, iISS guarantees that disturbances
with small energy give rise to small deviations from the
equilibria. This is stated formally next.

Definition V.6 (Integral input-to-state stability [31]). The
dynamics (15) is iISS with respect to the set X × Z if there
exist functions α ∈ K∞, β ∈ KL, and γ ∈ K such that, for
any trajectory t 7→ (x(t), z(t)) of (15) and all t ≥ 0, one has

α(‖(x(t), z(t))‖X×Z) ≤ β(‖(x(0), z(0)‖X×Z , t)

+

∫ t

0

γ(‖w(s)‖)ds. (21)

Our ensuing discussion is based on a suitable adaptation
of the exposition in [31] to the setup of asymptotically stable
sets for discontinuous dynamics. A useful tool for establishing
iISS is the notion of iISS Lyapunov function, whose definition
we review next.

Definition V.7 (iISS Lyapunov function). A differentiable
function V : Rn+m → R≥0 is an iISS Lyapunov function
with respect to the set X ×Z for dynamics (15) if there exist
functions α1, α2 ∈ K∞, σ ∈ K, and a continuous positive
definite function α3 such that

α1(‖(x, z)‖X×Z) ≤ V (x, z) ≤ α2(‖(x, z)‖X×Z), (22a)
a ≤ −α3(‖(x, z)‖X×Z) + σ(‖w‖), (22b)

for all a ∈ LK [fw
dis]
V (x, z) and x ∈ Rn, z ∈ Rm, w ∈ Rn+m.

Note that, since the set X ×Z is compact (cf. Assumption
(A)), (22a) is equivalent to V being proper with respect to X×
Z . The existence of an iISS Lyapunov function is critical in
establishing iISS, as the following result states.

Theorem V.8 (iISS Lyapunov function implies iISS). If
there exists an iISS Lyapunov function with respect to X ×Z
for (15), then the dynamics is iISS with respect to X × Z .

This result is stated in [31, Theorem 1] for the case
of differential equations with locally Lipschitz right-hand
side and asymptotically stable origin, but its extension to
discontinuous dynamics and asymptotically stable sets, as
considered here, is straightforward. We rely on Theorem V.8 to
establish that the discontinuous saddle-point dynamics (15) is
iISS. Interestingly, the function V employed to characterize
the convergence properties of the unperturbed dynamics in
Section IV is not an iISS Lyapunov function (in fact, our proof
of Theorem IV.1 relies on the set-valued LaSalle Invariance
Principle because, essentially, the Lie derivative of V is not
negative definite). Nevertheless, in the proof of the next result,
we build on the properties of this function with respect to
the dynamics to identify a suitable iISS Lyapunov function
for (15).

Theorem V.9 (iISS of saddle-point dynamics). The dynam-
ics (15) is iISS with respect to X × Z .

Proof: We proceed by progressively defining functions
Veuc, V rep

euc , VCLF, and V rep
CLF : Rn×Rm → R. The rationale for

our construction is as follows. Our starting point is the squared
Euclidean distance from the primal-dual solution set, denoted
Veuc. The function V rep

euc is a reparameterization of Veuc (which
remains radially unbounded with respect to X × Z) so that
state and disturbance appear separately in the (set-valued)
Lie derivative. However, since Veuc is only a LaSalle-type
function, this implies that only the disturbance appears in the
Lie derivative of V rep

euc . Nevertheless, via a Converse Lyapunov
Theorem, we identify an additional function VCLF whose
reparameterization V rep

CLF has a Lie derivative where both state
and disturbance appear. The function V rep

CLF, however, may
not be radially unbounded with respect to X × Z . This
leads us to the construction of the iISS Lyapunov function
as V = V rep

euc + V rep
CLF.

We begin by defining the differentiable function Veuc

Veuc(x, z) = min
(x∗,z∗)∈X×Z

1

2
(x− x∗)T (x− x∗)

+
1

2
(z − z∗)T (z − z∗).

Since X × Z is convex and compact, applying Theorem A.2
one gets ∇Veuc(x, z) = (x− x∗(x, z), z − z∗(x, z)), where

(x∗(x, z), z∗(x, z)) = argmin
(x∗,z∗)∈X×Z

1

2
(x− x∗)T (x− x∗)

+
1

2
(z − z∗)T (z − z∗).

It follows from Theorem IV.1 and Proposition IV.4 that
LK [fdis]Veuc(x, z) ⊂ (−∞, 0] for all (x, z) ∈ Rn≥0 × Rm.
Next, similar to the approach in [31], define the function V rep

euc

by

V rep
euc (x, z) =

∫ Veuc(x,z)

0
dr

1+
√
2r
.
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Clearly, V rep
euc (x, z) is positive definite with respect to X ×Z .

Also, V rep
euc (x, z) is radially unbounded with respect to X ×Z

because (i) Veuc(x, z) is radially unbounded with respect to
X × Z and (ii) limy→∞

∫ y
0

dr
1+
√
2r

=∞. In addition, for any
a ∈ LK [fw

dis]
V rep
euc (x, z) and (x, z) ∈ Rn≥0 × Rm, one has

a ≤
√

2Veuc(x, z)‖w‖
1 +

√
2Veuc(x, z)

≤ ‖w‖. (23)

Next, we define the function VCLF. Since X × Z is com-
pact and globally asymptotically stable for (13) (ẋ, ż) =
K [fwdis](x, z) when w ≡ 0 (cf. Corollary IV.5) the Converse
Lyapunov Theorem [29, Theorem 3.13] ensures the existence
of a smooth function VCLF : Rn+m → R≥0 and class K∞
functions α̃1, α̃2, α̃3 such that

α̃1(‖(x, z)‖X×Z) ≤ VCLF(x, z) ≤ α̃2(‖(x, z)‖X×Z),

a ≤ −α̃3(‖(x, z)‖X×Z),

for all a ∈ LK [fdis]VCLF(x, z) and (x, z) ∈ Rn≥0 ×Rm. Thus,
when w 6≡ 0, for a ∈ LK [fw

dis]
VCLF(x, z) and (x, z) ∈ Rn≥0 ×

Rm, we have

a ≤ −α̃3(‖(x, z)‖X×Z) +∇VCLF(x, z)w,

≤ −α̃3(‖(x, z)‖X×Z) + ‖∇VCLF(x, z)‖ · ‖w‖,
≤ −α̃3(‖(x, z)‖X×Z) + (‖(x, z)‖X×Z

+ ‖∇VCLF(x, z)‖) · ‖w‖,
≤ −α̃3(‖(x, z)‖X×Z) + λ(‖(x, z)‖X×Z) · ‖w‖,

where λ : [0,∞)→ [0,∞) is given by

λ(r) = r + max
‖η‖X×Z≤r

‖∇VCLF(η)‖.

Since VCLF is smooth, λ is a class K function. Next, define

V rep
CLF(x, z) =

∫ VCLF(x,z)

0
dr

1+λ◦α̃−1
1 (r)

.

Without additional information about λ ◦ α̃−11 , one cannot
determine if V rep

CLF is radially unbounded with respect to
X × Z or not. Nevertheless, V rep

CLF is positive definite with
respect to X × Z . Then for any a ∈ LK [fw

dis]
V rep
CLF(x, z) and

(x, z) ∈ Rn≥0 × Rm we have,

a ≤ −α̃3(‖(x, z)‖X×Z) +∇VCLF(x, z)w

1 + λ ◦ α̃−11 (VCLF(x, z))
,

≤ −α̃3(‖(x,z)‖X×Z)
1+λ◦α̃−1

1 ◦α̃2(‖(x,z)‖X×Z)
+ λ(‖(x,z)‖X×Z)

1+λ(‖(x,z)‖X×Z)‖w‖
≤ −ρ(‖(x, z)‖X×Z) + ‖w‖, (24)

where ρ is the positive definite function given by

ρ(r) = α̃3(r)/(1 + λ ◦ α̃−11 ◦ α̃2(r)).

and we have used the fact that α̃−11 and α̃2 are positive definite.
We now show that V = V rep

euc + V rep
CLF is an iISS Lyapunov

function for (15) with respect to X×Z . First, (22a) is satisfied
because V is positive definite and radially unbounded with
respect to X ×Z since (i) V rep

euc is positive definite and radially
unbounded with respect to X × Z and (ii) V rep

CLF is positive
definite with respect to X ×Z . Second, (22b) is satisfied as a

result of the combination of (23) and (24). Since V satisfies
the conditions of Theorem V.8, (15) is iISS.

Based on the discussion in Section V-A, the iISS property
of (15) is an accurate representation of the robustness of the
dynamics, not a limitation of our analysis. A consequence of
iISS is that the asymptotic convergence of the dynamics is
preserved under finite energy disturbances [41, Proposition 6].
In the case of (15), a stronger convergence property is true
under finite variation disturbances (which do not have finite
energy). The following formalizes this fact.

Corollary V.10 (Finite variation disturbances). Let w :
R≥0 → Rn × Rm be such that

∫∞
0
‖w(s) − w‖ds < ∞ for

some w = (wx, wz) ∈ Rn × Rm. Assume X (w) × Z(w) is
nonempty and compact. Then each trajectory of (15) under
the disturbance w converges asymptotically to a point in
X (w)×Z(w).

Proof: Let fvdis,pert be the discontinuous saddle-point
dynamics derived for the perturbed program (16) associated
to w with additive disturbance v : R≥0 → Rn × Rm. By
Corollary V.2, X (w) × Z(w) 6= ∅ is globally asymptotically
stable for f0dis,pert. Additionally, by Theorem V.9 and since
X (w)×Z(w) is compact, fvdis,pert is iISS. As a consequence,
by [41, Proposition 6], each trajectory of fvdis,pert converges
asymptotically to a point in X (w)×Z(w) if

∫∞
0
‖v(s)‖ds <

∞. The result follows by noting that fwdis with disturbance w
is exactly fvdis,pert with disturbance v = w − w and that, by
assumption, the latter satisfies

∫∞
0
‖v(s)‖ds <∞.

VI. ROBUSTNESS IN RECURRENTLY CONNECTED GRAPHS

Here, we build on the iISS properties of the saddle-point
dynamics (9) to study its convergence under communication
link failures. As such, agents do not receive updated state
information from their neighbors at all times and use the last
known value of their state to implement the dynamics. The
link failure model we considered is described by recurrently
connected graphs (RCG), in which periods of communication
loss are followed by periods of connectivity, formalized next.

Definition VI.1 (Recurrently connected graphs). Given a
strictly increasing sequence of times {tk}∞k=0 ⊂ R≥0 and a
base graph Gb = (V, Eb), we call G(t) = (V, E(t)) recurrently
connected with respect to Gb and {tk}∞k=0 if E(t) ⊆ Eb for
all t ∈ [t2k, t2k+1) while E(t) ⊇ Eb for all t ∈ [t2k+1, t2k+2),
k ∈ Z≥0.

Intuitively, one may think of Gb as a graph over which (13)
is distributed: during time intervals of the form [t2k, t2k+1),
links are failing and hence the network cannot execute the
algorithm properly, whereas during time intervals of the form
[t2k+1, t2k+2), enough communication links are available to
implement it correctly. In what follows, and for simplicity of
presentation, we only consider the worst-case link failure sce-
nario: i.e., if a link fails during the time interval [t2k, t2k+1),
it remains down during its entire duration. The results stated
here also apply to the general scenarios where edges may fail
and reconnect multiple times within a time interval.
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In the presence of link failures, the implementation of the
evolution of the z variables, cf. (14), across different agents
would yield in general different outcomes (given that differ-
ent agents have access to different information at different
times). To avoid this problem, we assume that, for each
` ∈ {1, . . . ,m}, the agent with minimum identifier index,

j = S(`) := min{i ∈ {1, . . . , n} : a`,i 6= 0},

implements the z`-dynamics and communicates this value
when communication is available to its neighbors. Incidentally,
only neighbors of j = S(`) need to know z`. With this conven-
tion in place, we may describe the network dynamics under
link failures. Let F(k) be the set of failing communication
edges for t ∈ [tk, tk+1). In other words, if (i, j) ∈ F(k) then
agents i and j do not receive updated state information from
each other during the whole interval [tk, tk+1). The nominal
flow function of i on a RCG for t ∈ [tk, tk+1) is

fnom,RCG
i (x, z) = −ci −

m∑
`=1

(i,S(`))/∈F(k)

a`,iz` −
m∑
`=1

(i,S(`))∈F(k)

a`,iz`(tk)

−
m∑
`=1

a`,i

[ n∑
j=1

(i,j)/∈F(k)

a`,jxj +

n∑
j=1

(i,j)∈F(k)

a`,jxj(tk)− b`
]
.

Thus the xi-dynamics during [tk, tk+1) for i ∈ {1, . . . , n} is

ẋi =

{
fnom,RCG
i (x, z), if xi > 0,

max{0, fnom,RCG
i (x, z)}, if xi = 0.

(25a)

Likewise, the z-dynamics for ` ∈ {1, . . . ,m} is

ż` =

n∑
i=1

(i,S(`))/∈F(k)

a`,ixi +

n∑
i=1

(i,S(`))∈F(k)

a`,ixi(tk)− b`. (25b)

It is worth noting that (25) and (13) coincide when F(k) =
∅. The next result shows that the discontinuous saddle-point
dynamics still converge under recurrently connected graphs.

Proposition VI.2 (Convergence of saddle-point dynamics
under RCGs). Let G(t) = (V, E(t)) be recurrently connected
with respect to Gb = (V, Eb) and {tk}∞k=0. Suppose that (25)
is distributed over Gb and Tmax

disconnected := supk∈Z≥0
(t2k+1 −

t2k) < ∞. Let t 7→ (x(t), z(t)) be a trajectory of (25). Then
there exists Tmin

connected > 0 (depending on Tmax
disconnected, x(t0),

and z(t0)) such that infk∈Z≥0
(t2k+2 − t2k+1) > Tmin

connected

implies that ‖(x(t2k), z(t2k))‖X×Z → 0 as k →∞.

Proof: The proof method is to (i) show that trajectories
of (25) do not escape in finite time and (ii) use a KL
characterization of asymptotically stable dynamics [29] to find
Tmin
connected for which ‖(x(t2k), z(t2k))‖X×Z → 0 as k → ∞.

To prove (i), note that (25) represents a switched system of
affine differential equations. The modes are defined by all κ-
combinations of link failures (for κ = 1, . . . , |Eb|) and all κ-
combinations of agents (for κ = 1, . . . , n). Thus, the number
of modes is d := 2|Eb|+n. Assign to each mode a number

in the set {1, . . . , d}. Then, for any given t ∈ [tk, tk+1), the
dynamics (25) is equivalently represented as[

ẋ
ż

]
= Pσ(t)

[
x
z

]
+ qσ(t)(x(tk), z(tk)),

where σ : R≥0 → {1, . . . , d} is a switching law and Pσ(t)
(resp. qσ(t)) is the flow matrix (resp. drift vector) of (25) for
mode σ(t). Let ρ = ‖(x(t0), z(t0))‖X×Z and define

q̃ := max
p∈{1,...,d}
‖(x,z)‖X×Z≤ρ

‖qp(x, z)‖, and µ̃ := max
p∈{1,...,d}

µ(Pp),

where µ(Pp) = limh→0+
‖I−hPp‖−1

h is the logarithmic norm
of Pp. Both q̃ and µ̃ are finite. Consider an arbitrary interval
[t2k, t2k+1) where ‖(x(t2k), z(t2k))‖X×Z ≤ ρ. In what fol-
lows, we make use of the fact that the trajectory of an affine
differential equation ẏ = Ay + β for t ≥ t0 is

y(t) = eA(t−t0)y(t0) +
∫ t
t0
eA(t−s)βds. (26)

Applying (26), we derive the following bound,

‖(x(t2k+1), z(t2k+1))− (x(t2k), z(t2k))‖

≤ ‖(x(t2k), z(t2k))‖(eµ̃(t2k+1−t2k) − 1) +

∫ t2k+1

t2k

eµ̃(t2k+1−s)q̃ds,

≤ (ρ+ q̃/µ̃)(eµ̃T
max
disconnected − 1) =: M.

In words, M bounds the distance that trajectories travel on
intervals of link failures. Also, M is valid for all such
intervals where ‖(x(t2k), z(t2k))‖X×Z ≤ ρ. Next, we address
the proof of (ii) by designing Tmin

connected to enforce this
condition. By definition, ‖(x(t0), z(t0))‖X×Z = ρ. Thus,
‖(x(t1), z(t1)) − (x(t0), z(t0))‖ ≤ M . Given that X × Z
is globally asymptotically stable for (25) if F(k) = ∅ (cf.
Theorem V.9), [29, Theorem 3.13] implies the existence of
β ∈ KL such that

‖(x(t), z(t))‖X×Z ≤ β(‖(x(t0), z(t0))‖X×Z , t).
By [41, Proposition 7], there exist θ1, θ2 ∈ K∞ such that
β(s, t) ≤ θ1(θ2(s)e−t). Thus,

α(‖(x(t2), z(t2))‖X×Z)

≤ θ1(θ2(‖(x(t1), z(t1))‖X×Z)e−t2+t1)

≤ θ1(θ2(ρ+M)e−t2+t1).

Consequently, if

t2 − t1 > Tmin
connected := ln

(
θ2(ρ+M)

θ−11 (α(ρ))

)
> 0,

then ‖(x(t2), z(t2))‖X×Z < ρ. Repeating this analysis reveals
that ‖(x(t2k+2), z(t2k+2))‖X×Z < ‖(x(t2k), z(t2k))‖X×Z for
all k ∈ Z≥0 when t2k+2 − t2k+1 > Tmin

connected. Thus
‖(x(t2k), z(t2k))‖X×Z → 0 as k →∞ as claimed.

Remark VI.3 (More general link failures). Proposition VI.2
shows that, as long as the communication graph is connected
with respect to A for a sufficiently long time after periods
of failure, the discontinuous saddle-point dynamics converge.
We have observed in simulations, however, that the dynamics
is not robust to more general link failures such as when the
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communication graph is never connected with respect to A
but its union over time is. We believe the reason is the lack
of consistency in the z−dynamics for all time across agents
in this case. •

VII. SIMULATIONS

Here we illustrate the convergence and robustness properties
of the discontinuous saddle-point dynamics. We consider a
finite-horizon optimal control problem for a network of agents
with coupled dynamics and underactuation. The network-wide
dynamics is open-loop unstable and the aim of the agents is to
find a control to minimize the actuation effort and ensure the
network state remains small. To achieve this goal, the agents
use the discontinuous saddle-point dynamics (13). Formally,
consider the finite-horizon optimal control problem,

min

T∑
τ=0

‖x(τ + 1)‖1 + ‖u(τ)‖1 (27a)

s.t. x(τ + 1) = Gx(τ) +Hu(τ), τ = 0, . . . T, (27b)

where x(τ) ∈ RN and u(τ) ∈ RN is the network state
and control, respectively, at time τ . The initial point xi(0) is
known to agent i and its neighbors. The matrices G ∈ RN×N
and H = diag(h) ∈ RN×N , h ∈ RN , define the network
evolution, and the network topology is encoded in the sparsity
structure of G. We interpret each agent as a subsystem whose
dynamics is influenced by the states of neighboring agents.
An agent knows the dynamics of its own subsystem and its
neighbor’s subsystem, but does not know the entire network
dynamics. A solution to (27) is a time history of optimal
controls (u∗(0), . . . , u∗(T )) ∈ (RN )T .

To express this problem in standard linear programming
form (4), we split the states into their positive and negative
components, x(τ) = x+(τ)− x−(τ), with x+(τ), x−(τ) ≥ 0
(and similarly for the inputs u(τ)). Then, (27) can be equiva-
lently formulated as the following linear program,

min

T∑
τ=0

N∑
i=1

x+i (τ + 1)+x−i (τ + 1)+u+i (τ)+u−i (τ) (28a)

s.t. x+(τ + 1)− x−(τ) = G(x+(τ)− x−(τ))

+H(u+(τ)− u−(τ)), τ = 0, . . . , T (28b)
x+(τ + 1), x−(τ + 1), u+(τ), u−(τ) ≥ 0, ∀τ (28c)

The optimal control for (27) at time τ is then u∗(τ) = u+∗ (τ)−
u−∗ (τ), where the vector (u+∗ (0), u−∗ (0), . . . , u+∗ (T ), u−∗ (T ))
is a solution to (28), cf. [42, Lemma 6.1].

We implement the discontinuous saddle-point dynamics (13)
for problem (28) over the network of 5 agents described in
Figure 2. To implement the dynamics (13), neighboring agents
must exchange their state information with each other. In this
example, each agent is responsible for 2(T+1) = 24 variables,
which is independent of the network size. This is in contrast
to consensus-based distributed optimization algorithms, where
each agent would be responsible for 2N(T + 1) = 120
variables, which grows linearly with the network size N .
For simulation purposes, we implement the dynamics as a
single program in MATLAB R©, using a first-order (Euler)

approximation of the differential equation with a stepsize of
0.01. The CPU time for the simulation is 3.1824s on a 64-
bit 3GHz Intel R© CoreTM i7-3540M processor with 16GB of
installed RAM.

Note that, when implementing this dynamics, agent i ∈
{1, . . . , 5} computes the time history of its optimal control,
u−i (0), u+i (0), . . . , u−i (T ), u+i (T ), as well as the time history
of its states, x−i (1), x+i (1), . . . , x−i (T + 1), x+i (T + 1). With
respect to the solution of the optimal control problem, the
time history of states are auxiliary variables used in the
discontinuous dynamics and can be discarded after the control
is determined. Figure 3 shows the results of the implementa-
tion of (13) when a finite energy noise signal disturbs the
agents’ execution. Clearly (13) achieves convergence initially
in the absence of noise. Then, the finite energy noise signal
in Figure 3(b) enters each agents’ dynamics and disrupts
this convergence, albeit not significantly due to the iISS
property of (15) characterized in Theorem V.9. Once the noise
disappears in the agents’ computation of its optimal control,
convergence of the algorithm ensues. The constraint violation
is plotted in Figure 3(c). Once the time history of optimal
controls has been computed (corresponding to the steady-state
values in Figure 3(a)), agent 1 implements it, and the resulting
network evolution is displayed in Figure 3(d). Agent 1 is
able to drive the system state to zero, despite it being open-
loop unstable. Figure 4 shows the results of implementation
in a recurrently connected communication graph and (13) still
achieves convergence as characterized in Proposition VI.2. The
link failure model here is a random number of random links
failing during times of disconnection. The graph is repeatedly
connected for 1s and then disconnected for 4s (i.e., the ratio
Tmax
disconnected : Tmin

connected is 4 : 1). The fact that convergence is
still achieved under this unfavorable ratio highlights the strong
robustness properties of the algorithm.

VIII. CONCLUSIONS

We have considered a network of agents whose objec-
tive is to have the aggregate of their states converge to
a solution of a general linear program. We proposed an
equivalent formulation of this problem in terms of finding
the saddle points of a modified Lagrangian function. To make
an exact correspondence between the solutions of the linear
program and saddle points of the Lagrangian we incorporate
a nonsmooth penalty term. This formulation has naturally
led us to study the associated saddle-point dynamics, for
which we established the point-wise convergence to the set
of solutions of the linear program. Based on this analysis,
we introduced an alternative algorithmic solution with the
same asymptotic convergence properties. This dynamics is
amenable to distributed implementation over a multi-agent
system, where each individual controls its own component of
the solution vector and shares its value with its neighbors.
We also studied the robustness against disturbances and link
failures of this dynamics. We showed that it is integral-input-
to-state stable but not input-to-state stable (and, in fact, no
algorithmic solution for linear programming is). These results
have allowed us to formally establish the resilience of our
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Fig. 2. Network dynamics and communication topology of the multi-agent system. The network dynamics is underactuated and open-loop unstable but
controllable. The presence of a communication link in (b) among every pair of agents whose dynamics are coupled in (a) ensures that the algorithm (13) is
distributed over the communication graph.

−4

−3

−2

−1

0

1

2

3

4

5

6

Time, t

A
g
e
n
t

1
’s

c
o
n
tr

o
l

u
1
(0

),
.
.
.,

u
1
(1

1
)

(a) Computing the optimal control (with noise)

−5

−4

−3

−2

−1

0

1

2

3

4

5

Time, t
N

o
is

e
,

w
(t

)

(b) Finite energy noise used in (a)

0

1

2

3

4

5

Time, t

C
o
n
st
ra
in
t
V
io
la
ti
o
n
,

||A
x
−

b
||

→

0

1

2

3
x 10−3

(c) Equality constraint violation in (a)

2 4 6 8 10 12
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

Time step, τ

x
(τ

)

(d) Network evolution under optimal control found in (a)

Fig. 3. Plot (a) shows the trajectories of the discontinuous saddle-point dynamics (15) subject to the noise depicted in (b) for agent 1 as it computes its
time history of optimal controls. Plot (c) shows the associated equality constraint violation. The asymptotic convergence of the trajectories appears to be
exponential. The time horizon of the optimal control problem (28) is T = 11. The 12 trajectories in (a) and (b) represent agent 1’s evolving estimates of
the optimal controls u1(0), . . . , u1(11). The steady-state values achieved by these trajectories correspond to the solution of (27). Once determined, these
controls are then implemented by agent 1 and result in the network evolution depicted in (d). The dynamics is initialized to a random point.

distributed dynamics to disturbances of finite variation and
recurrently disconnected communication graphs. Future work
will include the study of the convergence rate of the dynamics
and its robustness properties under more general link failures,
the synthesis of continuous-time computation models with
opportunistic discrete-time communication among agents, and
the extension of our design to other convex optimization
problems. We also plan to explore the benefits of the proposed
distributed dynamics in a number of engineering scenarios,
including the smart grid and power distribution, bargaining
and matching in networks, and model predictive control.
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Fig. 4. The trajectories of the discontinuous saddle-point dynamics (15)
under a recurrently connected communication graph where a random number
of random links failed during periods of disconnection. The simulation
parameters are the same as in Figure 3.
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APPENDIX

The following is a technical result used in the proof of
Theorem V.4.

Lemma A.1 (Property of feasible set). If {Ax = b, x ≥ 0}
is non-empty and bounded then {AT z ≥ 0} is unbounded.

Proof: We start by proving that there exists an ν ∈ Rm
such that {Ax = b + ν, x ≥ 0} is empty. Define the vector
s ∈ Rn component-wise as si = max{Ax=b,x≥0} xi. Since
{Ax = b, x ≥ 0} is compact and non-empty, s is finite. Next,
fix ε > 0 and let ν = −A(s + ε1n). Note that Ax = b + ν
corresponds to A(x+s+ε1n) = b, which is a shift by s+ε1n
in each component of x. By construction, {Ax = b + ν, x ≥
0} is empty. Then, the application of Farkas’ Lemma [10,
pp. 263] yields that there exists ẑ ∈ Rm such that AT ẑ ≥ 0
and (b+ ν)T ẑ < 0 (in particular, (b+ ν)T ẑ < 0 implies that
ẑ 6= 0). For any λ ∈ R≥0, it holds that AT (λẑ) ≥ 0, and thus
λẑ ∈ {AT z ≥ 0}, which implies the result.

The proof of Theorem V.9 makes use of the following result
from [43, Proposition B.25].

Theorem A.2 (Danskin’s Theorem). Let Y ⊂ Rm be com-
pact and convex. Given g : Rn × Y → R, suppose that
x 7→ g(x, y) is differentiable for every y ∈ Y , ∂xg is
continuous on Rn × Y , and y 7→ g(x, y) is strictly convex
and continuous for every x ∈ Rn. Define f : Rn → R by
f(x) = miny∈Y g(x, y). Then, ∇f(x) = ∂xg(x, y)|y=y∗(x),
where y∗(x) = argminy∈Y g(x, y).
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