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Abstract:
Hybrid systems exhibit continuous and discrete dynamics and are encountered in many complex
and safety-critical systems. Due to their complex nature, the fault diagnosis task becomes very
challenging. In this paper, we present a method to perform fault detection with a nonlinear
hybrid system using set-membership parameter estimation in a bounded-error framework. Our
method relies on a consistency test between the feasible parameter set as computed in normal
fault-free operation or given as nominal, and the feasible parameter set as estimated during
on-line operation over a given time horizon. Hence, a fault is detected if the feasible set for the
parameter vector estimated online is inconsistent with nominal values. An illustrative example
is presented.
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reachability, uncertain systems.

1. INTRODUCTION

Nowadays, it is more and more required from current sys-
tems to embed capabilities for autonomy that allow them
to counteract the occurrence of a fault or any other dis-
turbances, while still providing a reliable functional or de-
graded service. These systems should contain mechanisms
to perceive a degraded operating mode without human in-
tervention, and then perform the necessary corrections for
the restoration of a normal operating mode, or a degraded
mode but safe. In this framework, a key challenge is to
take into account uncertainties. It is essential to consider
this incomplete knowledge, which can take in the form of
ill-defined disturbances, parameter variations due to a tol-
erant design, faults, etc. Model-based fault detection and
localization methods rely on the detection of discrepancies
between the hybrid system outputs and model outputs (see
Fig. 1). In the literature there are many model-based fault
diagnosis methods available for dynamical systems. For in-
stance, the state estimation approach (Wang et al. (2007);
Isermann (1997); Zhao et al. (2005)), the parity space
approach (Shumsky and Zhirabok (2012); Bayoudh et al.
(2009); Fliss and Tagina (2013)), the parameter estimation
approach (Isermann (1993, 1984); Wahrburg and Adamy
(2012); Vento et al. (2012)). However, to the best of our
knowledge, there is no work to date that investigates set-
membership approach to model-based fault detection in

? This work is supported by the French National Research
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the ”unknown but bounded error” framework with hybrid
dynamic systems (HDS).

In the ”unknown but bounded error”, all the uncertain
quantities (measurement errors, modeling errors and un-
certainty) are taken in a bounded set with known bounds.
Estimation problems in this framework are then referred
to as set-membership estimation. One of the main advan-
tages of the set-membership estimation approach is that it
provides a guaranteed decision about fault occurrence, in
contrast with the classical notion of risk, usually defined
in terms of probability of occurrence and false detection.
In other words, these methods allow us to avoid false pos-
itive (false alarm). Finally, the contribution of our paper
resides in the set-membership fault detection of HDS using
a parametric approach, i.e. fault detection relies on the
identification of the parameter vector. We have recently
proposed an algorithm for performing hybrid reachability
(Mäıga et al. (2013, 2014)). This algorithm is at the core
of the method proposed in this paper. We first define
set-membership approach to fault detection with hybrid
system, then set membership parameter estimation with
hybrid systems, and describe how to build the estimation
approach by combining our algorithm for hybrid reacha-
bility, and the SIVIA algorithm for set inversion (Jaulin
and Walter (1993)) to solving the parameter estimation
problem for nonlinear hybrid systems in a bounded-error
framework.

The paper is structured as follows: Section 2 formulates
the set-membership fault detection, and the parameter
estimation problems fo HDS. The set computation tools



Fig. 1. The monitoring of a hybrid dynamical system in
the bounded-error framework

used in the paper are presented in Section 3. Section 4
presents hybrid reachability concepts i.e. interval methods
for solving the initial value problem for ordinary differ-
ential equation, and the set-membership guard crossing
problem. The set-membership fault detection and hybrid
parameter estimation will be presented in Section 5. Sec-
tion 6 gathers experimental evaluation on hybrid mass-
spring system.

2. PROBLEM STATEMENT : SET-MEMBERSHIP
FAULT DETECTION

Considering the hybrid system is modeled as a hybrid
automaton which is defined as in (Alur et al. (1995)) :

HA = (Q,D,P,Σ,A, Inv,F), (1)

• Q is a set of locations {q} whose continuous dynamics,
i.e. flow transitions, are described by non-autonomous
differential equations fq ∈ F of the form :

flow(q) : ẋ(t) = fq(x, p, t), (2)

where fq : D×P×R+ 7→ D is nonlinear and assumed
sufficiently smooth over D ⊆ Rn, with dimension n
that may depend on q, and p ∈ P, where P is an
uncertainty domain for the parameter vector p.

• Inv is an invariant, which assigns a domain to the
continuous state space of each location:

Inv(q) : νq(x(t), p, t) < 0, (3)

where inequalities are taken componentwise, νq : D×
P × R+ 7→ Rm is also nonlinear, and the number m
of inequalities may also depend on q.
• A is the set of discrete transitions {e = (q →
q′)} given by the 5-uple (q, guard, σ, ρ, q′), where q
and q′ represent upstream and downstream locations
respectively; guard is a condition of the form :

guard(e) : γe(x(t), p, t) = 0; (4)

σ is an event, and ρ is a reset function assumed to be
affine.

A transition q → q′ may occur when the continuous state
flow reaches the guard set, i.e. when the continuous state
satisfies condition (4). Introducing the new state variable
z = (x, p , t) with ż = (ẋ, 0, 1), and defining Z = D ×P ×
R+, equations (2–4) are rewritten :

flow(q) : ż(t) = fq(z), (5)

Inv(q) : νq(z(t)) < 0, (6)

guard(e) : γe(z(t)) = 0. (7)

so that all uncertain quantities are embedded in the initial
state vector.

Let us also consider the following measurement equation

y(t) = gq(x,p, t) (8)

where function gq : D × P × R+ 7→ D is nonlinear.

2.1 Set-membership parameter estimation

We assume that measurements ŷj of the output vector are
available at sampling times tj ∈ {t1, t2, ..., Tn} ⊂ [t0, Tend].
Note that the sampling interval need not be constant.
The measurement noise is a discrete time signal assumed
additive and bounded with known bounds. Denote by Ej a
feasible domain for the output error at time tj : the feasible
domain for the model output at time tj is then given by :

Yj = ŷj + Ej (9)

Given the hybrid model (1-4), the measurements and
error bounds, the goal of this paper consists to estimate
the parameter vector p by determining the set S of all
acceptable parameters

S = {p ∈ P0|(∀t ∈ [t0, Tend],

f low(q) ∧ Inv(q) ∧ guard(e)

∧ (∀tj ∈ {t1, t2, ..., Tn}, gq(x,p, t) ∈ Yj} (10)

where the set P0 is the initial search space for the param-
eters. The characterization of the solution set S is a set
inversion problem i.e. starting from the set Y, we want to
reconstruct the original set S.

2.2 Set-membership fault detection

In the literature (e.g. Guerra and Puig (2008)), fault
detection is usually performed either using a “direct” or
an “inverse” test. The direct test relies on a worst-case
estimation approach whereas the inverse test relies on set-
membership estimation approaches, a framework similar
to the one investigated in this paper (Blesa et al. (2011,
2012)).

The direct test is based on the evaluation of the residual
obtained from the difference between measurements (8)
and the output of the hybrid model (1-4) at every instant
tj :

rj = yj − ŷj (11)

Ideally, when neither modelling errors nor noise are
present, the residual given by Eq (11), known also as parity
equation, should be different from zero in a faulty scenario
and zero otherwise. However, because of modelling and
measurement errors and uncertainty, one can derive a
feasible domain for the residuals, and the detection test
now relies on checking the following condition assuming
parametric uncertainty, i.e. 0 /∈ Γj , where Γj is the set
of possible residuals considering parameter uncertainties
and an additive bounded noise, Γj = {rj |rj = yj − ŷj +
εj and εj ∈ Ej}.
In the inverse test, the fault detection process is done by
estimating the value of model parameters using system
identification procedures, and comparing these estimated
values to nominal ones (hence assumed known). The differ-
ence between these values forms also a residual (Isermann
(1993)), which can be written as

rj = pn − p (12)



Here we use a set-membership extension of the inverse test
as follows using S given by Eq (10) and PN denoting the
set of nominal parameter values.

(1) First PN is estimated with nonfaulty data,
(2) during operation, set S as given by (10) is estimated

from running data (possibly containing faults) over a
given horizon, and

(3) the intersection S ∩ PN is computed,
(4) a fault is detected if S∩PN = ∅, which means that the

nominal parameter values cannot explain the actual
data while considering error bounds ; actual data and
the model are inconsistant hence there should be a
fault.

Our method for fault detection with hybrid system relies
on a new method for set-membership parameter estima-
tion. It uses interval analysis (Moore (1996)), zonotope
enclosures (Alamo et al. (2005)) and set inversion (Jaulin
and Walter (1993)). It relies also on a new approach to
hybrid reachability that is described briefly in next section.

3. HYBRID REACHABILITY

3.1 Continuous transitions

Our validated ODE solvers are based on a three-stage Tay-
lor series approach. The first stage of a Taylor series based
verify the existence and uniqueness of the solution using
the Banach fixed point theorem and the Picard-Lindelöf
operator (Moore (1996)). The second stage consist to com-
pute an a priori enclosure [z̃j ] such that [z̃j ] ⊇ Z(t) for all
t in [tj , tj+1]. Hence, [z̃j ] is indeed an over-approximation
of the reachable set over [tj , tj+1]. The third stage of a
Taylor series method uses compute a tighter enclosure for
the set of solutions of (5) at tj+1 using a Taylor series
expansion of order k of the solution at tj , where [z̃j ] is
used to enclose the remainder term:

Z(t; tj , zj) ⊆ [z](t; tj , [zj ]) =

[zj ] +

k−1∑
i=1

(t− tj)if [i]q ([zj ]) + (t− tj)kf [k]
q ([z̃j ]), (13)

where t can be taken as tj+1 or any t ∈ [tj , tj+1], which

is not necessarily on the time-grid, and the f
[i]
q ([zj ]) are

the Taylor coefficients. In (Nedialkov et al. (1999)), (13)
is turned into a computationally acceptable scheme that
controls the wrapping effect 1 by using the mean-value
approach complemented by QR-factorization as proposed
by Lohner. The solution enclosure at time t ∈ [tj , tj+1] can
be computed in the form mean-value:

Z(t; tj ,Z0) ∈ {v(t) +A(t)r(t) | v(t) ∈ [v](t), r(t) ∈ [r](t)},
(14)

Defining : [χ](t) ≡ {[z](t), ẑ(t), [v](t), [r](t), A(t)}, where
ẑ(t) := Mid([z](t)), the algorithm ϕlqr (.) is used in this
paper to compute the solution set of (5) at time t ∈
[tj , tj+1]. It is the same as the one developed in (Mäıga
et al. (2013)). The solution enclosure at time tj+1 is given
by [χj+1] = ϕlqr ([χj ], tj , tj+1, [z̃j ]).

1 The wrapping effect is the over-approximation induced by enclos-
ing a set of any shape in an axis-aligned box.

Proposition 1. The solution domain (14) is the Minkowski
sum 2 of a parallelotope, i.e. an oriented box, and an
aligned box, abbreviated as an MSPB. Z(t) = A(t)[r](t)⊕
[v](t). An MSPB is a particular zonotope generated by
2n line segments: Z(t) = c(t) ⊕ R(t)B2n, where, for
all t, the point vector c(t) ∈ Rn and the point matrix
R(t) ∈ Rn×2n satisfy: c(t) = A(t)mid ([r](t))+mid ([v](t)),
and R(t) = [A(t)dr ([r](t)) | dr ([v](t))] , where | denotes
matrix concatenation, and dr (.) is short for diag(rad (.)),
i.e. a diagonal matrix of real numbers each corresponding
to the radius of an interval number.

3.2 Discrete transitions

We first consider event detection and localization stages.
In our previous work (Ramdani and Nedialkov, 2011),
given Algorithm ϕlqr (.), detecting and localizing hybrid
transition is shown to be equivalent to finding the set
[t?, t

?
] × Z?

j , where Z?
j is the initial set consisting of the

initial state vectors z?j that lead to a z(te; tj , z
?
j ) that

satisfies (7) at te and te ∈ [t?, t
?
]. Accounting for the

mean value form introduced in section 3.1, finding such
set is performed by solving the following CSP:(

[tj , tj+1]× rj , ‘γe
(
ϕ(χj(.), ., t, .)

)
= 0’

)
. (15)

If the set [t?, t
?
] × [r?j ] is not empty, one can assume

that the event e = q → q′ occurs at te = t? and that
[χ](t−e ) = [χ]([t?, t

?
]. The discrete transition can then

be computed from [z(t−e )] thanks to the reset function ρ.
(Ramdani and Nedialkov (2011)) enhances the method by
proposing a bisection strategy that account for the size
of [t?, t

?
] and [Z?

j ]. We use a conservative relaxation of
the above algorithm as described in (Mäıga et al. (2013,
2014)) : in fact, we do not search all initial state vectors
that lead the flow to satisfy the guard condition, but we
merely compute the a priori solution [z̃], i.e. an enclosure
of the reachable set over the time interval [t0, t1]. Having
determined [χj+1], (Ramdani and Nedialkov (2011)) pro-
poses to compute the flow/invariant intersection at time
tj+1 by solving the following CSP:

([vj+1]× [rj+1], ‘νq([vj+1] +Aj+1[rj+1]) < 0’). (16)

If [vj+1]′× [rj+1]′ is the solution set of CSP (16), then the
solution set [zj+1]′ = inv(q) ∩ [zj+1] is given by:

[zj+1]′ = {vj+1+Aj+1rj+1, | vj+1 ∈ [vj+1]′, rj+1 ∈ [rj+1]′}.

4. OUR METHOD FOR PARAMETER ESTIMATION

4.1 Set-membership parameter estimation

We address set-membership estimation of the parameter
vector of the hybrid system (1-4), i.e. the computation of
set (10) by extending SIVIA set inversion via interval anal-
ysis (Jaulin and Walter (1993)) to hybrid systems. Though
SIVIA was initially introduced for closed-form models,
it can be extended to differential or hybrid dynamical
models as long as one can obtain conservative numerical
evaluation of the solution set [xj ] of (1-4) at measurement
time instants tj . This evaluation can be obtained using
our hybrid reachability method recalled in section 3. The

2 Let ξ1, ξ2 ⊂ Rn, the Minkowski sum of ξ1 and ξ2 is: ξ1⊕ξ2 = {s1+
s2| s1 ∈ ξ1, s2 ∈ ξ2}.



Algorithm 1: Algorithm Parameter estimation with
hybrid systems

input : [p], Tend,∆T , hybrid reach(), F(1:n), R(1:n),Lm, ε
output: La,Lr,Li

Lc ← [p], n := Tend

∆T
+ 1;

while Lc 6= ∅ do
inclusion := 0; [p] := pop(Lc);
/* Compute hybrid reachable set over whole

horizon Tend */
(F(1:n), R(1:n))← hybrid reach([p],∆T , Tend);
for j = 1 to n do

/* Fj, Frontier at tj */
test←Inclusion-Test(Fj ,Lm(j));
if (test == false) then

break;
else if (test == true) then

inclusion := inclusion+ 1;
end if

end for
if (test == false) then
Lr ← [p];
else

if (inclusion == n) then
La ← [p];
else if w([p]) ≤ ε then
Li ← [p];

else
{[p]l, [p]r} := Partition([p]);
Lc ← [p]l; Lc ← [p]r;

end if
end if

end if
end if

end while

extension of SIVIA algorithm to hybrid dynamical systems
is gathered in Algorithm 1. It allows us to partition the
initial bounded search space for the parameters P = [p]
and to compute two subsets : an inner approximation S
and an uncertainty layer ∆S, such that S ⊆ S ⊆ S∪∆S. If
P is too uncertain, it might be necessary to partition P and
iteratively apply SIVIA to every box of the partition. An
alternative method is proposed in Travé-Massuyès et al.
(2015) based on a Focused Recursive Partition. In order
to extend SIVIA, we only have to define the inclusion
test for the hybrid dynamical system. In this paper we
propose Algorithm 2, which checks if a union of zonotopes
is included in the feasible domain for measurements.

4.2 Checking inclusion test using a union of zonotopes

Proposition 1. Given a zonotope Z and a strip S = |η>x−
d| ≤ σ, the zonotope support strip (Vicino and Zappa
(1996)) is defined by SZ = {x ∈ Rn|qd ≤ η>x ≤ qu}, where
qu and qd are defined as qu = max

x∈Z
η>x, and qd = min

x∈Z
η>x.

They are easily computed by qu = η>c + ‖R>η‖1 and
qd = η>c− ‖R>η‖1 where ‖.‖ is the 1-norm of a vector.

Theorem 1. ((Vicino and Zappa (1996))). The zonotope
Z = c ⊕ RBp ∈ Rn is included in the strip Sj = |η>x −
d| ≤ σ related to measurement datum [yj ] iff (qd ≥ dj −
σj) ∧ (qu ≤ dj + σj) where dj = mid ([yj ]), σj =rad([yj ])

Algorithm 2: Inclusion-Test

input : Fj , yj
output: true, false, uncertain
/* Inclusion test between frontier Fj and datum

yj at time instant tj */
inclus:=0; nointer:=0;
for l = 1 to length(Fj) do

{Aj
l , [r

j
l ], [vjl ]} := pop(Fj);

Z
j
l := Box2zonotope(Aj

l , [r
j
l ], [vjl ]);

Z
j?
l := g([Zj

l ]);
Sj ← {η, dj = mid ([yj ]), σj = rad([yj ])};
if ∀l

(
Z
j?
l ⊆ Sj

)
then

inclus++;
end if

if
(
Z
j?
l ∩ Sj == ∅

)
then

nointer++;
end if

end for
if (inclus==length(Fj)) then

return true;
end if
if nointer > 0 then

return false;
end if
return ambiguous;

Fj

Sj

Z
j
l

(a) Test: is true (b) is ambiguous (c) is false

Fig. 2. Inclusion test outcomes with zonotopes for frontier
list Fj at time tj

Theorem 2. ((Vicino and Zappa (1996))). The zonotope
Z = c⊕RBp ∈ Rn do not intersect the strip Sj = |η>x−
d| ≤ σ iff (qd > dj + σj) ∨ (qu < dj − σj) where
dj = mid ([yj ]), σj =rad([yj ])

4.3 SIVIA-H : SIVIA for hybrid systems

Our algorithm (Algorithm 1) generates three lists La,Lr,Li.
The first list La contains subpaving [pi] ⊂ [p] which yields
an inclusion test as true (see Fig.2-b), i.e:

∀tj ∈ {t1, t2, ..., Tn}, l = 1, 2, . . . , length(Fj), f low(q)

∧ Inv(q) ∧ guard(e) ∧ gq([xjl ], [pi]) ∈ Yj (17)

The union of subpavings as given by the first list La

characterizes an inner approximation S of set S. The
second list Lr consists of all subpaving which the inclusion
test is false (see Fig.2-d) i.e. the subpaving for which the
structure of the model, the experimental data, and the
error bounds are inconsistent, i.e.:



∃tj ∈ {t1, t2, ..., Tn}, l = 1, 2, . . . , length(Fj), f low(q)

∧ Inv(q) ∧ guard(e) ∧ gq([xjl ], [pi]) ∩ Yj = ∅ (18)

where Fj is the frontier (i.e. the subpaving of solution

boxes) at instant tj and [xjl ] = Fj(l) a solution box of
the frontier Fj with l = 1, 2, . . . , length(Fj). When one
cannot conclude about the outcome of the inclusion test,
i.e. neither condition (17) nor condition (18) are satisfied,
algorithm SIVIA-H bisects the parameter boxes under
study and then performed the test again. The choice of the
bisection direction is based for example on the size of the
box subpaving to partition (Jaulin and Walter (1993)). We
repeat this process until the size of the box under analysis
reaches a threshold ε chosen by the user. Finally, the third
list, denoted Li, contains all the undetermined boxes which
size is smaller than ε.

To summarize, the principle of our approach for set mem-
bership parameter identification for hybrid systems, we
consider first a parameter box [pi], for which we compute
the whole hybrid reachable set over [t0, tend], thanks to our
hybrid reachability algorithm (Mäıga et al. (2013, 2014)).
Then if condition (17) is satisfied, i.e. the parameter box is
consistent with the measurements, we add the box to list
La to form the inner approximation. To the contrary, if
condition (18) is satisfied, i.e. the parameter box is not
consistent with the measurements, the model structure
and the error bounds, this parameter box is added to the
list Lr, i.e. the rejected boxes. Now, if the two conditions
are not satisfied and the size of the subpaving is less than
the threshold ε, the parameter box is then added to the
list Li, to form the uncertainty layer.

5. NUMERICAL EVALUATION

For the purpose of numerical experimentation, the above
system-solving methods have been implemented in the
IBEX C++ library (www.ibex-lib.org) and we have used
the standard contractor HC4Revise it includes. We have
also used Profil/Bias C++ class library for interval
computation, FABDAB++ package (www.fadbad.com) for
automatic differentiation and computing the Taylor co-
efficients, AML++ (amlpp.sourceforge.net) and Armadillo
(arma.sourceforge.net) package for Linear algebra. All ex-
periments were tested on a i5− 2430M 2.4GHz CPU with
3.8GB RAM running Ubuntu Linux.

5.1 Example : A hybrid mass-spring system

Consider the mass-spring system with three modes of
operation q = 1, 2, 3 and four transitions given by :

flow(1) : f1 (x1, x2) =
(
x2,

−k
m x1 − c

mx2

)
inv(1) : ν1(x1, x2) = x2 ≥ −v0

guard(1) : γ1(x1, x2) = x2 < −v0

reset(1) : ρ1(x1, x2) = (α1x1, α2x2)
flow(2) : f2 (x1, x2) =

(
x2,

−k
m x1 − c

mx2

)
inv(2) : ν2(x1, x2) = x2 ≤ −v0 ∧ x2 ≥ v0

guard(2) : γ1(x1, x2) = x2 ≤ v0

reset(2) : ρ1(x1, x2) = (α1x1, α2x2)
flow(3) : f1 (x1, x2) =

(
x2,

−k
m x1 − c

mx2

)
inv(3) : ν1(x1, x2) = x2 ≤ v0

reset(3) : ρ1(x1, x2) = (α1x1, α2x2)

(19)

The continuous states are described by two variables
(x1, x2), where x1, x2 represents respectively the position
and the velocity of the mass. α1 = α2 = 1. The integration
step is chosen constant h = 0.1 in the ODE solver. The
time variable is bisected until the treshold εT = 0.005.
To illustrate the performance of our approach we consider
two case-studies. In the first one, we will identify p1 = k

m
and p2 = c

m assuming p3 = v0 known. In the second one,

we will identify p1 = k
m and p3 = v0 assuming p2 = c

m is
known.

The mass-spring system operates as follows : first we start
in mode q1 (Fig. 3) with the damper disconnected i.e.
c1 = 0, then when velocity x2 exceeds a given threshold v0

(|ẋ2| ≥ v0), the system connects the damper c2 6= 0 and
the system switches to mode q2. Starting from mode q2,
when the velocity is below the threshold v0 (|ẋ2| < v0),
the damper is disconnected and the system moves back
to mode q1 and so on. We measure the position of the
mass. We have 45 possible measurements of the position
over the whole time horizon Tend = 4.4s, but to illustrate
the robustness of our approach, only 12 measurements
have been chosen. Initial conditions for state vectors are
known with good precision: x1 ∈ [1, 1.1], x2 ∈ [0.1, 0.1].
Artificial data are gathered with the parameter vector
p? = (2.1 × 0.63 × 0.5) and the assumption on noise
bounds are Ej = [−0.01, 0.01]. The initial search box is
taken as [P0] = [1.5; 3] × [0; 1.5] for the first case-study
and [P0] = [1.5; 3] × [0.35; 0.65] for the second case-study.
ε = 0.01.

q1, c1 = 0start q2, c1 6= 0 q3, c1 = 0

x2 < −0.5

x2 < 0.5

x2 > −0.5

x2 > 0.5

Fig. 3. The hybrid automata for the mass-spring system
under study
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Fig. 4. Solution set in parameters space p2 × p1, and
reachable set, for case study 1. Left:Inner approxima-
tion(red boxes), uncertainty layer (blue boxes). Right:
Reachable set on the phase plan x2 × x1.

Case study 1. The inner and the uncertainty layers approx-
imations are depicted in Fig. 4 for the parameter space
p2 × p1. We have also plotted the reachable set in phase
plan (x2 × x1) i.e. velocity vs position for all parameters
that are consistent with the measurements Fig. 4.

Case study 2. The inner and uncertainty layer approxima-
tions are depicted in Fig. 5 for the parameter space p3 ×
p1. We have also plotted the reachable set in phase plan
(x2×x1) i.e. velocity vs position for all parameters vectors
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Fig. 5. Solution set in parameters space p3 × p1, and
reachable set, for case study 2. Left:Inner approxima-
tion(red boxes), uncertainty layer (blue boxes). Right:
Reachable set on the phase plan x2 × x1.

that are consistent with the measurements Fig. 5. These
figures clearly show that our approach can solve in a very
natural way the problem of set-membership estimation
of the parameters driving discrete transitions in hybrid
systems, i.e. the identification of the guard or switching
hyper-surface of the nonlinear dynamical system.

6. CONCLUSION

This paper has addressed the problem of set-membership
estimation and fault detection for nonlinear hybrid system
in a bounded-error framework. For set-membership param-
eter estimation, we have shown how to extend the classical
set inversion via interval analysis to hybrid dynamical
systems using our algorithm for hybrid reachability. The
latter makes it possible to build the inclusion test used
within our now new algorithm SIVIA-H. Fault detection
relies on the “inverse” test, i.e. compares the feasible pa-
rameter set estimated on the running data with nominal
parameter values. The evaluation performed shows nice
results for the parameter estimation. Future work will
consolidate the use of our parameter estimation for fault
detection and diagnosis of hybrid systems.
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