

Robust Learning-based Image Matching IMW CVPR 2019

Dawei Sun Zixin Luo Jiahui Zhang

An image matching pipeline: 1) local keypoint detection, 2) local keypoint description, 3) sparse matching.

An image matching pipeline: 1) local keypoint detection, 2) local keypoint description, 3) sparse matching.

Part 1

ContextDesc: a learning-based local descriptor ContextDesc: Local Descriptor Augmentation with Cross-Modality Context, CVPR'19

A learning-based inlier

classification and fundamental

matrix estimation method

In submission

The results are becoming saturated on standard benchmark

*Samples are from HPatches dataset.

*GeoDesc is used for feature description.

Locally distinguishable by visual appearance for,

e.g., repetitive patterns?

More *visual context!*

- The representation of both local details and richer context – how to construct the network?
- Construct feature pyramids *too costly for this low-level task?*

Keypoint distribution reveals meaningful scene structure

*Keypoints are derived from SIFT.

Coarse matches can be established, even *without* color information

Keypoint distribution reveals meaningful scene structure

Keypoints are designed to be repeatable in the same underlying scene

Encoding *geometric context* from keypoint distribution of individual image

- Keypoints are irregular and unordered *how to construct a proper encoder?*
- Keypoints are not perfectly repeatable how to acquire strong invariance property to different image variations?

Visual context

- Incorporate high-level visual information
- Resort to *regional representation* often used in image retrieval (one forward pass of the entire image)

Geometric context

- Geometric cues from keypoint distribution.
- Resort to *PointNet-like architecture* to process 2D point sets

Based on off-the-shelf descriptors...

A unified framework: Cross-modality local descriptor augmentation

E.g., SIFT

Regional features

An off-the-shelf image retrieval model

Geometric context

Geometric context

Improvements from visual context

Strategy	Recall i/v	
baseline (GeoDesc [23])	59.46	71.24
CS (256-d) [50, 19, 43]	59.83	71.27
w/ global feature [5]	59.11	71.02
w/ regional feature	63.64	73.37
w/ regional feature + CN	63.98	73.63

Geometric context encoder			
Network architecture	Recall i/v		
baseline (GeoDesc [23])	59.46	71.24	
PointNet [31]	59.61	70.96	
w/ CN (pre.) + xy	61.67	72.63	
w/ CN (pre.) + xy + raw local feature	60.91	72.99	
w/ CN (orig.) + xy + matchability	59.94	71.25	
w/ CN (pre.) + xy + matchability	62.82	73.40	

Comparison with other methods			
Method	Recall i/v		
SIFT [22]	47.36	53.06	
L2-Net [43]	47.58	53.96	
HardNet [25]	57.63	63.36	
GeoDesc [23]	59.46	71.24	
ContextDesc	66.55	75.52	
ContextDesc+	67.14	76.42	

Improvements from geometric context

Visual context encoder			
Strategy	Reca	Recall i/v	
baseline (GeoDesc [23])	59.46	71.24	
CS (256-d) [50, 19, 43]	59.83	71.27	
w/ global feature [5]	59.11	71.02	
w/ regional feature	63.64	73.37	
w/ regional feature + CN	63.98	73.63	

Geometric context encoder			
Network architecture	k architecture Recall i/v		
baseline (GeoDesc [23])	59.46	71.24	
PointNet [31]	59.61	70.96	
w/ CN (pre.) + xy	61.67	72.63	
w/ CN (pre.) + xy + raw local feature	60.91	72.99	
w/ CN (orig.) $+ xy + matchability$	59.94	71.25	
w/ CN (pre.) + xy + matchability	62.82	73.40	

Comparison with other methods			
Method	Recall i/v		
SIFT [22]	47.36	53.06	
L2-Net [43]	47.58	53.96	
HardNet [25]	57.63	63.36	
GeoDesc [23]	59.46	71.24	
ContextDesc	66.55	75.52	
ContextDesc+	67.14	76.42	

Improvements from cross-modality context

Visual context encoder			
Strategy	Recall i/v		
baseline (GeoDesc [23])	59.46	71.24	
CS (256-d) [50, 19, 43]	59.83	71.27	
w/ global feature [5]	59.11	71.02	
w/ regional feature	63.64	73.37	
w/ regional feature + CN	63.98	73.63	

Geometric context encoder			
Network architecture	Recall i/v		
baseline (GeoDesc [23])	59.46	71.24	
PointNet [31]	59.61	70.96	
w/ CN (pre.) $+$ xy	61.67	72.63	
w/ CN (pre.) + xy + raw local feature	60.91	72.99	
w/ CN (orig.) $+ xy + matchability$	59.94	71.25	
w/ CN (pre.) + xy + matchability	62.82	73.40	

Comparison with other methods			
Method	Recall i/v		
SIFT [22]	47.36	53.06	
L2-Net [43]	47.58	53.96	
HardNet [25]	57.63	63.36	
GeoDesc [23]	59.46	71.24	
ContextDesc	66.55	75.52	
ContextDesc+	67.14	76.42	

SUN3D: indoor scenes

	SIFT [22]	L2-Net [43]	HardNet [25]	GeoDesc [23]	Ours
		median number	r of inlier matche	<u>25</u>	
indoor	138	153	239	271	365
outdoor	168	173	219	214	482

	SIFT [22]	GeoDesc [23]	Ours
	Recall	l	
JPEG	60.7	66.1	78.6
Blur	41.0	47.7	57.8
Exposure	78.2	86.4	88.2
Day-Night	29.2	39.6	43.3
Scale	81.2	85.8	88.1
Rotation	82.4	87.6	86.3
Scale-Rotation	29.6	33.7	38.0
Planar	48.2	59.1	61.7

		# Images	# Registered	# Sparse Points	# Observations
Fountain	SIFT [22]	11	11	10,004	44K
	GeoDesc [23]		11	16,687	83K
	Ours		11	16,965	84K
Herzjesu	SIFT	8	8	4,916	19K
	GeoDesc		8	8,720	38K
	Ours		8	9,429	40K
South Building	SIFT	128	128	62,780	353K
	GeoDesc		128	170,306	887K
	Ours		128	174,359	893K
Roman Forum	SIFT	2,364	1,407	242,192	1,805K
	GeoDesc		1,566	770,363	5,051K
	Ours		1,571	848,319	5,484K
Alamo	SIFT	2,915	743	120,713	1,384K
	GeoDesc		893	353,329	3,159K
	Ours		921	424,348	3,488K

YFCC: outdoor scenes L2-Net [43] HardNet SIFT [22] GeoDesc [23] Ours median number of inlier match. 138 239 271 365 indoor 153 outdoor 173 219 **482** 168 214

	SIFT [22]	GeoDesc [23]	Ours
	Recal	l	
JPEG	60.7	66.1	78.6
Blur	41.0	47.7	57.8
Exposure	78.2	86.4	88.2
Day-Night	29.2	39.6	43.3
Scale	81.2	85.8	88.1
Rotation	82.4	87.6	86.3
Scale-Rotation	29.6	33.7	38.0
Planar	48.2	59.1	61.7

		# Images	# Registered	# Sparse Points	# Observations
Fountain	SIFT [22]	11	11	10,004	44K
	GeoDesc [23]		11	16,687	83K
	Ours		11	16,965	84K
Herzjesu	SIFT	8	8	4,916	19K
	GeoDesc		8	8,720	38K
	Ours		8	9,429	40K
South Building	SIFT	128	128	62,780	353K
	GeoDesc		128	170,306	887K
	Ours		128	174,359	893K
Roman Forum	SIFT	2,364	1,407	242,192	1,805K
	GeoDesc		1,566	770,363	5,051K
	Ours		1,571	848,319	5,484K
Alamo	SIFT	2,915	743	120,713	1,384K
	GeoDesc		893	353,329	3,159K
	Ours		921	424,348	3,488K

~

	SIFT [22]	L2-Net [43]	HardNet [25]	GeoDesc [23]	Ours
		median number	r of inlier matche	S	
indoor	138	153	239	271	365
outdoor	168	173	219	214	482

	SIFT [22]	GeoDesc [23]	Ours	Fountain	SIFT
	Recall	l		i ountuin	GeoDe
JPEG	60.7	66.1	78.6	Herziesu	<u> </u>
Blur	41.0	47.7	57.8		Geo
Exposure	78.2	86.4	88.2	South Building	$\frac{O}{SI}$
Day-Night	29.2	39.6	43.3		Geo
Scale	81.2	85.8	88.1	Roman Forum	SI
Rotation	82.4	87.6	86.3		Geo
Scale-Rotation	29.6	33.7	38.0	Alamo	
Planar	48.2	59.1	61.7		Geo O

		# Images	# Registered	# Sparse Points	# Observations
Fountain	SIFT [22]	11	11	10,004	44K
	GeoDesc [23]		11	16,687	83K
	Ours		11	16,965	84K
Herzjesu	SIFT	8	8	4,916	19K
	GeoDesc		8	8,720	38K
	Ours		8	9,429	40K
South Building	SIFT	128	128	62,780	353K
	GeoDesc		128	170,306	887K
	Ours		128	174,359	893K
Roman Forum	SIFT	2,364	1,407	242,192	1,805K
	GeoDesc		1,566	770,363	5,051K
	Ours		1,571	848,319	5,484K
Alamo	SIFT	2,915	743	120,713	1,384K
	GeoDesc		893	353,329	3,159K
	Ours		921	424,348	3,488K

	SIFT [22]	L2-Net [43]	HardNet [25]	GeoDesc [23]	Ours
		median number	r of inlier matche	S	
indoor	138	153	239	271	365
outdoor	168	173	219	214	482

	SIFT [22]	GeoDesc [23]	Ours
	Recall	!	
JPEG	60.7	66.1	78.6
Blur	41.0	47.7	57.8
Exposure	78.2	86.4	88.2
Day-Night	29.2	39.6	43.3
Scale	81.2	85.8	88.1
Rotation	82.4	87.6	86.3
Scale-Rotation	29.6	33.7	38.0
Planar	48.2	59.1	61.7

		# Images	# Registered	# Sparse Points	# Observations
Fountain	SIFT [22]	11	11	10,004	44K
	GeoDesc [23]		11	16,687	83K
	Ours		11	16,965	84K
Herzjesu	SIFT	8	8	4,916	19K
	GeoDesc		8	8,720	38K
	Ours		8	9,429	40K
South Building	SIFT	128	128	62,780	353K
	GeoDesc		128	170,306	887K
	Ours		128	174,359	893K
Roman Forum	SIFT	2,364	1,407	242,192	1,805K
	GeoDesc		1,566	770,363	5,051K
	Ours		1,571	848,319	5,484K
Alamo	SIFT	2,915	743	120,713	1,384K
	GeoDesc		893	353,329	3,159K
	Ours		921	424,348	3,488K

3D reconstruction benchmark

Scale or rotation change

Illumination change

Perspective change

Indoor scene

When pose accuracy as evaluation metric: consistent improvement, but less significant

ľ	/lethod	♦	Date 🍦	Туре 🌲	Ims (%) 🔷	#Pts 🔷	SR 🔶	<u>TL</u> ♦	mAP ^{5°} ♦	mAP ^{10°}	mAP ^{15⁰} ▼	mAP ^{20°}	mAP ^{25°}	ATE 🔶
•	SIFT + ContextDesc kp:8000, match:nn		19-05-09	F	97.9	6020.4	97.2	3.26	0.3828	0.4821	0.5399	0.5853	0.6226	_
Ð	SIFT + GeoDesc kp:8000, match:nn		19-04-24	F	97.3	5583.8	95.8	3.39	0.3858	0.4778	0.5317	0.5790	0.6139	_

After obtaining sufficient matches, what is the next bottleneck in order to improve the image matching?

- 1) Establish putative matches (nearest-neighbor search/FLANN)
 - 2) Outlier rejection (ratio test/mutual check/GMS)
- 3) Geometry computation (5-point/8-point algorithm with RANSAC)
 - 4) Non-linear optimization for refinement

- 1) Establish putative matches (nearest-neighbor search/FLANN)
 - 2) Outlier rejection (ratio test/mutual check/GMS)

3) Geometry computation (5-point/8-point algorithm with RAN (C)

4) Non-linear optimization for refinement

Learning-based

*Yi et al.: Learning to find good correspondences, CVPR'18.

Given putative matches $N \times 4$, where each row vector denotes a correspondence (x, y, x', y') of an image pair.

The network predicts the probability vector $N \times 1$ that indicates whether a correspondence is an inlier.

Only inlier matches (and its confidence) are used for computing the geometry.

Given putative matches $N \times 4$, where each row vector denotes a correspondence (x, y, x', y') of an image pair.

The network predicts the probability vector $N \times 1$ that indicates whether a correspondence is an inlier.

Only inlier matches (and its confidence) are used for computing the geometry.

Given putative matches $N \times 4$, where each row vector denotes a correspondence (x, y, x', y') of an image pair.

The network predicts the probability vector $N \times 1$ that indicates whether a correspondence is an inlier.

Only inlier matches (and their confidence) are used for solving the two-view geometry.

Why is it important?

I	Vlethod	$\frac{1}{2}$	Date 🍦	Туре 🔶	Ims (%) 🔶	#Pts 🔷	SR 🔶	TL 🔶	mAP ^{5⁰} ♦	mAP ^{10°}	mAP ^{15⁰} ▼	mAP ^{20°} 🔷	mAP ^{25⁰} ♦	ATE 🔷
+	SIFT + ContextDesc + Inlier Classification V2 kp:8000, match:custom		1 28	Propose b	ed l e arnin ased	g 0 126.0	97.5	3.44	0.5755	0.6830	0.7389	0.7750	0.8006	_
•	SIFT + ContextDesc kp:8000, match:nn1to1	1	2-06-07	F Mutual	98.1 check	6472.1	98.0	3.34	0.4287	0.5371	0.6017	0.6464	0.6826	_
+	SIFT + ContextDesc kp:8000, match:nn		19-05-09	F	97.9	6020.4	97.2	3.26	0.3828	0.4821	0.5399	0.5853	0.6226	
				No outli	or rejection	h								

Previous method

- Adopt a PointNet-like architecture.
- Apply context normalization (instance normalization) on the entire point set to capture global context.

Local context, e.g., piece-wise smoothness

(GMS matcher).

*Yi et al.: Learning to find good correspondences, CVPR'18.

Previous method

- Adopt a PointNet-like architecture.
- Apply context normalization (instance normalization) on the entire point set to capture global context.

Local context, e.g., piece-wise smoothness

(GMS matcher).

*Bian et al.: GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence, CVPR'17.

Previous method

- Adopt a PointNet-like architecture.
- Apply context normalization (instance normalization) on the entire point set to capture global context.

Proposed

- Learn to establish neighboring relations on unordered, non-Euclidean correspondence sets.
- Build a hierarchical architecture to capture both global and local context.

Μ	lethod	÷	Date 🍦	Туре 🔷	Ims (%) 🌲	#Pts 🔷	SR 🌲	<u>TL</u> ♦	mAP ^{5°}	mAP ^{10°} 🔷	mAP ^{15⁰} ▼	mAP ^{20°} 🔷	mAP ^{25°}	ATE 🔷
+	SIFT + ContextDesc + Inlier Classification V2 kp:8000, match:custom		19-05-28	F/M roposed	98.6	6126.0	97.5	3.44	0.5755	0.6830	0.7389	0.7750	0.8006	
+	SIFT + ContextDesc + Inlier Classification V1 kp:8000, match:custom		19-05-29 P	F/M revious I	98.4 method	6045.8	97.8	3.43	0.5553	0.6633	0.7169	0.7545	0.7849	_

- HPatches: patch verification/matching/retrieval *Reflect the performance in real applications?* [1]
- Two-view image matching on pose recovery accuracy - *Involve other variables such as RANSACbased algorithms?* [2]
- 3D reconstruction metrics *Involve more variables* such as image retrieval, SfM or bundle adjustment? [3]
- The ground truth is often obtained from SfM with a traditional matching pipeline.

[1] Balntas et al.: HPatches: A benchmark and evaluation of handcrafted and learned local descriptors, CVPR'17
[2] Yi et al.: Learning to find good correspondences, CVPR'18.
[3] Schönberger et al.: Comparative Evaluation of Hand-Crafted and Learned Local Features, CVPR'17.

- Challenging for learning-based methods clear definition as supervision?
- Pixel-wise, even sub-pixel wise accuracy preserve low-level details after multiple convolutions?
- Combine the advantage of both human priors and learned priors.

- HPatches: patch verification/matching/retrieval *Reflect the performance in real applications?* [1]
- Two-view image matching on pose recovery accuracy - *Involve other variables such as RANSACbased algorithms?* [2]
- 3D reconstruction metrics *Involve more variables* such as image retrieval, SfM or bundle adjustment? [3]
- The ground truth is often obtained from SfM with a

traditional matching pipeline.

 Balntas et al.: HPatches: A benchmark and evaluation of handcrafted and learned local descriptors, CVPR'17
 Yi et al.: Learning to find good correspondences, CVPR'18.
 Schönberger et al.: Comparative Evaluation of Hand-Crafted and Learned Local Features, CVPR'17.

- Challenging for learning-based methods clear definition as supervision?
- Pixel-wise, even sub-pixel wise accuracy preserve low-level details after multiple convolutions?
- Combine the advantage of both human priors and learned priors.

- HPatches: patch verification/matching/retrieval *Reflect the performance in real applications?* [1]
- Two-view image matching on pose recovery accuracy - *Involve other variables such as RANSACbased algorithms?* [2]
- 3D reconstruction metrics *Involve more variables* such as image retrieval, SfM or bundle adjustment? [3]
- The ground truth is often obtained from SfM with a

traditional matching pipeline.

 Balntas et al.: HPatches: A benchmark and evaluation of handcrafted and learned local descriptors, CVPR'17
 Yi et al.: Learning to find good correspondences, CVPR'18.
 Schönberger et al.: Comparative Evaluation of Hand-Crafted and Learned Local Features, CVPR'17.

- Challenging for learning-based methods clear definition as supervision?
- Pixel-wise, even sub-pixel wise accuracy preserve low-level details after multiple convolutions?
- Combine the advantage of both human priors and learned priors.

- HPatches: patch verification/matching/retrieval *Reflect the performance in real applications?* [1]
- Two-view image matching on pose recovery accuracy - *Involve other variables such as RANSACbased algorithms?* [2]
- 3D reconstruction metrics *Involve more variables* such as image retrieval, SfM or bundle adjustment? [3]
- The ground truth is often obtained from SfM with a traditional matching pipeline.

[1] Balntas et al.: HPatches: A benchmark and evaluation of handcrafted and learned local descriptors, CVPR'17
[2] Yi et al.: Learning to find good correspondences, CVPR'18.
[3] Schönberger et al.: Comparative Evaluation of Hand-Crafted and Learned Local Features, CVPR'17.

- Challenging for learning-based methods clear definition as supervision?
- Pixel-wise, even sub-pixel wise accuracy preserve low-level details after multiple convolutions?
- Combine the advantage of both human priors and learned priors.

- HPatches: patch verification/matching/retrieval *Reflect the performance in real applications?* [1]
- Two-view image matching on pose recovery accuracy - *Involve other variables such as RANSACbased algorithms?* [2]
- 3D reconstruction metrics *Involve more variables* such as image retrieval, SfM or bundle adjustment? [3]
- The ground truth is often obtained from SfM with a traditional matching pipeline.

 Balntas et al.: HPatches: A benchmark and evaluation of handcrafted and learned local descriptors, CVPR'17
 Yi et al.: Learning to find good correspondences, CVPR'18.
 Schönberger et al.: Comparative Evaluation of Hand-Crafted and Learned Local Features, CVPR'17.

- Challenging for learning-based methods clear definition as supervision?
- Pixel-wise, even sub-pixel wise accuracy preserve low-level details after multiple convolutions?
- Combine the advantage of both human priors and learned priors.

Thanks!

Code available at: https://github.com/lzx551402/contextdesc

