
Proposal
Robust Optimal Walking

on the Sarcos Humanoid Robot
Eric C. Whitman

April 2012

Robotics Institute
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213

Thesis Committee:
Christopher G. Atkeson, Chair

J. Andrew (Drew) Bagnell
Hartmut Geyer

Jerry Pratt

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2012 Eric C. Whitman

Thanks to the NSF for providing funding.

Keywords: Walking, Humanoid, Control

ii

I am dedicated to completing my thesis.

iii

iv

Abstract
This thesis proposal focuses on using optimal control to generate a walking behavior for

the Sarcos humanoid robot that is robust to both external disturbances and modeling error. We
describe a walking controller that functions by coordinating multiple low-dimensional optimal
controllers. We break a simplified model of the dynamics into several subsystems that have lim-
ited interaction. Each of the subsystems are augmented with coordination variables and we use a
Dynamic Programming algorithm to generate optimal controllers for the augmented subsystems.
We then use value functions to coordinate the augmented subsystems by managing tradeoffs of
the coordination variables, producing an optimal controller for the simplified dynamic model. In-
verse dynamics are then used to generate joint torques for the full rigid-body model of the robot.
In a simulation based on the Sarcos robot, we demonstrate the robustness of this method to un-
expected external disturbances such as pushes (both impulsive and continuous), trips, ground
elevation changes, slopes, and regions where it is prohibited from stepping.

When implementing this controller on physical hardware (the Sarcos humanoid robot), we
must also cope with significant modeling error. We produce stable walking by modifying our
controller to include individual joint PD gains as well as modifying the swing leg subsystems to
include acceleration as a state (and control jerk rather than acceleration). We also present two
modifications to the Dynamic Programming algorithm, a multiple-model variant and a learning-
based variant, that allow us to generate policies that are more tolerant of modeling error.

v

vi

Acknowledgments
First and foremost, I would like to thank my advisor, Chris Atkeson, for all of his help and support
throughout my time as a graduate student. Thanks are also due to the rest of my committee, Drew
Bagnell, Hartmut Geyer, and Jerry Pratt for their advice and comments on this draft. I would
also like to thank my entire lab group for their comments and feedback on all my research. Ben
Stephens has been particularly helpful.

vii

Contents

Abstract v

Acknowledgments vii

List of Figures ix

List of Tables xii

1 Introduction 1
1.1 Summary . 1
1.2 Motivation . 2
1.3 Types of Walking Robots . 2
1.4 Simple Models . 3
1.5 Intended Thesis Contributions . 4

2 Dynamic Programming 5
2.1 Introduction . 5
2.2 Dynamic Programming Algorithm . 8
2.3 Robust Dynamic Programming . 10

2.3.1 Related Work . 10
2.3.2 Pendulum Swing-Up . 12
2.3.3 Tests of Robustness . 13
2.3.4 Modeling Error as Noise . 14
2.3.5 Minimax Formulation . 16
2.3.6 Multiple Model Dynamic Programming 17
2.3.7 Discussion of MMDP . 22

2.4 Dynamic Programming with Learning . 23
2.4.1 Introduction . 23
2.4.2 Method . 24
2.4.3 Results . 26
2.4.4 Use of Uncertainty . 27

3 Simulated Walking 31
3.1 Introduction . 31

viii

3.1.1 Related Work . 32
3.2 Controlling Instantaneously Coupled Systems 35

3.2.1 Instantaneously Coupled Systems . 35
3.2.2 Obtaining the Optimal Policy . 36

3.3 Walking as an ICS . 38
3.3.1 Non-ICS Modifications . 42

3.4 Walking Controller . 46
3.4.1 Policy Generation . 48
3.4.2 Policy Coordination . 55
3.4.3 Low-Level Control . 61

3.5 Capabilities . 64
3.5.1 Speed . 65
3.5.2 Turning . 66
3.5.3 Terrain . 67

3.6 Robustness . 68
3.6.1 Pushes . 68
3.6.2 Slips . 69
3.6.3 Trips . 71
3.6.4 Steps Up/Down . 72
3.6.5 Slopes . 73

3.7 Upper Body Rotation . 74
3.7.1 System Model . 75
3.7.2 Use in Practice . 79
3.7.3 Results . 82

3.8 Conclusion . 83

4 Robotic Walking 85
4.1 Introduction . 85
4.2 Robot Description . 85

4.2.1 Mechanical . 86
4.2.2 Sensing . 87
4.2.3 Computation . 87

4.3 Major Controller Changes . 87
4.3.1 Weighted-Objective Inverse Dynamics 88
4.3.2 Inverse Kinematics . 90
4.3.3 Jerk-Based Policies . 91

4.4 Integral Control . 94
4.4.1 Virtual Forces and CoM Offsets . 95

4.5 Swaying . 98
4.6 Preliminary Walking in Place . 100

5 Future Work 105

Bibliography 107

ix

List of Figures

2.1 Robustness to model variations of mass, length, viscosity, and gravity misalign-
ment. Results are shown for the baseline DP (Section 2.2), DP with small and
large amounts of noise (Section 2.3.4), and DP with small and large minimax
perturbations (Section 2.3.5). 15

2.2 Robustness to model variations of mass, length, viscosity, and gravity misalign-
ment. Results are shown for the baseline DP, MMDP with models of various
length added all at once and added incrementally, and MMDP with models of
various θ0 added incrementally. 19

2.3 Plots of the position of the three trials used to learn the pendulum model well
enough to achieve swing-up. 27

2.4 Plots of the torque for the three trials used to learn the pendulum model well
enough to achieve swing-up. 28

2.5 The policy generated for the first trial using the initial guess of a model (upper
left), the policy generated after one trial of data collection (upper right), and the
policy that achieved swing-up after two trials of data collection (lower left). For
comparision, we also show the policy generated directly from the true dynamics
(lower right). 29

3.1 The Sarcos Primus hydraulic humanoid robot (left) and the simulation based on
it (right). 32

3.2 The CoM and footstep pattern of the walking simulation starting from rest. Note
that during double support, the CoM is near the line between the two feet. 39

3.3 Time until transition, tt versus time. To reduce computation, policies are only
computed for tt < 0.2 during double support. 41

3.4 Diagram of the sagittal system not using LIPM dynamics. The fraction of the
total vertical force, fz on the right leg is given byw. Note that in the configuration
drawn, x has a negative sign. 44

3.5 Diagram of h(x, d). The green region is the expected double support region. The
blue linse show the single support arcs. The red line shows h(x, d) during double
support with the joining arc solid and the tangent lines outside of the expected
region dashed. 46

3.6 Diagram of h(x, d) when the feet are inside the expected double support region
(green region). The blue lines show the single support arcs, and the red line
shows the double support arc when the feet are within the expected double sup-
port region. 47

x

3.7 The coronal stance value function, V (ttd, ytd|cy = 0.08, ċy = 0), from the DP
tables (top) and from the parabolic approximation (bottom). The red line shows
y∗td(ttd). The dots show the points used to generate the parabolic approximation,
and the horizontal black lines show the location of the parabolas. 57

3.8 Value as a function of ttd following a push to the side. For ease of view, values
are normalized so that the minimum is 0. Due to the push, the coronal policy
wants to touch down soon, but it must compromise with the other policies to
pick the best time, t∗td for the full ICS. 58

3.9 Forward speed as the sagittal stance policy is changed. Starts from rest with
vdes = 0.63, switches to vdes = 0.25 after 5.0 seconds, and to vdes = 0.5 after
10.0 seconds. 65

3.10 Forward speed as the system starts from rest, walks with vdes = 0.5, and stops
by switching to a policy generated with vdes = 0.0. We switch to the stopping
policy after 5.0 seconds, after which it takes about 1.5 steps to stop. During
steady walking, the large humps in the speed occur during single support and the
small humps during double support. 66

3.11 The footstep pattern as the system starts from rest, gets pushed (a 30Ns push to
the system’s left during the 4th step), and avoids obstacles (red regions). The
red regions represent areas where the center of the foot (green dots) may not be
placed, though the foot may overlap with the red region. 67

3.12 Polar plot of the maximum survivable 0.1 second push for our walking simulation
as a function of angle and timeing. Data is shown for perturbations occuring at
various times after left foot lift off. A point represents the maximum survivable
perturbation in a given direction. Concentric circles are in increments of 10
Newton-seconds. 69

3.13 Polar plot of the maximum survivable 3.0 second push for our walking simulation
as a function of angle. Data is shown for perturbations occuring at various times
after left foot lift off. A point represents the maximum survivable perturbation in
a given direction. Concentric circles are in increments of 10 Newton-seconds. . . 70

3.14 The largest tripping obstacle that our controller can handle as a function of when
it is contacted during the step. Results are shown for the baseline controller, an
explicit raising strategy, and an explicit lowering strategy. 71

3.15 A flow chart of a simple generic system for humanoid walking pattern genera-
tion using standard LIPM dynamics (top) and a flow chart for that same system
modified to use the LIPFM dynamics (bottom). 80

3.16 A flow chart of a simple generic system for torque control of a humanoid robot
using standard LIPM dynamics (top) and a flow chart for that same system mod-
ified to use the LIPFM dynamics (bottom). 81

3.17 Polar plot of the maximum survivable perturbation of our walking simulation as a
function of push angle. A point represents the maximum survivable perturbation
in a given direction. Pushes occur midway through right single support. Con-
centric circles are in increments of 10 Newton-seconds. Data is shown for the
unmodified system, the system modified in both the sagittal and coronal planes,
only the sagittal, and only the coronal plane. 83

xi

4.1 The Sarcos Primus humanoid force-controlled robot. 86
4.2 Plot of the desired and measured swing foot acceleration in the z direction for

one step. Measured accelerations are obtained by filtering and double integrating
potentiometer data. 91

4.3 Comparison of the acceleration-based and jerk-based swing-z policies showing
the position that results with and without a 20 ms delay. 94

4.4 Comparison of the acceleration-based and jerk-based swing-z policies showing
the acceleration that results with and without a 20 ms delay. 95

4.5 Comparison of the acceleration-based and jerk-based swing-z policies for walk-
ing in place on the Sarcos humanoid robot. 96

4.6 Lateral motion during swaying experiments. Accelerations are plotted on top
and position on bottom. 99

4.7 Swaying while compensating for inaccurate vertical forces. 101
4.8 Walking in place. Time until transition (top), foot heights (middle), and vertical

forces (bottom). 104

xii

List of Tables

xiii

Chapter 1

Introduction

1.1 Summary

This proposal is concerned with the problem of humanoid walking. The majority of the pro-

posal focuses on work that has already been completed, and the final chapter briefly discusses

what we intend to complete during the remainder of our thesis. Chapter 2 discusses the under-

lying Dynamic Programming algorithm that we use throughout the remainder of the document.

We also consider two proposed improvements aimed at improving the robustness to modeling

error: a multiple-model approach and combining the Dynamic Programming optimization with

learning of the model. In Chapter 3, we propose a novel method for coordinating multiple con-

trollers, which we apply to simulated humanoid walking. We also present results quantifying the

robustness of our simulated walking to various types of perturbations. In Chapter 4, we discuss

modifying the simulation controller to function on real hardware and present preliminary results

for walking in place.

1

1.2 Motivation

Humanoid walking robots (as opposed to wheeled robots) have been promoted for several ap-

plications including rough terrain locomotion, working in environments built for humans, and

working with people. To be effective in any of these roles, the system needs to robust to unex-

pected disturbances of many kinds. They must be capable of walking in unknown, unstructured

environments. The robot should also be compliant, both for safety when working around humans

and for stability in the face of an imperfectly sensed environment. It should also be able to place

its feet in specific, desired locations. We aim to create a walking system that is both reactive, able

to react instantaneously to disturbances or changing conditions, and deliberative, able follow a

plan, avoid obstacles, and place its feet as necessary.

1.3 Types of Walking Robots

The robot’s hardware typically dictates much about the style of controller that is used for walk-

ing. At one end of the spectrum, are passive dynamic walkers, which are able to walk with no

actuation entirely due to the passive dynamics of the mechanical system [62] [20]. Some energy

is inevitably dissipated in the impact at foot touch down, so unactuated robots can only walk

down a slope, where gravity replaces the lost energy. There are also powered robots based on

passive walkers [19], which use actuation to replace the lost energy and can walk on a flat surface.

They typically use simple, possibly open-loop, controllers. The design goal for these controllers

(and much of the mechanical design) is generally to increase the (typically very limited) stability,

which is often expressed in terms of gait sensitivity [35]. For these robots, the controller has little

or no control over the internal joint configuration of the robot, which is entirely determined by

the dynamics.

At the other end of the spectrum are non-backdrivable robots. Most electric motors produce

power at high RPM and low torque, which requires a high gear ratio (often achieved by harmonic

2

drives [57]) to produce the torques and speeds necessary for humanoid walking, especially in

human-sized humanoids. Gear ratios amplify the motor inertia by the square of the gear ratio,

which can easily dominate the dynamics for large gear ratios. Large gear ratio gear boxes can

easily become non-backdrivable. Some of the most successful humanoid robots fall roughly

into this category including Honda’s ASIMO [34], HUBO [72], and the HRP series [48] [3].

These robots typically use high bandwidth feedback control to precisely track desired positions

and velocities at individual joints. With precise control of the internal joint configuration, the

primary dynamic concern is tipping over. Accordingly, many of the control strategies used focus

on regulation of the Zero Moment Point (ZMP) [46] [94], often by pre-planning trajectories and

following them precisely [38].

Somewhere in between these two extremes are compliant force (or torque) controlled robots.

For such robots, the actuators produce a force that interacts with the rigid body dynamics rather

than completely dominating it. This generally makes it more difficult to track precise desired

positions, but compliance can be useful when interacting with an unknown environment. For

robots with electric motors, compliance can be achieved either by use of series-elastic actuators

[76] or by using backdrivable gearboxes. It is easier to make gearboxes backdrivable for low

gear ratios, which necessitates either low torque requirements or special high-torque motors. The

Sarcos Primus robot, which we use, achieves compliance by force control of hydraulic actuators.

Hydraulic actuators do not require gearing to achieve the necessary joint torques, making it easier

to achieve high performance force control. Unlike a physical spring, however, force control does

have a bandwidth limit, and it may not be compliant on the time scales involved in an impact.

1.4 Simple Models

Humanoid robots often have a large number of joints, meaning that they have a high dimen-

sional state space. High dimensional state spaces are difficult to deal with directly because of

the “Curse of Dimensionality” [13]. Instead, many researchers choose to control a simplified

3

model that captures some aspect of the dynamics of the full system. This is related to the con-

cept of “templates” and ”anchors” [30] introduced for studying biological systems. The simple

models are easier to control and allow for greater physical intuition. Additionally, certain simple

models are well studied and provide a convenient common ground between disparate hardware

platforms. The Linear Inverted Pendulum Model (LIPM) [46] and compass gait model [33] [39]

are commonly used simple models of walking that consider the motion of the center of mass.

Control of the simplified model only produces control of the aspects of the full system rep-

resented by the full model. This includes center of mass motion and footstep placement for the

LIPM model. Inverse kinematics can then be used to find joint angles for the full model of the

robot [94]. Joint torques, if needed, can be produced by computed torque methods.

1.5 Intended Thesis Contributions

The primary focus of my thesis will be on a novel optimal control method for humanoid walking

and applying that method to the Sarcos humanoid robot as well as supporting technologies. The

core of our approach is the coordination scheme built around the principle of Instantaneously

Coupled Systems.

Our controller produces flexible and robust walking in simulation. It can start, stop, turn,

and walk at controllable speed. It is robust to trips, low friction, slopes, abrupt changes in ground

height, and pushes.

We have also produced two new versions of dynamic programming, a multiple model vari-

ant and a learning variant, that improve robustness to modeling error. For both variants, we

have shown good results on the simple test problem of pendulum swing-up. We intend to use

one of these versions to improve the robustness of our walking controller on hardware.

The end goal of the thesis will be to produce stable walking on the Sarcos humanoid robot.

We have already applied a simplified version of the controller to the robot to achieve walking in

place.

4

Chapter 2

Dynamic Programming

2.1 Introduction

Trajectory optimization [64] [41] can be used to generate a walking pattern offline. Feedback

gains are then typically used to stabilize the system around the trajectroy. Such a controller is

only optimal on the optimized trajectory and often simple feedback is only effective for a small

region of state space near the nominal trajectory. If a disturbance or modeling error results in

the system straying significantly from the nominal trajectory, a new trajectory can be generated

starting from the current state [70]. Model Predictive Control and Receding Horizon Control

continuously generate new trajectories from the current state regardless of whether the system

is tracking accurately or not [102] [24]. The problem with these methods is that they require

optimizing a new trajectory online. Optimizing a walking trajectory is generally computationally

expensive, meaning that it can take a long time, resulting in low bandwidth control and a delayed

response to perturbations. These methods often must employ approximations (such as linearity)

to keep computation time short. Additionally, they may not be able to find globally optimal, or

even acceptable, trajectories.

Another possibility is to prepare for for perturbations offline by generating a policy that is

effective for a large region of state space. These methods generally suffer from the “Curse of

5

Dimensionality” [13] because high dimensional state spaces are very large and therefore difficult

to fill. Trajectory libraries [58] [103] [28] are a common approach in which a large number of

different trajectories are generated. A policy can then be implemented by choosing the action

from the nearest trajectory or by interpolating betwen them [6]. It is sometimes possible to

analytically compute the convergence region for a given trajectory [96], making it possible to

know where more trajectories need to be added to the library and which regions are already

covered.

Dynamic Programming (DP) [13] [17] [86] generates optimal controllers for a large region

of state space. DP is a class of algorithms for solving Markov Decision Processes [14] [78]. It is

based on the key observation that segments of an optimal trajectory are themselves optimal, as

formalized by the Bellman equation [13],

V (x) = min
u
L(x,u) + γV (f(x,u)), (2.1)

where x is the state, u is the control action, xk+1 = f(xk,uk) is the discrete time system dynam-

ics, γ is a discounting factor slightly less than 1, and V is the value function (total cost to go).

This observation makes it possible to reuse computation to efficiently solve for the value func-

tion, V (x), and a deterministic policy, u = π(x) everywhere. Typically, a solution is achieved

iteratively by using (2.1) to update the value and the u that achieved the minimum to update the

policy,

π(x) = arg min
u
L(x,u) + γV (f(x,u)). (2.2)

There are many variants of DP, often based on how value and policy updates are ordered. In

value iteration [13], the action is not stored during computation, but only computed as part of

the minimization in (2.1). In policy iteration [37], a sweep of updating the policy at every state

according to (2.2) is done once followed by multiple sweeps of updating the value with (2.1)

until the value converges. This whole process is then repeated. In modified policy iteration [79],

which we use a form of, the value update sweeps are not continued until convergence before

doing another round of policy update.

6

If we have a continuous state space, we must approximate this process because it is impos-

sible to store the policy and value function at all states. The most straightforward solution is to

represent the continuous state space as a grid of discrete states. The grid can be regularly spaced

(as we use in this thesis), or it can have adaptive spacing [67]. Alternately, the states can be

randomly sampled [82] [8]. Additionally, V (f(x,u)) will not generally be available if the value

function is only defined at some set of discrete points in a continuous space. It must therefore

be estimated by interpolation or a local model of the value function. Local models can be Taylor

series like, such as those produced by Differential Dynamic Programming [41] or fit to a set of

state, value pairs [98].

Continuous action spaces pose a similar problem. Again, the most straightforward appraoch

is to break the continuous space up into a grid of discrete points. However, for actions, the

approximation can be avoided completely (at significant computational cost) by performing the

minimization in (2.2) with a local optimizer. Random sampling of actions is an alternative for

both discrete actions spaces [55] and continuous action spaces [5].

DP policies are globally optimal (up to the grid resolution), avoiding potential problems with

local minima. They can handle both discrete decisions such as where to place a footstep as

well as continuous decisions such as how much torque to apply. Additionally, DP is useful for

optimizing transient responses to perturbations as well as optimizing a steady state periodic gait.

In [61], DP on the Poincaré state was used to determine stride-level variables for walking. DP

was used for continuous control of some joints in [99] and of all joints in [91].

DP also provides value functions, which give a measure of the cost-to-go from anywhere

in the state space. Value functions are useful when coordinating multiple controllers (Section

3.2.2 for theory and Section 3.4.2 for practice). From just a policy, it is difficult to determine

whether a decision is critically important or your optimal controller made it arbitrarily. Value

functions provide an automatic way to determine which of multiple competing controller should

have precedence; value is a natural currency for managing tradeoffs between controllers in an

7

optimal control setting.

2.2 Dynamic Programming Algorithm

We use a version of modified policy iteration (based on [5]) that generates time-invariant policies

for systems with continuous state and action spaces. We represent the continuous state space by

dividing it into a grid. Each grid point stores the current value estimate, V (x), and the current best

control vector, u = π(x) (u = τ for the pendulum). Because we are interested in time-invariant

policies, we do not store a value function for each time step, backing up from the final time.

Instead, we store a single value function and continue to refine it until it converges. In practice,

we generally stop policy generation once there are few changes per iteration. We do, however

buffer our value function by always using the previous iteration’s value when interpolating the

terminal value and not updating the value function until the end of the entire iteration. Buffering

makes it so that the order in which we update the points does not matter.

During an iteration, for each grid point, we use the Bellman equation to update the value

function. Because we have a continuous action space, we cannot enumerate all possible actions.

We have found that trying only a single random action and comparing it to the current best

action [5] is a good tradeoff between finding the best action for the current estimate of our value

function and completing a large number of iterations so that our value function accurately reflects

our policy. Our Bellman value update therefore looks like

V (x) = min
u∈{u0,ur}

L(x,u) + γV (f(x,u)), (2.3)

where u0 is the current best action, ur is a random action drawn from the legal range. The

policy is then updated to the corresponding action. Note that this is an extreme form of modified

policy iteration that behaves much like value iteration. Convergence of DP with random actions

is discussed in [5].

If the final state, f(x,u), is outside of the grid, we assign an infinite cost, V (f(x,u)) = ∞.

8

Otherwise, we use multilinear interpolation [21] on the previous iteration’s estimate of V (x) to

estimate the terminal value. Multilinear interpolation on a grid has the useful property that the

value is continuous, even at grid cell boundaries. Simulating forward multiple time steps before

evaluating the value function at the result can help minimize the effects of the approximation

introduced by interpolating [54]. To ensure that we get a good estimate of the value function,

if the final state is in a cell with the originating grid point as a corner, we simulate forward

additional time steps (with the same u, adding the appropriate one step cost, L(xk,u), until we

enter a cell not bordering the originating grid point. Additionally, if we enter a cell where some

corners have infinite value and some corners have finite value, we continue to simulate until we

reach a cell where either all corners have infinite value or all corners have finite value.

We can run this algorithm on multiple separate grids, even grids with different dimensionality.

For example, the sagittal and coronal stance policies discussed in Section 3.4.1 have three grids

each, a five-dimensional grid for double support, a four-dimensional grid for single support, and

a two-dimensional grid for handling the transition between double support to single support and

the decision of where to step. Multiple grids can also be useful in situations where variable grid

resolution is required in various parts of the state space. This usually occurs because the second

derivatives of the value function are very large in some region (requiring a finer grid), but not

the whole space. Rather than wasting computation power by having a fine grid everywhere, we

can have a coarse grid for most of the state space, and a fine grid just for the region that needs

it. We do this, for example in the Swing-X and Swing-Y policy discussed in Section 3.4.1. For

more extreme situations, such as near constraints, the necessary grid spacing for an accurate

representation of the value function may be so fine that it is best to abandon the grid altogether

and use an analytical value function (and policy) in this region.

The computational and memory costs of DP are linear in the number of grid points, and

therefore exponential in the number of state space dimensions. This limits DP to problems with

low dimensional state spaces (about 5 dimensions on a modern desktop computer), though in

9

some cases it is possible to treat higher dimensional problems by breaking them into multiple

lower dimensional problems and coordinating the policies, as we will discuss in Section 3.2.

2.3 Robust Dynamic Programming

2.3.1 Related Work

Model based optimal control is a powerful tool that suffers from a major difficulty: it requires

a model of the system. Developing such a model can be a difficult task. Even if you can find

a good model structure, parameter measurement and sensor calibration can be inaccurate. Even

if initially accurate, the model may change over time due to wear, temperature, weather, contact

condition, or any number of unforseen influences. Additionally, you may wish to develop a

single controller for a large number of instances of a manufactured product which have variations

between them due to manufacturing inconsistencies or unequal change over time. In all of these

cases, the controller must cope with a model that is not identical to the true system.

Optimal control methods can often be very sensitive to even small modeling errors. Optimiz-

ers are very good at finding and exploiting any possible advantage, even if that advantage is a

modeling error. Optimal paths often lie along constraints, so even small errors can make them

infeasible [4]. Methods that plan a long way into the future may rely on the first portion of their

plan working precisely in order for the latter portion to perform well.

Most methods that aim to reduce the sensitivity of optimal control algorithms to modeling

error fall into one of two general categories: (i) minimizing an expected cost over possible out-

comes or (ii) minimax formulations that minimize the maximum cost (worst case) of possible

outcomes.

For expected cost approaches, a distribution of possible outcomes is required. It can be either

a discrete list of possibilities (with associated probabilities) or a continuous distribution. The

distribution can take many forms, ranging from additive output noise to sets of models. Some

10

examples include additive or multiplicative state or control process noise on top of the nomi-

nal dynamics [97] [50], random variables in the process model [87], arbitrary state-dependent

stochastic transition functions [104], and Markov decision processes (MDP) with known or even

unknown transition probabilities [69].

Minimax methods are concerned with minimizing the worst case cost, so the probabilities of

the potential outcomes are irrelevant and unnecessary. Again, there exists a large variety of ways

to describe the set of possible outcomes. An H∞ controller for linear systems can be found by

solving a Riccati equation [26]. These controllers are robust to bounded input and process noise.

Some examples for nonlinear systems include additive disturbances [65], discrete sets of models

[9], and continuous sets of models [25]. Minimax formulations are generally able to provide

stronger theoretical guarantees of robustness because they deal with worst case scenarios.

Most robust control algorithms are modifications of existing algorithms for deterministic

problems. Differential Dynamic Programming (DDP) [65] [97] [50] and Model Predictive Con-

trol (MPC) [15] are popular techniques based on optimizing trajectories. Dynamic Programming

(DP) is a class of algorithms that rely on the observation that any portion of an optimal trajectory

is itself optimal. This leads to a situation where efficient computation can be achieved by reusing

the solution to overlapping subproblems [13] [17] [86]. Most versions of DP produce control

policies that are valid for large regions of the state space.

A popular approach to robust control law design is to optimize a policy by evaluating its

performance in simulation on a distribution of possible models [9, 10, 12, 63, 71, 75, 85, 92, 100].

In this paper, we present Multiple Model Dynamic Programming (MMDP), which attempts to

make a baseline implementation of DP more robust to modeling error by taking the expectation

over a discrete set of multiple models. Importantly, we are not taking the expectation over a

different model being randomly selected at each timestep; instead, we take the expectation over

a single model being randomly selected once and used for all time.

11

2.3.2 Pendulum Swing-Up

We will demonstrate our algorithm on the problem of inverted pendulum swing-up. The con-

troller must apply torques to a rigid pendulum in order to raise it to the inverted position and

maintain it there. This is a good test problem because it involves both a dynamic travel com-

ponent (getting to the inverted position) and a regulation component (remaining at the inverted

position once there). The inverted pendulum is also one of the simplest nonlinear systems and

a system about which we have good physical intuition, which makes it easier to interpret our

results. The policy can also be severely limited by action-space constraints with it still remaining

possible to achieve the goal from anywhere in the state space.

The pendulum is a second order system with one degree of freedom, so it has a 2-dimensional

state space, x = {θ, θ̇}, where θ is the pendulum angle (θ = 0 defined as upright), and the dot

indicates a derivative with respect to time. It has a one-dimensional action space, u = {τ},

where τ is the control torque. The pendulum dynamics are given by

θ̈ =
mLg sin(θ) + τ

mL2
, (2.4)

where m is the mass, L is the length, and g = 9.81m/s2 is the acceleration due to gravity. For

the nominal system (we will perturb it later) the mass is 1 kg and the length is 1 m. We also

constrain the control torque to |τ | ≤ 1.5Nm, which requires the system to swing back and forth

multiple times before reaching the goal.

The swing-up task is formally defined as minimizing the total cost, C, given by the integral,

C =

∫ ∞
0

L(x,u) dt, (2.5)

of the one step cost function,

L(x,u) = θ2 + 0.5θ̇2 + τ 2. (2.6)

Since angles are topologically circular, we can represent the entire θ direction with a finite

grid. However, we must bound the θ̇ dimension to the somewhat arbitrarily selected range of

12

±10rad/s. A grid resolution of at least about {50, 100} is necessary to achieve swing-up. All

experiments in this paper were performed with a resolution of {400, 900} to give a good tradeoff

between computation time (5 minutes on a PC using a 6-core processor with a clock speed of

3.33 GHz) and policy quality. This gives a resolution of {0.016 radians, 0.022 radians/second}

and a grid of 360,000 discretized states. It takes about 500 iterations to generate a controller that

can achieve swing-up. We run all of our experiments for 5000 iterations to allow the policy and

value function to converge very closely to the optimum.

Note that our DP algorithm requires the discrete time form of the pendulum dynamics, which

we obtain by integrating (2.4):

 θk+1

θ̇k+1

 =

 θk + θ̇kT + 0.5θ̈kT
2

θ̇k + θ̈kT

 (2.7)

where T = 0.001seconds is the time step, and θ̈ is determined by (2.4).

2.3.3 Tests of Robustness

The goal of this paper is to produce steady state controllers, u = π(x), that are as robust as

possible to modeling error. By this, we mean that we wish the controllers to be effective on a

set of modified pendulum systems. We measure the effectiveness of a particular policy, π(x),

on a particular model by starting the system at x = {π, 0} (down), simulating it forward, and

measuring (2.5). If the system does not reach the goal (x = {0, 0}) and remain there within 60

seconds of simulation, we assume it never will and assign an infinite cost.

In order to test the robustness of our policies, we will modify the nominal model in four

ways:

1. Varying the mass, m.

2. Varying the length, L.

13

3. Adding varying amounts of viscosity, ν. Equation (2.4) becomes

θ̈ =
mLg sin(θ) + τ − νθ̇

mL2
. (2.8)

4. Misaligning the goal with gravitational up, representing an off-center mass or sensor mis-

calibration. An offset, θ0 is added to (2.4), changing it to

θ̈ =
mLg sin(θ − θ0) + τ

mL2
. (2.9)

For the final test, there is no state-action pair that results in both no acceleration and no cost,

L, so the cost given by (2.5) will always be infinite. To accomodate this, we consider the task

complete and stop integrating (2.5) after the system has remained near the goal for 15 seconds.

2.3.4 Modeling Error as Noise

Much work has been done on generating optimal controllers for stochastic systems by optimizing

the expected value of the cost function. Modeling error is not actually stochastic, but these tech-

niques can be used to increase robustness to modeling error by generally increasing robustness

to unexpected dynamics.

For DP, we do not have an analytical expression for the value function, so we take the expec-

tation of the stochastic dynamics by sampling from it, turning (2.3) into

V (x) = min
u∈{u0,ur}

N∑
i=1

(L(x, gi(u)) + V (fi(x, gi(u))))pi (2.10)

N∑
i=1

pi = 1 (2.11)

where gi is an instantiation of the control noise, fi is an instantiation of the process noise, and pi is

the probability of the ith sample. To avoid optimizing over the instantiations of the random noise,

we must fix the gi’s, fi’s, and pi’s for all iterations, which essentially forces us to approximate

the noise distribution as a sum of delta functions. In general, this can require a large number of

samples (and correspondingly large computational cost) to adequately model the distribution.

14

0 1 2 3
0

1

2

3

4

5

x 10
5

Mass (kg)

S
w

in
g−

U
p

C
os

t

0.5 1 1.5
0

0.5

1

1.5

2
x 10

5

Length (m)

S
w

in
g−

U
p

C
os

t

0 0.1 0.2

1

1.5

2

2.5

3

3.5

4
x 10

5

Viscosity (Nms/rad)

S
w

in
g−

U
p

C
os

t

Baseline
0.6 Nm Noise
1.2 Nm Noise
0.4 Nm Minimax
0.8 Nm Minimax

0 0.05 0.1
0.8

1

1.2

1.4

1.6

x 10
5

Misalignment, θ
0
 (rad)

S
w

in
g−

U
p

C
os

t

Figure 2.1: Robustness to model variations of mass, length, viscosity, and gravity misalignment.

Results are shown for the baseline DP (Section 2.2), DP with small and large amounts of noise

(Section 2.3.4), and DP with small and large minimax perturbations (Section 2.3.5).

For the case of additive noise, however, the Central Limit Theorem tells us that regardless

of what distribution we use, after a large number of time steps, the total noise will have an ap-

proximately Gaussian distribution. This frees us to use a small number of samples and rely upon

15

summation over many time steps to produce a fuller distribution. For our swing-up example, we

used no process noise (fi = f), and additive control noise (p1 = p2 = 0.5, g1(τ) = τ − ∆

and g2(τ) = τ + ∆ where ∆ is a parameter that controls the size of the noise). Note that addi-

tive control noise is identical to additive acceleration noise because ∂θ̈/∂τ = 1/mL2, which is

constant.

Fig. 2.1 shows robustness results for stochastic DP compared to the baseline DP implemen-

tation. Discontinuities in the cost result from changes in strategy: using more or fewer back and

forth swings to reach the upright position. In general, robustness to modeling error increases as

the noise level increases. For all four tests, the large noise results in a significantly increased

cost of swing-up. This is a general problem for methods aimed at improving robustness; the cost

increases when minimizing it is no longer the sole goal of optimization.

2.3.5 Minimax Formulation

The unexpected dynamics introduced by modeling error are poorly represented by random noise

because they are not independent at every time step. The errors introduced by modeling error

often consistently push the system in the same direction, a situation which can get ignored by

noise-based formulations as being extremely low probability. Another possibility for handling

noise is to use a minimax formulation. Rather than minimizing the expected value, minimax

algorithms attempt to minimize the maximum value or worst case scenario. In [65], a minimax

version of DDP is developed and demonstrated on a walking robot.

We implement minimax DP much like stochastic DP, but instead of taking the expected value,

we take the maximum, so the Bellman equation becomes

V (x) = min
u∈{u0,ur}

max
i
L(x, gi(u)) + V (fi(x, gi(u))). (2.12)

We no longer require the Central Limit Theorem to approximate the full distribution. Instead,

we rely upon the assumption that the worst case disturbance will be an extreme disturbance:

either the maximum push in one direction or the maximum push in the other direction. This

16

assumption is an approximation for nonlinear systems, but in the case of short time steps, additive

disturbances, and affine in controls, it is very nearly accurate. This again allows us to keep the

computation managable by using only two samples. For the pendulum example, we again use no

process noise (fi = f), and additive control noise (g1(τ) = τ −∆ and g2(τ) = τ + ∆).

Fig. 2.1 also shows results for the minimax version of DP. Both methods generally increase

robustness to modeling error with increased magnitude of the disturbance until they reach a point

of diminishing returns. This point can be quite abrupt, and it can be different for different types

of error. For each method, we show results for two different disturbance sizes, one slightly

before the point of diminishing returns on any of the tests, and another where performance has

decreased on some tests but not on others. As expected, the minimax formulation generally

outperforms the noise formulation, but it does well on different tests. Qualitatively, these trends

can be summarized by noting that the minimax formulation tends to do better when pushing

harder is necessary to overcome the unexpected modeling error (increased mass and viscosity),

but the noise formulation deals better with small errors at inopportune times (misaligning the

goal with gravitational up). Discontinuities in the cost result from changes in strategy: using

more or fewer back and forth swings to reach the upright position.

2.3.6 Multiple Model Dynamic Programming

If the true system is deterministic, but different from your model, neither random nor worst-

case disturbances are a good description of the true error. We are interested in the situation

where there exists one true, deterministic model, but we do not know what it is. We approach

this by generating a single policy, u = π(x), that is optimized to perform well on a set of

N candidate models. We denote the dynamics of the ith model as xk+1 = fi(xk,uk). This

method only directly optimizes performance for the specific models it is given, but we have

a reasonable expectation of good performance for a range of model space around each of the

candidate models. If we know something about the type of modeling error we expect, we can

17

choose candidate models that cover the range of expected models. Formally, we wish to find the

policy, π, that minimizes the total cost criterion,

C =
N∑
i=1

∑
x0

∞∑
t=0

L(xt, π(xt)). (2.13)

The innermost sum is trajectory cost and is the discrete form of (2.5). The middle sum is over

trajectories started at each grid point. The outermost sum is over all N models.

For a single model, we have the convenient property that a single policy is optimal for all

start states. Unfortunately, this property does not hold for the multiple model case. To show this,

consider a policy that is optimal for a single start state. If we have a single start state, a state-

indexed policy can control each of the models independently because they will travel through

different states. We can therefore construct an optimal policy for multiple models with a single

start state by copying the optimal policy along the optimal trajectory from each of the individual

models’ optimal policies. The optimal action at a given state will therefore depend on which

model passes through it (and which corresponding optimal policy we must copy from). Since

which model passes through a given point depends upon the start state, the optimal policy must

also depend upon the start state.

We modify our DP algorithm to approximately minimize (2.13) by maintaining individual

value functions, Vi(x), for each of the N dynamic models (but only a single policy). To update a

grid point, we pick the action by adding the value from each of the models:

π(x) = arg min
u∈{u0,ur}

L(x,u) +
N∑
i=1

piVi(fi(x,u)), (2.14)

where pi is again the probability of each model. We then update each value function individually

according to

Vi(x) = L(x, π(x)) + Vi(fi(x, π(x))). (2.15)

As in the baseline implementation, we do many iterations of updating every point in the grid this

way. This gives us a policy, π(x), that is approximately optimized to perform well on all of the

models, and a value function, Vi(x), for each of the models given this policy.

18

0 1 2 3
0

1

2

3

4

5

x 10
5

Mass (kg)

S
w

in
g−

U
p

C
os

t

0.5 1 1.5
0

0.5

1

1.5

2
x 10

5

Length (m)

S
w

in
g−

U
p

C
os

t

Baseline
Vary L
Vary L Inc.
Vary Up Inc.

0 0.1 0.2

1

1.5

2

2.5

3

3.5

4
x 10

5

Viscosity (Nms/rad)

S
w

in
g−

U
p

C
os

t

0 0.05 0.1
0.8

1

1.2

1.4

1.6

x 10
5

Misalignment, θ
0
 (rad)

S
w

in
g−

U
p

C
os

t

Figure 2.2: Robustness to model variations of mass, length, viscosity, and gravity misalignment.

Results are shown for the baseline DP, MMDP with models of various length added all at once

and added incrementally, and MMDP with models of various θ0 added incrementally.

To analyze our update rule with respect to (2.13), we note that the value function, V , is

19

exactly equal to the innermost sum, so we can rewrite (2.13) as

C =
N∑
i=1

∑
x0

piVi(x0). (2.16)

We define di(x) as the number of states for which if you start a trajectory there it will pass

through state x for model i (and a given policy). If we make a single change to our policy at state

x, it will change the value at that state as well as at any state whose trajectory passes through it.

All other values will remain the same. We can write the resulting change in total cost as

∆C =
N∑
i=1

pi [∆Vi(x) + di(x)∆Vi(x)] (2.17)

where ∆Vi is the new value minus the old value for model i. To ensure that this is decreasing,

we must assume that

di(x) = dj(x)∀i, j,x (2.18)

which means that all models have an equal chance (given a random start state) to get into any

given state. If this were not true, it would make sense to focus on minimizing the value for

the models that are more likely to end up in that state, which our algorithm does not do. This

assumption will not generally be true, but for many problems where the candidate models are

similar, it will be approximately true.

Given (2.18), (2.17) simplifies to

∆C = (1 + d(x))
N∑
i=1

pi∆Vi(x). (2.19)

Given our update rule, we know that
∑N

i=1 pi∆Vi(x) ≤ 0, so we have ∆C ≤ 0.

In practice, we generally have a nominal (or best guess) dynamic system and wish to increase

the range of model space surrounding it for which the policy performs well. Either because the

convergence rate is very slow or because of nonidealities such as (2.18) not holding, MMDP

sometimes finds solutions that work well for the extreme cases of model, but not for the nominal

case. A less drastic problem is gaps in the region of model space for which the policy succeeds.

20

To cope with this, we add models incrementally. This technique is similar to shaping, which

was first invented in the field of psychology for training animals [74], but has since been used for

machine learning and optimization [53]. Shaping is used to train animals to do complex tasks

by first training them to do something simple, then training them to do successively closer ap-

proximations of the desired behavior. We start off by running DP on just the nominal model. We

then add dynamic models that are very similar to the nominal case, and run a new optimization

starting with the previously solved for policy and the previously solved for value function. We

can then continue to add additional models progressively further from the nominal dynamics and

rerunning the optimization. When new models are added, the value function can be initialized

by copying the value function of the most similar model already in the training set.

Fig. 2.2 shows results for the MMDP. We took 21 pendulum models (pi = 1/N) with lengths,

L, ranging from 0.5 m to 1.5 m in 0.05 m increments and ran MMDP on them. The result was

a drastically improved robustness to variation in the length. Swing-up was achievable for nearly

the entire 0.5 m to 1.5 m range, but with a gap centered around 0.65 m.

We can compare this to the result when we add the same 21 models incrementally. We start

with the nominal model (L = 1.0 m). After doing 5000 iterations of DP, we add the two adjacent

models (L = 0.95 m and L = 1.05 m), initializing their value functions from the nominal models

and then do another 5000 iterations of DP. We then add another 9 pairs of models, initializing

each from the previous pair, and doing 5000 iterations of DP between each addition. By shaping

the policy in this way and gradually building its robustness, we are able to cover the same range

of modeling error, but without the gap centered at L = 0.65 m.

We also use the same method to target improving robustness to the gravitational angle by

incrementally adding pairs of models with positive and negative θ0’s further and further from

0. The result is an improved robustness to varying this angle while maintaining a low cost. On

the other hand, optimizing on this set of models does not improve performance with respect to

changing the pendulum length. This illustrates a downside of MMDP: it often does not provide

21

improved robustness for model variations other than the type specifically targeted.

2.3.7 Discussion of MMDP

Because (2.18) will generally not hold, in practice MMDP is a heuristic method. The more

qualitatively similar the models, the closer (2.18) will be to holding, and the closer MMDP will

get to truly minimizing (2.13).

MMDP works well when you know something about the type of modeling error you have. It

works best when you are able to provide it with models that span the range of possible systems.

Attempts to generally increase robustness by providing models with multiple types of changes

performed less well. This was at least partially due to the fact that in the higher dimensional

model space, our sampling was much more sparse.

Another limitation of the MMDP approach is that it is computationally expensive to handle

types of error that increase the dimensionality of the state space (e.g. time delays, filters, struc-

tural flexibility) even if the policy does not depend on these extra dimensions. MMDP must

include these extra states in the grid and therefore pay the exponential computational and mem-

ory cost of the extra states. Methods that do not explicitly model the modeling error (such as the

noise and minimax formulations) need not pay this cost. Methods that simulate entire trajectories

(instead of single time steps as in DP) can avoid it as well because they need only fully explore

the space that the controller depends on.

For a known, deterministic system, the optimal controller for any cost function where failure

has an infinite cost will have the same basin of attraction, which is identical to the maximum

feasible region. However, this says nothing about what happens when the system is different

from what was expected. Robustness to modeling error can be very sensitive to the choice of

cost function. Experiments support our intuition that in MMDP, the robustness to the type of

model variation is relatively insensitive to choice of cost function because robustness is being

directly optimized for. However, for types of modeling error other than what we were directly

22

optimizing for, we see just as much sensitivity to cost function choice as we see in the stochastic

and minimax formulations.

The pendulum swing-up problem is an easy task, so even the baseline control algorithm

achieves a moderate level of robustness to modeling error. In this case, the robust algorithm

provides extreme robustness, which may seem unnecessary or excessive. In some cases, such

as contact (e.g. shaking hands) or walking in sand or surf at the beach, this extreme level of

robustness may be necessary. Additionally, for harder problems, the baseline algorithm may

provide minimal robustness to modeling error, so the additional robustness provided by the robust

versions of the algorithm will be necessary for controlling a real system.

As mentioned at the end of Section 2.3.4, there is a performance cost to achieving robustness.

The optimal deterministic controller achieves the lowest possible cost if the system does follow

the expected deterministic dynamics. Any other controller will therefore result in a higher cost,

so if the robust algorithm generates a more robust controller, it must necessarily be different,

and must necessarily have a higher cost when applied to the nominal plant. A downside of

MMDP is that it does not necessarily provide benefits for model variations other than the type

specifically targeted. For example, while the range of gravity misalignment angles that can be

handled increases, the amount of viscosity that can be tolerated actually decreases.

2.4 Dynamic Programming with Learning

2.4.1 Introduction

There is a limit to the region of model space that can be stabilized by robust methods, and

our robust method works best if we can parameterize the type of error we have. In most cases,

including the one we are interested in, we only actually want to get good performance on a single

dynamic system, we just do not know what it is. Finding policies for unknown systems is well

studied in the field of Reinforcement Learning [42] [101]. Model Free Reinforcement Learning

23

attempts to find a policy directly without building a predictive model of the system [47] [11].

Model Based Reinforcement Learning methods, which first learn a model, then use the model

to generate a policy are often more data efficient than model free methods [22]. Some version of

Dynamic Programming is a popular choice for generating a policy from the model [78]. Meth-

ods that attempt to learn the parameters of a parametric model require the least data, but can

perform poorly if the true model is not in the class of models considered. Our initial model is

already obtained by fitting the parameters of a parametric model, so we are mostly interested

in error that can not be adequately captured with a parametric model. Accordingly, we use a

generic non-parametric function approximator to model our system. There are many possible

non-parametric function approximators including [73], locally weighted learning [83], and neu-

ral networks [27]. We use Gaussian Processes are a stochastic function approximation method

popular in Reinforcement Learning [80] [52] [23].

2.4.2 Method

We are interested in generating successful policies for low-dimensional, deterministic dynamic

systems. In many cases, we have a model, but it is insufficiently accurate to generate a successful

policy. We use Gaussian Processes (GP) to learn the model and dynamic programming to gener-

ate a policy. The main idea is to alternate between trials on the real system to collect more data

and running dynamic programming to improve the policy. In practice, we often have a model

of the system that is not accurate enough for for successful policy generation, which we wish to

improve. We therefore write generic dynamics as

ẋ = f(x,u) + ∆(x,u) (2.20)

where f is our best guess at the dynamics and ∆ represents the unknown dynamics. Rather than

attempting to learn the model from scratch, we learn only the residuals, ∆. Starting from our best

guess at the dynamics (as opposed to learning from scratch) should help us to learn more quickly

by making it easier to get data in the regions of state space that we care about. Additionally, we

24

hope that it will capture some features of the dynamics and that ∆ will be a simpler function to

learn than the full dynamics.

In the specific case of dynamic systems of 2nd or higher order, we often have one state space

dimension that is defined as a derivative of another. For these situations, we can assume some

components of ẋ are known a priori and need not be learned. We can therefore eliminate them

from the output of ∆ (though not the input). In the pendulum example described in Section 2.3.2,

errors in the dynamic model will affect the acceleration (derivative of velocity), but the derivative

of the position will be the velocity (by definition) regardless of what happens with the dynamics.

For a second order dynamic system, we could write the dynamics as

θ̈ = f(θ, θ̇,u) + ∆(θ, θ̇,u), (2.21)

where θ is a vector of generalized positions. This halves the output dimension of ∆, which

reduces the computation, memory, and data requirements.

We start off by running the basic DP algorithm described in Section 2.2 using only f as the

dynamics. Since our dynamics are only a guess, there is no need to run the algorithm all the

way to convergence; we can stop once we stop seeing large changes. Once we have generated a

policy, we run the system using that policy and collect data.

Next, we use that data to attempt to learn ∆. Any function approximation method will work,

but we have found Gaussian Processes to be particularly convenient [81]. There are high qual-

ity off-the-shelf tools available for Gaussian processes and we can automatically select meta-

parameters through evidence maximization [81]. Additionally, their ability to handle stochastic

systems naturally gives us a lot of flexibility for more complex uses in future work.

We need to use the dynamics repeatedly as part of our iterative DP algorithm, and computing

the function estimate for a GP with a lot of data can be computationally expensive. To speed this

up, we represent ∆ as a grid, which we only need to populate a single time. We use the same res-

olution and bounds for the state space dimensions of ∆ as we used in our DP grid (where possible

given memory usage and computation time). Use of this grid would limit us to low dimensional

25

state spaces because of the Curse of Dimensionality, but we already have a similar limit from

our DP algorithm, so it adds no additional limitations. The ∆ grid is higher dimensional than the

policy and value grids used by DP because it must include the action dimensions as well, but we

can often use lower grid resolutions for the ∆ grid. The computation cost of populating the grid

is small compared to the DP sweeps because it only needs to be populated once and DP requires

thousands of sweeps.

We then iterate running DP, testing the system, and relearning a model with the new data.

We run DP using f plus ∆ as the dynamics. In each iteration, we use all of our data to learn,

downsampling as necessary to keep the computation reasonable. Our data is generated by ac-

tually running the system, so we get data points strung out in trajectories. Adjacent points are

mostly redundant, so significant downsampling has little effect on the learning. This procedure

of iteratively improving the policy to get data closer to the test distribution is reasonably common

[7] [1].

We leave a theoretical analysis of this algorithm to future work.

2.4.3 Results

We tested this algorithm on the pendulum swing up problem described in Section 2.3.2. We

added viscosity to the dynamics, which are now given by (2.8), so that the dynamics would have

a dependence on velocity as well as position. We use the parameters g = 9.81, m = 1.0, L =

1.0, and ν = 0.1. We start out with an extremely inaccurate model of the system: θ̈ = 10τ ,

and only require 3 trials starting from the “down” position to achieve successful swing-up of

the pendulum. On the first trial, it has a terrible model, so it just wiggles around near the down

position. This gives it enough information to figure out how to pump energy into the system and

the second trial gets most of the way to the goal. This gives it enough information to learn the

model near the goal, and the third trial succeeds. Figure 2.3 shows the position of the three trials

and Figure 2.4 shows the torque for the three trials. Figure 2.5 shows the policies generated at

26

each iteration.

Figure 2.3: Plots of the position of the three trials used to learn the pendulum model well enough

to achieve swing-up.

These results are encouraging because it took very few trials to achieve swing-up even with-

out a good initial guess at the model. We expect that this algorithm will work well on any

low-dimensional, deterministic system where we have access to the full state even if we know

nothing about the dynamics to begin with.

2.4.4 Use of Uncertainty

If we ignore uncertainty, our method will suffer from model bias [84]; our DP solver will assume

that the model is accurate when it is not. To prevent this, it is beneficial to use a probabilistic

dynamics model [22]. In addition to providing a most likely regression of the learned function,

they also produce a measure of uncertainty in the form of a standard deviation. There are several

27

Figure 2.4: Plots of the torque for the three trials used to learn the pendulum model well enough

to achieve swing-up.

ways to use this uncertainty that might be useful in various situations. The GP algorithm finds

two different types of uncertainty. It assumes that the data is produced by some underlying

function plus some additive noise. The size of this noise forms one type of uncertainty, and the

uncertainty about the underlying function is the second. In various situations, it will make sense

to use one or both types of uncertainty measurements.

The simplest way to make use of the uncertainty is to use either the expected value method

described in Section 2.3.4 or the minimax method described in Section 2.3.5. For the minimax

method, we can set the range as µ− aσ ≤ θ̈ ≤ µ+ aσ} where µ is the most likely regression for

δ and σ is the standard deviation. The constant a is a parameter that determines how conservative

to be. For the expected value method, we can use this same range as our 2n samples where n

is the dimensionality of θ̈. If we use only the additive noise, either of these methods might im-

prove robustness in situations where the dynamics are not truly deterministic. If we also include

28

Figure 2.5: The policy generated for the first trial using the initial guess of a model (upper left),

the policy generated after one trial of data collection (upper right), and the policy that achieved

swing-up after two trials of data collection (lower left). For comparision, we also show the policy

generated directly from the true dynamics (lower right).

the uncertainty about the underlying function, these methods will tend to decrease exploration

and move the system to areas already explored. It may also achieve success faster by avoiding

excessive exploration of unnecessary regions and handling the existing uncertainty better.

We are primarily interested in situations where we start out with a model that is already

good enough to collect data near the region the optimal trajectory with pass through. For such

problems, explicit exploration may be unnecessary and we may not need to address the well

known Exploration vs. Exploitation tradeoff [93]. However, if we wish to extend this algorithm

to a wider class of problems, we may need some mechanism to encourage exploration. The

29

baseline version of this algorithm can get stuck repeatedly going to the goal in an expensive

manner even if a cheaper way exists; it can completely stop exploring once it finds the goal and

never find the better path. One possible approach is to utilize the principle of “optimism in the

face of uncertainty” as in R-MAX [18] and LSPI-R-MAX [57]. We would implement this as

the opposite of the minimax formulation, a minimin approach. Rather than taking the worst case

of the possible range, we take the best case. This only makes sense to do for the uncertainty

about the underlying function. The effect of using uncertainty in this way would be to encourage

exploration. The algorithm will tend to explore regions that would plausibly be good (where

“plausible” is defined by the size of a) without wasting resources exploring regions that can not

plausibly be useful. This may be important if we care about the quality of the solution rather

than only success versus failure.

It may also make sense to combine the two approaches. We could use the minimin method

for the uncertainty about the underlying function and the minimax (or expected value) method

for the additive noise. However, combining the two approaches in this way relies on the ability

of GP to distinguish between the two types of error, which it may not be able to do reliably.

30

Chapter 3

Simulated Walking

3.1 Introduction

A humanoid robot should be able to operate in the presence of large disturbances. We propose a

method of control for bipedal walking that is capable of responding immediately to unexpected

disturbances by modifying center of mass (CoM) motion, footstep location, and footstep timing.

We use dynamic programming (DP) to design a nonlinear optimal controller for a simple model

of a biped. DP suffers from the “Curse of Dimensionality”, with storage and computation costs

proportional to Rd, where R is the grid resolution and d is the dimension of the state. However,

breaking the control design problem into parts greatly reduces the storage and computation costs.

For example:

Rd/2 +Rd/2 << Rd. (3.1)

By breaking the model into multiple subsystems of lower dimensionality, we are able to

work with a higher-dimensional model than would otherwise be computationally feasible. To

capture the coupling between the subsystems while keeping them low-dimensional, we augment

the subsystems with additional coordination variables. We use dynamic programming to produce

optimal policies and value functions for each of the augmented subsystems. Then, by using the

value functions to manage tradeoffs between the coordination variables, we coordinate the sub-

31

system controllers such that the combined controller is optimal. Finally, we use the output of this

high-level controller (CoM and swing foot accelerations) as the input to a low-level controller,

which provides the joint torques necessary to produce those accelerations.

Figure 3.1: The Sarcos Primus hydraulic humanoid robot (left) and the simulation based on it

(right).

3.1.1 Related Work

The central problem faced by walking controllers is managing reaction forces, which are con-

strained by friction and the requirement that the center of pressure (CoP) be within the convex

hull of the region of support. Many walking controllers focus on CoM motion. A standard

method of control is to first generate a CoM trajectory and then track that trajectory with inverse

32

kinematics [94]. Preview control of the CoP can be used to generate CoM trajectories [46]. By

modifying the inverse kinematics for force control, it is possible to deal with small disturbances

[29].

Unfortunately, even when tracking an optimal trajectory, the resulting controller is only op-

timal when near the desired trajectory, which is not the case following a significant unexpected

disturbance. Due to constraints on reaction forces, linear independent joint controllers often can

stabilize only a small region of state space. It is possible to frequently recalculate the CoM tra-

jectory, taking into account the current robot state [70]. Model Predictive Control (MPC) and

Receding Horizon Control (RHC) offer methods of generating trajectories online that continu-

ously start from the current robot state [102].

For the system to recover from large disturbances, it is necessary to modify the reaction

force constraints by adjusting the footstep placement or timing. One possible approach to this

is trajectory libraries, where multiple trajectories are generated in advance and an appropriate

one is used depending on the current robot state. Examples of trajectory libraries are given for

standing balance in [58] and for walking in [103]. It is also possible to modify MPC so that it

determines foot placement online [24]. In [66], the footstep timing is modified online in response

to manually changed footstep locations.

Because of many walkings systems’ high-dimensionality, which makes control difficult, it is

common to model parts of a walking system as decoupled so that the lower-dimensional subsys-

tems can be controlled separately [99], [105]. PD servos on individual joints is a very basic form

of such decoupling. Unless coordination is handled carefully, the combined controller will be

sub-optimal because the subsystem controllers lack the information necessary to make optimal

decisions. We present a method of coordination that produces an optimal combined controller.

33

Angular Momentum

Many methods that control the LIPM, such as preview control[44] and some forms of model

predictive control[102], focus on control of the zero moment point (ZMP). For many of these

methods, it is either impossible or computationally expensive to extend them to work with a

model that considers angular momentum or upper body rotation.

Due to disturbances and un-modeled dynamics, angular momentum and posture regulation

are required, which can directly interfere with a controller based solely on the LIPM. Several

authors have derived models of angular momentum for biped robots[44][32] and it has been

shown that exploiting angular momentum can add significant stability to the system[77][88]. The

subject of upper body angular momentum coordination and control for locomotion in position

controlled humanoid robots has been considered[95][49].

Full body torque controllers based on force-based objectives such as desired COM acceler-

ation and change of angular momentum have been presented[2][60][36][56]. Controllers such

as these have achieved hip-strategy-like behaviors by making the angular momentum or pos-

ture objective less important than COM regulation. However, angular momentum and posture

objectives have been mostly limited to regulation tasks.

In Section 3.2, we propose the concept of Instantaneously Coupled Systems (ICS) and

demonstrate that our method for coordinating multiple optimal subsystem controllers is equiva-

lent to an optimal controller for the full system. We then model walking as an ICS in Section 3.3

and describe our walking controller in Section 3.4. We discuss the capabilities of the controller in

Section 3.5 and its robustness in Section 3.6. In Section 3.7 we propose a method for controlling

torso rotation to aid in balancing, and in Section 3.8, we make a few concluding remarks.

34

3.2 Controlling Instantaneously Coupled Systems

For a certain type of system, which we call Instantaneously Coupled Systems (ICS), it is possi-

ble to construct an optimal controller by coordinating multiple optimal lower-dimensional con-

trollers. First, subsystems are augmented with coordination variables, which provide enough

information to account for coupling to other systems. Then, value functions are used to trade

off the coordination variables. This is useful because it reduces an optimal control problem to

several lower-dimensional optimal control problems, which can be solved more easily.

3.2.1 Instantaneously Coupled Systems

We define an instantaneously coupled system (ICS) as a dynamic system made up of a set of N

lower-dimensional systems. The state of, xf , and input to, uf , the full system are given by the

composition of the states of and inputs to the lower-dimensional systems,

xf = {x1,x2, ...,xN} (3.2)

and

uf = {u1,u2, ...,uN}. (3.3)

The dynamics of each system evolve independently,

ẋi = fi(xi,ui). (3.4)

At M specific instants, however, the systems may be coupled such that the dynamics of the

subsystems instantaneously depend on the full state,

x+
i = f ci (x

−
f ,ui), (3.5)

where the superscripts − and + indicate before and after the coupling event.

The time of the coupling, tj , is determined by some condition on the full state:

Φ(xf (tj)) = 0 (3.6)

35

There can be one or multiple coupled instants. We only consider systems with a finite number,

M , of coupled instants.

3.2.2 Obtaining the Optimal Policy

For an ICS with a cost function of the form

C =

∫ N∑
i=1

Li(xi(t),ui(t)) dt+
M∑
j=1

(g(tj) + h(xf (tj))) , (3.7)

we can construct the optimal policy by finding the optimal policies and value functions for aug-

mented versions of the subsystems and then combining them. Costs of coupling event times and

state (g and h) are optional and are not used by the controller presented in this paper.

First, we define a coordination state, xc, as some set of features of the full state, xc = Θ(xf).

The features, xc, are a compact means of communicating the essential information about the full

state between the subsystems, and must be selected such that it is possible to:

I. Rewrite the coupling dynamics (3.5) as

f ci (xf ,ui) = f̃ ci (xi,xc,ui). (3.8)

II. Rewrite the last term in (3.7) as

h(xf (tj)) = h̃(xc(tj)). (3.9)

III. Rewrite (3.6) as the intersection of conditions on the low-dimensional systems

Φ(xf (t)) = Φ1(x1(t),xc(t)) ∩ ... ∩ ΦN(xN(t),xc(t)). (3.10)

It is always possible to choose xc = xf , but this method will be more useful if an xc that is

lower-dimensional than xf can be found.

Next, we construct the decision space, xd, by composing tj and xc(tj) from each of the

coupled instants.

xd = {t1,xc(t1), t2,xc(t2), ..., tM ,xc(tM)} (3.11)

36

If we hold xd constant, the subsystems are completely decoupled and the conditions from

(3.10) are constraints:

Φi(xi(tj),xc(tj)) = 0. (3.12)

With the systems decoupled, we can individually optimize each one with respect to

Ci =

∫
Li(xi(t),ui(t)) dt, (3.13)

the only part of (3.7) that depends on the ith system. It then remains only to optimize over all

possible choices of xd and select the best one.

To accomplish this, we augment the state of each of the subsystems with x̂d,

x̂d = {t̂1,xc(t1), t̂2,xc(t2), ..., t̂M ,xc(tM)} (3.14)

t̂j = tj − t (3.15)

which has the trivial dynamics ˙̂tj = −1 and ẋc = 0. This allows us to generate subsystem

controllers that can apply the coupling dynamics (3.8) and know when to do so. We switch from

the time of coupling in xd to the time until coupling in x̂d to eliminate the dependence on time in

our subsystem controllers. We then produce optimal (with respect to (3.13)) policies and value

functions for each of the augmented systems subject to (3.12). Any method that produces both

policies and value functions can be used, but we use dynamic programming.

Now, if we have an xf , we can hold each of the xi’s constant and get the value as only a

function of xd. This allows us to rewrite (3.7) as only a function of xd, t, and xf :

C =
N∑
i=1

Vi(xd, t|xi) + k(xd) (3.16)

where k(xd) =
∑M

j=1 g(tj) + h̃(xc(tj)). We then select the best decision state,

x∗d = arg min
xd

C(xd, t,xf). (3.17)

Having selected xd, we can look up each of the ui’s from the individual optimal policies and

compose them to form uf according to (3.3).

37

3.3 Walking as an ICS

To generate a walking controller, we first approximate walking as an ICS. Summing the forces

and torques on the system gives us dynamics equations for the CoM

fL + fR + fg = mc̈ (3.18)

(pL − c)× fL + τL + (pR − c)× fR + τR = l̇ (3.19)

where c, pL, and pR are the positions of the CoM, left and right feet, fL, fR, τL, and τR are the

reaction forces and torques generated at the feet, fg = [0, 0,−g]T is the force of gravity, m is the

mass, and l is the angular momentum. Since the absolute position is rarely relevant, it is useful

to place the origin of the coordinate system at the stance foot so that the CoM location, c, and

the swing foot location, pw, are defined relative to the stance foot. During double support, the

foot that will be in stance next is considered the stance foot. It is also useful to define the total

reaction force and torque as follows:

f = fL + fR

τ = τL + τR.
(3.20)

During single support, the swing foot cannot generate reaction force, so one of the pairs of

force and torque must be zero. If we then constrain our policy such that l̇ = 0 and c̈z = 0, (3.18)

and (3.19) simplify to the well-known Linear Inverted Pendulum Model (LIPM) [43] [45]. We

further constrain the dynamics with ċz = 0 and cz = h and write the LIPM dynamics as

c̈x = cx
g

h
+

τ y
mh

(3.21)

c̈y = cy
g

h
+

τ x
mh

. (3.22)

We model the swing leg as fully controllable and treat the acceleration of the swing foot, p̈w,

as a control variable.

38

During double support, there is no swing foot to accelerate, but the horizontal CoM acceler-

ation depends on how the weight is distributed between the two feet, which we define as

w =
fL,z

fL,z + fR,z
. (3.23)

We assume that we can select w during double support such that

c̈x =
τ y
mh

(3.24)

c̈y =
τ x
mh

. (3.25)

Equations (3.24) and (3.25) are approximations because they require that both

w =
cx − pL,x
pR,x − pL,x

(3.26)

and

w =
cy − pL,y
pR,y − pL,y

. (3.27)

It is only possible to simultaneously satisfy (3.26) and (3.27) if the CoM is directly above the

−0.2 0 0.2 0.4 0.6 0.8
−0.2

0

0.2

X Position (m)

Y
 P

os
iti

on
 (

m
)

Between Feet
CoM DS
CoM SS

Figure 3.2: The CoM and footstep pattern of the walking simulation starting from rest. Note that

during double support, the CoM is near the line between the two feet.

line between the two feet. However, this approximation is small because the CoM is usually near

39

this line during double support as shown in fig. 3.2, double support is brief, and the low-level

controller can often fix some of the discrepancy by adjusting τ . This approximation is necessary

because it allows us to decouple the sagittal and coronal dynamics, and it is useful because it

allows us to calculate the CoM acceleration without knowing the position of both feet.

These dynamics constitute a 5 degree of freedom (DoF) ICS with a 10-dimensional state

space (position and velocity for each DoF),

xf = {cx, ċx, cy, ċy,pw,x,

ṗw,x,pw,y, ṗw,y,pw,z, ṗw,z}
(3.28)

and a 5-dimensional action space (one for each DoF),

uf = {τ y, τ x, p̈w,x, p̈w,y, p̈w,z}. (3.29)

We can then partition the state and action space into 5 subsystems, one for each DoF:

xs = {cx, ċx} us = {τ y}

xr = {cy, ċy} ur = {τ x}

xx = {pw,x, ṗw,x} ux = {p̈w,x}

xy = {pw,y, ṗw,y} uy = {p̈w,y}

xz = {pw,z, ṗw,z} uz = {p̈w,z}

(3.30)

where the subscripts, s, r, x, y, and z, refer to the sagittal stance, coronal stance, swing-x, swing-

y, and swing-z subsystems.

The systems are only coupled during stance transitions (touch down and lift off). We choose

a common state that describes the horizontal location of the swing foot, xc = {px,px}. In order

to keep the decision state, x̂d, low-dimensional, we consider only the next transition (M = 1)

and make assumptions about all future transitions. This gives us a decision state of

x̂d = {tt, xtd, ytd} (3.31)

where tt is the time until transition, and {xtd, ytd} is the location where the swing foot will

touch down. For lift off transitions, xtd and ytd can be omitted. The stance subsystems assume

40

that subsequent transitions will have the nominal timing (0.1 second double support and 0.4

second single support), but that they will be able to select future touchdown locations. The

swing subsystems assume that subsequent transitions will have nominal values from steady state

walking. Fig. 3.3 shows tt as a function of time for the walking simulation starting from rest and

accelerating to steady state walking at 0.56 m/s. During single support, it is convenient to refer

to tt as time until touchdown, ttd.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

Time (s)

T
im

e
U

nt
il

T
ra

ns
iti

on
, t

t (
s)

DS
SS

Figure 3.3: Time until transition, tt versus time. To reduce computation, policies are only com-

puted for tt < 0.2 during double support.

This selection of xc and the resulting x̂d allows our subsystem controllers to determine the

optimal action for all possible choices of footstep timings and locations. The value functions can

then be used to determine which choice of these variables is optimal for the full ICS.

We minimize the cost function

C =
∫
(w1τ

2
x + w2τ

2
y + w3(ċx − vdes)2 + w4(cy − wh)2+

w5(pw,z − hfc)2 + p̈T
wW6p̈w) dt

(3.32)

subject to the constraint that

pw(ttd = 0) = {xtd, ytd, 0}. (3.33)

The values w1 through w5 are weighting constants, W6 is a diagonal weighting matrix, wh is

41

half the width of the hips, and hfc is the nominal foot clearance height.

Note that (3.32) has the form of (3.7) and that (3.33) can be decoupled as in (3.10). This

model of walking thus meets all the criteria of an ICS. If we omit the dimensions of x̂d that

do not affect the dynamics, the original 10-dimensional system is equivalent to a coordinated

set of one 3-dimensional system (swing-Z) and four 4-dimensional systems. In practice, we are

able to use a change variables to reduce the swing-X and swing-Y policies from 4 dimensions

to 3 dimensions and combine them (discussed in Section 3.4.1). We also add weight distribution

to the state of the sagittal and coronal policies (discussed in the next Section) during double

support. After these modifications, we have two 3-dimensional policies (one of which is used

twice) and two policies that are 4-dimensional during single support and 5-dimensional during

double support.

3.3.1 Non-ICS Modifications

The requirements for a system to be an Instantaneously Coupled System and therefore optimally

coordinated by the method descibed in Section 3.2.2 are somewhat limiting. We make two

modifications to the high-level walking model: we include weight distribution as a control during

double support and we do not use the LIPM dynamics in the sagittal plane. These modifications

result in the system not truly being an ICS, so our coordination is no longer optimal. Despite

the loss of optimal coordination, the modifications significantly improve results by changing the

restrictions on our walking controller.

Rather than allow the weight distribution between the two feet in double support, w, to be

determined by the CoM position as described in (3.24) and (3.25), we wish to actively control

the weight distribution to help with balance. This allows our controller to control center of mass

location by adjusting how much of its total weight is on each foot, which moves the center of

pressure. This is particularly helpful when starting from rest because it allows the controller

to shift the center of mass towards the first stance foot during the initial double support phase.

42

Without shifting weight in this way, the system must step far out to the side of its first step when

it begins walking from rest. Unfortunately, there is no way to coordinate the weight distribution

within the ICS framework because it couples the sagittal and coronal sub-systems (they must

have the same weight distribution) continuously during double support rather than just at the

transition points. The run-time coordination between the two policies to determine the weight

distribution during double support is discussed in Section 3.4.2.

The LIPM dynamics, (3.21) and (3.22), require that we do not accelerate the CoM vertically

(c̈z = 0). For walking on flat ground, this implies a constant CoM height, cz = h. To achieve

this, we must pick a height, h, that is low enough for the foot to reach the desired touch down

locations. If we have this same CoM height during the middle of single support, the stance knee

will be very bent, giving the appearance of a crouch-walk. If we then lower the height a bit more

to add margin for the occasional abnormally long step required to recover from a perturbation,

the problem becomes even more pronounced. This both looks unnatural and drastically increases

the torque required at the knee. We therefore wish to allow the CoM to move up and down as

the system walks. Unfortunately, the LIPM dynamics were the reason that sagittal and coronal

plane motion decoupled completely. Clearly, the CoM must be at the same height for both sub-

systems at all times. We allow the sagittal plane controller to control the CoM height and treat

the effect of the vertical motion as a disturbance on the coronal plane, for which we continue

to use the LIPM dynamics for generating a high-level policy. We consider the LIPM dynamics

acceptable for high-level policy generation in the coronal plane because steps are much shorter

in the y direction and the legs typically remain near vertical in the coronal plane.

We do not wish to increase the dimensionality of our system by adding cz and ċz as states in

our system, so we set the CoM height to a function of x and d, h(x, d), where x and d are the

CoM location in the X direction and the distance between the feet, measured as shown in Fig.

3.4. Measuring torque around the CoM gives us

l̇ = τ y + fxh(x, d)− xwfz − (d+ x)(1− w)fz. (3.34)

43

-x
d

h(x,d)

wfz
(1-w)fz

Figure 3.4: Diagram of the sagittal system not using LIPM dynamics. The fraction of the total

vertical force, fz on the right leg is given by w. Note that in the configuration drawn, x has a

negative sign.

We have the constraint that l̇ = 0. When fz is not constant, the ZMP constraint does not give us a

constant limit on (τ)y, so it is convenient to write our control in terms of center of pressure loca-

tion on the foot. The relative CoP location, r is related to the torque by τ = rfz and constrained

by |r| ≤ lf where lf = 0.1 is half the length of the foot. We know from Newton’s Second Law

that fx = mẍ and adding gravity gives us that fz = m(g + ḧ(x, d)). If we assume that ḋ = 0, we

get that

ḧ(x, d) =
∂2h

∂x2
ẋ+

∂h

∂x
ẍ. (3.35)

Substituting all of these relations into (3.34) gives us

0 = mẍh(x, d) +m(g +
∂2h

∂x2
ẋ+

∂h

∂x
ẍ)(r + dw − d− x), (3.36)

which we can solve for ẍ to get

ẍ =
(g + ∂2h

∂x2
ẋ)(x+ d− dw − r)

h(x, d) + ∂h
∂x

(r + dw − d− x)
. (3.37)

44

In single support, w = 1 and (3.37) still holds with dw−d = 0 cancelling out. This removes any

dependence on d, (so long as h does not depend on d), which makes sense because the second

foot is not on the ground during single support.

During single support, h(x, d) is based on the compass gait, with the hip moving in an arc

around the stance foot and the CoM located a fixed offset, a = 0.2 above the hip:

h(x, d) = a+
√
l2SS + x2, (3.38)

where lSS is the constant length of the stance leg during single support. As the hip moves forward

during double support, the front leg must get shorter (bend the knee more) and the back leg must

get longer (straighten the knee). For this to be possible, we can not start double support with

the back leg completely straight. For this reason, we keep the knee slightly bent during single

support, making lSS shorter than the full leg length. Note that this is necessary because our

controller walks with flat footsteps, with no toe off. Humans (and robots that have toe off in their

gait) lengthen their back leg during double support by lifting their heel off of the ground.

During double support, we wish to make a smooth transition between the preceding and

following single support arcs. This is impossible with h being only a function of x and d because

we do not know when/where touchdown occured or when/where liftoff will occur, so we attempt

to make it as smooth as possible using nominal values. First, we find the expected double support

region (the region the CoM will pass through in a nominal step), which has a length of the desired

velocity times the nominal double support duration and is centered between the two feet. If the

feet are outside this region (as they usually will be), we find the circle that is tangent to the two

single support arcs as they enter this region (shown in Fig. 3.5). If the CoM is in the expected

double support region, h(x, d) is on that joining circle. If outside the expected region, h(x, d)

is on the tangent lines. If the feet are very close together and inside the expected DS region,

we again find the circle that is tangent to both single support arcs as they enter the expected DS

region. This time the circle’s center will be below the ground (shown in Fig. 3.6). We then

assign h(x, d) to this circle regardless of whether or not it is in the expected DS region. In the

45

Figure 3.5: Diagram of h(x, d). The green region is the expected double support region. The

blue linse show the single support arcs. The red line shows h(x, d) during double support with

the joining arc solid and the tangent lines outside of the expected region dashed.

boundary case where the feet are right at the edge of the expected DS region, h(x, d) will be a

simple horizontal line during double support.

3.4 Walking Controller

We use the principle of an ICS to generate a walking controller for a simulated biped based on

our Sarcos Primus System [16] [51] hydraulic humanoid robot with force-controlled joints. The

simulation is of approximately human size (CoM is 1.0 m high when standing straight) and mass

(78 kg). It is a 3D 5-link (torso and two 2-link legs) rigid body simulation with 16 degrees of

freedom: 6 to locate and orient the torso as well as 3 at each hip and 1 at each knee. It is controlled

by 12 torque controlled joints: 3 at each hip, 1 at each knee, and roll and pitch actuation between

46

Figure 3.6: Diagram of h(x, d) when the feet are inside the expected double support region

(green region). The blue lines show the single support arcs, and the red line shows the double

support arc when the feet are within the expected double support region.

each point foot and the ground. The CoP constraint of a finite-size foot is simulated by enforcing

|τ x| ≤ wf fz

|τ y| ≤ lf fz

(3.39)

on each foot where wf = 0.05m and lf = 0.1m are approximately half the width and length

of a human foot. Friction (coefficient of friction is µ = 1.0) is modeled as a spring and damper

between the foot and the ground. When the friction cone,√
f2
x + f2

y

fz
< µ, (3.40)

or yaw torque constraint,
τ z
fz

< µr, (3.41)

is violated, slipping is modeled by resetting the rest position of the spring and switching to a

lower kinetic coefficient of friction (µk = 0.8).

47

We use coordinated DP polices to produce an optimal controller for the ICS described in

Section 3.3. This functions as our high-level controller, providing input CoM and swing foot

accelerations to a low-level controller, which outputs joint torques.

3.4.1 Policy Generation

Policies and value functions are generated for each of the five subsystems using dynamic pro-

gramming as discussed in Section 2.2. A discount factor of 0.9995 is used, which corresponds

to costs fading to half importance after 1.4 seconds (nearly 3 steps).

Swing-Z Policy Generation

For the swing-z system, the dynamics are not affected by xtd or ytd, so it is sufficient to generate

a policy on the 3-dimensional state space of {pw,z, ṗw,z, ttd} - denoted {z, ż, ttd} here for conve-

nience. Our only control action is ṗw,z - denoted z̈. We are controlling acceleration directly in the

high-level walking system, so it has simple second order dynamics and ttd simply counts down.

We wish to immediately lift the swing foot, hold it steady at a nominal height of znom = 0.03m,

then reach the ground (z = 0) with a small nominal touchdown velocity of żtd = −0.04m/s

when ttd = 0. We use a non-zero touchdown velocity to ensure that we get firm contact and to

avoid numerical issues, but we keep it small to avoid large impacts. We divide the state space

into a grid with minimum states of {0 m, -3 m/s, 0 s}, maximum states of {0.08 m, 3 m/s, 0.6

s}, and resolutions of {81, 301, 121}. To simplify analysis, where possible we select grid reso-

lutions such that we have round numbers for the grid spacing. For this policy, for example, we

have spacing of {0.001 m, 0.02 m/s, 0.005 s}. We use a cost function of

L(x,u) = 0.5

(
z̈

z̈max

)2

+

(
z − znom

znom

)2

, (3.42)

where zmax is the maximum allowable acceleration. The first term minimizes acceleration, and

the second term causes the foot to lift off and hold at the nominal height, znom. The weight, 0.5,

48

was selected manually by experimentation and the denominators are used to normalize terms that

have different units.

For ttd ≤ 0.03s, we use an analytical controller to select an action and produce a corre-

sponding value function. An analytical function is necessary because the second derivatives of

the policy and value function grow arbitrarily large as we approach touchdown, which would

require an arbitrarily fine grid spacing to approximate accurately. Our analytic controller selects

the single acceleration, z̈, to use from now until touchdown that minimizes the cost

C = 2ttdz̈
2 + 1000(żf − żnom)2, (3.43)

subject to the constraint that it actually touch down (z = 0) within Tslop = .00075s (3/4 of a

simulation time step) of the nominal ttd. The final velocity is given as żf = ż+ z̈ttd. The constant

2 was selected to scale the cost of terminal acceleration relative to the cost of acceleration the

rest of the time. Note that this is not normalized and is in the continuous rather than discrete time

setting. We somewhat arbitrarily determined that a terminal acceleration of 10 m/s/s was about

equally bad as missing the final velocity by 0.02 m/s, which tells us that the second constant

should be 500 times larger than the first.

First we find the z̈ which minimizes (3.43) ignoring the constraint by expanding (3.43), which

gives a quadratic in z̈, which can be easily minimized. Then we find the range of z̈ that satisfies

the timing constraint by finding the z̈ that achieves z = 0 in ttd + Tslop and the z̈ that achieves

z = 0 at ttd−Tslop and constrain our action to this range. We must also satisfy the constraint that

|z̈| ≤ z̈max. If these ranges do not overlap, the problem is not solvable and we assign an infinite

value. Otherwise, we plug our z̈ into (3.43) to get the value. For much of the state space, it will

not be possible to satisfy both constraints so we will get an infinite value. For most of the rest of

the state space, the timing constraint will be active and the cost function only serves to determine

whether we touch down as early as possible (ttd − Tslop) or as late as possible (ttd + Tslop). The

value of Tslop was selected such that for every physical state {z, ż}, there is at least one integer

number of time steps for which touchdown is feasible (some z̈ satisfies both constraint pairs).

49

Swing-X and Swing-Y Policy Generation

We use the same policy for both the Swing-X and Swing-Y sub-systems because they have the

same dynamics and cost function (just with different names for the variables). From Section 3.3,

we have that the state for the Swing-X system is {pw,x, ṗw,x, xtd, ttd}. Because xtd has constant

dynamics, we can reduce the state space of the policy by putting the origin at xtd, making the

state {pw,x − xtd, ṗw,x, 0, ttd}. We can drop the 0 from the state and for convenience, we denote

the state as {p, ṗ, ttd}. We denote our control as p̈. We wish for our controller to smoothly move

the foot to the target location (p = 0 with the change of coordinates) and arrive there when

ttd = 0 with zero velocity (ṗ = 0). We will handle the destination requirements in a terminal

analytic controller, so we need only minimize acceleration,

L(x,u) =

(
p̈

p̈max

)2

, (3.44)

in the grid.

Our grid must cover a larger region of state space for this policy than for the Swing-Z policy

because the foot moves much farther in the x direction than in the z direction. To keep the

computation reasonable, we use two grids: a coarse grid for the entire state space and a fine grid

near the goal. The coarse grid has minimum states of {0 m, -4 m/s, 0 s}, maximum states of {1.2

m, 4 m/s, 0.6 s}, and resolutions of {121, 401, 121}. Because the dynamics and cost function

are symmetric, we know that p̈ = π(p, ṗ, ttd) = −π(−p,−ṗ, ttd). Therefore, we can cut our grid

in half and only consider p ≥ 0. If p < 0, we can return −π(−p,−ṗ, ttd), which is in our grid.

We also have to include this transformation in our dynamics when computing the policy so that

simulating forward one time step from, for example, {0m,−1m/s, 0.1s} does not end up off of

the grid.

The smaller grid has minimum states of {0 m, -3.5 m/s, 0.03 s}, maximum states of {0.175

m, 3.5 m/s, 0.1 s}, and resolutions of {176, 701, 71}. The limits of 3.5 m/s and 0.175 m were

found by starting at the origin and working backward for 0.1 s at the maximum acceleration,

p̈max = 35m/s/s. The two grids overlap for simplicity, but we only use the finer grid in the

50

region where it exists. We can stop the finer grid at 0.03 seconds because we use an analytic

controller for ttd ≤ 0.03s.

Our analytic controller is similar to the one used for the Swing-Z policy. It minimizes

C = 4ttdp̈
2 + 2000ṗ2

f , (3.45)

which is similar to (3.43), and subject to the constraint that |pf | ≤ pslop where pf is the position,

p, when ttd = 0 and pslop = 0.0005m allows just enough mismatch to ensure that a fine search

(resolution 1 mm) of potential xtd’s (or ytd’s) will find at least one xtd (or ytd) that is feasible.

The constants in (3.45) are half those in (3.43) because the coefficient of 2 in (3.42) is absent

from (3.44).

As for the Swing-Z policy, the touchdown location constraint will be active for most of

the state space, and the minimization will only serve to determine in which direction to miss

the desired location by pslop. To solve, we first do the minimization, then constrain it by

the touchdown location constraint, then constrain it by the maximum acceleration constraint,

|p̈| ≤ p̈max = 35m/s/s.

Sagittal Policy Generation

During single support, the sagittal policy has a 4-dimensional state space: CoM position relative

to the stance foot, CoM velocity, time until touchdown, and touchdown location relative to the

stance foot, which we denote as {x, ẋ, ttd, xtd}. The only control action is the center of pressure

location on the stance foot, |rx| ≤ lf , where lf = 0.08m is half the length of the foot. For the

dynamics, xtd is constant, ttd counts down, and we find ẍ according to (3.37), which we integrate

one time step to update x and ẋ. For 0.5 m/s walking, we use a cost function of

L(x,u) = 2

(
ṡ

vdes

)2

+

(
rx
lf

)2

, (3.46)

where vdes is the desired walking speed in m/s. We can generate policies for walking slower by

decreasing vdes, but more complicated cost functions appear to be necessary to walk faster stably.

51

We use a grid with minimum states of {-0.4 m, -0.3 m/s, 0 s, 0 m}, maximum states of {0.4 m,

1.5 m/s, 0.6 s, 0.7 m}, and resolutions of {81, 46, 121, 71}.

During double support, we have a 5-dimensional state space. Time until liftoff, tlo, replaces

time until touchdown, stance width, d, replaces xtd, and we add weight fraction on the front

leg, w, giving us a state of {x, ẋ, tlo, d, w}. For convenience, we measure the CoM position, x,

relative to the center point between the two feet during double support. We also add a second

action, ẇ. The dynamics are similar to single support except that we use ẇ to update w. Note

that we must first get the CoM position relative to the lead foot before we can use (3.37) to get

the CoM acceleration. We must add a few extra terms to the cost function, (3.46), to get

L(x,u) = 2

(
ṡ

vdes

)2

+

(
rx
lf

)2

+ 0.7 (ẇTDS)2 +

(
x

vdesTDS

)2

, (3.47)

where TDS = 0.1s is the nominal duration of double support. The third term is added to limit ẇ,

and the fourth term is added to keep the CoM near the middle of the stance region. Without this

cost, the coordinated system tends to continue double support for too long and start dragging its

back foot forward when the CoM moves far enough forward that the back leg gets completely

straight. We use a grid with minimum states of {-0.2 m, -0.3 m/s, 0 s, 0 m, 0.1}, maximum states

of {0.2 m, 1.5 m/s, 0.2 s, 0.7 m 0.9}, and resolutions of {41, 46, 41, 71, 17}. To enforce that

w = 0.9 at the end of double support, when tlo ≤ 0.01s, rather than selecting ẇ as an action, we

use ẇ = (0.9− w)/tlo.

At the end of single support, when ttd = 0, we transition to double support by changing

where x is measured relative to, setting tlo = TDS, d = xtd, and w = 0.1. If the distance between

the hip and the foot that is touching down is greater than the length of the leg, we set the cost

to infinite. Additionally, if this distance is within 2 cm of the straight length of the leg, we add

a cost which increases linearly from 0 at 2cm of margin to 100 at no margin to encourage the

controller to leave a little bit of margin.

At the end of double support, when tlo = 0, we transition to single support. At this time,

we select the length of the step as an action. To reduce memory costs in implementation, we

52

transition to a special liftoff dynamics for one step (representing zero time) between double

support and single support. The liftoff dynamics have only a 2-dimensional state space, {x, ẋ},

and a single action, xtd. The grid has the same minimum state, maximum state, and resolution

as the first two states of the single support grid. To transition from double support to the liftoff

dynamics, we need only change the reference frame for x (from measuring from the center

of stance to measuring from the new stance foot). To transition from the liftoff dynamics to

single support, we set ttd to the nominal single support duration of 0.4 seconds and set the state

xtd according to the action in the liftoff dynamics. There is no cost for the liftoff dynamics

(L(x,u) = 0).

Coronal Policy Generation

The coronal policy is very similar to the sagittal policy. During single support, the state is

identical, except with y instead of x: {y, ẏ, ttd, ytd}. When the left foot is in single support,

the positive-y direction is measured to the right, and vice versa. The only action is the center

of pressure location relative to the stance foot, ry, which is constrained by |ry| ≤ wf , where

wf = 0.04m is half the width of the foot. We use the LIPM dynamics (3.22) to compute the

CoM acceleration, ÿ. Again, ttd counts down, and ytd is constant. We use the cost function

L(x,u) =

(
ry
wf

)2

. (3.48)

We use a grid with minimum states of {-0.05 m, -1 m/s, 0 s, 0 m}, maximum states of {0.4 m, 1

m/s, 0.6 s, 0.6 m}, and resolutions of {46, 45, 121, 61}.

During double support, ttd becomes tlo, ytd becomes the stance width, d, and we add the

fraction of the vertical force on the next single support leg, w, making the state {y, ẏ, tlo, d, w}.

We again add ẇ as a second action, which controls the dynamics of w. We again use the LIPM

dynamics to find ÿ, but now we need to consider how much vertical force is on each foot, w, as

well as the shift in CoP due to ankle torque, ry to find the total CoP. To get the cost function, we

53

add a term limiting ẇ to the single support cost function, producing

L(x,u) =

(
ry
wf

)2

+ 0.7 (ẇTDS)2 . (3.49)

As in the sagittal sub-system, we enforce that w = 0.9 at liftoff by assigning ẇ = (0.9− w)/tlo

when tlo ≤ 0.01s. During double support, we measure the CoM position, y, relative to the next

single support leg with the positive-y direction pointing towards the other foot. We use a grid

with minimum states of {-0.05 m, -1 m/s, 0 s, 0 m, 0.1}, maximum states of {0.4 m, 1 m/s, 0.2

s, 0.6 m 0.9}, and resolutions of {46, 45, 41, 31, 17}.

To transition from single support to double support at touchdown, we need to shift the refer-

ence frame for y and flip the sign of ẏ. We also set tlo = TDS, d = ytd, and w = 0.1.

To transition from double support to single support at lift off, we again use a special lift off

dynamics as in the sagittal subsystem. Again, it is a 2-dimensional grid with step width for the

next step, ytd as the only action. Here we have a cost on the step width to encourage reasonable

step widths,

L(x,u) = 0.5

(
ytd − ytd,NOM

0.1

)2
TDS + TSS

∆t
, (3.50)

where ytd,NOM = 0.22m is the nominal touchdown width and ∆t is the time step. The second

fraction is necessary to scale this cost to compensate for the fact that it happens once per step

rather than continuously every time step.

These five DP policies (three 3-dimensional and two 4-dimensional policies) are equivalent

to a single 10-dimensional DP policy for the entire ICS. If we use a resolution of 100 states per

dimension, the coordinated version uses 2.3 × 108 states as opposed to 1.0 × 1020 states for the

equivalent single policy. Computing the DP policies is computationally intensive and can take

on the order of a day for our 4-dimensional policies. They are computed before use, and this

computation does not affect the run-time performance of the controller.

54

3.4.2 Policy Coordination

Double Support

At run time, we combine the value functions to obtain x∗d as in (3.17). During double support,

the arg min operation is only a 1-dimensional search (we must only find the time until lift off),

so it can be performed by a fine resolution brute force search. During single support, however,

the search space is 3-dimensional(ttd, xtd, and ytd), so a brute force search would be too compu-

tationally expensive.

During double support, we also have to determine how to shift weight from the foot that used

to be in single support to the foot that is about to be in single support. Both the sagittal and

coronal policies have the fraction of weight on the lead leg w as a state and ẇ as an action in

double support. Averaging the two commanded ẇ’s would be the simplest solution, but this will

do poorly if one of the policies absolutely needs a specific ẇ and the other one can handle just

about anything. To tell how important achieving the desired ẇ is for a given policy, we must look

at the value function.

We generally wish to minimize value, and we already have the value as a function of

w, so we find the ẇ that reduces the value the most while holding everything else constant,

min ∂V/∂t|x!=w. We can expand this to

∂V

∂t
=
∂V

∂w

dw

dt
+

1

T
L(x,u) (3.51)

where the first term is the change in value due to changing the state and the second term is the

cost of changing the state (T is the time step). If we drop all the terms in L that do not contain w

this gives us
∂V

∂t
=

(
∂Vs
∂w

+
∂Vc
∂w

)
ẇ +

1

T
(as + ac)ẇ

2 (3.52)

where as and ac are the cost function weights for the sagittal and coronal policies. To minimize

∂V/∂t, we take the derivative of this with respect to ẇ and set it equal to zero:

∂Vs
∂w

+
∂Vc
∂w

+
2

T
(as + ac)ẇ = 0, (3.53)

55

which we can solve for ẇ, giving us

ẇ =
−2(as + ac)

T
(
∂Vs
∂w

+ ∂Vc
∂w

) . (3.54)

Parabolic Approximation Method

To speed up the search, we note that all five value functions depend on ttd, but that only 2 each

depend on xtd and ytd, and that none of the value functions depend on both xtd and ytd. We

wish to first find x∗td(ttd) and y∗td(ttd), so that we can then perform a 1-dimensional search over

V (ttd|x∗td(ttd), y∗td(ttd),xf).

To do this, we approximate the value functions (during pre-computation) in such a way that

they can be added quickly and that x∗td(ttd) and y∗td(ttd) of the sums can be found analytically.

For the coronal and swing-y value functions, we approximate the value function, V (ttd, ytd|xi),

with a series of parabolic approximations to V (ytd|ttd,xi) for evenly spaced values of ttd. Each

parabola is created by placing the vertex at the minimum of V (ytd|ttd,xi) and using a point to

either side to estimate the second derivative. Fig. 3.7 shows an example surface approximation.

The sum of two parabolas is also a parabola, so two surfaces can then be added quickly by

adding the parabolas, creating a new surface also represented by a series of parallel parabolas.

The location of the vertex of each of these new parabolas gives us y∗td(ttd), and the value at each

vertex gives us VC+Y (ttd|y∗td,xf), where VC+Y indicates the value for the coronal and swing-y

subsystems together.

To do this quickly at run-time, we must first pre-compute the parabolic approximations to

V (ytd|ttd,xi) for each of the policies. We compute the approximation (as shown in Fig. 3.7)

for a grid of xi with the same resolution as the main DP grid. At run time, when we look

up the surface approximation, we use the actual xi and multilinear interpolation on the grid of

approximations. We have found that parameterizing the parabola as

y = a(x− h)2 + k (3.55)

56

y
td

 (mm)

t td
 (

m
s)

200 400 600

100

200

300

400

500

600

y
td

 (mm)

t td
 (

m
s)

200 400 600

100

200

300

400

500

600

Figure 3.7: The coronal stance value function, V (ttd, ytd|cy = 0.08, ċy = 0), from the DP tables

(top) and from the parabolic approximation (bottom). The red line shows y∗td(ttd). The dots show

the points used to generate the parabolic approximation, and the horizontal black lines show the

location of the parabolas.

57

and interpolating the parameters a, h, and k works better than parameterizing the parabolas as

y = ax2 + bx+ c (3.56)

and interpolating the parameters a, b, and c because the former parameterization does a better

job of capturing the things we care about: the location and value of the vertex. It is worth noting

that these parabolic approximations are both much easier to compute and smaller to store than

the original DP value function, so using them does not add significantly to our pre-computation

requirements.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

200

400

600

800

1000

Time Until Touchdown (s)

V
al

ue

sag+swgx
cor+swgy
swgz
total

min=t
td
*

Figure 3.8: Value as a function of ttd following a push to the side. For ease of view, values are

normalized so that the minimum is 0. Due to the push, the coronal policy wants to touch down

soon, but it must compromise with the other policies to pick the best time, t∗td for the full ICS.

The same is done with the sagittal stance and swing-x value functions, using xtd instead of

ytd. With the value functions reduced to only a function of ttd as shown in Fig. 3.8, they can be

efficiently added

V (ttd|x∗td, y∗td,xf) = VC+Y (ttd|y∗td,xC ,xY) + VS+X(ttd|x∗td,xS,xX) + VZ(ttd|xZ) (3.57)

58

to produce a value dependent only on ttd. This value function is represented as a series of values,

V (ttd|x∗td, y∗td,xf), with the same spacing as the parabolas in the surface approximation. We pick

the point with the lowest value, then fit a parabola to it and its two neighbors. The location of the

fit parabola’s vertex gives us t∗td. We can then plug t∗td into the x∗td(ttd) and y∗td(ttd) functions we

found earlier to look up x∗td and y∗td. Having determined x̂d, we can now look up the appropriate

controls, uf , from the individual policies.

The run-time computation for this method is extremely simple, and requires only about 6

microseconds of computation time on a 6 core 3.33 GHz Pentium i7 processor.

Unfortunately, this method relies on the structure of the value functions produced by dynamic

programming; if they do not have the form we expect, then our approximations will not be

sufficiently accurate to find a good solution. If, for example, we wish to handle varied terrain,

we would modify the value function by using a non-zero h function in (3.7). For complicated

terrain, this can make the final cost function arbitraril complex.

Optimization Method

To handle situations where we do not have the simple form of the value functions for which

the convenient approximations work, we use a more generic method. We treat finding x̂d =

{t∗td, x∗td, y∗td} as a generic optimization problem and use the Nelder-Mead method [68] to find

the optimum. To avoid local minima, we start optimizations from several points each time step

(and select the result with the lowest value): four random points and the best guess based on the

previous time step. The best guess is simply the same as the solution from the previous time step

with ttd decremented by the timestep, except at the beginning of single support, when a default

value is used. Even if the global optimum has a small basin of attraction, after several time steps,

one of the random starts is very likely to start in it and find the global minimum. The controller

is continuously updating its touchdown target, so it need not know where it will touch down at

the beginning of the step so long as it figures it out quickly.

59

For the simple case of flat ground, but with some regions we are not allowed to step, there

is still some problem structure that we can exploit to speed up the optimization and help find

the global optimum step location as early in the step as possible. We implement the stepping

requirement by modifying the h function in (3.7). We set h(xf (tj)) = ∞ for xf (tj)’s that

correspond to stepping in illegal locations (where touchdown occurs at tj) and h(xf (tj)) = 0

for all other values of xf (tj). For any situation where the terrain imposes costs dependent on

stepping location, we can expect an arbitrarily complicated dependence of the value on xtd and

ytd, but still expect the same smooth behavior of V (ttd|xtd, ytd). Additionally, optimization will

not work if it starts in an illegal region because it will not have a gradient (all points on the

simplex will have the same value). We therefore start by randomly sampling only {xtd, ytd} and

checking to make sure it is a legal location. We resample new points until we find a legal stepping

location. We then attempt to speed up the optimization and avoid local minima by picking the

best (lowest value) ttd from a list of 19 choices. We use a list rather than even spacing so that

we can have closer spacing for small ttd’s, where minima can have narrower basins of attraction.

We then form a simplex with this point as one of the vertices and run the optimization. Choosing

initial ttd’s in this way rather than randomly sampling does run the risk of systematically missing

the global minimum because the nearest choice in the list is not the lowest of the list values.

However, since we expect smooth behavior of V (ttd|xtd, ytd), this is unlikely. On the other hand,

using this method often avoids local minima and therefore improves the chance of finding the

global minimum early in the step.

The optimization method of coordination of policy coordination is more flexible than the

parabolic approximation method, but it is also much slower. It takes an average of 586 microsec-

onds on a 6 core 3.33 GHz Pentium i7 processor (compared to 6 microseconds for the parabolic

approximation method). Fortunately, it is trivial to multithread; we can run the optimization from

each of the five starting points in a different thread. This allows us to take advantage of multiple

cores. In practice, multithreading decreased computation to an average of 325 microseconds,

60

which is reasonable as a component of a controller that we wish to run at 1 kHz.

In practice, we tend to get slightly worse robustness (can withstand slightly smaller pushes)

with the optimization method. We believe this is because the parabolic approximation provides

some smoothing to our value functions. They can be somewhat noisy because we stop optimizing

our policies without them converging. Additionally, we use a course grid, which can result in

weird effects near the border between where the value is infinite (recovery is impossible) and

where it is finite.

3.4.3 Low-Level Control

The output of the high-level controller is the desired horizontal CoM acceleration, c̈x,des and

c̈y,des, as well as the desired swing foot acceleration p̈w,des. The objective of the low-level con-

troller is to generate joint torques which will achieve these accelerations as well as enforce the

constraints assumed by the high-level control, cz = h and l̇ = 0.

It is important to note that the high-level controller does not generate trajectories. Instead,

it maps directly from system state to desired accelerations without maintaining any controller

state. This allows it to react to perturbations and accumulated modeling error in real time, but

it also means that we do not have desired positions or velocities, which precludes the use of

traditional trajectory tracking techniques. In the place of trajectory tracking, we use a form of

inverse dynamics to generate joint torques. The feedback gains of our controller are embedded

in the gradients of the high-level DP policies.

We use PD controllers to enforce the cz = h constraint and maintain a desired torso orien-

tation, giving us c̈z,des and the desired total moment. It is then straightforward to compute the

desired total reaction force, f , and torque, τ . During double support, we divide the total reaction

force between the two feet while enforcing the CoP (3.39) and friction (3.40), (3.41) constraints

61

by minimizing

C =
f2
L,x

fL,z
+

f2
R,x

fR,z
+

f2
L,y

fL,z

f2
R,y

fR,z
+

a

(
τ 2
L,x

fL,z
+

τ 2
R,x

fR,z
+

τ 2
L,y

fL,z

τ 2
R,y

fR,z

)
.

(3.58)

This cost function has the useful property that it produces the same CoP offset for both feet,

ensuring that there is as much margin as possible between the CoP and the edge of the foot.

We then use Dynamic Balance Force Control (DBFC) as presented in [90] to generate joint

torques, τ j . DBFC uses a weighted pseudo-inverse with regularization to solve

M(q) −S

J(q) 0

ε1I 0

0 ε2I

 q̈

τ j

 =

N(q, q̇) + J(q)f̂

−J̇(q)q̇ + ¨̂p

0

0

(3.59)

where q is a vector of generalized coordinates including 6 values specifying the position and

orientation of the base and 12 joint angles, M(q) is the mass matrix, J(q) is the Jacobian of both

feet, S = [0, I] selects the actuated elements of q, f̂ = [fL
T, τL

T, fR
T, τR

T]
T

, and ¨̂p = [p̈T
L, p̈

T
R]

T.

The bottom two sets of equations provide regularization and ε1 = 1.0×10−5 and ε2 = 1.0×10−5

are small constants. It can be computed quickly, and the entire low-level controller requires only

about 36 microseconds of computation time on a 6 core 3.33 GHz Pentium i7 processor.

Since we do not use PD joint torques in addition to the DBFC output, even small errors in the

foot acceleration produced can accumulate over time. In order to more accurately match desired

foot accelerations, we add an integrator on foot acceleration to our low level controller,

p̈w,DBFC = p̈w,HL +KI

∫
(p̈w,HL − p̈w) dt, (3.60)

where p̈w,DBFC is the swing foot acceleration used by the low-level DBFC controller, p̈w,HL is

the swing foot acceleration produced by our high-level policies, and KI is the integral gain. The

constant KI = 3.0 was found by experimentation to work well. It gives a time constant shorter

than a step, making it large enough to quickly correct for errors/disturbances but small enough

62

not to produce instability. The integrator is not necessary for stable walking, but it significantly

improves the robustness to perturbations.

DBFC Modes

Dynamic Balance Force control, as described above, fails when the system is at or near a kine-

matic singularity (e.g. straight knees). Rather than simply avoiding these situations, we use a

few modifications to the basic DBFC algorithm that each allow us to handle a specific situation.

During single support, we wish to keep the stance leg at a fixed length (fixed knee angle).

The knee does have to be somewhat bent to allow for extension during double support (discussed

in Section 3.3.1), but we do keep it mostly straight. Using the regular DBFC, we would use

forward kinematics to get a desired CoM height, use feedback based on the actual CoM height

to get a desired vertical foot force, and use DBFC to get joint torques. Essentially, we would be

attempting to control knee angle by commanding a desired vertical force. Unfortunately, with

the knee mostly straight, the Jacobian is nearly singular, so we have very little control over that

vertical force. The result is that slight inaccuracies in our model or small perturbations can result

in large errors. If what we really care about is knee angle, it is simpler to command it directly.

To directly command knee angle, we replace the regularizing equation for stance knee accel-

eration with a high gain PD controller that attempts to servo the stance knee to a fixed angle. It

is contradictory to independently control stance knee angular acceleration and vertical force, so

rather than commanding a desired force, we make the vertical force, fx,z, an additional variable.

To do this, we must move the appropriate column of the Jacobian, J(q) from the right side of

(3.59) to a new column in the large matrix on the left hand side.

We also have to handle two situations where the knee can become completely straight: 1) If

the CoM moves too far forward during double support, the back knee can get completely straight.

2) If it attempts to step too far forward, the front knee can become completely straight. In either

case, the result is a kinematic singularity and therefore a singular Jacobian, which causes DBFC

63

to fail. The policies are set up with appropriate constraints such that these situations do not occur

during normal walking. However, if there is a large perturbation, they can happen, especially if

the perturbation results in large torso rotations, which move the hip horizontally relative to the

CoM.

If we find that the swing knee has become almost straight while attempting to reach its touch-

down location, we rotate the three equations coverning the translational acceleration of the swing

foot (part of the second set of equations in (3.59)). We rotate the three equations from {x, y, z}

coordinates to coordinate system with one of the basis vectors pointing from the swing foot to the

hip. We can then drop the equation for acceleration in that direction, leaving acceleration in the

direction we can not control unspecified. We then directly control the swing knee by replacing

a regularization equation with a PD controller on knee acceleration that servos it to a constant

slightly bent angle (similar to what we did for the stance knee in single support). This way, the

foot will touch down at the desired location as soon as the hip moves far enough forward that it

can reach.

We use a nearly identical method to recover if the back leg becomes straight during double

support. In that case, however, rather than servoing the knee to a fixed angle, we bend it until we

are far enough from the kinematic singularity that normal control can resume.

3.5 Capabilities

To be useful, a walking system must be able to do more than walk in a straight line. It must be

able to start from rest, walk at varrying speeds, turn, and stop. It also must be able to handle

walking on complex terrain in addition to on flat ground. Our controller can avoid specified

regions where it is not allowed to step. It can also handle slopes and step changes in ground

height, but because we have only tested these sorts of terrain when the controller was unaware of

them, we cover them in the following section on robustness.

64

3.5.1 Speed

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Time (s)

Fo
rw

ar
d

V
el

oc
ity

 (
m

/s
)

Velocity x
v

des

Figure 3.9: Forward speed as the sagittal stance policy is changed. Starts from rest with vdes =

0.63, switches to vdes = 0.25 after 5.0 seconds, and to vdes = 0.5 after 10.0 seconds.

Walking speed can be changed by switching the sagittal stance policy to one computed with

a different vdes. The policies are global, so no transition is necessary, and the policies can be

switched at any point during the step. Similarly, the system can start from rest and achieve

steady state walking without switching policies. Fig. 3.9 shows how the velocity varies after

changing policies.

If the system is walking slowly enough, it can stop simply by switching from a walking

high level controller to a standing high level controller and continuing to run the same low level

controller. If the switch is done during double support, it will simly stop, but if it is done during

single support, it will stomp its swing foot as it tries to put weight on a foot that is not on the

ground (without the system failing). However, if it is walking forward at any significant speed,

it is necessary to slow down before stopping. To slow down, we switch to a sagittal policy

generated with vdes = 0.0. This quickly brings the system to a stop and remains in an infinitely

long double support phase, as shown in Fig. 3.10. The normal coordination procedure results in

a permanent double support phase, though it does stand with its CoM slightly off center because

the coronal policy thinks it is going to step again. To achieve balanced standing, it is necessary

65

0 2 4 6 8
0

0.2

0.4

0.6

Time (s)

Fo
rw

ar
d

V
el

oc
ity

 (
m

/s
)

Velocity x
V

des

Figure 3.10: Forward speed as the system starts from rest, walks with vdes = 0.5, and stops

by switching to a policy generated with vdes = 0.0. We switch to the stopping policy after 5.0

seconds, after which it takes about 1.5 steps to stop. During steady walking, the large humps in

the speed occur during single support and the small humps during double support.

to switch to a standing controller once the system has come to a stop.

3.5.2 Turning

The walking controller is designed to always face and walk forwards. Therefore, you can turn,

by simply changing which direction “forward” is. We rotate the coordinate frame that the robot

state is measured in while still having the controller attempt to walk in the positive x direction.

Practically this means rotating all vectors in the robot state (positions, velocities, and accelera-

tions) and adding to the yaw euler angle, then reconstructing a new quaternian from the modified

euler angles. Using this method, we can turn at up to about 1.5 radians/second while walking

forward with vdes = 0.5m/s. If the robot were a point and it truly was walking at 0.5 m/s, this

would correspond to walking in a circle of about 2/3 m diameter.

The system retains much of its robustness while turning. It can withstand a push of 38 Ns to

the inside of its turn as compared to a 41 Ns push of the same direction and timing when walking

forward. It can withstand a push of 21 Ns to the outside of its turn as compared to a 33 Ns push

66

of the same direction and timing when walking forward.

We also attempted to improve turning performance by adding centripetal acceleration to the

CoM and the swing foot as offsets to what the normal controller outputs. Neither modification

proved beneficial. In the case of adding centripetal acceleration to the CoM, we found decreased

robustness, but for adding acceleration to the swing foot, we found that the system failed to walk

entirely. It is possible that centripetal acceleration will play a bigger part and therefore these

modifications will be more beneficial when walking at faster speeds.

We were able to get slightly improved robustness by rotating the swing foot to the average

desired orientation during the next step rather than servoing it to the current heading. This way

the stance foot matches the heading at the middle of the step rather than the beginning. This

modification increased the size of the push that could be withstood from 21 Ns to 24 Ns for

pushes to the outside of the turn without having any affect on pushes to the inside of the turn.

3.5.3 Terrain

Figure 3.11: The footstep pattern as the system starts from rest, gets pushed (a 30Ns push to the

system’s left during the 4th step), and avoids obstacles (red regions). The red regions represent

areas where the center of the foot (green dots) may not be placed, though the foot may overlap

with the red region.

We are able to avoid stepping in regions that are specified as regions we are not allowed to

step in. Switching from the coordination method based on parabolic approximations described

67

in Section 3.4.2 to the coordination method based on a generic optimization described in Section

3.4.2 gives us the flexibility to add an arbitrary cost function for where we are stepping. For

the case of avoiding specified illegal regions, we add an infinite cost for stepping in the illegal

regions. Fig. 3.11 shows the footstep pattern as the controller avoids obstacles. The largest gap

that the system can step over is 48 cm measured, which corresponds to a step of 68 cm: the

48 cm gap plus the 20 cm length of the foot. This same method can also be used if we have a

general terrain cost map. Such a cost map could potentially be generated from local features of

the terrain, and Inverse Optimal Control could potentially be used to find the weights for these

features [106].

3.6 Robustness

An important characteristic of any controller is its ability to reject perturbations. In particular, the

size of the largest disturbance that does not cause the system to fail is a useful metric for systems

where failure is well defined. One practical difficulty with using this as a metric of performance

for walking is that there are many different types of disturbances. We discuss here the robustness

of our controller to several types of disturbance.

3.6.1 Pushes

A major type of disturbance experienced by walking systems are pushes. We apply pushes to the

torso center of mass, which is about 1.25 m high during walking (30 cm above the system CoM).

Fig. 3.12 shows the effect of push angle and timing on the maximum survivable perturbation.

Force perturbations lasting 0.1 seconds are administered to the torso CoM at various angles

while the system is walking with a nominal speed of 0.5 m/s. Data is shown in Fig. 3.12 for

perturbations beginning at increments of 0.1 seconds after the left foot lifts off. These pushes are

shorter than most of the system dynamics, so we consider them to be essentially impulsive. We

68

−50 0 50

−80

−60

−40

−20

0

20

40

60
Forward Push

Rightward
Push

Leftward
Push

Lateral Impulse (N−s)

F
or

w
ar

d
Im

pu
ls

e
(N

−
s)

t=0.0
t=0.1
t=0.2
t=0.3
t=0.4

Figure 3.12: Polar plot of the maximum survivable 0.1 second push for our walking simulation as

a function of angle and timeing. Data is shown for perturbations occuring at various times after

left foot lift off. A point represents the maximum survivable perturbation in a given direction.

Concentric circles are in increments of 10 Newton-seconds.

therefore measure their magnitude in impulse, Ns.

We also tested our system with more prolonged pushes lasting 3.0 seconds. Since the pushes

last for multiple steps, the exact time within a step at which it begins is not important. Fig. 3.13

shows these results. Note that for the longer pushes, we measure the magnitude in force, N.

3.6.2 Slips

Our controller can walk on surfaces with a coefficient of static friction µs ≥ 0.35. Once slipping

begins, we model friction as having a coefficient of kinetic friction, µk < µs. The exact value of

this coefficient has almost no effect on whether slipping results in a fall: with µk = 0.8µs, we

found that the minimum µs was 0.35, but with µk = 0.3µs, we found that the minimum µs was

69

−50 0 50
−50

0

50

Lateral Force (N)

F
or

w
ar

d
F

or
ce

 (
N

)

Figure 3.13: Polar plot of the maximum survivable 3.0 second push for our walking simulation

as a function of angle. Data is shown for perturbations occuring at various times after left foot

lift off. A point represents the maximum survivable perturbation in a given direction. Concentric

circles are in increments of 10 Newton-seconds.

0.36.

It can tolerate small regions of even lower friction, but only very small regions. (We simulate

changes in fricion by making µ dependent on the location of the center of the foot, without

averaging over the entire foot.) Counter-intuitively, it can tolerate larger regions of low friction if

the friction is lower: 2.5 cm for µs = 0.01, 1.5 cm for µs = 0.1, and less than 1 cm for µs = 0.15.

The reason for this unexpected behavior is that the failure mode is different from that found in

human walking. When the foot is first put down in a low-friction area, it slides slightly forward

during double support, which generally does not lead to failure. Then, during single support, it

slides backward rapidly, which does result in failure. Once the foot starts slipping backward, it

does not recover even if it gets onto a higher friction area. However, if the low-friction area is

70

very low friction, it will slide forward farther during double support, and be more likely to slip

onto a higher-friction area before slipping in the other direction during single support.

It is likely that special sagittal and coronal policies generate with appropriate friction con-

straints would allow for successful very-low friction walking. Alternately, a simple traction-

control controller decreasing the ground reaction force once slipping was detected would likely

help somewhat.

3.6.3 Trips

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

Time Until Touchdown (s)

M
ax

im
um

 O
bs

ta
cl

e
H

ei
gh

t (
m

)

Base
Raise
Lower

Figure 3.14: The largest tripping obstacle that our controller can handle as a function of when

it is contacted during the step. Results are shown for the baseline controller, an explicit raising

strategy, and an explicit lowering strategy.

We also tested our controller’s response to tripping obstacles. The obstacles were wide

enough to obstruct one, but not both, feet, of varying heights, and only 1.0 cm long (the foot

must be lifted, moved forward one foot length plus 1.0 cm, then lowered). The controller does

not know about the obstacles ahead of time - they are detected by the anamalous foot force, but

we do assume it knows when it has raised its foot high enough to clear the obstacle. We also

assume that the front face of the obstacle is frictionless, meaning the toe can slide up or down it

71

easily.

Fig. 3.14 shows the maximum height of tripping obstacles our controller can handle as a

function of when in the step they are contacted. It shows result for the baseline walking strategy

as described in Section 3.4. It also shows results for a simple explicit raising strategy and a

simple explicit lowering strategy.

For the raising strategy, when the obstacle is detected (via anamalous foot forces), the high

level controller immediately overrides the output of its Swing-X and Swing-Z policies. Instead,

it commands zero acceleration in the x direction and a large upwards acceleration (25 m/s/s) in

the z direction. Once the foot has cleared the obstacle vertically, the Swing-X policy is used as

normal, but the Swing-Z policy acceleration is ignored in favor of servoing the foot to 0.5 cm

above the obstacle. Once the foot has passed the obstacle horizontally, control returns completely

to normal.

For the lowering strategy, we again override the Swing-X and Swing-Z policies, but use a

large downwards acceleration (-25 m/s/s) in the z direction. Once the foot reaches the ground,

we begin a normal double support phase. At the beginning of the lowered foot’s next step, it uses

the raising strategy to clear the obstacle.

Based on the results shown in Fig. 3.13, the lowering strategy works better towards the

end of a step, and the raising strategy works better earlier in the step. We should therefore use

the lowering strategy if an obstacle is detected with ttd < 0.15s and use the raising strategy

otherwise. This is qualitatively consistent with strategies observed in human walking [40] [59].

3.6.4 Steps Up/Down

We tested the system’s response to unexpected changes in ground height to find the largest un-

expected step up and step down it could handle. In both cases (up and down), we found that the

largest step it could handle ws about 7 cm (though for stepping up, it depended somewhat on

when in the swing phase it encountered the change in ground height).

72

When stepping down, the controller first becomes aware of the step when it does not make

contact with the ground when it expects to. At this point, it moves the swing foot rapidly down-

ward (It attempts to servo to 1.0 m/s downward velocity) until it hits the ground. It must find

the ground so quickly because otherwise the CoM will move too far ahead of the foot, and it

will fall forwards. Once the foot reaches the ground the normal controller resumes. The other

foot assumes its starting position is the ground height (for purposes of the Swing-Z policy) until

it passes the stance foot at the lower elevation, after which it switches to using the new ground

height.

When stepping up, because we wish to handle steps that are larger than our normal ground

clearance, we use the same raising strategy as was used for the tripping obstacles described in

Section 3.6.3. Double support begins when it unexpectedly lands on the ground on the far side

of the apparent obstacle. When stepping up, the swing foot immediately uses the higher ground

elevation for its Swing-Z policy because too much ground clearance is safer than too little.

3.6.5 Slopes

The steepest constant slope that our controller could walk up for a large number of steps had a

rise of 7.5 cm per horizontal meter (4.3 degrees from horizontal). We tested slopes in simulation

only changing the height of the ground; we did not change the surface normal. This makes it

a little bit like walking up steps, but without having to worry about where you put your feet.

Changing the surface normal is problematic because our simulation is implemented without true

rigid-body feet. It has point feet, and the ankle joints apply torque directly to the ground during

stance. For walking on flat ground, this is nearly dynamically identical to having true rigid-body

feet, but it makes changing the foot-ground interaction difficult.

Changing the surface normal should only affect the friction cone constraints, which are rarely

active during normal walking. The ZMP constraints, which play a much bigger role in walking,

are barely affected by non horizontal feet. The only effect is that the projection of the feet into

73

the horizontal plane is slightly smaller. On a real robot, non-vertical surface normals are more

of a problem for state-estimation than from a dynamics perspective, but we use perfect state

knowledge in our simulation.

3.7 Upper Body Rotation

The walking controller described above always attempts to maintain the torso in a vertical pos-

ture. Our policies are generated under the assumption that there will be no change in system

angular momentum, l̇ = 0. Most of the angular momentum in the system is in the torso, so

we approximately obey this constraint by maintaining the torso at a fixed orientation. However,

angular momentum and torso rotation can be used to aid in balance.

We have identified a mode of motion that rotates the upper body and translates the CoM

without moving the CoP. We have also identified a point, which we refer to as the augmented

CoM, which is unaffected by these motions, but follows LIPM-like dynamics. By performing

a simple change of variables, we can use this point (instead of the CoM) with any LIPM-based

control algorithm (including the DP policies described above). The key is that the identified

mode functions as an additional source of control authority that looks mathematically similar to

moving the CoP. Our DP policies can use this rotational mode of control the same way that they

use variations of the CoP without any need for them to understand the difference. We generate

versions of both the sagittal and coronal policies that replace the old ZMP constraint with a

looser constraint that allows for the added effect of both rotating the torso and moving the ZMP.

At run time, a lower level controller determines how much of the command to achieve by actually

moving the CoP and how much to achieve by rotating the torso. In addition to giving us greater

control authority, this modification allows us to predict the result of undesired torso rotations on

CoM motion and compensate for it.

We found that this modification greatly improves robustness to pushes when walking with

fixed footstep locations, but actually reduces robustness when walking normally, where the con-

74

troller is free to choose the footstep locations. During normal walking, most of the robustness to

pushes comes from the ability to greatly modify the footstep location and take large steps in the

direction the system was pushed. Balancing by torso rotation involves rotating the upper body

so that the head moves in the direction of the push and the hip moves away, which prevents the

system from taking a large step in that direction. The gains from rotating the torso are smaller

than the gains from stepping farther in that direction, so our torso rotation strategy results in a

net loss of robustness for normal walking. This result is not entirely surprising given human

experience: humans will lean their bodies significantly when trying to walk on a balance beam

or on stepping stones, but if pushed when walking on flat ground will keep their torso mostly

upright and recover by stepping in the direction of the push.

3.7.1 System Model

We wish to modify the LIPM dynamics (3.21) and (3.22) to avoid the l̇ = 0 constraint and

model upper body rotation. It is often assumed that the majority of the mass is in the torso, and

that we can approximately enforce L̇ = 0 by maintaining a fixed torso orientation. However, it

may not be possible to perfectly control the torso orientation. Undesired torso rotations may be

caused by error in the model of the robot or the environment as well as by external pushes. These

rotations can be particularly large in torque-controlled systems or systems with relatively low

position gains. Any angular acceleration of the torso (or more generally, any change in angular

momentum) without changing the COM acceleration will require some foot torque, which means

some change in the COP. Conversely, if the COP of the robot is matched to that of a LIPM model,

but there is a change in angular momentum, then the COM motion of the robot will not match

that predicted by the LIPM model.

In order to model the interaction between upper body rotation and COM motion, we model

the upper body as a single rigid flywheel, which rotates about the system center of mass. This

model is known as the Linear Inverted Pendulum plus Flywheel Model (LIPFM) [77] with dy-

75

namics given by

ẍ =
g

h
(x− z)− Iθ̈

mh
(3.61)

where I is the moment of inertia of the upper body about the system COM and θ is the angle of

the upper body relative to the nominal. The upper body angle will also be subject to the kinematic

constraint θmin ≤ θ ≤ θmax. The LIPFM does not fully account for angular momentum, but many

humanoid systems have a large fraction of their mass in the upper body (about 2/3 of the total

mass in our system), so a large fraction of the angular momentum will be in the upper body.

Additionally, while the lower body motion is highly constrained by walking, we are free to rotate

the upper body as desired to aid in control.

We now perform a change of variables so that upper body rotation does not require any

change in the COP. Additionally, it will put the LIPFM dynamics in the same form as the LIPM

dynamics, allowing us to leverage the existing technology for controlling the LIPM.

Change of Variables

We start with the forward (rotational and translational) dynamics for the x-z plane, mẍ

Iθ̈

 =

 1 0

−h mg

 Fx

−z

+mg

 0

x

 , (3.62)

where Fx is the horizontal ground reaction force. We then multiply by a change of variables

matrix,

D

 mẍ

Iθ̈

 = D

 1 0

−h mg

 Fx

−z

+ Dmg

 0

x

 . (3.63)

where

D =

 1 1
h

0 1

 . (3.64)

76

We now define the augmented COM acceleration, ¨̃x ≡ ẍ + Iθ̈
mh

, then combine and simplify to

get m¨̃x

Iθ̈

 =

 0 mg
h

−h mg

 Fx

−z

+

 mg
h
x

mgx

 . (3.65)

Double integrating ¨̃x gives us the augmented COM position, x̃ = x+ Iθ
mh

, which we substitute

into (3.65) to get

 m˜̈x

Iθ̈

 =

 0 mg
h

−h mg

 Fx

−z

+

 mg
h
x̃+ gIθ

h2

mgx̃+ gIθ
h

 . (3.66)

Multiplying by the inverse of the 2x2 matrix and solving for the controls, Fx and z, gives the

inverse dynamics, Fx

−z

 =

 1 −1
h

h
mg

0

 m˜̈x

Iθ̈

+

 0

x̃+ Iθ
mh

 . (3.67)

The benefit of the change of variables is that we now have a 0 in the lower right of the 2x2

matrix. This 0 means that changes in angular momentum without modifying ¨̃x have no effect on

the COP.

If we define an augmented COP,

z̃ = z +
Iθ

mh
, (3.68)

we are able to put the LIPFM dynamics,

¨̃x =
g

h
(x̃− z̃), (3.69)

in the same form as the original LIPM dynamics in (3.21).

Since (3.21) and (3.69) have the same form, control methods that work on the LIPM dynamics

can also be used on the augmented LIPM dynamics, but by working in the space of x̃ = x +

Iθ/mh and its derivatives instead of the space of x and its derivatives. Additionally, controllers

will now be requesting a z̃, and (3.68) must be used to find z before applying control to the

77

system. The change of variables eliminated a θ̈ term (by hiding it within ¨̃x), but created a θ term.

The angular position term is preferable from a modeling perspective because it changes more

slowly and can be more easily measured.

Orientation Control

Since θ can be controlled independently of x̃, the θ term in z̃ can be used for more than canceling

the effect of small undesired deviations from the desired posture. It can also be actively con-

trolled to something other than 0 and treated as an additional control for the augmented COM.

Torso orientation, θ, has the same effect on the system as does z, so a LIPM controller need not

differentiate between them; instead, it can simply request a z̃. In addition, the controller can op-

erate under a more lenient constraint (but with the same form) than the ordinary COP constraint,

|z| ≤ zmax. For the LIPFM dynamics, the constraint is

|z̃| ≤ zmax +
Ieffθmax

mh
(3.70)

where θmax is the maximum allowable lean angle. Use of the more lenient constraint (and the

torso rotation necessary to produce the larger requested z̃) makes it possible to plan more aggres-

sive maneuvers that are impossible with a fixed-orientation torso. It also allows for improved

feedback in response to unexpected disturbances.

There is also an additional constraint arising from the fact that while contact forces such

as z can be changed quickly, torso angle will have a maximum velocity or acceleration. Such

constraints become an issue if the requested z̃ rapidly changes. In situations where z̃ changes

gradually or on systems where the internal dynamics (dependent on actuators) are much faster

than the LIPM dynamics (dependent on g/h), this additional constraint can reasonably be ig-

nored.

There are several options for controlling θ depending on the context. If the increased control

authority is being used in a planning context for generating trajectories with large accelerations,

then the planner will produce a time varying z̃(t). In this case, optimization (for example, a

78

quadratic program) can be used to determine a time varying θ(t) which satisfies (3.70) as well as

whatever hardware constraints exist on θ̇ or θ̈. A cost on θ(t) can be added to the optimization to

bias it towards upright postures that do not utilize torso rotation wherever possible. However, if

(as we use it) the increased control authority is being used for improved responses to unexpected

disturbances, then no expected z̃(t) will be available (because the disturbances are unexpected).

In this case, we use a fixed relationship between z̃ and the desired torso orientation, θdes, then

use a high gain PD servo to track that desired angle. Immediately following a large disturbance,

it will not be possible to obtain the requested z̃ until the torso has had time to slew, resulting in

(3.69) being inaccurate. However, slewing happens relatively quickly, and rotating the torso at

the maximum speed is the best thing to do in this situation. Therefore, the quality of our control

does not suffer from neglecting this effect.

We have used a piecewise linear relationship with a dead zone to determine θdes from z̃.

θdes(z̃) =

if z̃ > zmax/2 : (z̃ − zmax/2)mh/Ieff

if z̃ < −zmax/2 : (z̃ + zmax/2)mh/Ieff

else : 0

(3.71)

The purpose of the dead zone is to prevent the upper body from rotating unnecessarily, which

would both look unnatural and run the risk of exciting unmodeled dynamic modes. For ordinary

small values of z̃, θdes will remain at 0, and torso rotation will only be utilized when it becomes

necessary to achieve large z̃’s. In simulation, the exact shape of this relationship has very little

effect on the system robustness. However, smoother functions perform better on real hardware

due to decreased jerk and less excitation of un-modeled higher-order dynamics.

3.7.2 Use in Practice

We use the method described here to add torso rotation to our controller without having to add

dimensions to or otherwise complicate our DP policies. Many other existing systems that use the

LIPM dynamics could use a similar modification. We use it for feedback control where we have a

79

system position and velocity and wish to generate desired accelerations and torques. However, it

can also be used with pattern generation methods based on the LIPM dynamics. We first explain

how it could be applied to open-loop pattern generation and then torque feedback control.

Pattern Generation

Planner IK Robotmaxz
)(tx

0)(t
)(tz

Joint
Angles

Planner IK Robot

OPT

+ -

+

+maxz

mh

I max

)(~ tx)(tx

)(tmh

I

)(~ tz
)(tz

Joint
Angles

Figure 3.15: A flow chart of a simple generic system for humanoid walking pattern generation

using standard LIPM dynamics (top) and a flow chart for that same system modified to use the

LIPFM dynamics (bottom).

Fig. 3.15 shows how you would use this method for augmenting a simple generic motion

planning system for a position controlled robot. The upper flow chart depicts the unmodified

system, which uses a planner (e.g. preview control) to generate COM and COP trajectories.

Then, an inverse kinematics solver uses the COM trajectory and a fixed upper body orientation,

θ(t) = 0, to generate joint angle trajectories, which are used to drive the robot.

The lower flow chart shows how this system would be modified to use the LIPFM dynamics

as described in this paper. The same planner and inverse kinematics solver can be used without

80

modification, but the interaction between the two is modified. First, the planner is given the more

lenient constraint given by (3.70). Now, the output of the planner is interpreted as x̃(t) and z̃(t).

A simple trajectory optimization (denoted “OPT” in Fig. 3.15) is then used to break z̃(t) into

z(t) and θ(t) such that (3.70) and any hardware constraints on θ or its derivatives are satisfied

at all times. The θ(t) trajectory is then used in place of the fixed torso orientation given to the

inverse kinematics solver. It is also used to compute x(t) from x̃(t). The inverse kinematics

solver then determines joint angle trajectories for driving the robot.

The change of variables allows the planner to look at the extra capability given by upper

body rotation as simply a larger virtual foot. Then, we post-process its output to achieve the

extra control authority it requests through upper body rotation.

Torque Control

HLcon LLcon Robot

PD
maxz

z

x
x

0des

HLcon LLcon Robot

PD

+
-

+
+maxz

mh

I max

z~ z

mh

I

x~

x~

des

Figure 3.16: A flow chart of a simple generic system for torque control of a humanoid robot

using standard LIPM dynamics (top) and a flow chart for that same system modified to use the

LIPFM dynamics (bottom).

81

We use an analogous process to modify a LIPM-based controller for a torque controlled

robot, as shown in Fig. 3.16. The upper flow chart depicts a generic LIPM-based controller. A

high-level controller (coordinated DP policies in our case), denoted “HLcon” in Fig. 3.16, uses

the current COM state, x and ẋ to determine the desired COP, z. A PD servo is used to keep

the torso angle at a fixed orientation, and a low-level controller (DBFC in our case), denoted

“LLcon” in fig. Fig. 3.16, generates the joint torques necessary to achieve the desired z and θ̈.

The lower flow chart shows how this system was modified to use the LIPFM dynamics.

Again, the primary algorithms, the high-level and low-level controllers, remain unchanged. As

for pattern generation, we modify the COP constraint according to (3.70). The inputs to the high

level controller are now the augmented COM state, x̃ and ˙̃x, and the output is now interpreted

as z̃. We use θ and z̃ to determine z by rearranging (3.68), which is passed to the low-level

controller. The bottom box represents the function given in (3.71), and is used to pick a θdes that

makes z̃ achievable.

3.7.3 Results

Fig. 3.17 shows results for a robustness to pushes experiment similar to the one depicted in Fig.

3.12 but with the torso rotation control modification described here and fixed footstep locations.

We used sagittal and coronal policies computed with the old ZMP constraint replaced by the

weaker constraint given by (3.70). The system shows considerably less robustness here than in

Fig. 3.12 because it is walking with fixed footstep locations. The fact that the recoverable regions

are nearly rectangular can be interpreted as indicating that the sagittal and coronal systems really

are mostly decoupled. The improvement is larger in the coronal direction because we start to

run into kinematic constraints in the sagittal direction even when walking with fixed footstep

locations; the hip moves too far for away from the desired touchdown location and the swing

foot cannot reach it.

82

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

Lateral Impulse (N−s)

F
or

w
ar

d
Im

pu
ls

e
(N

−
s)

None
Sag & Cor
Sag
Cor

Figure 3.17: Polar plot of the maximum survivable perturbation of our walking simulation as a

function of push angle. A point represents the maximum survivable perturbation in a given di-

rection. Pushes occur midway through right single support. Concentric circles are in increments

of 10 Newton-seconds. Data is shown for the unmodified system, the system modified in both

the sagittal and coronal planes, only the sagittal, and only the coronal plane.

3.8 Conclusion

By avoiding pre-planned trajectories, our controller can react immediately to unexpected pertur-

bations. It selects a new time and location of touchdown at every control cycle (currently 400

Hz). In the sense that it avoids tracking a planned trajectory, our method resembles MPC. How-

ever, to compute the control in real time, MPC approaches typically use linear dynamics and

fixes the step timing. We, on the other hand, avoid any requirement of linearity by performing

our optimization iteratively offline. However, offline computation forces us to consider all possi-

ble states, which subjects us to the “Curse of Dimensionality” and constrains the dimensionality

of our dynamics. Our coordination scheme does let us handle higher-dimensional systems by

83

breaking them into lower-dimensional subsystems, but it requires that the full system be an ICS.

This, in turn, requires that both the dynamics and cost function be capable of being decoupled

(except at transitions).

One major advantage of this control framework is its flexibility: Coordination is not depen-

dent on any particular dynamic model, cost function, or constraints. While we must take care

to maintain low dimensionality and the ability to decouple our system, we remain free from any

further restrictions - for instance, linearity - on the dynamics or cost function. In fact, many of

the motion’s characteristics can be controlled by adjusting the cost functions, and the variables

considered can be changed by combining or adding additional subsystems.

We have defined an Instantaneously Coupled System and demonstrated the equivalence of

coordinated policies that are optimal for the subsystems to a single controller that is optimal for

the full ICS. We apply this theory to walking and present a walking controller for a simulated

biped. Our controller optimizes center of mass motion as well as footstep timing and location,

and it can react in real time to perturbations and accumulated modeling error. We also present

standing balance experiments on a force-controlled humanoid robot.

84

Chapter 4

Robotic Walking

4.1 Introduction

Our simulated walking was accomplished on a simulation based on the Sarcos Primus hydraulic

robot, and it was designed with the eventual goal of walking on the real robot in mind. However,

the simulation controller does not perform well unaltered on the actual robot. The difference

in performance is largely due to an inaccurate dynamic model of the robot, inaccurate sensor

calibration, and inaccurate state estimation. In this chapter, we will discuss the robot itself,

the changes we made to the simulation controller in response to the difficulties associated with

working on real hardware, and some preliminary results for walking in place.

4.2 Robot Description

All of our hardware experiments are done with the Sarcos Primus humanoid robot [16] [51]

shown in Figure 4.1. It is a hydraulicly powered, force controlled humanoid robot massing about

95 kg and about 1.7 m tall. When standing straight, its CoM is about 1.0 m above the ground. Its

feet are flat rectangular aluminum plates (about 0.25 cm long and 0.12 cm wide) with damping

rubber glued to the bottom.

85

Figure 4.1: The Sarcos Primus humanoid force-controlled robot.

4.2.1 Mechanical

The primary actuation is a 3000 psi hydraulic system powered by an offboard pump. It has 34

hydraulicly auctuated joints: 7 in each leg, 7 in each arm, 3 in the torso, and 3 in the neck. We

only actively control 12 of those joints for the work in this thesis: 2 at each hip, 1 at each knee, 2

at each ankle, and a shank rotation joint with its axis parallel to the shank. The remaining joints

are servoed to fixed angles. Using these joints gives us the ability to position our feet with the

full 6 degrees of freedom relative to the torso without having any redundancy. All other joints are

servoed with high gains to fixed angles. The robot also has electrically actuated pan and tilt for

each eye, and 12 pneumatically actuated joints in the hands, which we do not use in this thesis.

86

4.2.2 Sensing

Every joint has position sensing by means of an analog potentiometer. We also have force sensing

at every joint. For the majority of joints, the force sensing is done by strain gauges glued to a

rigid link in the hydraulic drive chain. However, for a few joints, we use commercial load cells

to sense force. Each foot has a 6-axis force/torque sensor. We also have an IMU attached to the

pelvis near the right hip. There are cameras in the eyes, but we do not use them in this work.

4.2.3 Computation

Our primary computation is done on an offboard computer with an 8-core Pentium processor.

It receives sensor information and transmits joint force commands to the robot at 400 Hz. In

the robot’s backpack are small micro-computers (one for each joint) that perform the high speed

force control on individual joints at 5000 Hz. They also have small position and velocity gains

that help to smooth control on the short time scale between new commands from the offboard

computer.

4.3 Major Controller Changes

We can use the same controller for standing both in simulation and on the real robot. Unfor-

tunately, for more complex activities, such as walking, the nonidealities of the real hardware

become more important. While the walking controller described in Section 3.4 was designed

with an eye towards coping with an inaccurate dynamics model, there are several nonidealities

on the real robot that make control difficult, some of which need to be specifically addressed.

The robot has inaccurate state estimation, which can among other things, make it difficult to de-

termine when the foot will reach the ground. There are also significant delays in the dynamics,

caused in part by state estimation, but also contributed to by the hydraulic valves and by software

filters. These software filters are necessary because the robot has higher order dynamics; where

87

the simulation is a pure second order system, the robot has higher order dynamics that can be be

easily excited. During single support, our dynamics model of the swing leg is currently inaccu-

rate. We believe this is because the mass distribution model was fit using data taken only with

both feet on the ground. Improving the model to fix thiw will be part of the work of this thesis.

4.3.1 Weighted-Objective Inverse Dynamics

For controlling the real robot, we replace the Dynamic Balance Force Control low level controller

discussed in Section 3.4.3 with Weighted-Objective Inverse Dynamics adapted from [89]. To use

the DBFC controller, we first determine the desired contact forces and torques at each foot. Then

DBFC uses a pseudo-inverse to find the least squares solution to a set of equations to get the

joint torques and accelerations. It is important to realize that it had the same number of variables

as it had equations with large weights (not counting the regularization equations). Essentially, it

functioned as a perfectly determined system (same number of equations and variables) with some

regularization rather than as an overdetermined system. For the Weighted-Objective Inverse

Dynamics, we combine the two steps by simulataneously solving for the joint accelerations,

joint torques, and contact forces/torques. We also wish to handle constraints such as the ZMP

constraints, friction cone constraints, torque limits, and joint limit constraints, so we solve using

off-the-shelf Quadratic Programming software [31]. We implement joint-limit constraints by

constraining the joint acceleration when near the limit.

In addition to rearranging the 60 equations (18 dynamics equations, 12 foot acceleration

equations, 18 acceleration regularization equations, and 12 torque regularization equations) in

(3.59), we add many new equations. We add 1 equation for the vertical weight distribution be-

tween the two feet, 3 equations for CoM acceleration, 3 equations for the total moment around

the CoM, 12 equations to regularize the contact forces, 3 equations to control torso angular ac-

celeration, 2 equations for the CoP, and 12 equations to accelerate towards the reference pose

produced by the inverse kinematics, qIK (described in the next Section). The equations for track-

88

ing the reference pose look like

q̈i = kp(qIK,i − qi) + 2
√
kp((q̇IK,i − q̇i)− qg,i, (4.1)

where the subscript i indicates the ith joint, qref is the reference pose, qg is the joint acceleration

induced by gravity, and kp is a proportional gain. The 2
√
kp term ensures that this acceleration

is critically damped.

This gives us a system of 42 variables and 96 equations, which we write as

A

q̈

τ j

f

 = b, (4.2)

where A is a 96 by 42 matrix and b is a 96-vector. Even without the regularization equations,

this is an overdetermined system. In order to modify the relative importance of each equation,

we multiply both sides of (4.2) by a diagonal weighting matrix, W, which multiplies each row

of A and b by the corresponding weight,

WA

q̈

τ j

f

 = Wb. (4.3)

We have selected the actual weights manually through experimentation. To turn this into a QP,

we construct ATWWA as the quadratic cost matrix and −bTWA as the linear cost matrix.

For standing balance, either this controller or the low-level controller based around DBFC

(Section 3.4.3) work well, but choosing the contact forces in the same optimization as joint

torques and accelerations produces somewhat better responses to perturbations because a larger

range of tradeoffs can be considered. The Weighted Objective Inverse Dynamics is much more

flexible, making it more successful for more complicated activities such as walking. We do not

need to structurally change the controller to cope with different situations as we had to for DBFC

(Section 3.4.3), though (manual) adjustment of the weights is sometimes necessary. Additionally,

this framework allows us to easily use more of the robot’s joints actively if we need to.

89

4.3.2 Inverse Kinematics

We have found that in addition to the torques produced by our inverse dynamics, having PD con-

trollers on individual joints with low gains helps to produce smooth motion. This is especially

important for the swing leg during walking because we are unable to accurately achieve desired

swing foot accelerations from inverse dynamics alone (likely due to an inaccurate mass distribu-

tion model). Unfortunately, our walking controller (Section 3.4) goes directly from system state

to desired accelerations and torques without producing desired positions and velocities. To get

the desired positions and velocities, we define virtual points representing the desired foot and

CoM positions and velocities, then use Inverse Kinematics (IK) to find the desired joint positions

and velocities.

We use virtual points to represent the desired positions of both feet in the x, y, and z directions

as well as the CoM in only the x and y directions (we use a constant desired CoM height), for

8 total degrees of freedom. For each degree of freedom, we treat the point as a generic second

order system to which we apply the desired acceleration, ades (produced by the high level DP

policies). To keep the points near the true system in the face of persistent acceleration errors, we

also integrate (with gain kI) them towards the measured position, pmeas and measured velocity,

pmeas. The update equation for the virtual points’ position, p, and velocity, v, therefore looks like

pi+1 = kITpmeas,i + (1− kIT)(pi + viT + 1/2ades,iT
2) (4.4)

vi+1 = kITvmeas,i + (1− kIT)(vi + Tades,i), (4.5)

where the subscript i indicates the time step and T is the duration of a time step. Using (4.4) and

(4.5), v will not actually be the derivative of p. In order to supply the inverse kinematics solver

with something consistent, we therefore use the effective velocity veff,i+1 = (pi+1 − pi)/T . We

also do not allow the foot virtual points to go below z = 0. Note that if the robot actually achieves

the desired velocity, these virtual points will lie directly on the measured positions and have the

measured velocities. Figure 4.6 in Section 4.5 shows the motion of the virtual CoM relative to

the true CoM for swaying.

90

Our inverse kinematics solver (adapted from the one described in [89]) maintains a reference

pose, qIK. During each time step, we take the desired foot and CoM positions and velocities as

well as the desired torso orientation and angular velocity and solve for the best velocities, q̇IK.

We then update the positions qIK,i+1 = qIK,i + T q̇IK,i. We can then use qIK and q̇IK as desired

positions and velocities for low gain individual joint PD controllers. We also use it as a reference

pose within the inverse dynamics.

To solve for q̇IK, we set up a quadratic program and use an off-the-shelf QP solver. The setup

is similar to that used for the Inverse Dynamics described above, except that the only variables

are the generalized velocities (6 base coordinates and 12 joint angular velocities) in q̇IK. We

again set up an overconstrained system with manually selected weights on the equations as in

(4.3).

4.3.3 Jerk-Based Policies

Figure 4.2: Plot of the desired and measured swing foot acceleration in the z direction for one

step. Measured accelerations are obtained by filtering and double integrating potentiometer data.

One of the major difficulties with controlling walking on the Sarcos humanoid is control of

91

the swing foot. If we have the robot walk in place using the swing leg policies described in

Section 3.4.1, we get oscillation. Figure 4.2 shows the measured and desired acceleration for the

swing foot in the z direction. There is a slow initial rise and a large amplitude oscillation at about

9 Hz. Additionally, there is a delay of about 23 ms from the desired to the measured acceleration.

The delay has at least three component causes. There is a slight delay between desired

accelerations and desired torques because of a filter on the output torques. The purpose of this

filter is to avoid exciting higher order dynamics of the mechanical system. We can increase the

cutoff frequency of this filter, but avoiding abrupt changes in desired torque is important. We

also have a delay of about 9 ms between desired torques and measured torques caused by the

physical characteristics of the hydraulic valves and our low level force control. Finally, we have

a significant delay between actual system acceleration and measured acceleration due to state

estimation.

Unmodeled delays can cause oscillations, and simple simulations have shown that the os-

cillations we see in Figure 4.2 are consistent (in frequency and amplitude) with what would be

caused by a 23 ms delay. However, changes to the cost function used for policy generation which

mitigated the impact of delays in simulation had little effect on the real hardware, indicating that

delays are not the sole cause of oscillation.

To prevent large oscillations in commanded swing foot acceleration, we penalize its deriva-

tive, jerk. To support this change, we increase the order of our policies by one from acceleration-

based to jerk-based. We add acceleration as a 4th state (in addition to the already existing,

time until touchdown, position, and velocity), and we replace acceleration as the control input

with jerk. Jerk-based swing foot policies can be coordinated in the same way as the original

acceleration-based policies within the ICS framework. When running the policy on the robot,

we do not attempt to measure the actual acceleration. Instead, we have acceleration as a con-

troller state that starts at 0 m/s/s at the beginning of swing and evolves ideally according to the

commanded jerk. We then pass this acceleration on to the inverse dynamics, which considers a

92

second order model of the system. From the point of view of the rest of the system, the jerk-based

policies still produce a desired acceleration, but now we penalize its rate of change.

To keep computation reasonable, we must reduce the resolution of the state space grid for

the other dimensions when adding an additional state space dimension. We partially mitigate the

effect of this by also reducing the range of the grid so that the grid cells are closer to their original

size. We now use a grid with minimum states of {0 m, -0.8 m/s, -20 m/s/s 0 s}, maximum states

of {0.06 m, 0.8 m/s, 20 m/s/s, 0.6 s}, and resolutions of {61, 81, 61, 121}.

For the swing-Z subsystem, we replace the original cost function, (3.42) with

L(x,u) =

(
z̈

z̈max

)2

+

(...
z

...
zmax

)
+ 2

(
z − znom

znom

)2

, (4.6)

where z̈max is still 25 m/s/s and
...
zmax is 300 m/s/s/s. We also add jerk to the analytic controller

that takes over for ttd ≤ 0.04s. We increase this limit from 0.03 s in the acceleration-based case

because of the more limited control authority and decreased grid resolution. We now replace

(3.43) with

C =

∫ T

0

4
...
z + 4z̈ dt+ 3000(żf − żnom)2, (4.7)

and find the constant jerk,
...
z that minimizes (4.7). The constant coefficients are selected for

the same reasons described in Section 3.4.1. We use an integral rather than simply multiplying

by T as in (3.43) because acceleration, z̈, is not constant. We also loosen the touchdown tim-

ing constraint somewhat and now require that touchdown actually occur (z = 0) within 0.003

seconds of the nominal time. The looser constraint is necessary because of both the reduced

control authority of the jerk-based policies and the slower time steps when controlling the robot

(1 ms for simulation and 2.5 ms for the robot). We make a similar modification to the combined

Swing-X/Swing-Y policy.

Figures 4.3 and 4.4 compare the response of the acceleration-based and jerk-based polcies to

a 20 ms delay in simulation. The jerk-based policy is less affected by the delay.

Unlike simply adjusting the cost function, this improvement translated well to operating on

hardware. Figure 4.5 compares the performance of the acceleration-based policy and jerk-based

93

Figure 4.3: Comparison of the acceleration-based and jerk-based swing-z policies showing the

position that results with and without a 20 ms delay.

policy for walking in place on the Sarcos humanoid robot. We still have trouble accurately

placing the swing foot, but jerk-based policies eliminate much of the oscillation.

4.4 Integral Control

Modeling errors can cause persistent errors, especially with our emphasis on low gains. However,

our hardware, while difficult to model, is very repeatable. What happened in the past is generally

an accurate indicator of what will happen in the future and integral control can be a very effective

means of compensating for modeling error.

Our state estimator generally considers whichever way the torso is facing to be “forward”. To

maintain a desired posture, we define the direction the feet are facing (average of the two feet)

as the desired heading and use a PID controller to generate desired torso angular accelerations.

94

Figure 4.4: Comparison of the acceleration-based and jerk-based swing-z policies showing the

acceleration that results with and without a 20 ms delay.

Unfortunately, even slight modeling errors can result in significant steady state error using only

PD gains, but the addition of an integral term results in forward-facing standing.

4.4.1 Virtual Forces and CoM Offsets

A problem with using integral terms in this way is that once we have reached steady state, we

have an integral in the high level controller continuously balancing a modeling error. The in-

verse dynamics will be attempting to produce the acceleration of the integral term but actually

producing zero acceleration due to modeling error. If what we actually want is zero accelera-

tion, this works well for achieving the feature we are integrating. However, in a complicated,

interconnected system such as a many-linked humanoid robot, it can cause other problems. For

example, if the inverse dynamics believes that the torso will be accelerating and it wants to keep

95

0 1 2 3 4 5 6 7 8 9 10
-30

-20

-10

0

10

20

30

D
e

s
.
A

c
c
e

l.
 (

m
/s

/s
)

9.2 9.4 9.6 9.8 10
-30

-20

-10

0

10

20

30

0 1 2 3 4 5 6 7 8 9 10
-0.04

-0.02

0

0.02

0.04

P
o

s
it
io

n
 (

m
)

Time (s)

9.2 9.4 9.6 9.8 10
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0 1 2 3 4 5 6 7 8 9 10
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

V
e

lo
c
it
y
 (

m
/s

)

9.2 9.4 9.6 9.8 10
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Left

Right

0 1 2 3 4 5 6 7 8 9 10
-20

-15

-10

-5

0

5

10
D

e
s
.
A

c
c
e

l.
 (

m
/s

/s
)

8.4 8.6 8.8 9 9.2
-15

-10

-5

0

5

10

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

V
e

lo
c
it
y
 (

m
/s

)

8.4 8.6 8.8 9 9.2
-0.3

-0.2

-0.1

0

0.1

0.2

0 1 2 3 4 5 6 7 8 9 10
-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

P
o

s
it
io

n
 (

m
)

8.4 8.6 8.8 9 9.2
-5

0

5

10

15
x 10

-3

Left

Right

Acceleration-Based Jerk-Based

Figure 4.5: Comparison of the acceleration-based and jerk-based swing-z policies for walking in

place on the Sarcos humanoid robot.

its foot in the same place, it will accelerate its hip in the opposite direction to counteract the torso

acceleration. If, however, the torso does not accelerate, but the hip does, we end up with foot

acceleration. In particular, this can make control of the swing foot more difficult.

For this reason, we prefer to instead use integral control to modify the dynamic model. This

way, the solved for torques, accelerations, and contact forces remain consistent. This requires

that we find some parameters to modify in the dynamic model that reasonably capture the type of

error that is actually occuring. We choose to add virtual torques, τvirt, on the torso to the dynamic

model, changing the dynamics equations used by the inverse dynamics to

M(q)q̈− Sτ − JTF = −N(q, q̇) + JT
hτvirt, (4.8)

96

where JT
h is the hip Jacobian for the virtual torques. These are identical to the normal dynamic

equations except for the addition of the final term. The virtual torques can directly represent

the torques that the tether hoses put on the robot, but they can also generally represent any

modeling error that tends to rotate the torso. We compute each component of τvirt individually

by integrating the commanded angular acceleration,

τvirt,i = kI

∫
θ̈i dt. (4.9)

By imagining a virtual force causing the error, the low level inverse dynamics controller pushes

back against it and corrects for it, without expecting unrealistic accelerations.

To correct translational motion in the horizontal plane, we use offsets to the CoM location.

We know that if the CoM is not accelerating, the CoP should be directly under the CoM. We

have a measurement of the CoP force/torque sensors, so we know where the CoM actually is in

the horizontal plane. We therefore integrate the error to generate offsets, δ, to the CoM within

our dynamics model.

δx = kI

∫
px − cx dt (4.10)

δy = kI

∫
py − cy dt (4.11)

where p is the location of the CoP and c is the location of the CoM. We use these offsets by

adding them to the CoM location generated by forward kinematics.

Running either the CoM offset integrators or virtual torque integrators continuously can be

problematic. Both sets of integrators requires (in their current form) that there be no acceleration

for them to do the right thing. If we run the integrator continuously with a large kI , these dynamic

effects will cause problems. Additionally, we may run into resonances as it interacts with with

other components of the controller. If we use a low kI on the other hand, the dynamic effects will

cancel out, but it will be inconvenient because we will have to wait a long time for the integrator

to achieve steady state. The solution to this is to only run the integrators intermittently and save

the results. We run the integrators until they achieve steady state, then save the CoM offsets and

97

virtual torques and continue to use them as constants. In practice we do this at least once a day

and often more frequently to compensate for frequent changes in the system.

4.5 Swaying

Swaying was a convenient first step towards walking. By swaying, we mean moving the CoM

laterally and shifting weight so that most of it is on a single foot, but without actually lifting the

feet. We also want to accomplish the swaying without using time-indexed trajectories so that it

can adjust the timing of the motion in response to external disturbances. Initially focusing on

this allowed us to test many of the types of things we would need to do for walking, but without

doing everything all at once. The goal of these experiments was primarily to accurately achieve

desired CoM accelerations.

We accomplished swaying by using a simple PD controller for CoM motion in the forward

direction and a DP policy for CoM motion in the lateral direction. The policy has the CoM

position, y, and velocity ẏ as states and CoM acceleration, ÿ as its only action. We used a

somewhat complicated cost function to produce stable periodic motion with a desired amplitude

of a = 0.08cm and a period of t = 2s.

L(x,u) = 2(E1(x)− 1)2 + (E2(x)− 1)2 + p2 + ÿ2, (4.12)

whereE1 andE2 are two different measures of “orbital energy”, and p is the CoP location relative

to the center point between the feet. Orbital energy based on an elipse in position-velocity space

is given by

E1(x) =
y

a

2

+
ẏT

32a

2

(4.13)

and orbital energy based on an elipse in velocity-acceleration space is given by

E2(x) =
ẏT

32a

2

+
ÿT 2

32a

2

. (4.14)

With only E1 in the cost function, the policy can choose to remain stationary at y = a with little

cost. The combination of E1 and E2 in the cost function results in stable periodic motion. Figure

98

4.6 shows the result of applying this controller on the Sarcos robot. The IK CoM is determined

by the method of virtual points described in Section 4.3.2, which experiments showed to be more

effective (in terms of achieving desired acceleration) than the alternatives of putting the IK CoM

on the true CoM or as a stationary point centered between the feet.

0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

1

Time (s)

Y
 A

cc
el

. (
m

/s
/s

)

Measured
Desired

0 1 2 3 4 5 6 7 8
−0.3

−0.2

−0.1

0

0.1

0.2

Time (s)

Y
 P

os
iti

on
 (

m
)

L. Foot
R. Foot
CoM
IK CoM

Figure 4.6: Lateral motion during swaying experiments. Accelerations are plotted on top and

position on bottom.

The primary source of error in achieving the desired acceleration was failure to achieve the

desired CoP. The primary cause of that failure was in turn the failure to distribute weight between

the two feet as expected. It is difficult to accurately put the desired fraction of weight on each

leg because the result is sensitive to small modeling errors near the straight-knee kinematic sin-

gularity. However, we can compensate for this error when trying to obtain the desired CoP. The

CoP (in the x direction) is related to the contact forces by

0 = fz,L(lx − px) + fz,R(rx − px)− τy,L − τy,R, (4.15)

where l, r, and p are the locations of the left foot, right foot, and CoP. We model the effect of

99

modeling error on the vertical force ase

fz,L = fz,L,C + ∆fz,L, (4.16)

where fz,L,C is the commanded force and ∆fz,L is the error caused by modeling error. Substituting

(4.16) into (4.15) and rearranging gives

(∆fz,L + ∆fz,L)px −∆fz,Llx −∆fz,Rrx = fz,L(lx − px) + fz,R(rx − px)− τy,L − τy,R. (4.17)

We can find excellent predictions of ∆fz,L and ∆fz,R by filtering the recent history, and we can

therefore use (4.17) rather than (4.15) in the inverse dynamics to more accurately achieve the

desired CoP.

Unfortunately, the compensating terms interact with the control and we get an approximately

7 Hz oscillation with a large amplitude resulting in instability unless we use extremely slow filters

for ∆fz,L and ∆fz,R. If, however, we damp out the oscillations by multiplying the compensating

terms (the entire left half side of (4.17)) by a coefficient less than 1, we can use faster filters.

Figure 4.7 shows results using a coefficient of 0.75 and a cutoff frequency of 5 Hz for the filters.

The expected vertical force closely matches the actual. The result is that we accurately track the

desired CoP and therefore accurately achieve the desired CoM acceleration.

This compensation works well with both feet on the ground. However, during walking double

support is very brief and the weight shifts very quickly, requiring faster filters. As a result,

the compensation has a negligable effect on performance while walking, so we remove it for

simplicty. We only use it when performing tasks that have both feet on the ground for extended

periods of time.

4.6 Preliminary Walking in Place

We have also implemented a preliminary walking in place controller. It uses a collection of coor-

dinated policies for a high level controller. Joint torques are generated by the inverse dynamics

100

Figure 4.7: Swaying while compensating for inaccurate vertical forces.

algorithm described in Section 4.3.1 plus individual joint PD gains supported by the inverse

kinematics algorithm described in Section 4.3.2. The current version simplifies coordination by

using fixed step timing rather than re-optimizing it continuously. The steps run off of a clock at a

slightly slow cadence: 0.2 second double support and 0.5 second single support. The first double

support is increased to 0.4 seconds to allow for a shift onto the stance foot. This reduces coordi-

nation to two (completely decoupled) one-dimensional optimizations for touchdown location in

the x and y directions during single support and weight distribution (accomplished as described

101

in Section 3.3.1) during double support. For swing foot policies, we use the jerk-based policies

described in Section 4.3.3. We use the same coronal plane stance policy as in simulation, except

with the nominal timing adjusted to match the slightly slower cadence. The coronal policy has

no notion of absolute location in the global reference frame, so it is only neutrally stable with

respect to sidestepping. To keep the system in place as it walks, we add a small proportional gain

on absolute position to the desired CoP. We use the state estimator’s odometry to get absolute

position, which does drift slowly.

For walking in place, we use an analytic policy rather than a policy generated by DP for

control of the CoM motion in the forward direction. If we do not specifically address it, we have

more trouble with movement in world coordinates in this direction because of coupling between

the vertical motion of the foot and the forward motion of the foot. If we simply try to stay in one

place, the robot will slowly walk forward. A small proportional gain on position added to the

CoP is insufficient to keep it in one place. To remain stationary, we select the footstep location

such that for the next footstep (in 0.7 seconds), the capture point will be at the desired CoM

location, which we assume to be the origin without loss of generality. Note that if the the capture

point is already at the origin, then placing the foot there will result in the system coming to rest at

the origin and all subsequent capture points and steps being there. Therefore, this is theoretically

a deadbeat controller. We compute the desired footstep location analytically, by starting with the

LIPM dynamic equation

ẍ =
g

h
(x− p) (4.18)

where h is the height, x is the CoM location, and p is the CoP location. If we solve the differential

equation, we get

x(t) = C1e
√

g
h
t − C2e

−
√

g
h
t (4.19)

and its derivative

ẋ(t) = C1

√
g

h
e
√

g
h
t + C2

√
g

h
e−
√

g
h
t, (4.20)

where C1 and C2 are unknown constants depending on the initial conditions. If we add the initial

102

conditions (2 equations) and the constraint that the capture point be at the origin on the next step

(1 equation), we get a system of 5 equations and 5 unknowns: C1, C2, x1, ẋ1, and p, where x1 is

the CoM position at the next step. We can then solve this system to find where to step now

p =
e
√

g
h
T (x0

√
g
h

+ ẋ0)√
g
h
(e
√

g
h
T − 1)

, (4.21)

where T is the time until the following touchdown. To coordinate this with the swing foot policy,

we need a value function to specify how important it is that we actually put the foot at p. We

construct a parabola with its vertex at {p, 0} and a constant quadratic term to act as the value

function.

One of the primary reasons for simplifying step timing was that inaccurate measurements of

foot height makes it difficult to predict when touchdown will occur. The foot often hits the ground

(as detected by the force plates) when the state estimator still believes that it is significantly above

it. The inability to predict touchdown causes other problems as well. For example, attempting

to apply large lateral ground contact forces before the foot is firmly placed can result in rapid

motion and a drastically misplaced foot. Accordingly, while the nominal time until touchdown

runs off of the clock and simply counts down, we actually switch to double support when we

detect touchdown with the force plates. We consider touchdown to have occured after we detect

vertical forces of greater than 100 N for 5 consecutive time steps, after which we immediately

switch to the beginning of double support, regardless of what the clock says. If we reach ttd = 0

before touchdown is detected, we remain at ttd = 0 until we detect touchdown. For the stance

policies this means nothing special. For the horizontal swing policies, we attempt to achieve

zero velocity to avoid slipping at touchdown. For the vertical swing policy, we continue to move

downwards rapidly, ensuring that we do not touchown too late. Figure 4.8 shows results for

walking in place.

As in simulation, we can stop the robot simply by switching to a standing controller from

the walking controller. The transition goes much more smoothly if done during double support,

especially early in double support. If done during single support, the swing foot stomps violently

103

Figure 4.8: Walking in place. Time until transition (top), foot heights (middle), and vertical

forces (bottom).

as the robot tries to abruptly put weight on it.

104

Chapter 5

Future Work

The remainder of my thesis will focus on improving walking both in simulation and on hardware.

In simulation, this will entail generating faster, more human-like walking as well as improving

the controller’s ability to handle rough terrain. One possible improvement to the simulated walk-

ing is to add arms to the simulation and use arm swing to help stabilize yaw. Another possible

improvement is produce walking that uses heel strike and and toe off. This will require breaking

the sagittal policy at least (and possibly other policies as well) into additional phases besides

just double support and single support with different contact constraints. It will also require

upgrading the ground contact model to support non-flat feet.

For walking on the Sarcos humanoid robot platform, the main goal will be to produce forward

walking at a reasonable speed that is stable enough to be pushed without falling. We expect that

current efforts to improve the system model and sensor calibration will be helpful. For walking in

place, we would like to improve our coordination strategy to allow for continuously optimizing

footstep timing. We would also like to improve control of the swing foot to increase placement

accuracy and ground clearance. Moving forward slowly should require simply substituting a

DP-generated policy for the analytic policy currently in use. We will address the problems that

arise as we try to move faster when it becomes clearer what they are.

We also hope to achieve improved robustness by changing our underlying Dynamic Program-

105

ming. We intend to more thoroughly analyze the theoretical performance of the Multiple Model

Dynamic Programming algorithm. We believe that combining DP with learning shows more

promise than the multiple model dynamic programming for our situation. We will therefore con-

tinue work on that method, including analyzing the theoretical performance of the algorithm and

determining the best way to use uncertainty. Specifically, we hope to apply it to our swing leg

policies. We currently see repeated undesired motion on every step - for example, the foot tends

to move forward and back on every step rather than remaining in place in the forward direction.

We hope that our high level controller can learn a model of the physical system plus the low

level controller in order compensate for consistent errors. We also expect that there will be other

ways to use learning to improve robustness, either by improving our system model or by learning

aspects of the controller directly.

106

Bibliography

[1] Pieter Abbeel and Andrew Y. Ng. Exploration and apprenticeship learning in reinforce-
ment learning. In Proceedings of the 22nd international conference on Machine learning,
pages 1–8, 2005. 2.4.2

[2] Yeuhi Abe, C Karen Liu, and Z Popovic. Momentum-based Parameterization of Dynamic
Character Motion. ACM SIGGRAPH / Eurographics Symposium on Computer Animation,
pages 194–211, 2004. 3.1.1

[3] K. Akachi, K. Kaneko, N. Kanehira, S. Ota, G. Miyamori, M. Hirata, S. Kajita, and
F. Kanehiro. Development of humanoid robot HRP-3P. In Humanoid Robots, 2005 5th
IEEE-RAS International Conference on, pages 50–55, 2005. 1.3

[4] Yaman Arkun and George Stephanopoulos. Studies in the synthesis of control structures
for chemical processes: Part IV. design of steady-state optimizing control structures for
chemical process units. AIChE Journal, 26:975–991, 1980. 2.3.1

[5] Christopher G. Atkeson. Randomly sampling actions in dynamic programming. In Pro-
ceedings of the 2007 IEEE Symposium on Approximate Dynamic Programming and Rein-
forcement Learning, 2007. 2.1, 2.2, 2.2

[6] Christopher G. Atkeson and Jun Morimoto. Nonparametric representation of policies and
value functions: A trajectory-based approach. In NIPS, pages 1611–1618, 2003. 2.1

[7] Christopher G. Atkeson and Stefan Schaal. Robot learning from demonstration. In ICML,
pages 12–20, 1997. 2.4.2

[8] Christopher G. Atkeson and Benjamin J. Stephens. Random sampling of states in dynamic
programming. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 38(4):924–
929, 2008. 2.1

[9] V. Azhmyakov, V.G. Boltyanski, and A.S. Poznyak. On the dynamic programming ap-
proach to multi-model robust optimal control problems. American Control Conference,
pages 4468–4473, 2008. 2.3.1

[10] D. Bagnell and J. Schneider. Autonomous helicopter control using reinforcement learning
policy search methods. In IEEE International Conference on Robotics and Automation,
2001. 2.3.1

[11] J. Andrew Bagnell, Andrew Y. Ng, Sham Kakade, and Jeff Schneider. Policy search
by dynamic programming. In in Advances in Neural Information Processing Systems,
page 16. MIT Press, 2003. 2.4.1

107

[12] F. J. Bejarano, A. Poznyak, and L. Fridman. Min-max output integral sliding mode control
for multiplant linear uncertain systems. In American Control Conference, pages 5875–
5880, 2007. 2.3.1

[13] Richard Bellman. Dynamic Programming. Princeton University Press, 1957. 1.4, 2.1, 2.1,
2.3.1

[14] Richard Bellman. A markovian decision process. Indiana Univ. Math. J., 6(4):679–684,
1957. 2.1

[15] Alberto Bemporad and Manfred Morari. Robust model predictive control: A survey. In
Robustness in identification and control, volume 245 of Lecture Notes in Control and
Information Sciences, pages 207–226. Springer Berlin / Heidelberg, 1999. 2.3.1

[16] Darrin C. Bentivegna, Christopher G. Atkeson, and Jung-Yup Kim. Compliant control of
a compliant humanoid joint. In Proceedings of the IEEE-RAS International Conference
on Humanoid Robots, 2007. 3.4, 4.2

[17] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,
1995. ISBN 1886529132. 2.1, 2.3.1

[18] Ronen I. Brafman and Moshe Tennenholtz. R-max - a general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learning Research, 3:213–
231, 2003. 2.4.4

[19] John Camp. Powered “passive” dynamic walking. Master’s thesis, Cornell University,
August 1997. 1.3

[20] Steven H. Collins, Martijn Wisse, and Andy Ruina. A three-dimensional passive-dynamic
walking robot with two legs and knees. I. J. Robotic Res., 20(7):607–615, 2001. 1.3

[21] Scott Davies. Multidimensional triangulation and interpolation for reinforcement learning.
In NIPS, pages 1005–1011, 1996. 2.2

[22] Marc P. Deisenroth and Carl E. Rasmussen. PILCO: A Model-Based and Data-Efficient
Approach to Policy Search. In Proceedings of the 28th International Conference on Ma-
chine Learning, Bellevue, WA, USA, June 2011. 2.4.1, 2.4.4

[23] Marc Peter Deisenroth, Carl Edward Rasmussen, and Jan Peters. Gaussian process dy-
namic programming. Neurocomputing, 72:1508–1524, 2009. 2.4.1

[24] Holger Diedam, Dimitar Dimitrov, Pierre-Brice Wieber, Katja Mombaur, and Moritz
Diehl. Online walking gait generation with adaptive foot positioning through linear model
predictive control. In Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2008. 2.1, 3.1.1

[25] Moritz Diehl and Jakob Bjornberg. Robust dynamic programming for min-max model
predictive control of constrained uncertain systems. Automatic Control, IEEE Transac-
tions on, 49(12):2253–2257, dec. 2004. 2.3.1

[26] Geir E. Dullerud and Fernando Paganini. A course in robust control theory: A convex
approach. Texts in Applied Mathematics. Springer, New York, NY, 2000. 2.3.1

[27] Silvia Ferrari and Robert F. Stengel. Smooth function approximation using neural net-

108

works. IEEE Transactions on Neural Networks, 16(1):24–38, 2005. 2.4.1

[28] E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion planning for nonlinear
systems with symmetries. IEEE Trans. on Robotics, 21(6):1077–1091, December 2005.
2.1

[29] Y. Fujimoto and A. Kawamura. Proposal of biped walking control based on robust hybrid
position/force control. In Proceedings of IEEE International Conference on Robotics and
Automation, volume 3, pages 2724–2730. IEEE, 1996. 3.1.1

[30] R.J. Full and D.E. Koditschek. Templates and anchors: Neuromechanical hypotheses of
legged locomotion on land. In The Journal of Experimental Biology, volume 202, pages
3325–3332, 1999. 1.4

[31] Luca Di Gaspero. Quadprog++. 4.3.1

[32] A Goswami and V Kallem. Rate of change of angular momentum and balance main-
tenance of biped robots. In Proceedings of the 2004 IEEE International Conference on
Robotics and Automation, volume 4, pages 3785–3790, Honda Res. Inst., Mountain View,
CA, USA, 2004. 3.1.1

[33] Ambarish Goswami, Bernard Espiau, and Ahmed Keramane. Limit cycles in a passive
compass gaitbiped and passivity-mimicking control laws. Auton. Robots, 4(3):273–286,
July 1997. 1.4

[34] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka. The development of honda humanoid
robot. IEEE International Conference on Robotics and Automation Proceedings, 2:1321–
1326, 1998. 1.3

[35] Daan G. E. Hobbelen and Martijn Wisse. A disturbance rejection measure for limit cycle
walkers: The gait sensitivity norm. IEEE Transactions on Robotics, 23(6):1213–1224,
2007. 1.3

[36] A. Hofmann, M. Popovic, and H. Herr. Exploiting angular momentum to enhance
bipedal center-of-mass control. In 2009 IEEE International Conference on Robotics
and Automation, pages 4423–4429. Ieee, May 2009. ISBN 978-1-4244-2788-8. doi:
10.1109/ROBOT.2009.5152573. 3.1.1

[37] R.A. Howard. Dynamic programming and Markov processes. Technology Press of Mas-
sachusetts Institute of Technology, 1960. 2.1

[38] Qiang Huang, Kazuhito Yokoi, Shuuji Kajita, Kenji Kaneko, Hirohiko Arai, Noriho Koy-
achi, and Kazuo Tanie. Planning walking patterns for a biped robot. IEEE Transactions
on Robotics and Automation, 17:280–289, 2001. 1.3

[39] Fumiya Iida and Russ Tedrake. Minimalistic control of a compass gait robot in rough
terrain. In Proceedings of the 2009 IEEE international conference on Robotics and Au-
tomation, ICRA’09, pages 3246–3251. IEEE Press, 2009. 1.4

[40] Eng J. J., Winter D. A., and Patla A. E. Strategies for recovery from a trip in early and late
swing during human walking. Experimental Brain Research, 102:339–349, 1994. 3.6.3

[41] D. H. Jacobson and D. Q. Mayne. Differential Dynamic Prgogramming. American Else-
vier Pub. Co., New York, 1970. 2.1, 2.1

109

[42] L.P. Kaelbling, M.L. Littman, and Andrew Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4:237–285, 1996. 2.4.1

[43] S. Kajita and K. Tani. Study of dynamic biped locomotion on rugged terrain-derivation
and application of the linear inverted pendulum mode. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, volume 2, pages 1405–1411, April
1991. 3.3

[44] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa.
Resolved momentum control: humanoid motion planning based on the linear and angular
momentum. In Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003
IEEE/RSJ International Conference on, volume 2, 2003. 3.1.1

[45] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kazuhito Yokoi, and Hirohisa Hirukawa.
The 3d Linear Inverted Pendulum Model: A simple modeling for biped walking pattern
generation. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation, pages 240–246, November 2001. 3.3

[46] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara, Kensuke Harada,
Kazuhito Yokoi, and Hirohisa Hirukawa. Biped walking pattern generation by using pre-
view control of zero-moment point. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 1620–1626, September 2003. 1.3, 1.4, 3.1.1

[47] S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning.
In ICML, 2002. 2.4.1

[48] K. Kaneko, F. Kanehiro, S. Kajita, K. Yokoyama, K. Akachi, T. Kawasaki, S. Ota, and
T. Isozumi. Design of prototype humanoid robotics platform for HRP. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2431–2436, 2002. 1.3

[49] D. Kaynov, P. Soueres, P. Pierro, and C. Balaguer. A practical decoupled stabilizer for
joint-position controlled humanoid robots. 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3392–3397, October 2009. doi: 10.1109/IROS.
2009.5354431. 3.1.1

[50] David Andrew Kendrick. Stochastic control for economic models. McGraw-Hill, second
edition, 2002. 2.3.1

[51] Jung-Yup Kim, Christopher Atkeson, Jessica Hodgins, Darrin Bentivegna, and Sung Ju
Cho. Online gain switching algorithm for joint position control of a hydraulic humanoid
robot. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots,
2007. 3.4, 4.2

[52] J. Ko, D. J. Klein, D. Fox, and D. Haehnel. Gaussian processes and reinforcement learning
for identification and control of an autonomous blimp. In Robotics and Automation, 2007
IEEE International Conference on, pages 742–747, 2007. 2.4.1

[53] George Konidaris and Andrew Barto. Autonomous shaping: knowledge transfer in re-
inforcement learning. In Proceedings of the 23rd International Conference on Machine
learning, ICML ’06, pages 489–496, 2006. 2.3.6

[54] R.E. Larson. State increment dynamic programming. American Elsevier Pub. Co., 1968.

110

2.2

[55] Steven M. Lavalle. From dynamic programming to rrts: Algorithmic design of feasible
trajectories, 2002. 2.1

[56] Sung-hee Lee and Ambarish Goswami. Ground reaction force control at each foot : A
momentum-based humanoid balance controller for non-level and non-stationary ground.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3157–
3162, 2010. 3.1.1

[57] Z. Li, W. W. Melek, and C. Clark. Decentralized robust control of robot manipulators
with harmonic drive transmission and application to modular and reconfigurable serial
arms. Robotica, 27(2):291–302, March 2009. 1.3, 2.4.4

[58] Chenggang Liu and Christopher G. Atkeson. Standing balance control using a trajectory
library. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2009. 2.1, 3.1.1

[59] Schillings A. M., Van Wezel B.M. H., Mulder T. H., and Duysens J. Muscular responses
and movement strategies during stumbling over obstacles. Journal of Neurophysiology,
83:2093–2102, 2000. 3.6.3

[60] Adriano Macchietto, Victor Zordan, and Christian R. Shelton. Momentum control for
balance. ACM Transactions on Graphics, 28(3):1, 2009. ISSN 07300301. doi: 10.1145/
1531326.1531386. 3.1.1

[61] Thijs Mandersloot, Martijn Wisse, and Christopher G. Atkeson. Controlling velocity in
bipedal walking: A dynamic programming approach. In Proceedings of the IEEE-RAS
International Conference on Humanoid Robots, 2006. 2.1

[62] Tad McGeer. Passive dynamic walking. Int. J. Rob. Res., 9(2):62–82, mar 1990. 1.3

[63] M. McNaughton. CASTRO: robust nonlinear trajectory optimization using multiple mod-
els. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 177–182, 2007. 2.3.1

[64] K. Mombaur, J.P. Laumond, and E. Yoshida. An optimal control model unifying holo-
nomic and nonholonomic walking. In Proceedings of the IEEE International Conference
on Humanoid Robots, 2008. 2.1

[65] Jun Morimoto, Garth Zeiglin, and Christopher G. Atkeson. Minimax differential dynamic
programming: Application to a biped walking robot. In Proceedings of Intl. Conference
on Intelligent Robots and Systems, 2003. 2.3.1, 2.3.5

[66] Mitsuharu Morisawa, Kensuke Harada, Shuuji Kajita, Shinichiro Nakaoka, Kiyoshi Fuji-
wara, Fumio Kanehiro, Kenji Kaneko, and Hirohisa Hirukawa. Experimentation of hu-
manoid walking allowing immediate modification of foot place based on analytical so-
lution. In Proceedings of IEEE International Conference on Robotics and Automation,
pages 3989–3994, October 2007. 3.1.1

[67] Remi Munos and Andrew Moore. Variable resolution discretization in optimal control.
Machine Learning, 49, Numbers 2/3:291–323, 2002. 2.1

[68] J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer

111

Journal, 7(4):308–313, 1965. 3.4.2

[69] Arnab Nilim, Laurent El Ghaoui, and Vu Duong. Robust dynamic routing of aircraft under
uncertainty. In Proceedings of Digital Avionics Systems Conference, 2002. 2.3.1

[70] Koichi Nishiwaki and Satoshi Kagami. High frequency walking pattern generation based
on preview control of ZMP. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 2667–2672, May 2006. 2.1, 3.1.1

[71] R. H. Nyström, J. M. Böling, J. M. Ramstedt, H. T. Toivonen, and K. E. Häggblom.
Application of robust and multimodel control methods to an ill-conditioned distillation
column. Journal of Process Control, 12:39–53, 2002. 2.3.1

[72] Ill-Woo Park, Jung-Yup Kim, Jungho Lee, and Jun-Ho Oh. Mechanical design of hu-
manoid robot platform khr-3 (kaist humanoid robot-3: Hubo). In Proc. IEEE/RAS Int.
Conf. on Humanoid Robots, pages 321–326, 2005. 1.3

[73] J. Park and I. W. Sandberg. Universal approximation using radial-basis-function networks.
Neural Comput., 3(2):246–257, 1991. 2.4.1

[74] Gail B Peterson. A day of great illumination: B. F. Skinner’s discovery of shaping. Journal
of the Experimental Analysis of Behavior, 82:317–328, 2004. 2.3.6

[75] Y. Piguet, U. Holmberg, and R. Longchamp. A minimax approach for multi-objective
controller design using multiple models. International Journal of Control, 72(7-8):716–
726, 1999. 2.3.1

[76] G. Pratt and M. Williamson. Series elastic actuators. In 1995 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative
Robots, volume 1, pages 399–406, Los Alamitos, CA, USA, 1995. IEEE Comput. Soc.
Press. 1.3

[77] Jerry Pratt, John Carff, Sergey Drakunov, and Ambarish Goswami. Capture Point: A
Step toward Humanoid Push Recovery. In Proceedings of the International Conference
on Humanoid Robots, pages 200–207. IEEE, December 2006. ISBN 1-4244-0199-2. doi:
10.1109/ICHR.2006.321385. 3.1.1, 3.7.1

[78] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley and Sons, New York, 1994. 2.1, 2.4.1

[79] Martin L. Puterman and Moon Chirl Shin. Modified policy iteration algorithms for dis-
counted markov decision problems. Management Science, 24(11):1127–1137, 1978. 2.1

[80] Carl Edward Rasmussen and Malte Kuss. Gaussian processes in reinforcement learning.
In NIPS, 2003. 2.4.1

[81] Carl Edward Rasmussen and Chris Williams. Gaussian processes for machine learning.
the MIT Press, 2006. 2.4.2

[82] John Rust. Using randomization to break the curse of dimensionality. Econometrica,
pages 487–516, 1997. 2.1

[83] Stefan Schaal, Christopher G. Atkeson, and Sethu Vijayakumar. Scalable techniques from
nonparametric statistics for real time robot learning. Appl. Intell., 17(1):49–60, 2002.

112

2.4.1

[84] Jeff G. Schneider. Exploiting model uncertainty estimates for safe dynamic control learn-
ing. In in Neural Information Processing Systems 9, pages 1047–1053. The MIT Press,
1996. 2.4.4

[85] J. Shinar, V. Glizer, and V. Turetsky. Solution of a linear pursuit-evasion game with vari-
able structure and uncertain dynamics. In S. Jorgensen, M. Quincampoix, and T. Vincent,
editors, Advances in Dynamic Game Theory - Numerical Methods, Algorithms, and Ap-
plications to Ecology and Economics, volume 9, pages 195–222. Birkhauser, 2007. 2.3.1

[86] Jennie Si, Andrew G. Barto, Warren B. Powell, and Don Wunsch, editors. Handbook of
Learning and Approximate Dynamic Programming. Wiley-IEEE Press, 2004. 2.1, 2.3.1

[87] Marc C. Steinbach. Robust process control by dynamic stochastic programming. Pro-
ceedings in Applied Mathematics and Mechanics (PAMM), 4(1):11–14, 2004. 2.3.1

[88] Benjamin Stephens. Humanoid Push Recovery. In Proceedings of the IEEE-RAS Interna-
tional Conference on Humanoid Robots, 2007. 3.1.1

[89] Benjamin Stephens. Push REcovery Control for Force-Controlled Humanoid Robots. PhD
thesis, CMU, 2011. 4.3.1, 4.3.2

[90] Benjamin J. Stephens. Dynamic balance force control for compliant humanoid robots. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
2010. Available online at www.cs.cmu.edu/˜bstephe1/papers/iros10.pdf. 3.4.3

[91] Mike Stilman, Christopher G. Atkeson, James J. Kuffner, and Garth Zeglin. Dynamic pro-
gramming in reduced dimensional spaces: Dynamic planning for robust biped locomotion.
In Proceedings of the IEEE International Conference on Robotics and Automation, pages
2399–2404, 2005. 2.1

[92] H. T. Su and T. Samad. Neuro-control design: Optimization aspects. In O. Omidvar and
D. L. Elliott, editors, Neural Systems For Control, pages 259–288. Academic Press, 1997.
2.3.1

[93] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998. 2.4.4

[94] A. Takanishi, T. Takeya, H. Karaki, and I. Kato. A control method for dynamic biped
walking under unknown external force. In EEE International Workshop on Intelligent
Robots and Systems, Towards a New Frontier of Applications, volume 29, pages 795–801.
IEEE, 1990. 1.3, 1.4, 3.1.1

[95] Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike, Tadaaki Hasegawa, Shinya Shi-
rokura, Hiroyuki Kaneko, and Atsuo Orita. Real time motion generation and control for
biped robot -4th report: Integrated balance control. In 2009 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 1601–1608. Ieee, October 2009. ISBN
978-1-4244-3803-7. doi: 10.1109/IROS.2009.5354522. 3.1.1

[96] Russ Tedrake, Ian R. Manchester, Mark Tobenkin, and John W. Roberts. Lqr-trees: Feed-
back motion planning via sums-of-squares verification. Int. J. Rob. Res., 29(8):1038–1052,
July 2010. 2.1

113

[97] Evangelos Theodorou, Yuval Tassa, and Emo Todorov. Stochastic differential dynamic
programming. In Proceedings of American Control Conference, 2010. 2.3.1

[98] Emanuel Todorov and Yuval Tassa. Iterative local dynamic programming. In IEEE Sym-
posium on Adaptive Dynamic Programming and Reinforcement Learning, pages 90–95,
2009. 2.1

[99] Michiel van de Panne, Eugene Fiume, and Zvonko G. Vranesic. A controller for the
dynamic walk of a biped across variable terrain. In Proceedings of the 31st Conference on
Decision and Control, pages pp. 2668–2673, December 1992. 2.1, 3.1.1

[100] A. Varga. Optimal output feedback control: a multi-model approach. In IEEE Inter-
national Symposium on Computer-Aided Control System Design, pages 327–332, 1996.
2.3.1

[101] Sethu Vijayakumar, Tomohiro Shibata, and Stefan Schaal. Reinforcement learning for
humanoid robotics. In Autonomous Robot, 2003. 2.4.1

[102] Pierre-Brice Wieber. Trajectory free linear model predictive control for stable walking
in the presence of strong perturbations. In Proceedings of the IEEE-RAS International
Conference on Humanoid Robots, 2006. 2.1, 3.1.1, 3.1.1

[103] Pierre-Brice Wieber and Christine Chevallereau. Online adaptation of reference trajecto-
ries for the control of walking systems. Robotics and Autonomous Systems, 54(7):559–
566, 2006. 2.1, 3.1.1

[104] Wee Chin Wong and Jay H. Lee. Postdecision-state-based approximate dynamic pro-
gramming for robust predictive control of constrained stochastic processes. Industrial &
Engineering Chemistry Research, 50(3):1389–1399, 2011. 2.3.1

[105] KangKang Yin, Kevin Loken, and Michiel van de Panne. Simbicon: simple biped loco-
motion control. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers, page 105, New York,
NY, USA, 2007. ACM. doi: http://doi.acm.org/10.1145/1275808.1276509. 3.1.1

[106] Matt Zucker, J. Andrew Bagnell, Christopher G. Atkeson, and James Kuffner. An opti-
mization approach to rough terrain locomotion. In Proceedings of the IEEE International
Conference on Robotics and Automation, 2010. 3.5.3

114

	 Abstract
	 Acknowledgments
	 List of Figures
	 List of Tables
	1 Introduction
	1.1 Summary
	1.2 Motivation
	1.3 Types of Walking Robots
	1.4 Simple Models
	1.5 Intended Thesis Contributions

	2 Dynamic Programming
	2.1 Introduction
	2.2 Dynamic Programming Algorithm
	2.3 Robust Dynamic Programming
	2.3.1 Related Work
	2.3.2 Pendulum Swing-Up
	2.3.3 Tests of Robustness
	2.3.4 Modeling Error as Noise
	2.3.5 Minimax Formulation
	2.3.6 Multiple Model Dynamic Programming
	2.3.7 Discussion of MMDP

	2.4 Dynamic Programming with Learning
	2.4.1 Introduction
	2.4.2 Method
	2.4.3 Results
	2.4.4 Use of Uncertainty

	3 Simulated Walking
	3.1 Introduction
	3.1.1 Related Work

	3.2 Controlling Instantaneously Coupled Systems
	3.2.1 Instantaneously Coupled Systems
	3.2.2 Obtaining the Optimal Policy

	3.3 Walking as an ICS
	3.3.1 Non-ICS Modifications

	3.4 Walking Controller
	3.4.1 Policy Generation
	3.4.2 Policy Coordination
	3.4.3 Low-Level Control

	3.5 Capabilities
	3.5.1 Speed
	3.5.2 Turning
	3.5.3 Terrain

	3.6 Robustness
	3.6.1 Pushes
	3.6.2 Slips
	3.6.3 Trips
	3.6.4 Steps Up/Down
	3.6.5 Slopes

	3.7 Upper Body Rotation
	3.7.1 System Model
	3.7.2 Use in Practice
	3.7.3 Results

	3.8 Conclusion

	4 Robotic Walking
	4.1 Introduction
	4.2 Robot Description
	4.2.1 Mechanical
	4.2.2 Sensing
	4.2.3 Computation

	4.3 Major Controller Changes
	4.3.1 Weighted-Objective Inverse Dynamics
	4.3.2 Inverse Kinematics
	4.3.3 Jerk-Based Policies

	4.4 Integral Control
	4.4.1 Virtual Forces and CoM Offsets

	4.5 Swaying
	4.6 Preliminary Walking in Place

	5 Future Work
	Bibliography

