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Abstract

We propose new methodologies in robust optimization that promise greater tractabil-
ity, both theoretically and practically than the classical robust framework. We cover
a broad range of mathematical optimization problems, including linear optimization
(LP), quadratic constrained quadratic optimization (QCQP), general conic optimiza-
tion including second order cone programming (SOCP) and semidefinite optimization
(SDP), mixed integer optimization (MIP), network flows and 0−1 discrete optimiza-
tion. Our approach allows the modeler to vary the level of conservatism of the robust
solutions in terms of probabilistic bounds of constraint violations, while keeping the
problem tractable. Specifically, for LP, MIP, SOCP, SDP, our approaches retain the
same complexity class as the original model. The robust QCQP becomes a SOCP,
which is computationally as attractive as the nominal problem. In network flows, we
propose an algorithm for solving the robust minimum cost flow problem in polynomial
number of nominal minimum cost flow problems in a modified network. For 0 − 1
discrete optimization problem with cost uncertainty, the robust counterpart of a poly-
nomially solvable 0− 1 discrete optimization problem remains polynomially solvable
and the robust counterpart of an NP -hard α-approximable 0−1 discrete optimization
problem, remains α-approximable. Under an ellipsoidal uncertainty set, we show that
the robust problem retains the complexity of the nominal problem when the data is
uncorrelated and identically distributed. For uncorrelated, but not identically dis-
tributed data, we propose an approximation method that solves the robust problem
within arbitrary accuracy. We also propose a Frank-Wolfe type algorithm for this
case, which we prove converges to a locally optimal solution, and in computational
experiments is remarkably effective.

Thesis Supervisor: Dimitris J. Bertsimas
Title: Boeing Professor of Operations Research
Sloan School of Management
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Chapter 1

Introduction

In mathematical optimization models, we commonly assume that the data inputs are

precisely known and ignore the influence of parameter uncertainties on the optimality

and feasibility of the models. It is therefore conceivable that as the data differs from

the assumed nominal values, the generated “optimal solution” may violate critical

constraints and perform poorly from an objective function point of view. These ob-

servations motivate the need for methodologies in mathematical optimization models

that solve for solutions that are immune to data uncertainty.

Robust optimization addresses the issue of data uncertainties from the perspec-

tive of computational tractability. In the past decade, there was considerable de-

velopment in the theory of robust convex optimization. However, under the robust

framework found in the literature, the robust models generally lead to an increase in

computational complexity over the nominal problem, which is an issue when solving

large problems. Moreover, there is often lack of probabilistic justification motivating

the choice of parameters used in the robust framework. Furthermore, these results,

though valid in convex optimization, do not necessarily carry forward in a tractable

way to discrete optimization.

In this thesis, we propose new methodologies in robust optimization that lead

to greater tractability, both theoretically and empirically, than those found in the

literature. In particular, we cover a broad range of mathematical optimization prob-

lems, including linear optimization (LP), quadratic constrained quadratic optimiza-
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tion (QCQP), second order cone optimization (SOCP), semidefinite optimization

(SDP), general conic optimization, mixed integer optimization (MIP), network flows

and combinatorial optimization. To justify our robust framework, we focus on deriv-

ing probability bounds on the feasibility of the robust solution, which are generally

lacking in related literature on robust optimization.

Structure of the chapter. In Section 1.1, we discuss the motivations and philos-

ophy of robust optimizations. In Section 1.2, we review the works related to robust

optimization. In Section 1.3, we outline the structure of this thesis.

1.1 Motivations and Philosophy

Data uncertainty is present in many real-world optimization problems. For example,

in supply chain optimization, the actual demand for products, financial returns, ac-

tual material requirements and other resources are not precisely known when critical

decisions need to be made. In engineering and science, data is subjected to measure-

ment errors, which also constitute sources of data uncertainty in the optimization

model.

In mathematical optimization, we generally assume that the data is precisely

known. We then seek to minimize (or maximize) an objective function over a set of

decision variables as follows:

minimize f0(x,D0)

subject to fi(x,Di) ≥ 0 ∀i ∈ I,
(1.1)

where x is the vector of decision variables and Di, i ∈ I ∪ {0} are the data that is

part of the inputs of the optimization problem.

When parameters in the objective function are uncertain, we are unlikely to

achieve the desired “optimal value.” However, the extent of adverse variation of

the objective is often a cause for concern. Many modelers are willing to tradeoff

optimality for a solution that has greater reliability in achieving their desired goal.
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If parameter uncertainty arises at the constraints, when implementing a solution,

it is likely that these constraints would be violated upon realization of the actual

data. In many practical optimization problems, constraint violations can potentially

influence the usability of the solution. We quote from the case study by Ben-Tal and

Nemirovski [7] on linear optimization problems from the Net Lib library:

In real-world applications of Linear Programming, one cannot ignore the

possibility that a small uncertainty in the data can make the usual optimal

solution completely meaningless from a practical viewpoint.

The classical methods of addressing parameter uncertainty includes sensitivity

analysis and stochastic optimization. In the former approach, practitioners ignore

the influence of data uncertainty in their models and subsequently perform sensitivity

analysis to justify their solutions. However, sensitivity analysis is only a tool for

analyzing the goodness of a solution. It is not particularly helpful for generating

solutions that are robust to data changes. Furthermore, it is impractical to perform

joint sensitivity analysis in models with large number of uncertain parameters.

In stochastic optimization, we express the feasibility of a solution using chance

constraints. Assuming that we are given the distributions of the input parameters,

the corresponding stochastic optimization problem to problem (1.1) is:

minimize t

subject to Pr
(
f0(x, D̃0) ≤ t

)
≥ p0

Pr
(
fi(x, D̃i) ≥ 0

)
≥ pi ∀i ∈ I,

(1.2)

where D̃i, i ∈ I ∪ {0} are the random variables associated with the ith constraint.

Although the model (1.2) is expressively rich, there are some fundamental difficulties.

We can rarely obtain the actual distributions of the uncertain parameters. Moreover,

even if we know the distributions, it is still computationally challenging to evaluate

the chance constraints, let alone to optimize the model. Furthermore, the chance con-

straint can destroy the convexity properties and elevate significantly the complexity

of the original problem .
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In view of the difficulties, robust optimization presents a different approach to

handling data uncertainty. In designing such an approach two criteria are important

in our view:

• Tractability: Preserving the computational tractability both theoretically and

most importantly practically of the nominal problem. From a theoretical per-

spective it is desirable that if the nominal problem is solvable in polynomial

time, then the robust problem is also polynomially solvable.

• Probability bounds: Being able to find a guarantee on the probability that

the robust solution is feasible, when the uncertain coefficients obey some natural

probability distributions. This is important, since from these guarantees we

can select parameters that allow to control the tradeoff between robustness and

optimality.

In our literature review, we found that these criteria are not always fulfilled in

classical models on robust optimization. Nevertheless, we feel that for robust opti-

mization to have an impact, in theory and practice, we need to address these criteria,

which is the primary focus of this thesis.

1.2 Literature Review

In recent years a body of literature is developing under the name of robust optimiza-

tion, in which we optimize against the worst instances that might arise by using a

min-max objective. Mulvey et al. [22] present an approach that integrates goal opti-

mization formulations with scenario-based description of the problem data. Soyster,

in the early 1970s, proposes a linear optimization model to construct a solution that

is feasible for all data that belong in a convex set. The resulting model produces so-

lutions that are too conservative in the sense that we give up too much of optimality

for the nominal problem in order to ensure robustness (see the comments of Ben-Tal

and Nemirovski [7]).

18



A significant step forward for developing a theory for robust optimization was

taken independently by Ben-Tal and Nemirovski [7, 6, 4] and El-Ghaoui et al. [11, 12].

They proposed the following framework on robust optimization:

minimize max
D0∈U0

f0(x,D0)

subject to f(x,Di) ≥ 0 ∀i ∈ I, ∀Di ∈ Ui,
(1.3)

where Ui, i ∈ I ∪ {0}, are the given uncertainty sets. They showed that under the

assumption that the the set Ui are ellipsoids of the form

U =



D | ∃u ∈ <|N | : D = D0 +

∑

j∈N

∆Djuj, ‖u‖ ≤ Ω



 ,

the robust counterparts of some important generic convex optimization problems (lin-

ear optimization (LP), second order cone optimization problems (SOCP), semidefinite

optimization (SDP) are either exactly, or approximately tractable problems that are

efficiently solvable via interior point methods. However, under ellipsoidal uncertainty

sets, the robust counterpart of an LP becomes an SOCP, of an SOCP becomes an

SDP, while the robust counterpart of an SDP is NP -hard to solve. In other words,

the difficulty of the robust problem increases, as SDPs are numerically harder to solve

than SOCPs, which in turn are harder to solve than LPs. Hence, a practical drawback

of such an approach, is that it leads to nonlinear, although convex, models, which are

more demanding computationally than the earlier linear models by Soyster [26] (see

also the discussion in Ben-Tal and Nemirovski [7]). Furthermore, except for the case

of LP, these papers do not provide a guarantee on the probability that the robust

solution is feasible, when the uncertain coefficients obey some natural probability

distributions.

Another disadvantage of their nonlinear robust framework is the natural exclusion

of discrete optimization models, which is predominantly LP based. Specifically for

discrete optimization problems, Kouvelis and Yu [20] proposed a framework for robust

discrete optimization, which seeks to find a solution that minimizes the worst case per-
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formance under a set of scenarios for the data. Unfortunately, under their approach,

the robust counterpart of many polynomially solvable discrete optimization problems

becomes NP -hard. A related objective is the minimax-regret approach, which seeks

to minimize the worst case loss in objective value that may occur. Again, under the

minimax-regret notion of robustness, many of the polynomially solvable discrete opti-

mization problems become NP -hard. Under the minimax-regret robustness approach,

Averbakh [3] showed that polynomial solvability is preserved for a specific discrete

optimization problem (optimization over a uniform matroid) when each cost coeffi-

cient can vary within an interval (interval representation of uncertainty); however,

the approach does not seem to generalize to other discrete optimization problems.

There have also been research efforts to apply stochastic optimization methods to

discrete optimization (see for example Schultz et al. [25]), but the computational

requirements are even more severe in this case.

1.3 Structure of the Thesis

This thesis is organized as follows:

• Chapter 2: The Price of Robustness. Under robust optimization, we are

willing to accept a suboptimal solution for the nominal values of the data, in

order to ensure that the solution remains feasible and near optimal when the

data changes. A concern with such an approach is that it might be too con-

servative. In Chapter 2, we propose an approach that attempts to make this

tradeoff more attractive, that is we investigate ways to decrease what we call

the price of robustness. In particular, we can flexibly adjust the level of con-

servatism of the robust solutions in terms of probabilistic bounds of constraint

violations. An attractive aspect of our method is that the new robust formu-

lation is also a linear optimization problem. We report numerical results for a

portfolio optimization problem, and a problem from the Net Lib library.

20



• Chapter 3: Robust Linear Optimization under General Norms. We

explicitly characterize the robust counterpart as a convex optimization problem

that involves the dual norm of the given norm. Our approach encompasses

several approaches from the literature and provide guarantees for constraints

violation under probabilistic models that allow arbitrary dependencies in the

distribution of the uncertain coefficients.

• Chapter 4: Robust Conic Optimization. In earlier proposals, the ro-

bust counterpart of conic optimization problems exhibits a lateral increase in

complexity, i.e., robust LPs become SOCPs, robust SOCPs become SDPs, and

robust SDPs become NP-hard. We propose a relaxed robust counterpart for gen-

eral conic optimization problems that (a) preserves the computational tractabil-

ity of the nominal problem; specifically the robust conic optimization problem

retains its original structure, i.e., robust linear optimization problems (LPs)

remain LPs, robust second order cone optimization problems (SOCPs) remain

SOCPs and robust semidefinite optimization problems (SDPs) remain SDPs;

moreover, when the data entries are independently distributed, the size of the

proposed robust problem especially under the l2 norm is practically the same

as the nominal problem, and (b) allows us to provide a guarantee on the prob-

ability that the robust solution is feasible, when the uncertain coefficients obey

independent and identically distributed normal distributions.

• Chapter 5: Robust Discrete Optimization and Network Flows. We

propose an approach to address data uncertainty for discrete optimization and

network flow problems that allows controlling the degree of conservatism of the

solution, and is computationally tractable both practically and theoretically. In

particular, when both the cost coefficients and the data in the constraints of an

integer optimization problem are subject to uncertainty, we propose a robust

integer optimization problem of moderately larger size that allows controlling

the degree of conservatism of the solution in terms of probabilistic bounds on

constraint violation. When only the cost coefficients are subject to uncertainty
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and the problem is a 0 − 1 discrete optimization problem on n variables, then

we solve the robust counterpart by solving at most n + 1 instances of the orig-

inal problem. Thus, the robust counterpart of a polynomially solvable 0 − 1

discrete optimization problem remains polynomially solvable. In particular,

robust matching, spanning tree, shortest path, matroid intersection, etc. are

polynomially solvable. We also show that the robust counterpart of an NP -hard

α-approximable 0− 1 discrete optimization problem, remains α-approximable.

Finally, we propose an algorithm for robust network flows that solves the ro-

bust counterpart by solving a polynomial number of nominal minimum cost

flow problems in a modified network.

• Chapter 6: Robust Discrete Optimization under an Ellipsoidal Un-

certainty Sets. We address the complexity and practically efficient methods

for robust discrete optimization under ellipsoidal uncertainty sets. Specifically,

we show that the robust counterpart of a discrete optimization problem under

ellipsoidal uncertainty is NP -hard even though the nominal problem is poly-

nomially solvable. For uncorrelated and identically distributed data we show

that the robust problem retains the complexity of the nominal problem. For

uncorrelated, but not identically distributed data we propose an approximation

method that solves the robust problem within arbitrary accuracy. We also pro-

pose a Frank-Wolfe type algorithm for this case, which we prove converges to

a locally optimal solution, and in computational experiments is remarkably ef-

fective. Finally, we propose a generalization of the robust discrete optimization

framework presented in Chapter 5 that allows the key parameter that controls

the tradeoff between robustness and optimality to depend on the solution that

results in increased flexibility and decreased conservatism, while maintaining

the complexity of the nominal problem.

• Chapter 7: Conclusions. This chapter contains the concluding remarks of

the thesis.
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Chapter 2

The Price of Robustness

In this chapter, we propose a new approach for robust linear optimization that re-

tains the advantages of the linear framework of Soyster [26]. More importantly, our

approach offers full control on the degree of conservatism for every constraint. We

protect against violation of constraint i deterministically, when only a prespecified

number Γi of the coefficients changes, that is we guarantee that the solution is feasi-

ble if less than Γi uncertain coefficients change. Moreover, we provide a probabilistic

guarantee that even if more than Γi change, then the robust solution will be feasible

with high probability. In the process we prove a new, to the best of our knowledge,

tight bound on sums of symmetrically distributed random variables. In this way,

the proposed framework is at least as flexible as the one proposed by Ben-Tal and

Nemirovski [7, 6, 4] and El-Ghaoui et al. [11, 12] and possibly more. Unlike these

approaches, the robust counterparts we propose are linear optimization problems, and

thus our approach readily generalizes to discrete optimization problems. To the best

of our knowledge, there was no similar work done in the robust discrete optimization

domain that involves deterministic and probabilistic guarantees of constraints against

violation.

Structure of the chapter. In Section 2.1, we present the different approaches for

robust linear optimization from the literature and discuss their merits. In Section 2.2

we propose the new approach and show that it can be solved as a linear optimization
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problem. In Section 2.3, we show that the proposed robust LP has attractive prob-

abilistic and deterministic guarantees. Moreover, we perform sensitivity analysis of

the degree of protection the proposed method offers. We provide extensions to our

basic framework dealing with correlated uncertain data in Section 2.4. In Section 2.5,

we apply the proposed approach to a portfolio problem and a problem from the Net

Lib library. Finally, Section 2.6 contains some concluding remarks.

2.1 Robust Formulation of Linear Optimization

Problems

2.1.1 Data Uncertainty in Linear Optimization

We consider the following nominal linear optimization problem:

maximize c′x

subject to Ax ≤ b

l ≤ x ≤ u.

In the above formulation, we assume that data uncertainty only affects the elements

in matrix A. We assume without loss of generality that the objective function c is not

subject to uncertainty, since we can use the objective maximize z, add the constraint

z − c′x ≤ 0, and thus include this constraint into Ax ≤ b.

Model of Data Uncertainty U:

Consider a particular row i of the matrix A and let Ji the set of coefficients in row

i that are subject to uncertainty. Each entry aij, j ∈ Ji is modeled as a symmetric

and bounded random variable ãij, j ∈ Ji (see Ben-Tal and Nemirovski [7]) that takes

values in [aij − âij, aij + âij]. Associated with the uncertain data ãij, we define

the random variable ηij = (ãij − aij)/âij, which obeys an unknown, but symmetric

distribution, and takes values in [−1, 1].
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2.1.2 The Robust Formulation of Soyster

As we have mentioned in the Introduction Soyster [26] considers column-wise uncer-

tainty. Under the model of data uncertainty U, the robust formulation is as follows:

maximize c′x

subject to
∑

j

aijxj +
∑

j∈Ji

âijyj ≤ bi ∀i

−yj ≤ xj ≤ yj ∀j
l ≤ x ≤ u

y ≥ 0.

(2.1)

Let x∗ be the optimal solution of Formulation (2.1). At optimality clearly, yj = |x∗j |,
and thus

∑

j

aijx
∗
j +

∑

j∈Ji

âij|x∗j | ≤ bi ∀i.

We next show that for every possible realization ãij of the uncertain data, the solution

remains feasible, that is the solution is “robust.” We have

∑

j

ãijx
∗
j =

∑

j

aijx
∗
j +

∑

j∈Ji

ηij âijx
∗
j ≤

∑

j

aijx
∗
j +

∑

j∈Ji

âij|x∗j | ≤ bi ∀i

For every ith constraint, the term,
∑

j∈Ji
âij|xj| gives the necessary “protection” of

the constraint by maintaining a gap between
∑

j aijx
∗
j and bi.

2.1.3 The Robust Formulation of Ben-Tal and Nemirovski

Although the Soyster’s method admits the highest protection, it is also the most

conservative in practice in the sense that the robust solution has an objective function

value much worse than the objective function value of the solution of the nominal

linear optimization problem. To address this conservatism, Ben-Tal and Nemirovski
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[7] propose the following robust problem:

maximize c′x

subject to
∑

j

aijxj +
∑

j∈Ji

âijyij + Ωi

√∑

j∈Ji

â2
ijz

2
ij ≤ bi ∀i

−yij ≤ xj − zij ≤ yij ∀i, j ∈ Ji

l ≤ x ≤ u

y ≥ 0.

(2.2)

Under the model of data uncertainty U, the authors have shown that the probability

that the i constraint is violated is at most exp(−Ω2
i /2). The robust Model (2.2) is

less conservative than Model (2.1) as every feasible solution of the latter problem is

a feasible solution to the former problem.

We next examine the sizes of Formulations (2.1) and (2.2). We assume that there

are k coefficients of the m×n nominal matrix A that are subject to uncertainty. Given

that the original nominal problem has n variables and m constraints (not counting the

bound constraints), Model (2.1) is a linear optimization problem with 2n variables,

and m + 2n constraints. In contrast, Model (2.2) is a second order cone problem,

with n + 2k variables and m + 2k constraints. Since Model (2.2) is a nonlinear one,

it is particularly not attractive for solving robust discrete optimization models.

2.2 The New Robust Approach

In this section, we propose a robust formulation that is linear, is able to withstand

parameter uncertainty under the model of data uncertainty U without excessively af-

fecting the objective function, and readily extends to discrete optimization problems.

We motivate the formulation as follows. Consider the ith constraint of the nominal

problem a′
ix ≤ bi. Let Ji be the set of coefficients aij, j ∈ Ji that are subject

to parameter uncertainty, i.e., ãij, j ∈ Ji takes values according to a symmetric

distribution with mean equal to the nominal value aij in the interval [aij−âij, aij+âij].

For every i, we introduce a parameter Γi, not necessarily integer, that takes values in
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the interval [0, |Ji|]. As it would become clear below, the role of the parameter Γi is

to adjust the robustness of the proposed method against the level of conservatism of

the solution. Speaking intuitively, it is unlikely that all of the aij, j ∈ Ji will change.

Our goal is to be protected against all cases that up to bΓic of these coefficients are

allowed to change, and one coefficient ait changes by (Γi − bΓic)âit. In other words,

we stipulate that nature will be restricted in its behavior, in that only a subset of

the coefficients will change in order to adversely affect the solution. We will develop

an approach, that has the property that if nature behaves like this, then the robust

solution will be feasible deterministically, and moreover, even if more than bΓic
change, then the robust solution will be feasible with very high probability.

We consider the following (still nonlinear) formulation:

maximize c′x

subject to
∑

j
aijxj + max

{Si∪{ti}| Si⊆Ji,|Si|=bΓic,ti∈Ji\Si}



∑

j∈Si

âijyj + (Γi − bΓic)âitiyt



 ≤ bi ∀i

−yj ≤ xj ≤ yj ∀j
l ≤ x ≤ u

y ≥ 0.

(2.3)

If Γi is chosen as an integer, the ith constraint is protected by

βi(x, Γi) = max
{Si| Si⊆Ji,|Si|=Γi}

{∑

j∈Si

âij|xj|}.

Note that when Γi = 0, βi(x, Γi) = 0 the constraints are equivalent to that of the

nominal problem. Likewise, if Γi = |Ji|, we have Soyster’s method. Therefore, by

varying Γi ∈ [0, |Ji|], we have the flexibility of adjusting the robustness of the method

against the level of conservatism of the solution.

In order to reformulate Model (2.3) as a linear optimization model we need the

following proposition.
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Proposition 1 Given a vector x∗, the protection function of the ith constraint,

βi(x
∗, Γi) = max

{Si∪{ti}| Si⊆Ji,|Si|=bΓic,ti∈Ji\Si}





∑

j∈Si

âij|x∗j |+ (Γi − bΓic)âiti|x∗j |


 (2.4)

equals to the objective function of the following linear optimization problem:

βi(x
∗, Γi) = maximize

∑

j∈Ji

âij|x∗j |zij

subject to
∑

j∈Ji

zij ≤ Γi

0 ≤ zij ≤ 1 ∀j ∈ Ji.

(2.5)

Proof : Clearly the optimal solution value of Problem (2.5) consists of bΓic variables

at 1 and one variable at Γi − bΓic. This is equivalent to the selection of subset {Si ∪
{ti}| Si ⊆ Ji, |Si| = bΓic, ti ∈ Ji\Si} with corresponding cost function

∑
j∈Si

âij|x∗j |+
(Γi − bΓic)âiti|x∗j |.

We next reformulate Model (2.3) as a linear optimization model.

Theorem 1 Model (2.3) has an equivalent linear formulation as follows:

maximize c′x

subject to
∑

j

aijxj + ziΓi +
∑

j∈Ji

pij ≤ bi ∀i

zi + pij ≥ âijyj ∀i, j ∈ Ji

−yj ≤ xj ≤ yj ∀j
lj ≤ xj ≤ uj ∀j
pij ≥ 0 ∀i, j ∈ Ji

yj ≥ 0 ∀j
zi ≥ 0 ∀i.

(2.6)
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Proof : We first consider the dual of Problem (2.5):

minimize
∑

j∈Ji

pij + Γizi

subject to zi + pij ≥ âij|x∗j | ∀i, j ∈ Ji

pij ≥ 0 ∀j ∈ Ji

zi ≥ 0 ∀i.

(2.7)

By strong duality, since Problem (2.5) is feasible and bounded for all Γi ∈ [0, |Ji|], then

the dual problem (2.7) is also feasible and bounded and their objective values coincide.

Using Proposition 1, we have that βi(x
∗, Γi) is equal to the objective function value of

Problem 2.7. Substituting to Problem (2.3) we obtain that Problem (2.3) is equivalent

to the linear optimization problem (2.6).

Remark : The robust linear optimization Model (2.6) has n + k + 1 variables and

m + k + n constraints, where k =
∑

i |Ji| the number of uncertain data, contrasted

with n + 2k variables and m + 2k constraints for the nonlinear Formulation (2.2). In

most real-world applications, the matrix A is sparse. An attractive characteristic of

Formulation (2.6) is that it preserves the sparsity of the matrix A.

2.3 Probability Bounds of Constraint Violation

It is clear by the construction of the robust formulation that if up to bΓic of the Ji

coefficients aij change within their bounds, and up to one coefficient aiti changes by

(Γi−bΓic)âit, then the solution of Problem (2.6) will remain feasible. In this section,

we show that under the Model of Data Uncertainty U, the robust solution is feasible

with high probability. The parameter Γi controls the tradeoff between the probability

of violation and the effect to the objective function of the nominal problem, which is

what we call the price of robustness.

In preparation for our main result in this section, we prove the following proposi-

tion.

Proposition 2 Let x∗ be an optimal solution of Problem (2.6). Let S∗i and t∗i be the
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set and the index respectively that achieve the maximum for βi(x
∗, Γi) in Eq. (2.4).

Suppose that the data in matrix A are subjected to the model of data uncertainty U.

(a) The probability that the ith constraint is violated satisfies:

P


∑

j

ãijx
∗
j > bi


 ≤ P


∑

j∈Ji

γijηij ≥ Γi




where

γij =





1, if j ∈ S∗i
âij|x∗j |

âir∗|x∗r∗|
, if j ∈ Ji\S∗i

and

r∗ = arg min
r∈S∗i ∪{t∗i }

âir|x∗r|.

(b) The quantities γij satisfy γij ≤ 1 for all j ∈ Ji\S∗i .

Proof : (a) Let x∗, S∗i and t∗i be the solution of Model (2.3). Then the probability

of violation of the ith constraint is as follows:

P


∑

j

ãijx
∗
j > bi


 (2.8)

= P


∑

j

aijx
∗
j +

∑

j∈Ji

ηij âijx
∗
j > bi




≤ P


∑

j∈Ji

ηij âij|x∗j | >
∑

j∈S∗i

âij|x∗j |+ (Γi − bΓic)âit∗i |x∗t∗i |

 (2.9)

= P


 ∑

j∈Ji\S∗i
ηij âij|x∗j | >

∑

j∈S∗i

âij|x∗j |(1− ηij) + (Γi − bΓic)âit∗i |x∗t∗i |



≤ P


 ∑

j∈Ji\S∗i
ηij âij|x∗j | > âir∗|x∗r∗|


 ∑

j∈S∗i

(1− ηij) + (Γi − bΓic)




 (2.10)

= P


 ∑

j∈S∗i

ηij +
∑

j∈Ji\S∗i

âij|x∗j |
âir∗|x∗r∗|

ηij > Γi




= P


∑

j∈Ji

γijηij > Γi




≤ P


∑

j∈Ji

γijηij ≥ Γi


 .
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Inequality (2.9) follows from Inequality (2.3), since x∗ satisfies

∑

j

aijx
∗
j +

∑

j∈S∗i

âijyj + (Γi − bΓic)âit∗i yt∗i ≤ bi.

Inequality (2.10) follows from 1− ηij ≥ 0 and r∗ = arg minr∈S∗i ∪{t∗i } âir|x∗r|.
(b) Suppose there exist l ∈ Ji\S∗i such that âil|x∗l | > âir∗ |x∗r∗ |. If l 6= t∗i , then, since

r∗ ∈ S∗i ∪{t∗}, we could increase the objective value of
∑

j∈S∗i
âij|x∗j |+(Γi−bΓic)âit∗|x∗t∗ |

by exchanging l with r∗ from the set S∗i ∪ {t∗i }. Likewise, if l = t∗i , r∗ ∈ S∗i , we could

exchange t∗i with r∗ in the set S∗i to increase the same objective function. In both

cases, we arrive at a contradiction that S∗i ∪ {t∗i } is an optimum solution to this

objective function.

We are naturally led to bound the probability P(
∑

j∈Ji
γijηij ≥ Γi). The next

result provides a bound that is independent of the solution x∗.

Theorem 2 If ηij, j ∈ Ji are independent and symmetrically distributed random vari-

ables in [−1, 1], then

P


∑

j∈Ji

γijηij ≥ Γi


 ≤ exp

(
− Γ2

i

2|Ji|

)
. (2.11)

Proof : Let θ > 0. Then

P


∑

j∈Ji

γijηij ≥ Γi


 ≤ E[exp(θ

∑
j∈Ji

γijηij)]

exp(θΓi)
(2.12)

=

∏

j∈Ji

E[exp(θ γijηij)]

exp(θΓi)
(2.13)

=

∏

j∈Ji

2
∫ 1

0

∞∑

k=0

(θγijη)2k

(2k)!
dFηij

(η)

exp(θΓi)
(2.14)

≤

∏

j∈Ji

∞∑

k=0

(θγij)
2k

(2k)!

exp(θΓi)

31



≤

∏

j∈Ji

exp

(
θ2γ2

ij

2

)

exp(θΓi)

≤ exp

(
|Ji|θ

2

2
− θΓi

)
. (2.15)

Inequality (2.12) follows from Markov’s inequality, Eqs. (2.13) and (2.14) follow from

the independence and symmetric distribution assumption of the random variables ηij.

Inequality (2.15) follows from γij ≤ 1. Selecting θ = Γi/|Ji|, we obtain (2.11).

Remark : While the bound we established has the attractive feature that is inde-

pendent of the solution x∗, it is not particularly attractive especially when
Γ2

i

2|Ji| is

small. We next derive the best possible bound, i.e., a bound that is achievable. We

assume that Γi ≥ 1.

Theorem 3 (a) If ηij, j ∈ Ji are independent and symmetrically distributed random

variables in [−1, 1], then

P


∑

j∈Ji

γijηij ≥ Γi


 ≤ B(n, Γi), (2.16)

where

B(n, Γi) = 1
2n

{
(1− µ)

∑n
l=bνc

(
n
l

)
+ µ

∑n
l=bνc+1

(
n
l

)}

= 1
2n

{
(1− µ)

(
n
bνc

)
+

∑n
l=bνc+1

(
n
l

)}
,

(2.17)

where n = |Ji|, ν = Γi+n
2

and µ = ν − bνc.
(b) The bound (2.16) is tight for ηij having a discrete probability distribution: P(ηij =

1) = 1/2 and P(ηij = −1) = 1/2, γij = 1, an integral value of Γi ≥ 1 and Γi +n being

even.

(c) The bound (2.16) satisfies

B(n, Γi) ≤ (1− µ)C(n, bνc) +
n∑

l=bνc+1

C(n, l), (2.18)

32



where

C(n, l) =



1

2n
, if l=0 or l=n,

1√
2π

√
n

(n− l)l
exp

(
n log

(
n

2(n− l)

)
+ l log

(
n− l

l

))
, otherwise.

(2.19)

(d) For Γi = θ
√

n,

lim
n→∞B(n, Γi) = 1− Φ(θ), (2.20)

where

Φ(θ) =
1√
2π

∫ θ

−∞
exp

(
−y2

2

)
dy

is the cumulative distribution function of a standard normal.

Proof : (a) The proof follows from Proposition 2 parts (a) and (b). To simplify the

exposition we will drop the subscript i, which represents the index of the constraint.

We prove the bound in (2.16) by induction on n. We define the auxiliary quantities:

ν(Γ, n) =
Γ + n

2
, µ(Γ, n) = ν(Γ, n)− bν(Γ, n)c, Υ(s, n) =

1

2n

n∑

l=s

(
n

l

)
.

The induction hypothesis is formulated as follows:

P
(∑n

j=1 γjηj ≥ Γ
)

≤




(1− µ(Γ, n))Υ(bν(Γ, n)c, n) + µ(Γ, n)Υ(bν(Γ, n)c+ 1, n) if Γ ∈ [1, n]

0 if Γ > n.

For n = 1, then Γ = 1, and so ν(1, 1) = 1, µ(1, 1) = 0, Υ(1, 1) = 1/2 leading to:

P(η1 ≥ Γ) ≤ P(η1 ≥ 0)

≤ 1

2

= (1− µ(1, 1))Υ(bν(1, 1)c, 1) + µ(1, 1)Υ(bν(1, 1)c+ 1, 1).
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Assuming the induction hypothesis holds for n, we have

P




n+1∑

j=1

γjηj ≥ Γ


 (2.21)

=
∫ 1

−1
P




n∑

j=1

γjηj ≥ Γ− γn+1ηn+1|ηn+1 = η


 dFηn+1(η)

=
∫ 1

−1
P




n∑

j=1

γjηj ≥ Γ− γn+1η


 dFηn+1(η) (2.22)

=
∫ 1

0


P




n∑

j=1

γjηj ≥ Γ− γn+1η




+P




n∑

j=1

γjηj ≥ Γ + γn+1η





 dFηn+1(η) (2.23)

≤ max
φ∈[0,γn+1]



P




n∑

j=1

γjηj ≥ Γ− φ




+P




n∑

j=1

γjηj ≥ Γ + φ








∫ 1

0
dFηn+1(η)

=
1

2
max

φ∈[0,γn+1]



P




n∑

j=1

γjηj ≥ Γ− φ


 + P




n∑

j=1

γjηj ≥ Γ + φ








≤ 1

2
max

φ∈[0,γn+1]
Ψn(φ) (2.24)

≤ 1

2
Ψn(1) (2.25)

= (1− µ(Γ, n + 1))Υ(bν(Γ, n + 1)c, n + 1) +

µ(Γ, n + 1)Υ(bν(Γ, n + 1)c+ 1, n + 1), (2.26)

where

Ψn(φ) = (1− µ(Γ− φ, n)Υ(bν(Γ− φ, n)c, n) + µ(Γ− φ, n)Υ(bν(Γ− φ, n)c+ 1, n)

+(1− µ(Γ + φ, n))Υ(bν(Γ + φ, n)c, n) + µ(Γ + φ, n)Υ(bν(Γ + φ, n)c+ 1, n).

Eqs. (2.22) and (2.23) follow from the assumption that ηj’s are independent, sym-

metrically distributed random variables in [−1, 1]. Inequality (2.24) represents the
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induction hypothesis. Eq. (2.26) follows from:

Ψn(1) = (1− µ(Γ− 1, n))Υ(bν(Γ− 1, n)c, n)

+µ(Γ− 1, n)Υ(bν(Γ− 1, n)c+ 1, n)

+(1− µ(Γ + 1, n))Υ(bν(Γ + 1, n)c, n)

+µ(Γ + 1, n)Υ(bν(Γ + 1, n)c+ 1, n) (2.27)

= (1− µ(Γ + 1, n))(Υ(bν(Γ + 1, n)c − 1, n)

+Υ(bν(Γ + 1, n)c, n)) +

µ(Γ + 1, n)(Υ(bν(Γ + 1, n)c, n)

+Υ(bν(Γ + 1, n)c+ 1, n)) (2.28)

= 2{(1− µ(Γ + 1, n))Υ(bν(Γ + 1, n)c, n + 1) +

µ(Γ + 1, n)Υ(bν(Γ + 1, n)c+ 1, n + 1)} (2.29)

= 2{(1− µ(Γ, n + 1))Υ(bν(Γ, n + 1)c, n + 1) +

µ(Γ, n + 1)Υ(bν(Γ, n + 1)c+ 1, n + 1)} (2.30)

Eqs. (2.27) and (2.28) follow from noting that µ(Γ− 1, n) = µ(Γ + 1, n) and bν(Γ−
1, n)c = bν(Γ+1, n)c−1. Eq. (2.29) follows from the claim that Υ(s, n)+Υ(s+1, n) =

2Υ(s + 1, n + 1), which is presented next:

Υ(s, n) + Υ(s + 1, n) =
1

2n





n∑

l=s

(
n

l

)
+

n∑

l=s+1

(
n

l

)



=
1

2n

(
n−1∑

l=s

[(
n

l

)
+

(
n

l + 1

)]
+ 1

)

=
1

2n

(
n−1∑

l=s

(
n + 1

l + 1

)
+ 1

)

=
1

2n

n+1∑

l=s+1

(
n + 1

l

)

= 2Υ(s + 1, n + 1),

and Eq. (2.30) follows from µ(Γ + 1, n) = µ(Γ, n + 1) = (Γ + n + 1)/2.

We are left to show that Ψn(φ) is a monotonically non-decreasing function in
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the domain φ ∈ [0, 1], which implies that for any φ1, φ2 ∈ [0, 1] such that φ1 > φ2,

Ψn(φ1) − Ψn(φ2) ≥ 0. We fix Γ and n. To simplify the notation we use: µ(φ) =

µ(Γ+φ, n) = (Γ+φ+n)/2, ν(φ) = ν(Γ+φ, n). For any choice of φ1 and φ2, we have

ρ = bν−φ1c ≤ bν−φ2c ≤ bνφ2c ≤ bνφ1c ≤ ρ + 1. Therefore, we consider the following

cases:

For ρ = bν−φ1c = bν−φ2c = bνφ2c = bνφ1c,

µ−φ1 − µ−φ2 = −φ1 − φ2

2

µφ1 − µφ2 =
φ1 − φ2

2

Ψn(φ1)−Ψn(φ2) =
φ1 − φ2

2
{Υ(ρ, n)−Υ(ρ + 1, n)−Υ(ρ, n) + Υ(ρ + 1, n)}

= 0.

For ρ = bν−φ1c = bν−φ2c = bνφ2c − 1 = bνφ1c − 1,

µ−φ1 − µ−φ2 = −φ1 − φ2

2

µφ1 − µφ2 =
φ1 − φ2

2

Ψn(φ1)−Ψn(φ2) =
φ1 − φ2

2
{Υ(ρ, n)− 2Υ(ρ + 1, n) + Υ(ρ + 2, n)}

=
φ1 − φ2

2n+1(n + 1)

(
n + 1

ρ + 1

)
(1 + 2ρ− n)

≥ φ1 − φ2

2n+1(n + 1)

(
n + 1

ρ + 1

) (
1 + 2

⌊
1 + n− φ1

2

⌋
− n

)

≥ 0.

For ρ = bν−φ1c = bν−φ2c − 1 = bνφ2c − 1 = bνφ1c − 1,

µ−φ1 − µ−φ2 = −φ1 − φ2

2
+ 1

µφ1 − µφ2 =
φ1 − φ2

2

Ψn(φ1)−Ψn(φ2) = (1− µ−φ1){Υ(ρ, n)− 2Υ(ρ + 1, n) + Υ(ρ + 2, n)}
≥ 0.
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For ρ = bν−φ1c = bν−φ2c = bνφ2c = bνφ1c − 1,

µ−φ1 − µ−φ2 = −φ1 − φ2

2

µφ1 − µφ2 =
φ1 − φ2

2
− 1

Ψn(φ1)−Ψn(φ2) = µφ1{Υ(ρ, n)− 2Υ(ρ + 1, n) + Υ(ρ + 2, n)}
≥ 0.

(b) Let ηj obey a discrete probability distribution P(ηj = 1) = 1/2 and P(ηj = −1) =

1/2, γj = 1, Γ ≥ 1 is integral and Γ+n is even. Let Sn obeys a Binomial distribution

with parameters n and 1/2. Then,

P




n∑

j=1

ηj ≥ Γ


 = P(Sn − (n− Sn) ≥ Γ)

= P(2Sn − n ≥ Γ)

= P(Sn ≥ n + Γ

2
)

=
1

2n

n∑

l=n+Γ
2

(
n

l

)
, (2.31)

which implies that the bound (2.16) is indeed tight.

(c) From Eq. (2.17), we need to find an upper bound for the function 1
2n

(
n
l

)
. From

Stirling’s formula (see Robbins [24]) we obtain for n ≥ 1,

√
2πnn+1/2 exp(−n + 1/(12n + 1)) ≤ n! ≤

√
2πnn+1/2 exp(−n + 1/(12n)),

we can establish for l ∈ {1, . . . , n− 1},

1

2n

(
n

l

)
=

n!

2n(n− l)!l!

≤ 1√
2π

√
n

(n− l)l
exp

(
1

12n
− 1

12(n− l) + 1
− 1

12l + 1

)
×

(
n

2(n− l)

)n(
n− l

l

)l
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≤ 1√
2π

√
n

(n− l)l

(
n

2(n− l)

)n(
n− l

l

)l

(2.32)

=
1√
2π

√
n

(n− l)l
exp

(
n log

(
n

2(n− l)

)
+ l log

(
n− l

l

))
,

where Eq. (2.32) follows from

1

12(n− l) + 1
+

1

12l + 1
≥ 2

(12(n− l) + 1) + (12l + 1)
=

2

12n + 2
>

1

12n
.

For l = 0 and l = n 1
2n

(
n
l

)
= 1

2n .

(d) Bound (2.16) can be written as

B(n, Γi) = (1− µ)P(Sn ≥ bνc) + µP(Sn ≥ bνc+ 1),

where Sn represents a Binomial distribution with parameters n and 1/2. Since P(Sn ≥
bνc+ 1) ≤ P(Sn ≥ bνc), we have

P(Sn ≥ ν + 1) = P(Sn ≥ bνc+ 1) ≤ B(n, Γi) ≤ P(Sn ≥ bνc) = P(Sn ≥ ν),

since Sn is a discrete distribution. For Γi = θ
√

n, where θ is a constant, we have

P

(
Sn − n/2√

n/2
≥ θ +

2√
n

)
≤ B(n, Γi) ≤ P

(
Sn − n/2√

n/2
≥ θ

)
.

By the central limit theorem, we obtain that

lim
n→∞P

(
Sn − n/2√

n/2
≥ θ +

2√
n

)
= lim

n→∞P

(
Sn − n/2√

n/2
≥ θ

)
= 1− Φ(θ),

where Φ(θ) is the cumulative distribution function of a standard normal. Thus, for

Γi = θ
√

n, we have

lim
n→∞B(n, Γi) = 1− Φ(θ).

Remarks:

38



(a) While Bound (2.16) is best possible (Theorem 3(b)), it poses computational

difficulties in evaluating the sum of combination functions for large n. For this reason,

we have calculated Bound (2.18), which is simple to compute and, as we will see, it

is also very tight.

(b) Eq. (2.20) is a formal asymptotic theorem that applies when Γi = θ
√

n. We can

use the De Moivre-Laplace approximation of the Binomial distribution to obtain the

approximation

B(n, Γi) ≈ 1− Φ

(
Γi − 1√

n

)
, (2.33)

that applies, even when Γi does not scale as θ
√

n.

(c) We next compare the bounds: (2.11) (Bound 1), (2.16) (Bound 2), (2.18) (Bound

3) and the approximate bound (2.33) for n = |Ji| = 10, 100, 2000. In Figure 2-1 we

compare Bounds 1 and 2 for n = 10 that clearly show that Bound 2 dominates Bound

1 (in this case there is no need to calculate Bounds 3 and the approximate bound as

n is small). In Figure 2-2 we compare all bounds for n = 100. It is clear that Bound

3, which is simple to compute, is identical to Bound 2, and both Bounds 2 and 3

dominate Bound 1 by an order of magnitude. The approximate bound provides a

reasonable approximation to Bound 2. In Figure 2-3 we compare Bounds 1 and 3 and

the approximate bound for n = 2000. Bound 3 is identical to the approximate bound,

and both dominate Bound 1 by an order of magnitude. In summary, in the remainder

of the chapter, we will use Bound 3, as it is simple to compute, it is a true bound (as

opposed to the approximate bound), and dominates Bound 1. To amplify this point,

Table 2.1 illustrates the choice of Γi as a function of n = |Ji| so that the probability

that a constraint is violated is less than 1%, where we used Bounds 1, 2, 3 and the

approximate bound to evaluate the probability. It is clear that using Bounds 2,3 or

the approximate bound gives essentially identical values of Γi, while using Bound 1

leads to unnecessarily higher values of Γi. For |Ji| = 200, we need to use Γ = 33.9,

i.e., only 17% of the number of uncertain data, to guarantee violation probability of

less than 1%. For constraints with fewer number of uncertain data such as |Ji| = 5,

it is necessary to ensure full protection, which is equivalent to the Soyster’s method.

39



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Γ
i

Bound 1
Bound 2

Figure 2-1: Comparison of probability bounds for n = |Ji| = 10.

Clearly, for constraints with large number of uncertain data, the proposed approach

is capable of delivering less conservative solutions compared to the Soyster’s method.

2.3.1 On the Conservatism of Robust Solutions

We have argued so far that the linear optimization framework of our approach has

some computational advantages over the conic quadratic framework of Ben-Tal and

Nemirovski [7, 6, 4] and El-Ghaoui et al. [11, 12] especially with respect to discrete

optimization problems. Our objective in this section is to provide some insight, but

not conclusive evidence, on the degree of conservatism for both approaches.

Given a constraint a′x ≤ b, with a ∈ [a − â,a + â], the robust counterpart of

Ben-Tal and Nemirovski [7, 6, 4] and El-Ghaoui et al. [11, 12] in its simplest form of

ellipsoidal uncertainty (Formulation (2.2) includes combined interval and ellipsoidal
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Figure 2-2: Comparison of probability bounds for n = |Ji| = 100.

|Ji| Γi from Bound 1 Γi from Bounds 2, 3 Γi from Approx.
5 5 5 5
10 9.6 8.2 8.4
100 30.3 24.3 24.3
200 42.9 33.9 33.9
2000 135.7 105 105

Table 2.1: Choice of Γi as a function of n = |Ji| so that the probability of constraint
violation is less than 1%.
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Figure 2-3: Comparison of probability bounds for n = |Ji| = 2000.
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uncertainty) is:

a′x + Ω||Âx||2 ≤ b,

where Â is a diagonal matrix with elements âi in the diagonal. Ben-Tal and Ne-

mirovski [7] show that under the model of data uncertainty U for a, the probability

that the constraint is violated is bounded above by exp(−Ω2/2).

The robust counterpart of the current approach is

a′x + β(x, Γ) ≤ b,

where we assumed that Γ is integral and

β(x, Γ) = max
S, |S|=Γ

∑

i∈S

âi|xi|.

From Eq. (2.11), the probability that the constraint is violated under the model of

data uncertainty U for a is bounded above by exp(−Γ2/(2n)). Note that we do not

use the stronger bound (2.16) for simplicity.

Let us select Γ = Ω
√

n so that the bounds for the probability of violation are

the same for both approaches. The protection levels are Ω||Âx||2 and β(x, Γ). We

will compare the protection levels both from a worst and an average case point of

view in order to obtain some insight on the degree of conservatism. To simplify the

exposition we define yi = âi|xi|. We also assume without loss of generality that

y1 ≥ y2 ≥ . . . ≥ yn ≥ 0. Then the two protection levels become Ω||y||2 and
∑Γ

i=1 yi.

For Γ = θ
√

n, and y0
1 = . . . = y0

Γ = 1, y0
k = 0 for k ≥ Γ+1, we have

∑Γ
i=1 y0

i = Γ =

θ
√

n, while Ω||y||2 = θ3/2n1/4, i.e., in this example the protection level of the conic

quadratic framework is asymptotically smaller than our framework by a multiplicative

factor of n1/4. This order of the magnitude is in fact worst possible, since

Γ∑

i=1

yi ≤
√

Γ||y||2 =

√
n

Γ
(Ω||y||2),
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which for Γ = θ
√

n leads to

Γ∑

i=1

yi ≤ n1/4

θ1/2
(Ω||y||2).

Moreover, we have

Ω||y||2 ≤ Ω

√√√√
Γ∑

i=1

y2
i + y2

Γ(n− Γ)

≤ Ω

√√√√ Γ∑

i=1

y2
i +

(∑Γ
i=1 yi

Γ

)2

(n− Γ)

≤ Ω

√√√√√
(

Γ∑

i=1

yi

)2

+

(
Γ∑

i=1

yi

)2 (
n− Γ

Γ2

)

=
Γ√
n

Γ∑

i=1

yi

√
1 +

n− Γ

Γ2

=

√
Γ2 + n− Γ

n

Γ∑

i=1

yi.

If we select Γ = θ
√

n, which makes the probability of violation exp(−θ2/2), we obtain

that

Ω||y||2 ≤
√

1 + θ2
Γ∑

i=1

yi.

Thus, in the worst case the protection level of our framework can only be smaller than

the conic quadratic framework by a multiplicative factor of a constant. We conclude

that in the worst case, the protection level for the conic quadratic framework can be

smaller than our framework by a factor of n1/4, while the protection of our framework

can be smaller than the conic quadratic framework by at most a constant.

Let us compare the protection levels on average, however. In order to obtain some

insight let us assume that yi are independently and uniformly distributed in [0, 1].

Simple calculations show that for the case in question (Ω = Γ/
√

n, Γ = θ
√

n)

E[Ω||y||2] = Θ(
√

n), E

[
max

S,|S|=Γ

∑

i∈S

yi

]
= Θ(

√
n),

which implies that on average the two protection levels are of the same order of
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magnitude.

It is admittedly unclear whether it is the worst or the average case we presented

which is more relevant, and thus the previous discussion is inconclusive. It is fair to

say, however, that both approaches allow control of the degree of conservatism by

adjusting the parameters Γ and Ω. Moreover, we think that the ultimate criterion for

comparing the degree of conservatism of these methods will be computation in real

problems.

2.3.2 Local Sensitivity Analysis of the Protection Level

Given the solution of Problem (2.6), it is desirable to estimate the change in the

objective function value with respect to the change of the protection level Γi. In this

way we can assess the price of increasing or decreasing the protection level Γi of any

constraint. Note that when Γi changes, only one parameter in the coefficient matrix

in Problem (2.6) changes. Thus, we can use results from sensitivity analysis (see

Freund [15] for a comprehensive analysis) to understand the effect of changing the

protection level under nondegeneracy assumptions.

Theorem 4 Let z∗ and q∗ be the optimal nondegenerate primal and dual solutions

for the linear optimization problem (2.6) (under nondegeneracy, the primal and dual

optimal solutions are unique). Then, the derivative of the objective function value

with respect to protection level Γi of the ith constraint is

−z∗i q
∗
i (2.34)

where z∗i is the optimal primal variable corresponding to the protection level Γi and

q∗i is the optimal dual variable of the ith constraint.

Proof : We transform Problem (2.6) in standard form,

G(Γi) = maximize c′x

subject to Ax + Γiziei = b

x ≥ 0,
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where ei is a unit vector with an one in the ith position. Let B be the optimal

basis, which is unique under primal and dual nondegeneracy. If the column Γiei

corresponding to the variable zi is not in the basis, then z∗i = 0. In this case,

under dual nondegeneracy all reduced costs associated with the nonbasic variables

are strictly negative, and thus a marginal change in the protection level does not

affect the objective function value. Eq. (2.34) correctly indicates the zero variation.

If the column Γiei corresponding to the variable zi is in the basis, and the protec-

tion level Γi changes by ∆Γi, then B becomes B+∆Γieiei
′. By the Matrix Inversion

Lemma we have:

(B + ∆Γieiei
′)−1 = B−1 − ∆ΓiB

−1eiei
′B−1

1 + ∆Γiei
′B−1ei

.

Under primal and dual nondegeneracy, for small changes ∆Γi, the new solutions

preserve primal and dual feasibility. Therefore, the corresponding change in the

objective function value is,

G(Γi + ∆Γi)−G(Γi) = −∆ΓicB
′B−1eie

′
iB

−1b

1 + ∆Γiei
′B−1ei

= − ∆Γiz
∗
i q
∗
i

1 + ∆Γiei
′B−1ei

,

where cB is the part of the vector c corresponding to the columns in B. Thus,

G′(Γi) = lim
∆Γi→0

G(Γi + ∆Γi)−G(Γi)

∆Γi

= −z∗i q
∗
i .

Remark : An attractive aspect of Eq. (2.34) is its simplicity as it only involves only

the primal optimal solution corresponding to the protection level Γi and the dual

optimal solution corresponding to the ith constraint.

46



2.4 Correlated Data

So far we assumed that the data are independently uncertain. It is possible, however,

that the data are correlated. In particular, we envision that there are few sources of

data uncertainty that affect all the data. More precisely, we assume that the model

of data uncertainty is a follows.

Correlated Model of Data Uncertainty C:

Consider a particular row i of the matrix A and let Ji the set of coefficients in row i

that are subject to uncertainty. Each entry aij, j ∈ Ji is modeled as

ãij = aij +
∑

k∈Ki

η̃ikgkj

and η̃ik are independent and symmetrically distributed random variables in [−1, 1].

Note that under this model, there are only |Ki| sources of data uncertainty that

affect the data in row i. Note that these sources of uncertainty affect all the entries

aij, j ∈ Ji. For example if |Ki| = 1, then all data in a row are affected by a single

random variable. For a concrete example, consider a portfolio construction problem,

in which returns of various assets are predicted from a regression model. In this case,

there are a few sources of uncertainty that affect globally all the assets classes.

Analogously to (2.3), we propose the following robust formulation:

maximize c′x

subject to
∑

j

aijxj + max
{Si∪{ti}|Si⊆Ki,|Si|=bΓic,ti∈Ki\Si}




∑

k∈Si

| ∑

j∈Ji

gkjxj|+ (Γi − bΓic)|
∑

j∈Ji

gtijxj|


 ≤ bi ∀i

l ≤ x ≤ u,

(2.35)
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which can be written as a linear optimization problem as follows:

maximize c′x

subject to
∑

j

aijxj + ziΓi +
∑

k∈Ki

pik ≤ bi ∀i

zi + pik ≥ yik ∀i, k ∈ Ki

−yik ≤ ∑
j∈Ji

gkjxj ≤ yik ∀i, k ∈ Ki

lj ≤ xj ≤ uj ∀j
pik, yik ≥ 0 ∀i, k ∈ Ki

zi ≥ 0 ∀i.

(2.36)

Analogously to Theorem 3, we can show that the probability that the ith constraint

is violated is at most B(|Ki|, Γi) defined in Eq. (2.16).

2.5 Experimental Results

In this section, we present three experiments illustrating our robust solution to prob-

lems with data uncertainty. The first example is a simple portfolio optimization

problem from Ben-Tal and Nemirovski [6], which has data uncertainty in the objec-

tive function. In the last experiment we apply our method to a problem PILOT4

from the well known Net Lib collection to examine the effectiveness of our approach

to real world problems.

2.5.1 A Simple Portfolio Problem

In this section we consider a portfolio construction problem consisting of a set of N

stocks (|N | = n). Stock i has return p̃i which is of course uncertain. The objective

is to determine the fraction xi of wealth invested in stock i, so as to maximize the

portfolio value
∑n

i=1 p̃ixi. We model the uncertain return p̃i as a random variable that

has an arbitrary symmetric distribution in the interval [pi − σi, pi + σi], where pi is

the expected return and σi is a measure of the uncertainty of the return of stock i.

We further assume that the returns p̃i are independent.
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The classical approach in portfolio construction is to use quadratic optimization

and solve the following problem:

maximize
n∑

i=1

pixi − φ
n∑

i=1

σ2
i x

2
i

subject to
n∑

i=1

xi = 1

xi ≥ 0,

where we interpret σi as the standard deviation of the return for stock i, and φ is a

parameter that controls the tradeoff between risk and return. Applying our approach,

we will solve instead the following problem (which can be reformulated as a linear

optimization problem as in Theorem 2.6):

maximize z

subject to z ≤
n∑

i=1

pixi − β(x, Γ)

n∑

i=1

xi = 1

xi ≥ 0.

(2.37)

where

β(x, Γ) = max
{S∪{t}| S⊆N,|S|=bΓc,t∈N\S}





∑

j∈S

σjxj + (Γ− bΓc)σtxt





In this setting Γ is the protection level of the actual portfolio return in the following

sense. Let x∗ be an optimal solution of Problem (2.37) and let z∗ be the optimal

solution value of Problem (2.37). Then, x∗ satisfies that P(p̃′x∗ < z∗) is less than

or equal to than the bound in Eq. (2.18). Ben-Tal and Nemirovski [6] consider the

same portfolio problem using n = 150,

pi = 1.15 + i
0.05

150
, σi =

0.05

450

√
2in(n + 1).

Note that in this experiment, stocks with higher returns are also more risky.
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Optimization Results

Let x∗(Γ) be an optimal solution to Problem (2.37) corresponding to the protection

level Γ. A classical measure of risk is the Standard Deviation,

w(Γ) =
√∑

i∈N

σ2
i (x

∗
i (Γ))2.

We first solved Problem (2.37) for various levels of Γ. Figure 2-4 illustrates the

performance of the robust solution as a function of the protection level Γ, while Figure

2-5 shows the solution itself for various levels of the protection level. The solution

exhibits some interesting “phase transitions” as the protection level increases:

1. For Γ ≤ 17, both the expected return as well as the risk adjusted return (the

objective function value) gradually decrease. Starting with Γ = 0, for which

the solution consists of the stock 150 that has the highest expected return, the

portfolio becomes gradually more diversified putting more weight on stocks with

higher ordinal numbers. This can be seen for example for Γ = 10 in Figure 2-5.

2. For 17 < Γ ≤ 41, the risk adjusted return continues to gradually decrease

as the protection level increases, while the expected return is insensitive to

the protection level. In this range, xi∗ =
∑

i
(1/σi)

σi
, i.e., the portfolio is fully

diversified.

3. For Γ ≥ 41, there is a sudden phase transition (see Figure 2-4). The portfolio

consists of only stock 1, which is the one that has the largest risk adjusted

return pi−σi. This is exactly the solution given by the Soyster method as well.

In this range both the expected and the risk adjusted returns are insensitive to

Γ.

Simulation Results

To examine the quality of the robust solution, we run 10,000 simulations of random

yields and compare robust solutions generated by varying the protection level Γ. As
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Figure 2-4: The return and the objective function value (risk adjusted return) as a
function of the protection level Γ.
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Figure 2-5: The solution of the portfolio for various protection levels.
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Figure 2-6: Simulation study of the probability of underperforming the nominal return
as a function of Γ.

we have discussed, for the worst case simulation, we consider the distribution with p̃i

taking with probability 1/2 the values at pi±σi. In Figure 2-6, we compare the theo-

retical bound in Eq. (2.18) with the fraction of the simulated portfolio returns falling

below the optimal solution, z∗. The empirical results suggest that the theoretical

bound is close to the empirically observed values.

In Table 2.2, we present the results of the simulation indicating the tradeoff be-

tween risk and return. The corresponding plots are also presented in Figures 2-7

and 2-8. As expected as the protection level increases, the expected and maximum

returns decrease, while the minimum returns increase. For instance, with Γ ≥ 15, the

minimum return is maintained above 12% for all simulated portfolios.

This example suggests that our approach captures the tradeoff between risk and

return, very much like the mean variance approach, but does so in a linear framework.

Additionally the robust approach provides both a deterministic guarantee about the
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Γ Prob. violation Exp. Return Min. Return Max. Return w(Γ)
0 0.5325 1.200 0.911 1.489 0.289
5 0.3720 1.184 1.093 1.287 0.025
10 0.2312 1.178 1.108 1.262 0.019
15 0.1265 1.172 1.121 1.238 0.015
20 0.0604 1.168 1.125 1.223 0.013
25 0.0250 1.168 1.125 1.223 0.013
30 0.0089 1.168 1.125 1.223 0.013
35 0.0028 1.168 1.125 1.223 0.013
40 0.0007 1.168 1.125 1.223 0.013
45 0.0002 1.150 1.127 1.174 0.024

Table 2.2: Simulation results given by the robust solution.
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Figure 2-7: Empirical Result of expected, maximum and minimum yield.
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Figure 2-8: Tradeoffs between probability of underperforming and returns.
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|Ji| # constraints |Ji| # constraints
1 21 24 12
11 4 25 4
14 4 26 8
15 4 27 8
16 4 28 4
17 8 29 8
22 4

Table 2.3: Distributions of |Ji| in PILOT4.

return of the portfolio, as well as a probabilistic guarantee that is valid for all sym-

metric distributions.

2.5.2 Robust Solutions of a Real-World Linear Optimization

Problem

As noted by Ben-Tal and Nemirovski [7], optimal solutions of linear optimization

problems may become severely infeasible if the nominal data are slightly perturbed.

In this experiment, we applied our method to the problem PILOT4 from the Net Lib

library of problems. Problem PILOT4 is a linear optimization problem with 411 rows,

1000 columns, 5145 nonzero elements and optimum objective value, −2581.1392613.

It contains coefficients such as 717.562256, -1.078783, -3.053161, -.549569, -22.634094,

-39.874283, which seem unnecessarily precise. In our study, we assume that the

coefficients of this type that participate in the inequalities of the formulation have a

maximum 2% deviation from the corresponding nominal values. Table 2.3 presents

the distributions of the number of uncertain data in the problem. We highlight that

each of the constraints has at most 29 uncertain data.

We solve the robust problem (2.6) and report the results in Table 2.4. In Figure

2-9, we present the efficient frontier of the probability of constraint violation and cost.

We note that the cost of full protection (Soyster’s method) is equal to −2397.5799.

In this example, we observe that relaxing the need of full protection, still leads to a

high increase in the cost unless one is willing to accept unrealistically high probabilities
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Figure 2-9: The tradeoff between cost and robustness.

Optimal Value % Change Prob. violation
-2486.03345 3.68% 0.5
-2450.4324 5.06% 0.421
-2433.4959 5.72% 0.345
-2413.2013 6.51% 0.159
-2403.1495 6.90% 0.0228
-2399.2592 7.05% 0.00135
-2397.8405 7.10% 3.17× 10−5

-2397.5799 7.11% 2.87× 10−7

-2397.5799 7.11% 9.96× 10−8

Table 2.4: The tradeoff between optimal cost and robustness.
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for constraint violation. We attribute this to the fact that there are very few uncertain

coefficients in each constraint (Table 2.3), and thus probabilistic protection is quite

close to deterministic protection.

2.6 Conclusions

The major insights from our analysis are:

1. Our proposed robust methodology provides solutions that ensure deterministic

and probabilistic guarantees that constraints will be satisfied as data change.

2. Under the proposed method, the protection level determines probability bounds

of constraint violation, which do not depend on the solution of the robust model.

3. The method naturally applies to discrete optimization problems which we will

illustrate in Chapter 4.

4. We feel that this is indicative of the fact that the attractiveness of the method

increases as the number of uncertain data increases.
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Chapter 3

Robust Linear Optimization under

General Norms

In this chapter, we study the framework of robust optimization applied to the linear

optimization problem

max
{
c′x | Ãx ≤ b,x ∈ P x

}
, (3.1)

with x ∈ <n×1, Ã ∈ <m×n a matrix of uncertain coefficients belonging to a known

uncertainty set U , c ∈ <n×1 and P x a given set representing the constraints involving

certain coefficients, the robust counterpart of Problem (3.1) is

max
{
c′x | Ãx ≤ b, x ∈ P x, ∀Ã ∈ U

}
. (3.2)

An optimal solution x∗ is robust with respect to any realization of the data, that is,

it satisfies the constraints for any Ã ∈ U .

In Chapter 2, we consider LPs such that each entry ãij of Ã ∈ <m×n is assumed

to take values in the interval [āij −∆ij, āij + ∆ij] and protect for the case that up to

Γi of the uncertain coefficients in constraint i, i = 1, . . . , m, can take their worst-case

values at the same time. The parameter Γi controls the tradeoff between robustness

and optimality. The attractive aspect of the framework is that the robust counterpart

is still an LP.
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In this chapter, we propose a framework for robust modeling of linear optimiza-

tion problems using uncertainty sets described by an arbitrary norm. We explicitly

characterize the robust counterpart as a convex optimization problem that involves

the dual norm of the given norm. Under a Euclidean norm we recover the second

order cone formulation in Ben-Tal and Nemirovski [4, 6], El Ghaoui et al. [11, 12],

while under a particular D-norm we introduce we recover the linear optimization for-

mulation proposed in Chapter 1. In this way, we shed some new light to the nature

and structure of the robust counterpart of an LP.

Structure of the chapter. In Section 3.1, we review from Ben-Tal and Nemirovski

[8] the robust counterpart of a linear optimization problem when the deviations of the

uncertain coefficients lie in a convex set and characterize the robust counterpart of an

LP when the uncertainty set is described by a general norm, as a convex optimization

problem that involves the dual norm of the given norm. In Section 3.2, we show that

by varying the norm used to define the uncertainty set, we recover the second order

cone formulation in Ben-Tal and Nemirovski [4, 6], El Ghaoui et al. [11, 12], while

under a particular D-norm we introduce we recover the linear optimization formu-

lation proposed in Chapter 1. In Section 3.3, we provide guarantees for constraint

violation under general probabilistic models that allow arbitrary dependencies in the

distribution of the uncertain coefficients. The final section contains some concluding

remarks.

Notation

In this chapter, lowercase boldface will be used to denote vectors, while uppercase

boldface will denote matrices. Tilde (ã) will denote uncertain coefficients, while over

line (ā) will be used for nominal values. Ã ∈ <m×n will usually be the matrix of

uncertain coefficients in the linear optimization problem, and vec(Ã) ∈ <(m·n)×1 will

denote the vector obtained by stacking its rows on top of one another.
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3.1 Uncertainty Sets Defined by a Norm

In this section, we review from Ben-Tal and Nemirovski [8] the structure of the robust

counterpart for uncertainty sets defined by general norms. These characterizations

are used to develop the new characterizations in Section 3.

Let S be a closed, bounded convex set and consider an uncertainty set in which

the uncertain coefficients are allowed to vary in such a way that the deviations from

their nominal values fall in a convex set S

U =
{
Ã | (vec(Ã)− vec(Ā)) ∈ S

}
.

The next theorem characterizes the robust counterpart.

Theorem 5 Problem

max c′x

s.t. Ãx ≤ b

x ∈ P x

∀Ã ∈ <m×n such that (vec(Ã)− vec(Ā)) ∈ S

(3.3)

can be formulated as

max c′x

s.t. āix + maxy∈S{y′x} ≤ bi, i = 1, . . . , m

x ∈ P x.

(3.4)

Proof : Clearly since S is compact, for each constraint i, ã′ix ≤ bi for all vec(Ã) −
vec(Ā) ∈ S if and only if

max
{vec(Ã)−vec(Ā)∈S}

{ã′ix} ≤ bi.
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Since

max
{vec(Ã)−vec(Ā)∈S}

{ãi
′x} = max

{vec(Ã)−vec(Ā)∈S}
{
(vec(Ã))′xi

}

= (vec(Ā))′xi + max
{y∈S}

{y′x}

the theorem follows.

We next consider uncertainty sets that are arise from the requirement that the

distance (as measured by an arbitrary norm) between uncertain coefficients and their

nominal values is bounded. Specifically, we consider an uncertainty set U given by:

U =
{
Ã | ||M(vec(Ã)− vec(Ā))|| ≤ ∆

}
, (3.5)

where M is an invertible matrix, ∆ ≥ 0 and || · || a general norm.

Given a norm ||x|| for a real space of vectors x, its dual norm induced over the

dual space of linear functionals s is defined as follows:

Definition 1 (Dual Norm)

||s||∗ .
= max

{||x||≤1}
s′x. (3.6)

The next result is well known (see, for example, Lax [21]).

Proposition 3 (a) The dual norm of the dual norm is the original norm.

(b) The dual norm of the Lp norm

||x||p .
=




n∑

j=1

|xj|p



1/p

, (3.7)

is the Lq norm ||s||q with q = 1 +
1

p− 1
.

The next theorem derives the form of the robust counterpart, when the uncertainty

set is given by Eq. (3.5).
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Theorem 6 Problem

max c′x

s.t. Ãx ≤ b

x ∈ P x

∀Ã ∈ U =
{
Ã | ||M(vec(Ã)− vec(Ā))|| ≤ ∆

}
,

(3.8)

where M is an invertible matrix, can be formulated as

max c′x

s.t. āix + ∆||M ′−1xi||∗ ≤ bi, i = 1, . . . , m

x ∈ P x,

(3.9)

where xi ∈ <(m·n)×1 is a vector that contains x ∈ <n×1 in entries (i−1) ·n+1 through

i · n, and 0 everywhere else.

Proof : Introducing y =
M(vec(Ã)− vec(Ā))

∆
, we can write U = {y | ||y|| ≤ 1}

and obtain

max
{vec(Ã)∈U}

{ãi
′x} = max

{vec(Ã)∈U}
{
(vec(Ã))′xi

}

= max
{y|||y||≤1}

{
(vec(Ā))′xi + ∆(M−1y)′x

}

= ā′x + ∆ max
{y|||y||≤1}

{
y′(M ′−1x)

}
.

By Definition 1, the second term in the last expression is ∆||M ′−1x||∗. The theorem

follows by applying Theorem 5.

In applications, Ben-Tal and Nemirovski [4, 6] and El Ghaoui et al. [11, 12] work

with uncertainty sets given by the Euclidean norm, i.e.,

U =
{
Ã | ||M (vec(Ã)− vec(Ā))||2 ≤ ∆

}
,
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where || · ||2 denotes the Euclidean norm. Since the Euclidean norm is self dual, it

follows that the robust counterpart is a second order cone problem. If the uncertainty

set is described by either || · ||1 or || · ||∞ (these norms are dual to each other), then

the resulting robust counterpart can be formulated as an LP.

3.2 The D-Norm and its Dual

In this section, we show that the robust approach in Chapter 2 follows also from

Theorem 6 by simply considering a different norm, called the D-norm and its dual as

opposed to the Euclidean norm considered in Ben-Tal and Nemirovski and El Ghaoui

et al.. Furthermore, we show worst case bounds on the proximity of the D-norm to

the Euclidean norm.

In Chapter 2, we consider uncertainty sets given by

|||M (vec(Ã)− vec(Ā))|||p ≤ ∆

with p ∈ [1, n] and for y ∈ <n×1

|||y|||p = max
{S∪{t}|S⊆N, |S|≤bpc, t∈N\S}





∑

j∈S

|yj|+ (p− bpc)|yt|


 .

The fact that |||y|||p is indeed a norm, i.e., |||y|||p ≥ 0, |||cy|||p = |c| · |||y|||p, |||y|||p =

0 if and only y = 0, and |||x + y|||p ≤ |||x|||p + |||y|||p follows easily. Specifically, in

the robust framework of Chapter 2, we consider constraint-wise uncertainty sets, M

a diagonal matrix containing the inverses of the ranges of coefficient variation, and

∆ = 1. We next derive the dual norm.

Proposition 4 The dual norm of the norm ||| · |||p is given by

|||s|||∗p = max(||s||∞, ||s||1/p).
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Proof : The norm |||y|||p can be written as

|||y|||p = max
n∑

j=1

ujyj = min pr +
n∑

j=1

tj

s.t.
n∑

j=1

uj ≤ p, 0 ≤ uj ≤ 1 s.t. r + tj ≥ |yj|, tj ≥ 0, j = 1, . . . , n

r ≥ 0,

where the second equality follows by strong duality in linear optimization. Thus,

|||y|||p ≤ 1 if and only if

pr +
n∑

j=1

tj ≤ 1, r + tj ≥ |yj|, tj ≥ 0, j = 1, . . . , n, r ≥ 0 (3.10)

is feasible. The dual norm |||s|||∗p is given by

|||s|||∗p = max
|||y|||p≤1

s′y.

From Eq. (3.10) we have that

|||s|||∗p = max s′y

s.t. pr +
n∑

j=1

tj ≤ 1,

yj − tj − r ≤ 0, j = 1, . . . , n

−yj − tj − r ≤ 0, j = 1, . . . , n

r ≥ 0, tj ≥ 0, j = 1, . . . , n.
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Applying LP duality again we obtain

|||s|||∗p = min θ

s.t. pθ −
n∑

j=1

uj −
n∑

j=1

vj ≥ 0,

θ − uj − vj ≥ 0, j = 1, . . . , n

uj − vj = sj, j = 1, . . . , n

θ ≥ 0, uj, vj ≥ 0, j = 1, . . . , n.

Thus,

|||s|||∗p = min θ

s.t. θ ≥ |sj|, j = 1, . . . , n

θ ≥
n∑

j=1

|sj|/p,

and hence,

|||s|||∗p = max(||s||∞, ||s||1/p).

Combining Theorem 6 and Proposition 4 leads to an LP formulation of the robust

counterpart of the uncertainty set proposed in Chapter 2. We thus observe that The-

orem 6 provides a unified treatment of both the approach of Ben-Tal and Nemirovski

[4, 6], El Ghaoui et al. [11, 12] and the approach in Chapter 2.

3.2.1 Comparison with the Euclidean Norm

Since uncertainty sets in the literature have been described using the Euclidean and

the D-norm it is of interest to understand the proximity between these two norms.

Proposition 5 For every y ∈ <n

min

{
1,

p√
n

}
≤ |||y|||p

‖y‖2

≤
√
bpc+ (p− bpc)2

min

{
1

p
,

1√
n

}
≤ |||y|||∗p

‖y‖2

≤ max

{√
n

p
, 1

}
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Proof : We find a lower bound on |||y|||p/‖y‖2 by solving the following nonlinear

optimization problem:

max
∑

j∈N

x2
j

s.t. |||x|||p = 1.

(3.11)

Let S = {1, . . . , bpc}, t = bpc + 1. We can impose nonnegativity constraints on x

and the constraints that xj ≥ xt, ∀j ∈ S and xj ≤ xt, ∀j ∈ N\S, without affecting

the objective value of the Problem (3.11). Observing that the objective can never

decrease if we let xj = xt, ∀j ∈ N\S, we reduce (3.11) to the following problem:

max
∑

j∈S

x2
j + (n− bpc)x2

t

s.t.
∑

j∈S

xj + (p− bpc)xt = 1

xj ≥ xt ∀j ∈ S

xt ≥ 0.

(3.12)

Since we are maximizing a convex function over a polytope, there exist an extreme

point optimal solution to Problem (3.12). There are |S| + 1 inequality constraints.

Out of those, |S| need to be tight to establish an extreme point solution. The |S|+ 1

extreme points can be found to be:

xk = ek ∀k ∈ S (3.13)

x|S|+1 =
1

p
e, (3.14)

where e is the vector of ones and ek is the unit vector with the kth element equals one,

and the rest equal zero. Clearly, substituting all possible solutions, Problem (3.12)

yields the optimum value of max {1, n/p2}. Taking the square root, the inequality

‖y‖2 ≤ max {1,√n/p} |||y|||p follows.

Similarly, in order to derive an upper bound of |||y|||p/‖y‖2, we solve the following

problem:
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min
∑

j∈N

x2
j

s.t. |||x|||p = 1.

(3.15)

Using the same partition of the solution an before, and observing that the objective

can never increase with xj = 0, ∀j ∈ N\S \{t}, we reduce Problem (3.15) to the

following problem:

min
∑

j∈S

x2
j + x2

t

s.t.
∑

j∈S

xj + (p− bpc)xt = 1

xj ≥ xt ∀j ∈ S

xt ≥ 0.

(3.16)

An optimal solution of Problem (3.16) can be found using the KKT conditions:

xj =





1

bpc+ (p− bpc)2
if j ∈ S,

p− bpc
bpc+ (p− bpc)2

if j = t,

0 otherwise.

Substituting, the optimal objective value of Problem (3.16) is (bpc + (p − bpc)2)−1.

Hence, taking the square root, we establish the inequality

|||y|||p ≤
√
bpc+ (p− bpc)2‖y‖2

.

Since 1 ≤ ‖y‖1
‖y‖2 ≤

√
n, 1√

n
≤ ‖y‖∞

‖y‖2 ≤ 1, and |||y|||∗p = max
{‖y‖1

p
, ‖y‖∞

}
the bounds

follow.
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3.3 Probabilistic Guarantees

In this section, we derive probabilistic guarantees on the feasibility of an optimal

robust solution when the uncertainty set U is described by a general norm || · || with

a dual norm || · ||∗.
We assume that the matrix Ã has an arbitrary (and unknown) distribution, but

with known expected value Ā ∈ <m·n and known covariance matrix Σ ∈ <(m·n)×(m·n).

Note that we allow arbitrary dependencies on Ã. We define M = Σ− 1
2 , which is a

symmetric matrix.

Let x∗ ∈ <n×1 be an optimal solution to Problem (3.9). Recall that x∗i ∈ <(m·n)×1

denotes the vector containing x∗ in entries (i− 1) · n through i · n, and 0 everywhere

else.

Theorem 7 (a) The probability that x∗ satisfies constraint i for any realization of

the uncertain matrix Ã is

P (ã′ix
∗ ≤ bi) = P

(
(vec(Ã))′x∗i ≤ bi

)
≥ 1− 1

1 + ∆2

(
||Σ 1

2 x∗i ||∗
‖Σ 1

2 x∗i ‖2

)2 . (3.17)

(b) If the norm used in U is the D-norm ||| · |||p, then

P (ã′ix
∗ ≤ bi) ≥ 1− 1

1 + ∆2 min
{

1
p2 ,

1
n

} . (3.18)

(c) If the norm used in U is the dual D-norm ||| · |||∗p, then

P (ã′ix
∗ ≤ bi) ≥ 1− 1

1 + ∆2 min
{
1, p2

n

} . (3.19)

(d) If the norm used in U is the Euclidean norm, then

P (ã′ix
∗ ≤ bi) ≥ 1− 1

1 + ∆2
. (3.20)
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Proof : Since an optimal robust solution satisfies

(vec(Ā))′x∗i + ∆||Σ 1
2 x∗i ||∗ ≤ bi,

we obtain that

P
(
(vec(Ã))′x∗i > bi

)
≤ P

(
(vec(Ã))′x∗i ≥ (vec(Ā))′x∗i + ||Σ 1

2 x∗i ||∗
)
. (3.21)

Bertsimas and Popescu [9] show that if S is a convex set, and X̃ is a vector of

random variables with mean X̄ and covariance matrix Σ, then

P
(
X̃ ∈ S

)
≤ 1

1 + d2
, (3.22)

where

d2 = inf
X̃∈S

(
X̃ − X̄

)′
Σ−1

(
X̃ − X̄

)
.

We consider the convex set

Si =
{
vec(Ã) | (vec(Ã))′x∗i > (vec(Ā))′x∗i + ∆||Σ 1

2 x∗i ||∗
}

. In our case,

d2
i = inf

vec(Ã)∈Si

(
vec(Ã)− vec(Ā)

)′
Σ−1

(
vec(Ã)− vec(Ā)

)
.

Applying the KKT conditions for this optimization problem we obtain an optimal

solution

vec(Ā) + ∆


 ||Σ

1
2 x∗i ||∗

‖Σ 1
2 x∗i ‖2




2

Σx∗i ,

with

d2 = ∆2


 ||Σ

1
2 x∗i ||∗

‖Σ 1
2 x∗i ‖2




2

.

Applying (3.22), Eq. (3.17) follows.

(b) If the norm used in the uncertainty set U is the D-norm, then by applying
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Proposition 5, we obtain Eq. (3.18).

(c) If the norm used in the uncertainty set U is the dual D-norm, then by applying

Proposition 5, we obtain Eq. (3.19).

(d) If the norm used in the uncertainty set U is the Euclidean norm, then Eq. (3.20)

follows immediately from Eq. (3.17).

In Chapter 2, we prove stronger bounds under the stronger assumption that the

data in each constraint are independently distributed according to a symmetric distri-

bution. In contrast the bounds in Theorem 7 are weaker, but have wider applicability

as they include arbitrary dependencies.

3.4 Conclusions

We have proposed a framework for robust modeling of linear optimization problems

that unifies models in Ben-Tal and Nemirovski [4, 6], El Ghaoui et al. [11, 12] and

our approach in Chapter 2. The use of the Euclidean norm in the uncertainty set

leads to the formulation of the robust counterpart as an SOCP, while the use of the

D-norm leads to the formulation of the robust counterpart as an LP. More general

norms lead to more involved (although always convex) robust formulations.
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Chapter 4

Robust Conic Optimization

The general optimization problem under parameter uncertainty is as follows:

max f0(x, D̃0)

subject to fi(x, D̃i) ≥ 0, i ∈ I,

x ∈ X,

(4.1)

where fi(x, D̃i), i ∈ {0}∪ I are given functions, X is a given set and D̃i, i ∈ {0}∪ I

is the vector of uncertain coefficients. We define the nominal problem to be Problem

(4.1) when the uncertain coefficients D̃i take values equal to their expected values

D0
i .

In order to address parameter uncertainty Problem (4.1) Ben-Tal and Nemirovski

[4, 6] and independently by El Ghaoui et al. [11, 12] propose to solve the following

robust optimization problem

max min
D0∈U0

f0(x,D0)

s.t. min
Di∈Ui

fi(x,Di) ≥ 0, i ∈ I

x ∈ X,

(4.2)

where Ui, i ∈ {0} ∪ I are given uncertainty sets. The motivation for solving Problem

(4.2) is to find a solution x∗ ∈ X that “immunizes” Problem (4.1) against parameter
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uncertainty. By selecting appropriate uncertainty sets Ui, we can address the tradeoff

between robustness and optimality. In designing such an approach two criteria are

important in our view:

(a) Preserving the computational tractability both theoretically and most impor-

tantly practically of the nominal problem. From a theoretical perspective it is

desirable that if the nominal problem is solvable in polynomial time, then the ro-

bust problem is also polynomially solvable. More specifically, it is desirable that

robust conic optimization problems retain their original structure, i.e., robust

linear optimization problems (LPs) remain LPs, robust second order cone opti-

mization problems (SOCPs) remain SOCPs and robust semidefinite optimization

problems (SDPs) remain SDPs.

(b) Being able to find a guarantee on the probability that the robust solution is

feasible, when the uncertain coefficients obey some natural probability distribu-

tions. This is important, since from these guarantees we can select parameters

that affect the uncertainty sets Ui that allows to control the tradeoff between

robustness and optimality.

Let us examine whether the state of the art in robust optimization has the two

properties mentioned above:

1. Linear Optimization: A uncertain LP constraint is of the form ã′x ≥ b̃, for

which ã and b̃ are subject to uncertainty. When the corresponding uncertainty

set U is a polyhedron, then the robust counterpart is also an LP. When U is

ellipsoidal, then the robust counterpart becomes an SOCP. For linear optimiza-

tion there are probabilistic guarantees for feasibility available under reasonable

probabilistic assumptions on data variation.

2. Quadratic Constrained Quadratic Optimization (QCQP): An uncertain

QCQP constraint is of the form ‖Ãx‖2
2 + b̃

′
x + c̃ ≤ 0, where Ã, b̃ and c̃ are

subject to data uncertainty. The robust counterpart is an SDP if the uncer-

tainty set is a simple ellipsoid, and NP -hard if the set is polyhedral (Ben-Tal

and Nemirovski [4, 6]. To the best of our knowledge, there are no available
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probabilistic bounds.

3. Second Order Cone Optimization (SOCP): An uncertain SOCP con-

straint is of the form ‖Ãx + b̃‖2 ≤ c̃′x + d̃, where Ã, b̃, c̃ and d̃ are subject

to data uncertainty. The robust counterpart is an SDP if Ã, b̃ belong in an

ellipsoidal uncertainty set U1 and c̃, d̃ belong in another ellipsoidal set U2. The

complexity of the problem is unknown, however, if Ã, b̃, c̃, d̃ vary together in

a common ellipsoidal set. To the best of our knowledge, there are no available

probabilistic bounds.

4. Semidefinite Optimization (SDP): An uncertain SDP constraint of the form
∑n

j=1 Ãjxj º B̃, where Ã1, ..., Ãn and B̃ are subject to data uncertainty. The

robust counterpart is NP -hard for ellipsoidal uncertainty sets, while there are

no available probabilistic bounds.

5. Conic Optimization: An uncertain conic optimization constraint of the form
∑n

j=1 Ãjxj ºK B̃, where Ã1, ..., Ãn and B̃ are subject to data uncertainty. The

cone K is closed, pointed and with a nonempty interior. To the best of our

knowledge, there are no results available regarding tractability and probabilistic

guarantees in this case.

Our goal in this chapter is to address (a) and (b) above for robust conic opti-

mization problems. Specifically, we propose a new robust counterpart of Problem

(4.1) that has two properties: (a) It inherits the character of the nominal problem;

for example, robust SOCPs remain SOCPs and robust SDPs remain SDPs; (b) under

reasonable probabilistic assumptions on data variation we establish probabilistic guar-

antees for feasibility that lead to explicit ways for selecting parameters that control

robustness.

The structure of the chapter is as follows. In Section 4.1, we describe the proposed

robust model and in Section 4.2, we show that the robust model inherits the character

of the nominal problem for LPs, QCQPs, SOCPs and SDPs. In Section 4.3, we prove

probabilistic guarantees for feasibility for these classes of problems. In Section 4.4, we
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show tractability and give explicit probabilistic bounds for general conic problems.

Section 4.5 concludes this chapter.

4.1 The Robust Model

In this section, we outline the ingredients of the proposed framework for robust conic

optimization.

4.1.1 Model for Parameter Uncertainty

The model of data uncertainty we consider is

D̃ = D0 +
∑

j∈N

∆Dj z̃j, (4.3)

where D0 is the nominal value of the data, ∆Dj, j ∈ N is a direction of data

perturbation, and z̃j, j ∈ N are independent and identically distributed random

variables with mean equal to zero, so that E[D̃] = D0. The cardinality of N may

be small, modeling situations involving a small collection of primitive independent

uncertainties (for example a factor model in a finance context), or large, potentially as

large as the number of entries in the data. In the former case, the elements of D̃ are

strongly dependent, while in the latter case the elements of D̃ are weakly dependent

or even independent (when |N | is equal to the number of entries in the data).

4.1.2 Uncertainty Sets and Related Norms

In the robust optimization framework of (4.2), we consider the uncertainty set U as

follows:

U =



D | ∃u ∈ <|N | : D = D0 +

∑

j∈N

∆Djuj, ‖u‖ ≤ Ω



 , (4.4)

where Ω is a parameter controling the tradeoff between robustness and optimality

(robustness increases as Ω increases). We restrict the vector norm ‖.‖ we consider by
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imposing the condition:

‖u‖ = ‖u+‖, (4.5)

where u+
j = |uj| ∀j ∈ N . The following norms commonly used in robust optimization

satisfy Eq. (4.5):

• The polynomial norm lk, k = 1, . . . ,∞ (see Ben-Tal and Nemirovski [4, 7] and

Soyster [26]).

• The l2∩ l∞ norm: max{‖u‖2, Ω‖u‖∞}, Ω > 0 (see Ben-Tal and Nemirovski [7]).

This norm is used in modeling bounded and symmetrically distributed random

data.

• The l1 ∩ l∞ norm: max{ 1
Γ
‖u‖1, ‖u‖∞}, Γ > 0. Note that this norm is equal to

l∞ if Γ = |N |, and l1 if Γ = 1. This norm is used in modeling bounded and

symmetrically distributed random data, and has the additional property that

the robust counterpart of an LP is still an LP.

Given a norm ‖.‖ we consider the dual norm ‖.‖∗ defined as

‖s‖∗ = max
‖x‖≤1

s′x.

We next show some basic properties of norms satisfying Eq. (4.5), which we will

subsequently use in our development.

Proposition 6 If the norm ‖ · ‖ satisfies Eq. (4.5), then we have

(a) ‖w‖∗ = ‖w+‖∗.

(b) For all v,w such that v+ ≤ w+, ‖v‖∗ ≤ ‖w‖∗.

(c) For all v,w such that v+ ≤ w+, ‖v‖ ≤ ‖w‖.

Proof :

(a) Let y ∈ arg max‖x‖≤1 w′x, and for every j ∈ N , let zj = |yj| if wj ≥ 0 and

zj = −|yj|, otherwise. Clearly, w′z = (w+)′y+ ≥ w′y. Since, ‖z‖ = ‖z+‖ =
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‖y+‖ = ‖y‖ ≤ 1, and from the optimality of y, we have w′z ≤ w′y, leading to

w′z = (w+)′y+ = w′y. Since ‖w‖ = ‖w+‖, we obtain

‖w‖∗ = max
‖x‖≤1

(w)′x = max
‖x‖≤1

(w+)
′
x+ = max

‖x‖≤1
(w+)

′
x = ‖w+‖∗.

(b) Note that

‖w‖∗ = max
‖x‖≤1

(w+)
′
x+ = max

‖x‖≤1

x≥0

(w+)
′
x.

If v+ ≤ w+,

‖v‖∗ = max
‖x‖≤1

x≥0

(v+)
′
x ≤ max

‖x‖≤1

x≥0

(w+)
′
x = ‖w‖∗.

(c) We apply part (b) to the norm ‖.‖∗. From the self dual property of norms

‖.‖∗∗ = ‖.‖, we obtain part (c).

4.1.3 The Class of Functions f(x, D)

We impose the following restrictions on the class of functions f(x,D) in Problem

(4.1) (we drop index j for clarity):

Assumption 1 The function f(x, D) satisfies:

(a) The function f(x,D) is concave in D for all x ∈ <n.

(b) f(x, kD) = kf(x, D), for all k ≥ 0, D, x ∈ <n.

Note that for functions f(·, ·) satisfying Assumption 1 we have:

f(x,A + B) ≥ 1

2
f(x, 2A) +

1

2
f(x, 2B) = f(x,A) + f(x,B). (4.6)

The restrictions implied by Assumption 1 still allow us to model LPs, QCQPs, SOCPs

and SDPs. Table 4.1 shows the function f(x,D) for these problems. Note that

SOCP(1) models situations that only A and b vary, while SOCP(2) models situations

that A, b, c and d vary. Note that for QCQP, the function, −‖Ax‖2
2−b′x−c does not

satisfy the second assumption. However, by extending the dimension of the problem,

it is well-known that the QCQP constraint is SOCP constraint representable (see
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Type Constraint D f(x,D)
LP a′x ≥ b (a, b) a′x− b

QCQP ‖Ax‖2
2 + b′x + c ≤ 0

(A, b, c, d)
d0 = 1,

∆dj = 0 ∀j ∈ N

d−(b′x+c)
2

−√
‖Ax‖2

2 +
(

d+b′x+c
2

)2

SOCP(1) ‖Ax + b‖2 ≤ c′x + d
(A, b, c, d)
∆cj = 0,

∆dj = 0 ∀j ∈ N
c′x + d− ‖Ax + b‖2

SOCP(2) ‖Ax + b‖2 ≤ c′x + d (A, b, c, d) c′x + d− ‖Ax + b‖2

SDP
∑n

j=1 Aixi −B ∈ Sm
+ (A1, ..., An, B) λmin(

∑n
j=1 Aixi −B)

Table 4.1: The function f(x,D) for different conic optimization problems.

Ben-Tal and Nemirovski [8]). Finally, the SDP constraint,

n∑

j=1

Aixi º B,

is equivalent to

λmin




n∑

j=1

Aixi −B


 ≥ 0,

where λmin(M ) is the function that returns the smallest eigenvalue of the symmetric

matric M .

4.2 The Proposed Robust Framework and

its Tractability

The robust framework (4.2) leads to a significant increase in complexity for conic

optimization problems. For this reason, we propose a more restricted robust problem,

which, as we show in this section, retains the complexity of the nominal problem.

Specifically, under the model of data uncertainty in Eq. (4.3) we propose the

following constraint for addressing the data uncertainty in the constraint f(x, D̃) ≥ 0:

min
(v,w)∈V

f(x, D0) +
∑

j∈N

{
f(x,∆Dj)vj + f(x,−∆Dj)wj

}
≥ 0, (4.7)
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where

V =
{
(v,w) ∈ <|N |×|N |+ | ‖v + w‖ ≤ Ω

}
, (4.8)

and the norm ‖.‖ satisfies Eq. (4.5). We next show that under Assumption 1, Eq.

(4.7) implies the classical definition of robustness:

f(x,D) ≥ 0, ∀D ∈ U , (4.9)

where U is defined in Eq. (4.4). Moreover, if the function f(x,D) is linear in D,

then Eq. (4.7) is equivalent to Eq. (4.9).

Proposition 7 Suppose the given norm ‖.‖ satisfies Eq. (4.5).

(a) If f(x,A + B) = f(x,A) + f(x, B), then x satisfies (4.7) if and only if x

satisfies (4.9).

(b) Under Assumption 1, if x is feasible in Problem (4.7), then x is feasible in

Problem (4.9).

Proof :

(a) Under the linearity assumption, Eq. (4.7) is equivalent to:

f


x,D0 +

∑

j∈N

∆Dj(vj − wj)


 ≥ 0 ∀‖v + w‖ ≤ Ω, v,w ≥ 0, (4.10)

while Eq. (4.9) can be written as:

f


x,D0 +

∑

j∈N

∆Djrj


 ≥ 0 ∀‖r‖ ≤ Ω. (4.11)

Suppose x is infeasible in (4.11), that is, there exists r, ‖r‖ ≤ Ω such that

f


x,D0 +

∑

j∈N

∆Djrj


 < 0.

For all j ∈ N , let vj = max{rj, 0} and wj = −min{rj, 0}. Clearly, r = v −w and

since vj + wj = |rj|, we have from Eq. (4.5) that ‖v + w‖ = ‖r‖ ≤ Ω. Hence, x is
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infeasible in (4.10) as well.

Conversely, suppose x is infeasible in (4.10), then there exist v,w ≥ 0 and ‖v+w‖ ≤
Ω such that

f


x,D0 +

∑

j∈N

∆Dj(vj − wj)


 < 0.

For all j ∈ N , we let rj = vj − wj and we observe that |rj| ≤ vj + wj. Therefore, for

norms satisfying Eq. (4.5) we have

‖r‖ = ‖r+‖ ≤ ‖v + w‖ ≤ Ω,

and hence, x is infeasible in (4.11).

(b) Suppose x is feasible in Problem (4.7), i.e.,

f(x,D0)+
∑

j∈N

{
f(x,∆Dj)vj + f(x,−∆Dj)wj

}
≥ 0, ∀‖v+w‖ ≤ Ω, v, w ≥ 0.

From Eq. (4.6) and Assumption 1(b)

0 ≤ f(x, D0)+
∑

j∈N

{
f(x,∆Dj)vj + f(x,−∆Dj)wj

}
≤ f(x, D0+

∑

j∈N

∆Dj(vj−wj))

for all ‖v + w‖ ≤ Ω, v,w ≥ 0. In the proof of part (a) we established that

f(x,D0 +
∑

j∈N

∆Djrj) ≥ 0 ∀‖r‖ ≤ Ω

is equivalent to

f(x,D0 +
∑

j∈N

∆Dj(vj − wj)) ≥ 0 ∀‖v + w‖ ≤ Ω, v, w ≥ 0,

and thus x satisfies (4.9).

Note that there are other proposals that relax the classical definition of robustness

(4.9) (see for instance Ben-Tal and Nemirovski [5]) and lead to tractable solutions.

However, our particular proposal in Eq. (4.7) combines tractability with the ability
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to derive probabilistic guarantees that the solution of Eq. (4.7) would remain feasible

under reasonable assumptions on data variation.

4.2.1 Tractability of the Proposed Framework

Unlike the classical definition of robustness (4.9), which can not be represented in

a tractable manner, we next show that Eq. (4.7) can be represented in a tractable

manner.

Theorem 8 For a norm satisfying Eq. (4.5) and a function f(x,D) satisfying As-

sumption 1

(a) Constraint (4.7) is equivalent to

f(x,D0) ≥ Ω‖s‖∗, (4.12)

where

sj = max{−f(x,∆Dj),−f(x,−∆Dj)}, ∀j ∈ N.

(b) Eq. (4.12) can be written as:

f(x,D0) ≥ Ωy

f(x,∆Dj) + tj ≥ 0 ∀j ∈ N

f(x,−∆Dj) + tj ≥ 0 ∀j ∈ N

‖t‖∗ ≤ y

y ∈ <, t ∈ <|N |.

(4.13)

Proof :

(a) We introduce the following problems:

z1 = max a′v + b′w

s.t. ‖v + w‖ ≤ Ω

v,w ≥ 0,

(4.14)
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and

z2 = max
∑

j∈N

max{aj, bj, 0}rj

s.t. ‖r‖ ≤ Ω,

(4.15)

and show that z1 = z2. Suppose r∗ is an optimal solution to (4.15). For all j ∈ N ,

let

vj = wj = 0 if max{aj, bj} ≤ 0

vj = |r∗j |, wj = 0 if aj ≥ bj, aj > 0

wj = |r∗j |, vj = 0 if bj > aj, bj > 0.

Observe that ajvj + bjwj ≥ max{aj, bj, 0}r∗j and wj + vj ≤ |r∗j | ∀j ∈ N . From

Proposition 6(c) we have ‖v +w‖ ≤ ‖r∗‖ ≤ Ω, and thus v, w are feasible in Problem

(4.14), leading to

z1 ≥
∑

j∈N

(ajvj + bjwj) ≥
∑

j∈N

max{aj, bj, 0}r∗j = z2.

Conversely, let v∗, w∗ be an optimal solution to Problem (4.14). Let r = v∗ + w∗.

Clearly ‖r‖ ≤ Ω and observe that

rj max{aj, bj, 0} ≥ ajv
∗
j + bjw

∗
j ∀j ∈ N.

Therefore, we have

z2 ≥
∑

j∈N

max{aj, bj, 0}rj ≥
∑

j∈N

(ajv
∗
j + bjw

∗
j ) = z1,

leading to z1 = z2. We next observe that

min
(v,w)∈V

∑

j∈N

{
f(x,∆Dj)vj + f(x,−∆Dj)wj

}

= − max
(v,w)∈V

∑

j∈N

{
−f(x,∆Dj)vj − f(x,−∆Dj)wj

}

= − max
{‖r‖≤Ω}

∑

j∈N

{
max{−f(x,∆Dj),−f(x,−∆Dj), 0}rj

}
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and using the definition of dual norm, ‖s‖∗ = max‖x‖≤1 s′x, we obtain Ω‖s‖∗ =

max‖x‖≤Ω s′x, i.e., Eq. (4.12) follows. Note that

sj = max{−f(x,∆Dj),−f(x,−∆Dj)} ≥ 0,

since otherwise there exists an x such that sj < 0, i.e.,

f(x,∆Dj) > 0 and f(x,−∆Dj) > 0.

From Assumption 1(b) f(x,0) = 0, contradicting the concavity of f(x, D) (Assump-

tion 1(a)).

Suppose that x is feasible in Problem (4.12). Defining t = s and y = ‖s‖∗, we

can easily check that (x, t, y) are feasible in Problem (4.13). Conversely, suppose, x

is infeasible in (4.12), that is,

f(x, D0) < Ω‖s‖∗.

Since, tj ≥ sj = max{−f(x,∆Dj),−f(x,−∆Dj)} ≥ 0 we apply Proposition 6(b)

to obtain ‖t‖∗ ≥ ‖s‖∗. Thus,

f(x,D0) < Ω‖s‖∗ ≤ Ω‖t‖∗ ≤ Ωy,

i.e., x is infeasible in (4.13).

(b) It is immediate that Eq. (4.12) can be written in the form of Eq. (4.13).

In Table 4.2, we list the common choices of norms, the representation of their dual

norms and the corresponding references.

4.2.2 Representation of max{−f(x,∆D),−f(x,−∆D)}

The function g(x,∆Dj) = max{−f(x,∆Dj),−f(x,−∆Dj)} naturally arises in

Theorem 8. Recall that a norm satisfies ‖A‖ ≥ 0, ‖kA‖ = |k| · ‖A‖, ‖A + B‖ ≤
‖A‖ + ‖B‖, and ‖A‖ = 0, implies that A = 0. We show next that the function

84



Norms ‖u‖ ‖t‖∗ ≤ y Ref.
l2 ‖u‖2 ‖t‖2 ≤ y [7]
l1 ‖u‖1 tj ≤ y, ∀j ∈ N Chap. 3
l∞ ‖u‖∞ ∑

j∈N tj ≤ y Chap. 3

lp, p ≥ 1 ‖u‖p

(∑
j∈N t

q
q−1

j

) q−1
q ≤ y Chap. 3

l2 ∩ l∞ norm max{‖u‖2, Ω‖u‖∞}
∃s ∈ <|N | :
‖s− t‖2 + 1

Ω

∑
j∈N sj ≤ y

s ≥ 0
[7]

l1 ∩ l∞ norm max{ 1
Γ
‖u‖1, ‖u‖∞}

∃s,∈ <|N |, p ∈ < :
Γp +

∑
j∈N sj ≤ y

sj + p ≥ tj,∀j ∈ N
p ≥ 0, s ≥ 0

Chap. 3

Table 4.2: Representation of the dual norm for t ≥ 0.

g(x,A) satisfies all these properties except the last one, i.e., it behaves almost like a

norm.

Proposition 8 Under Assumption 1, the function

g(x, A) = max{−f(x, A),−f(x,−A)}

satisfies the following properties:

(a) g(x, A) ≥ 0,

(b) g(x, kA) = |k|g(x,A),

(c) g(x, A + B) ≤ g(x, A) + g(x, B).

Proof :

(a) Suppose there exists x such that g(x,A) < 0, i.e., f(x,A) > 0 and f(x,−A) > 0.

From Assumption 1(b) f(x,0) = 0, contradicting the concavity of f(x,A) (Assump-

tion 1(a)).

85



(b) For k ≥ 0, we apply Assumption 1(b) and obtain

g(x, kA) = max{−f(x, kA),−f(x,−kA)}
= k max{−f(x,A),−f(x,−A)}
= kg(x, A).

Similarly, if k < 0 we have

g(x, kA) = max{−f(x,−k(−A)),−f(x,−k(A))} = −kg(x,A).

(c) Using Eq. (4.6) we obtain

g(x, A + B) = g(x,
1

2
(2A + 2B)) ≤ 1

2
g(x, 2A) +

1

2
g(x, 2B) = g(x,A) + g(x,B).

Note that the function g(x, A) does not necessarily define a norm for A, since

g(x,A) = 0 does not necessarily imply A = 0. However, for LP, QCQP. SOCP(1),

SOCP(2) and SDP, and specific direction of data perturbation, ∆Dj, we can map

g(x,∆Dj) to a function of a norm such that

g(x,∆Dj) = ‖H(x,∆Dj)‖g,

where H(x,∆Dj) is linear in ∆Dj and defined as follows (see also the summary in

Table 4.3):

(a) LP:

f(x,D) = a′x− b, where D = (a, b) and ∆Dj = (∆aj, ∆bj). Hence,

g(x,∆Dj) = max{−(∆aj)′x + ∆bj, (∆aj)′x−∆bj} = |(∆aj)′x−∆bj|.

(b) QCQP:

f(x,D) = (d− (b′x + c))/2−
√
‖Ax‖2

2 + ((d + b′x + c)/2)
2
, where
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D = (A, b, c, d) and ∆Dj = (∆Aj,∆bj, ∆cj, 0). Therefore,

g(x,∆Dj) = max





(∆bj
)′x+∆cj

2
+

√
‖∆Ajx‖2

2 +
(

(∆bj
)′x+∆cj

2

)2

,

− (∆bj
)′x+∆cj

2
+

√
‖∆Ajx‖2

2 +
(

(∆bj
)′x+∆cj

2

)2




=
∣∣∣∣
(∆bj

)′x+∆cj

2

∣∣∣∣ +

√
‖∆Ajx‖2

2 +
(

(∆bj
)′x+∆cj

2

)2

.

(c) SOCP(1):

f(x,D) = c′x + d− ‖Ax + b‖2
2, where D = (A, b, c, d) and

∆Dj = (∆Aj,∆bj,0, 0). Therefore,

g(x,∆Dj) = ‖∆Ajx + ∆bj‖2.

(d) SOCP(2):

f(x,D) = c′x + d− ‖Ax + b‖2
2, where D = (A, b, c, d) and

∆Dj = (∆Aj,∆bj,∆cj, dj). Therefore,

g(x,∆Dj) = max
{
−(∆cj)′x−∆dj + ‖∆Ajx + ∆bj‖2,

(∆cj)′x + ∆dj + ‖∆Ajx + ∆bj‖2

}

= |(∆cj)′x + ∆dj|+ ‖∆Ajx + ∆bj‖2.

(e) SDP:

f(x,D) = λmin(
∑n

j=1 Aixi − B), where D = (A1, ..., An,B) and ∆Dj =

(∆Aj
1, ...,∆Aj

n,∆Bj). Therefore,

g(x,∆Dj) = max
{
−λmin(

∑n
j=1 ∆Aj

ixi −∆Bj),

−λmin

(
−

(∑n
j=1 ∆Aj

ixi −mb∆Bj
))}

= max
{
λmax

(
−

(∑n
j=1 ∆Aj

ixi −∆Bj
))

,

λmax(
∑n

j=1 ∆Aj
ixi −∆Bj)

}

=

∥∥∥∥∥∥

n∑

j=1

∆Aj
ixi −∆Bj

∥∥∥∥∥∥
2

.
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Type r = H(x,∆Dj) g(x,∆Dj) = ‖r‖g

LP r = (∆aj)′x−∆bj |r|
QCQP

r =
[
r1

r0

]
, r1 =

[
∆Ajx

((∆bj)′x+∆cj)/2

]
,

r0 = ((∆b
j)′x + ∆cj)/2

‖r1‖2 + |r0|
SOCP(1) r = ∆Ajx + ∆bj ‖r‖2

SOCP(2)
r =

[
r1

r0

]
, r1 = ∆Ajx + ∆bj,

r0 = (∆cj)′x + ∆dj
‖r1‖2 + |r0|

SDP R =
∑n

i=1 ∆Aj
ixi −∆Bj ‖R‖2

Table 4.3: The functionH(x,∆Dj) and the norm ‖·‖g for different conic optimization
problems.

4.2.3 The Nature and Size of the Robust Problem

In this section, we discuss the nature and size of the proposed robust conic problem.

Note that in the proposed robust model (4.13) for every uncertain conic constraint

f(x, D̃) we add at most |N | + 1 new variables, 2|N | conic constraints of the same

nature as the nominal problem and an additional constraint involving the dual norm.

The nature of this constraint depends on the norm we use to describe the uncertainty

set U defined in Eq. (4.4).

When all the data entries of the problem have independent random perturbations,

by exploiting sparsity of the additional conic constraints, we can further reduce the

size of the robust model. Essentially, we can express the model of uncertainty in the

form of Eq. (4.3), for which z̃j is the independent random variable associated with the

jth data element, and ∆Dj contains mostly zeros except at the entries corresponding

to the data element. As an illustration, consider the following semidefinite constraint,




a1 a2

a2 a3


 x1 +




a4 a5

a5 a6


 x2 º




a7 a8

a8 a9


 ,

such that each element in the data d = (a1, . . . , a9)
′ has an independent random per-

turbation, that is ãi = a0
i +∆aiz̃i and z̃i are independently distributed. Equivalently,

in Eq. (4.3) we have

d̃ = d0 +
9∑

i=1

∆diz̃i,
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where d0 = (a0
1, . . . , a

0
9)
′ and ∆di is a vector with ∆ai at the ith entry and zero,

otherwise. Hence, we can simplify the conic constraint in Eq. (4.13), f(x,∆d1)+t1 ≥
0 or

λmin







∆a1 0

0 0


 x1 +




0 0

0 0


 x2 −




0 0

0 0





 + t1 ≥ 0,

as t1 ≥ −min{∆a1x1, 0} or equivalently as linear constraints t1 ≥ −∆a1x1, t1 ≥ 0. In

this section, we show that if each data entry of the model has independent uncertainty,

we can substantially reduce the size of the robust formulation (4.13). We focus on

the equivalent representation (4.12),

f(x,D0) ≥ Ωy, ‖s‖∗ ≤ y,

where, sj = max{−f(x,∆Dj),−f(x,−∆Dj)} = g(x,∆Dj), for j ∈ N .

In a more general setting, we will show that if each data entry of the model has in-

dependent uncertainty, we can substantially reduce the size of the robust formulation

of (4.13). We will focus on the equivalent representation (4.12),

f(x,D0) ≥ Ωy, ‖s‖∗ ≤ y, y ∈ <

where, sj = max{−f(x,∆Dj),−f(x,−∆Dj)} = g(x,∆Dj), for j ∈ N .

Proposition 9 For LP, QCQP, SOCP(1), SOCP(2) and SDP, we can express sj =

|∆djxi(j)| for which ∆dj, j ∈ N are constants and the function, i : N → {0, . . . , n}
maps j ∈ N to the index of the corresponding variable. We define x0 = 1 to handle

the case when sj is not variable dependent.

Proof :

In the following exposition, we associate the jth data entry, j ∈ N with an iid random

variable z̃j. For the function of interest, the corresponding expression of g(x,∆Dj)

is shown in Table (4.3).

(a) LP:
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Uncertain LP data is represented as D̃ = (ã, b̃), where

ãj = a0
j + ∆aj z̃j ∀j = {1, . . . , n}

b̃ = b0 + ∆bz̃n+1.

We have |N | = n + 1 and

sj = |∆ajxj| ∀j = {1, . . . , n}
sn+1 = |∆b|

(b) QCQP:

Uncertain QCQP data is represented as D̃ = (Ã, b̃, c̃, 1), where

Ãkj = A0
kj + ∆Akj z̃n(k−1)+j ∀j ∈ {1, . . . , n}, k = {1, . . . , l},

b̃j = b0
j + ∆bj z̃nl+j ∀j ∈ {1, . . . , n},

c̃ = c0 + ∆cz̃n(l+1)+1.

We have |N | = n(l + 1) + 1 and

sn(k−1)+j = |∆Akjxj| ∀j ∈ {1, . . . , n}, k = {1, . . . , l},
snl+j = |∆bjxj| ∀j ∈ {1, . . . , n},
sn(l+1)+1 = |∆c|.

(c) SOCP(1)/SOCP(2):

Uncertain SOCP(2) data is represented as D̃ = (Ã, b̃, c̃, d), where

Ãkj = A0
kj + ∆Akj z̃n(k−1)+j ∀j ∈ {1, . . . , n}, k = {1, . . . , l},

b̃k = b0
k + ∆bkz̃nl+k ∀k ∈ {1, . . . , l},

c̃j = c0
j + ∆cj z̃(n+1)l+j ∀j ∈ {1, . . . , n},

d̃ = d0 + ∆dz̃(n+1)l+n+1.
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We have |N | = (n + 1)l + n + 1 and

sn(k−1)+j = |∆Akjxj| ∀j ∈ {1, . . . , n}, k = {1, . . . , l},
snl+k = |∆bk| ∀j ∈ {1, . . . , l},
s(n+1)l+j = |∆cjxj| ∀j ∈ {1, . . . , n},
s(n+1)l+n+1 = |∆d|.

Observe that SOCP(1) is a special case of SOCP(2) for which |N | = (n+1)l, that is,

sj = 0 for all j > (n + 1)l.

(d) SDP:

Uncertain SDP data for is represented as D̃ = (Ã1, . . . , Ãn, B̃), where

Ãi = A0
i +

∑m
k=1

∑k
j=1[∆Ai]jkIjkz̃p(i,j,k) ∀i ∈ {1, . . . , n},

B̃ = B0 +
∑n

k=1

∑k
j=1[∆B]jkIjkz̃p(n+1,j,k),

where the index function p(i, j, k) = (i − 1)(m(m + 1)/2) + k(k − 1)/2 + j, and the

symmetric matrix Ijk ∈ <m×m satisfies,

Ijk =





(eje
′
k + eke

′
j) if j 6= k

eke
′
k if k = j

,

ek being a unit vector with zero entries and 1 at the kth entry. Hence, |N | =

(n + 1)(m(m + 1))/2. Note that if j = k, it is obvious that ‖Ijk‖2 = 1. Otherwise,

observe that Ijk has rank 2 and 1√
2
(ej + ek) and 1√

2
(ej − ek) are two eigenvectors of

Ijk with corresponding eigenvalues 1 and −1. Hence, ‖Ijk‖2 = 1 for all valid indices

j and k. Therefore, we have

sp(i,j,k) = |[∆Ai]jkxi| ∀i ∈ {1, . . . , n}, j, k ∈ {1, . . . , m}, j ≤ k

sp(n+1,j,k) = |[∆B]jk| ∀j, k ∈ {1, . . . ,m}, j ≤ k

.
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We define the set J(l) = {j : i(j) = l, j ∈ N} for l ∈ {0, . . . , n}. Following from

Table (4.2), we have the following robust formulations under the different norms in

the restriction set V of (4.8).

(a) l∞-norm

The constraint ‖s‖∗ ≤ y for l∞-norm is equivalent to

∑

j∈N

|∆djxi(j)| ≤ y ⇔
n∑

l=0


 ∑

j∈J(l)

|∆dj|

 |xl| ≤ y

or ∑
j∈J(0) |∆dj|+ ∑n

l=1

(∑
j∈J(l) |∆dj|

)
tl ≤ y

t ≥ x, t ≥ −x

t ∈ <n.

We introduce additional n + 1 variables, including the variable y and 2n + 1 linear

constraints to the nominal problem.

(b) l1-norm

The constraint ‖s‖∗ ≤ y for l1-norm is equivalent to

max
j∈N

|∆djxi(j)| ≤ y ⇔ max
l∈{0,...,n}

(
max
j∈J(l)

|∆dj|
)
|xl| ≤ y

or

maxj∈J(0) |∆dj| ≤ y

maxj∈J(l) |∆dj|xl ≤ y ∀l ∈ {1, . . . , n}
−maxj∈J(l) |∆dj|xl ≤ y ∀l ∈ {1, . . . , n}.

We introduce an additional variable and 2n + 1 linear constraints to the nominal

problem.

(c) l1 ∩ l∞-norm
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The constraint ‖s‖∗ ≤ y for l1 ∩ l∞-norm is equivalent to

tj ≥ |∆dj|xi(j) ∀j ∈ N

tj ≥ −|∆dj|xi(j) ∀j ∈ N

Γp +
∑

j∈N rj ≤ y

rj + p ≥ tj,∀j ∈ N

r ∈ <|N |+ , t ∈ <|N |, p ∈ <+,

leading to an additional of 2|N |+2 variables and 4|N |+2 linear constraints, including

non-negative constraints, to the nominal problem.

(d) l2-norm

The constraint ‖s‖∗ ≤ y for l2-norm is equivalent to

√∑

j∈N

(∆djxi(j))2 ≤ y ⇔
√√√√√

∑

j∈J(0)

|∆dj|+
n∑

l=1


 ∑

j∈J(l)

∆d2
j


 x2

l ≤ y.

We only introduce an additional variable, y and a second order cone (SOC) constraint

to the nominal problem.

(e) l2 ∩ l∞-norm

The constraint ‖s‖∗ ≤ y for l2-norm is equivalent to

tj ≥ |∆dj|xi(j) ∀j ∈ N

tj ≥ −|∆dj|xi(j) ∀j ∈ N

‖r − t‖2 + 1
Ω

∑
j∈N rj ≤ y

t ∈ <|N |, r ∈ <|N |+ .

We introduce additional 2|N | + 1 variables, one SOCP constraint and 3|N | linear

constraints, including non-negative constraints, to the nominal problem.

In Table 4.4 we summarize the number of variables and constraints and their

nature when the nominal problem is an LP, QCQP, SOCP (1) (only A, b vary),

SOCP (2) (A, b, c, d vary) and SDP for various choices of norms. Note that for the
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l∞ l∞ l1 ∩ l∞ l2 l2 ∩ l∞
Num. Variables n + 1 1 2|N |+ 2 1 2|N |+ 1

Num. Linear Const. 2n + 1 2n + 1 4|N |+ 2 0 3|N |
Num. SOC Const. 0 0 0 1 1

LP LP LP LP SOCP SOCP
QCQP SOCP SOCP SOCP SOCP SOCP

SOCP(1) SOCP SOCP SOCP SOCP SOCP
SOCP(2) SOCP SOCP SOCP SOCP SOCP

SDP SDP SDP SDP SDP SDP

Table 4.4: Size increase and nature of robust formulation when each data entry has
independent uncertainty.

cases of the l1, l∞ and l2 norms, we are able to collate terms so that the number

of variables and constraints introduced is minimal. Furthermore, using the l2 norm

results in only one additional variable, one additional SOCP type of constraint, while

maintaining the nature of the original conic optimization problem of SOCP and SDP.

The use of other norms comes at the expense of more variables and constraints of the

order of |N |, which is not very appealing for large problems.

4.3 Probabilistic Guarantees

In this section, we derive a guarantee on the probability that the robust solution is

feasible, when the uncertain coefficients obey some natural probability distributions.

An important component of our analysis is the relation among different norms. We

denote by 〈 , 〉 the inner product on a vector space, <m or the space of m by m

symmetric matrices, Sm×m. The inner product induces a norm
√
〈x,x〉. For a vector

space, the natural inner product is the Euclidian inner product, 〈x, y〉 = x′y, and

the induced norm is the Euclidian norm ‖x‖2. For the space of symmetric matrices,

the natural inner product is the trace product or 〈X,Y 〉 = trace(XY ) and the

corresponding induced norm is the Frobenius norm, ‖X‖F (see Renegar [23]).

We analyze the relation of the inner product norm
√
〈x, x〉 with the norm ‖x‖g

defined in Table 4.3 for the conic optimization problems we consider. Since ‖x‖g and
√
〈x,x〉 are valid norms in a finite dimensional space, there exist finite α1, α2 > 0
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such that
1

α1

‖r‖g ≤
√
〈r, r〉 ≤ α2‖r‖g, (4.16)

for all r in the relevant space.

Proposition 10 For the norm ‖ · ‖g defined in Table 4.3 for the conic optimization

problems we consider, Eq. (4.16) holds with the following parameters:

(a) LP: α1 = α2 = 1.

(b) QCQP, SOCP(2): α1 =
√

2 and α2 = 1.

(c) SOCP(1): α1 = α2 = 1.

(d) SDP: α1 = 1 and α2 =
√

m.

Proof :

(a) LP: For r ∈ < and ‖r‖g = |r|, leading to Eq. (4.16) with α1 = α2 = 1.

(b) QCQP, SOCP(2): For r = (r1, r0)
′ ∈ <l+1, let a = ‖r1‖2 and b = |r0|. Since

a, b > 0, using the inequality a+ b ≤ √
2
√

a2 + b2 and
√

a2 + b2 ≤ a+ b, we have

1√
2

(‖r1‖2 + |r0|) ≤
√

r′r = ‖r‖2 ≤ ‖r1‖2 + |r0|

leading to Eq. (4.16) with α1 =
√

2 and α2 = 1.

(c) SOCP(1): For all r, Eq. (4.16) holds with α1 = α2 = 1.

(d) Let λj, j = 1, . . . ,m be the eigenvalues of the matrix A. Since ‖A‖F =
√

trace(A2) =
√∑

j λ2
j and ‖A‖2 = maxj |λj|, we have

‖A‖2 ≤ ‖A‖F ≤
√

m‖A‖2,

leading to Eq. (4.16) with α1 = 1 and α2 =
√

m.

The central result of the section is as follows.

Theorem 9 (a) Under the model of uncertainty in Eq. (4.3), and given a feasible
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solution x in Eq. (4.7), then

P(f(x, D̃) < 0) ≤ P


‖ ∑

j∈N

rj z̃j‖g > Ω‖s‖∗

 ,

where

rj = H(x,∆Dj), sj = ‖rj‖g, j ∈ N.

(b) When we use the l2-norm in Eq. (4.8), i.e., ‖s‖∗ = ‖s‖2, and under the assump-

tion that zj are normally and independently distributed with mean zero and variance

one, i.e., z̃ ∼ N (0, I), then

P




∥∥∥∥∥∥
∑

j∈N

rj z̃j

∥∥∥∥∥∥
g

> Ω
√∑

j∈N

‖rj‖2
g,


 ≤

√
eΩ

α
exp

(
− Ω2

2α2

)
, (4.17)

where α = α1α2, α1, α2 derived in Proposition 10 and Ω > α.

Proof :

(a) We have

P(f(x, D̃) < 0)

≤ P


f(x,D0) + f(x,

∑

j∈N

∆Dj z̃j) < 0


 (4.18)

≤ P


f(x,

∑

j∈N

∆Dj z̃j) < −Ω‖s‖∗

 (4.19)

≤ P


min


f(x,

∑

j∈N

∆Dj z̃j), f(x,− ∑

j∈N

∆Dj z̃j)


 < −Ω‖s‖∗




= P


g(x,

∑

j∈N

∆Dj z̃j) > Ω‖s‖∗



= P


‖H(x,

∑

j∈N

∆Dj z̃j)‖g > Ω‖s‖∗



= P


‖ ∑

j∈N

H(x,∆Dj)z̃j‖g > Ω‖s‖∗

 (4.20)

= P


‖ ∑

j∈N

rj z̃j‖g > Ω‖s‖∗

 ,
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where inequality (4.18) follows from (4.6), inequality (4.19) follows from (4.12), sj =

‖H(x,∆Dj)‖g and Eq. (4.20) follows from (4.12) H(x, D) being linear in D.

(b) Using, the relations ‖r‖g ≤ α1

√
〈r, r〉 and ‖r‖g ≥ 1

α2

√
〈r, r〉 from Proposition

10, we obtain

P




∥∥∥∥∥∥
∑

j∈N

rj z̃j

∥∥∥∥∥∥
g

> Ω
√∑

j∈N

‖rj‖2
g




= P




∥∥∥∥∥∥
∑

j∈N

rj z̃j

∥∥∥∥∥∥

2

g

> Ω2
∑

j∈N

‖rj‖2
g




≤ P


α2

1α
2
2

〈∑

j∈N

rj z̃j,
∑

k∈N

rkz̃k

〉
> Ω2

∑

j∈N

〈rj, rj〉



= P


α2

∑

j∈N

∑

k∈N

〈rj, rk〉z̃j z̃k > Ω2
∑

j∈N

〈rj, rj〉



= P


α2z̃′Rz̃ > Ω2

∑

j∈N

〈rj, rj〉

 ,

where Rjk = 〈rj, rk〉. Clearly, R is a symmetric positive semidefinite matrix and can

be spectrally decomposed such that R = Q′ΛQ, where Λ is the diagonal matrix of

the eigenvalues and Q is the corresponding orthonormal matrix. Let ỹ = Qz̃ so that

z̃′Rz̃ = ỹ′Λỹ =
∑

j∈N λj ỹ
2
j . Since z̃ ∼ N (0, I), we also have ỹ ∼ N (0, I), that is,

ỹj, j ∈ N are independent and normally distributed. Moreover,

∑

j∈N

λj = trace(R) =
∑

j∈N

〈rj, rj〉.
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Therefore,

P


α2z̃′Rz̃ > Ω2

∑

j∈N

〈rj, rj〉



= P


α2

∑

j∈N

λj ỹ
2
j > Ω2

∑

j∈N

λj




≤
E

(
exp

(
θα2 ∑

j∈N λj ỹ
2
j

))

exp
(
θΩ2

∑
j∈N λj

) (From Markov’s inequality, θ > 0)

=

∏
j∈N E

(
exp

(
θα2λj ỹ

2
j

))

exp
(
θΩ2

∑
j∈N λj

) (ỹ2
j are independent)

=

∏
j∈N E

(
exp

(
ỹ2

j

β

)θα2λjβ
)

exp
(
θΩ2

∑
j∈N λj

) for all β > 2 and θα2λjβ ≤ 1,∀j ∈ N

≤
∏

j∈N

(
E

(
exp

(
ỹ2

j

β

))θα2λjβ
)

exp
(
θΩ2

∑
j∈N λj

) ,

where the last inequality follows from Jensen inequality, noting that xθα2λjβ is a

concave function of x if θα2λjβ ∈ [0, 1]. Since ỹj ∼ N (0, 1),

E

(
exp

(
ỹ2

j

β

))
=

1√
2π

∫ ∞

∞
exp

(
−y2

2

(
β − 2

β

))
dy =

√
β

β − 2
.

Thus, we obtain

∏
j∈N

(
E

(
exp

(
ỹ2

j

β

))θα2λjβ
)

exp
(
θΩ2

∑
j∈N λj

) =

∏
j∈N

(
exp

(
θα2λjβ

1
2
ln

(
β

β−2

)))

exp
(
θΩ2

∑
j∈N λj

)

=
exp

(
θα2β 1

2
ln

(
β

β−2

) ∑
j∈N λj

)

exp
(
θΩ2

∑
j∈N λj

) .

We select θ = 1/(α2βλ∗), where λ∗ = maxj∈N λj, and obtain

exp
(
θα2β 1

2
ln

(
β

β−2

) ∑
j∈N λj

)

exp
(
θΩ2

∑
j∈N λj

) = exp

(
ρ

(
1

2
ln

(
β

β − 2

)
− Ω2

α2β

))
,
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Type Probability bound of infeasibility

LP
√

eΩ exp(−Ω2

2
)

QCQP
√

e
2
Ω exp(−Ω2

4
)

SOCP(1)
√

eΩ exp(−Ω2

2
)

SOCP(2)
√

e
2
Ω exp(−Ω2

4
)

SDP
√

e
m

Ω exp(− Ω2

2m
)

Table 4.5: Probability bounds of P(f(x, D̃) < 0) for z̃ ∼ N (0, I).

where ρ = (
∑

j∈N λj)/λ
∗. Taking derivatives and choosing the best β, we have

β =
2Ω2

Ω2 − α2
,

for which Ω > α. Substituting and simplifying, we have

exp

(
ρ

(
1

2
ln

(
β

β − 2

)
− Ω2

α2β

))
=

(√
eΩ

α
exp(− Ω2

2α2
)

)ρ

≤
√

eΩ

α
exp(− Ω2

2α2
),

where the last inequality follows from ρ ≥ 1, and from
√

eΩ
α

exp(− Ω2

2α2 ) < 1 for Ω > α.

Note that f(x, D̃) < 0, implies that ‖z̃‖ > Ω. Thus, when z̃ ∼ N (0, I)

P(f(x, D̃) < 0) ≤ P(‖z̃‖ > Ω) = 1− χ2
|N |(Ω

2), (4.21)

where χ2
|N |(·) is the cdf of a χ-square distribution with |N | degrees of freedom. Note

that the bound (4.21) does not take into account the structure of f(x, D̃) in contrast

to bound (4.17) that depends on f(x, D̃) via the parameter α. To illustrate this, we

substitute the value of the parameter α from Proposition 10 in Eq. (4.17) and report

in Table 4.6 the bound in Eq. (4.17).

To amplify the previous discussion, we show in Table 4.6 the value of Ω in order

for the bound (4.17) to be less than or equal to ε. The last column shows the value

of Ω using bound (4.21) that is independent of the structure of the problem. We

choose |N | = 495000 which is approximately the maximum number of data entries in
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ε LP QCQP SOCP(1) SOCP(2) SDP Eq. (4.21)
10−1 2.76 3.91 2.76 3.91 27.6 704.5
10−2 3.57 5.05 3.57 5.05 35.7 705.2
10−3 4.21 5.95 4.21 5.95 42.1 705.7
10−6 5.68 7.99 5.68 7.99 56.8 706.9

Table 4.6: Sample calculations of Ω using Probability Bounds of Table 4.5 for m =
100, n = 100, |N | = 495, 000.

a SDP constraint with n = 100 and m = 100. Although the size |N | is unrealistic for

constraints with less data entries such as LP, the derived probability bounds remain

valid. Note that bound (4.21) leads to Ω = O(
√
|N | ln(1/ε)).

For LP, SOCP, and QCQP, bound (4.17) leads to Ω = O(ln(1/ε)), which is in-

dependent of the dimension of the problem. For SDP it leads to we have Ω =

O(
√

m ln(1/ε)). As a result, ignoring the structure of the problem and using bound

(4.21) leads to very conservative solutions.

4.4 General Cones

In this section, we generalize the results in Sections 4.1-4.3 to arbitrary conic con-

straints of the form,
n∑

j=1

Ãjxj ºK B̃, (4.22)

where {Ã1, ..., Ãn, B̃} = D̃ constitutes the set of data that is subject to uncertainty,

and K is a closed, convex, pointed cone with nonempty interior. For notational

simplicity, we define

A(x, D̃) =
n∑

j=1

Ãjxj − B̃

so that Eq. (4.22) is equivalent to

A(x, D̃) ºK 0. (4.23)
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We assume that the model for data uncertainty is given in Eq. (4.3) with z̃ ∼ N (0, I).

The uncertainty set U satisfies Eq. (4.4) with the given norm satisfying ‖u‖ = ‖u+‖.
Paralleling the earlier development, starting with a cone K and constraint (4.23),

we define the function f(·, ·) as follows so that f(x, D) > 0 if and only if A(x,D) ÂK

0.

Proposition 11 For any V ÂK 0, the function

f(x,D) = max θ

s.t. A(x,D) ºK θV ,
(4.24)

satisfies the properties:

(a) f(x,D) is bounded and concave in x and D.

(b) f(x, kD) = kf(x, D),∀k ≥ 0.

(c) f(x,D) ≥ y if and only if A(x, D) ºK yV .

(d) f(x,D) > y if an donly if A(x,D) ÂK yV .

Proof :

(a) Consider the dual of Problem (4.24):

z∗ = min 〈u,A(x,D)〉
s.t. 〈u,V 〉 = 1

u ºK∗ 0,

where K∗ is the dual cone of K. Since K is a closed, convex, pointed cone with

nonempty interior, so is K∗ (see Ben-Tal and Nemirovski [8]). As V ÂK 0, for all

u ºK∗ 0 and u 6= 0, we have 〈u, V 〉 > 0, hence, the dual problem is bounded.

Furthermore, since K∗ has a nonempty interior, the dual problem is strictly feasible,

i.e., there exists u ÂK∗ 0, 〈u,V 〉 = 1. Therefore, by conic duality, the dual objective

z∗ has the same finite objective as the primal objective function f(x,D). Since

A(x,D) is a linear mapping of D and an affine mapping of x, it follows that f(x,D)

is concave in x and D.
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(b) Using the dual expression of f(x,D), and that A(x, kD) = kA(x,D), the result

follows.

(c) If θ = y is feasible in Problem (4.24), we have f(x, D) ≥ θ = y. Conversely, if

f(x,D) ≥ y, then A(x, D) ºK f(x, D)V ºK yV .

(d) SupposeA(x, D) ÂK yV , then there exists ε > 0 such thatA(x,D)−yV ºK εV

or A(x,D) ºK (ε + y)V . Hence, f(x,D) ≥ ε + y > y. Conversely, since V ÂK 0, if

f(x,D) > y then (f(x,D)− y)V ÂK 0. Hence, A(x,D) ºK f(x,D)V ÂK yV .

Remark : With y = 0, (c) establishes that A(x,D) ºK 0 if and only if f(x,D) ≥ 0

and (d) establishes that A(x,D) ÂK 0 if and only if f(x, D) > 0.

The proposed robust model is given in Eqs. (4.7) and (4.8). We next derive an

expression for g(x,∆D) = max{−f(x,∆D),−f(x,−∆D)}.

Proposition 12 Let g(x,∆D) = max{−f(x,∆D),−f(x,−∆D)}. Then

g(x,∆D) = ‖H(x,∆D)‖g,

where H(x,∆D) = A(x,∆D) and

‖S‖g = min {y : yV ºK S ºK −yV } .

Proof :

We observe that

g(x,∆D) = max{−f(x,∆D),−f(x,−∆D)}
= min{y | − f(x,∆D) ≤ y,−f(x,−∆D) ≤ y}
= min{y | A(x,∆D) ºK −yV ,−A(x,∆D) ºK −yV }, (4.25)

= ‖A(x,∆D)‖g.

We also need to show that ‖.‖g is indeed a valid norm. Since V ÂK 0, then ‖S‖g ≥ 0.

Clearly, ‖0‖g = 0 and if ‖S‖g = 0, then 0 ºK S ºK 0, which implies that S = 0.
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To show that ‖kS‖g = |k|‖S‖g, we observe that for k > 0,

‖kS‖g = min {y | yV ºK kS ºK −yV }
= k min

{
y

k
| y

k
V ºK S ºK −y

k
V

}

= k‖S‖g.

Likewise, if k < 0

‖kS‖g = min {y | yV ºK kS ºK −yV }
= min {y | yV ºK −kS ºK −yV }
= ‖ − kS‖g

= −k‖S‖g.

Finally, to verify triangle inequality,

‖S‖g + ‖T ‖g = min {y | yV ºK S ºK −yV }+ min {z | zV ºK T ºK −zV }
= min {y + z | yV ºK S ºK −yV , zV ºK T ºK −zV }
≥ min {y + z | (y + z)V ºK S + T ºK −(y + z)V }
= ‖S + T ‖g.

For the general conic constraint, the norm, ‖ · ‖g is dependent on the cone K and

a point in the interior of the cone V . Hence, we define ‖ · ‖K,V := ‖ · ‖g. Using

Proposition 11 and Theorem 8 we next show that the robust counterpart for the

conic constraint (4.23) is tractable and provide a bound on the probability that the

constraint is feasible.

Theorem 10 We have

(a) (Tractability) For a norm satisfying Eq. (4.5), constraint (4.7) for general
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cones is equivalent to

A(x,D0) ºK ΩyV ,

tjV ºK A(x,∆Dj) ºK −tjV , j ∈ N,

‖t‖∗ ≤ y,

y ∈ <, t ∈ <|N |,

(b) (Probabilistic guarantee) When we use the l2-norm in Eq. (4.8), i.e., ‖s‖∗ =

‖s‖2, and under the assumption that z̃ ∼ N (0, I), then for all V we have

P(A(x, D̃) /∈ K) ≤
√

eΩ

αK,V

exp

(
− Ω2

2α2
K,V

)
,

where

αK,V =


 max√

〈S,S〉=1

‖S‖K,V




(
max

‖S‖K,V =1

√
〈S, S〉

)

and

‖S‖K,V = min {y : yV ºK S ºK −yV } .

Proof :

The Theorem follows directly from Propositions 11, 12, Theorems 8, 9.

From Theorem 10, for any cone K, we select V in order to minimize αK,V , i.e.,

αK = min
V Â0

αK,V .

We next show that the smallest parameter α is
√

2 and
√

m for SOCP and SDP

respectively. For the second order cone, K = Ln+1,

Ln+1 = {x ∈ <n+1 : ‖xn‖2 ≤ xn+1},
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where xn = (x1, . . . , xn)′. The induced norm is given by

‖x‖Ln+1,v = min {y : yv ºLn+1 x ºLn+1 −yv}
= min {y : ‖xn + vny‖2 ≤ vn+1y + xn+1, ‖xn − vny‖2 ≤ vn+1y − xn+1, }

and

αLn+1,v =

(
max
‖x‖2=1

‖x‖Ln+1,v

) 
 max
‖x‖

Ln+1
,v

=1
‖x‖2


 .

For the symmetric positive semidefinite cone, K = Sm
+ ,

‖X‖Sm
+ ,V = min {y : yV º X º −yV } ,

αSm
+ ,V =


 max√

〈X,X〉=1

‖x‖Sm
+ ,V





 max
‖X‖Sm

+ ,V =1

√
〈X,X〉


 .

Proposition 13 We have

(a) For the second order cone, αLn+1,v ≥
√

2, for all v ÂLn+1 0 (‖vn‖2 < vn+1) with

equality holding for v = (0, 1)′.

(b) For the symmetric positive semidefinite cone, αSm
+ ,V ≥ √

m, for all V Â 0 with

equality hoding for V = I.

Proof :

For any V ÂK 0, we observe that

‖V ‖K,V = min {y : yV ºK V ºK −yV } = 1.

Otherwise, if ‖V ‖K,V < 1, there exist y < 1 such that yV ºK V , which implies that

−V ºK 0, contradicting V ÂK 0. Hence, ‖v‖Ln+1,v = 1 and we obtain

(
max

‖x‖Ln+1,v=1
‖x‖2

)
≥ ‖v‖2.

Likewise, when xn = (vn)/(
√

2‖vn‖2) and xn+1 = −1/(
√

2), so that ‖x‖2 = 1, we

105



can also verify that the inequalities

‖ vn√
2‖vn‖2

+ vny‖2 ≤ vn+1y − 1√
2

‖ vn√
2‖vn‖2

− vny‖2 ≤ vn+1y +
1√
2

hold if and only if y ≥ √
2/(vn+1 − ‖vn‖2). Hence, ‖x‖Ln+1,v =

√
2/(vn+1 − ‖vn‖2)

and we obtain

max
‖x‖2=1

‖x‖Ln+1,v ≥
√

2

vn+1 − ‖vn‖2

.

Therefore, since 0 < vn+1 − ‖vn‖2 ≤ vn+1 ≤ ‖v‖, we have

αLn+1,v =

(
max
‖x‖2=1

‖x‖Ln+1,v

) (
max

‖x‖Ln+1,v=1
‖x‖2

)
≥

√
2‖v‖2

vn+1 − ‖vn‖2

≥
√

2.

When v = (0, 1)′, we have

‖x‖Ln+1,v = ‖xn‖2 + |xn+1|,

and from Proposition 10(b), the bound is achieved. Hence, αLn+1 =
√

2.

(b) Since V is an invertible matrix, we observe that

‖X‖Sm
+ ,V = min {y : yV º X º −yV }

= min
{
y : yI º V − 1

2 XV − 1
2 º −yI

}

= ‖V − 1
2 XV − 1

2‖2.

For any V Â 0, let X = V , we have ‖X‖Sm
+ ,V = 1 and

〈X,X〉 = trace(V V ) = ‖λ‖2
2,

where λ ∈ <m is a vector corresponding to all the eigenvalues of the matrix V . Hence,

we obtain 
 max
‖X‖Sm

+
,V =1

√
〈X,X〉


 ≥ ‖λ‖2.
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Without loss of generality, let λ1 be the smallest eigenvalue of V with corresponding

normalized eigenvector, q1. Now, let X = q1q
′
1. Observe that

〈X,X〉 = trace(XX)

= trace(q1q
′
1q1q

′
1)

= trace(q′1q1q
′
1q1)

= 1.

We can express the matrix, V in its spectral decomposition, so that V =
∑

j qjq
′
jλj.

Hence,

‖X‖Sm
+ ,V = ‖V − 1

2 XV − 1
2‖2

= ‖∑
j qjq

′
jλ
− 1

2
j q1q

′
1

∑
j qjq

′
jλ
− 1

2
j ‖2

= ‖λ−1
1 q1q

′
1‖2

= λ−1
1 .

Therefore, we establish that


 max√

〈X,X〉=1

‖X‖Sm
+ ,V


 ≥ λ−1

1 .

Combining the results, we have

αSm,V =


 max
‖X‖Sm

+
,V =1

√
〈X,X〉





 max√

〈X,X〉=1

‖X‖Sm
+ ,V


 ≥ ‖λ‖2

λ1

≥ √
m.

When V = I, we have

‖X‖Sm,V = ‖X‖2,

and from Proposition 10(d), the bound is achieved. Hence, αSm =
√

m.

4.5 Conclusions

We proposed a relaxed robust counterpart for general conic optimization problems

that we believe achieves the objectives outlined in the introduction, namely:
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(a) It preserves the computational tractability of the nominal problem. Specifically

the robust conic optimization problem retains its original structure, i.e., robust

linear optimization problems (LPs) remain LPs, robust second order cone opti-

mization problems (SOCPs) remain SOCPs and robust semidefinite optimization

problems (SDPs) remain SDPs. Moreover, the size of the proposed robust prob-

lem especially under the l2 norm is practically the same as the nominal problem.

(b) It allows us to provide a guarantee on the probability that the robust solution

is feasible, when the uncertain coefficients obey independent and identically dis-

tributed normal distributions.
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Chapter 5

Robust Discrete Optimization and

Network Flows

Our goal in this chapter is to propose an approach to address data uncertainty for

discrete optimization and network flow problems that has the following features:

(a) It allows to control the degree of conservatism of the solution;

(b) It is computationally tractable both practically and theoretically.

Specifically, our contributions include:

(a) When both the cost coefficients and the data in the constraints of an integer

optimization problem are subject to uncertainty, we propose, following the ap-

proach in Chapter 2, a robust integer optimization problem of moderately larger

size that allows to control the degree of conservatism of the solution in terms of

probabilistic bounds on constraint violation.

(b) When only the cost coefficients are subject to uncertainty and the problem is

a 0 − 1 discrete optimization problem on n variables, then we solve the robust

counterpart by solving n + 1 nominal problems. Thus, we show that the ro-

bust counterpart of a polynomially solvable 0− 1 discrete optimization problem

remains polynomially solvable. In particular, robust matching, spanning tree,

shortest path, matroid intersection, etc. are polynomially solvable. Moreover, we

show that the robust counterpart of an NP -hard α-approximable 0− 1 discrete
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optimization problem, remains α-approximable.

(c) When only the cost coefficients are subject to uncertainty and the problem is a

minimum cost flow problem, then we propose a polynomial time algorithm for

the robust counterpart by solving a collection of minimum cost flow problems in

a modified network.

Structure of the chapter. In Section 5.1, we present the general framework and

formulation of robust discrete optimization problems. In Section 5.2, we propose

an efficient algorithm for solving robust combinatorial optimization problems. In

Section 5.3, we show that the robust counterpart of an NP -hard 0−1 α-approximable

discrete optimization problem remains α-approximable. In Section 5.4, we propose

an efficient algorithm for robust network flows. In Section 5.5, we present some

experimental findings relating to the computation speed and the quality of robust

solutions. Finally, Section 5.6 contains some remarks with respect to the practical

applicability of the proposed methods.

5.1 Robust Formulation of Discrete Optimization

Problems

Let c, l, u be n-vectors, let A be an m × n matrix, and b be an m-vector. We

consider the following nominal mixed integer optimization problem (MIP) on a set of

n variables, the first k of which are integral:

minimize c′x

subject to Ax ≤ b

l ≤ x ≤ u

xi ∈ Z, i = 1, . . . , k,

(5.1)

We assume without loss of generality that data uncertainty affects only the elements

of the matrix A and c, but not the vector b, since in this case we can introduce a new
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variable xn+1, and write Ax− bxn+1 ≤ 0, l ≤ x ≤ u, 1 ≤ xn+1 ≤ 1, thus augmenting

A to include b.

In typical applications, we have reasonable estimates for the mean value of the

coefficients aij and its range âij. We feel that it is unlikely that we know the exact

distribution of these coefficients. Similarly, we have estimates for the cost coefficients

cj and an estimate of its range dj. Specifically, the model of data uncertainty we

consider is as follows:

Model of Data Uncertainty U:

(a) (Uncertainty for matrix A): Let N = {1, 2, . . . , n}. Each entry aij, j ∈ N

is modeled as independent, symmetric and bounded random variable (but with

unknown distribution) ãij, j ∈ N that takes values in [aij − âij, aij + âij].

(b) (Uncertainty for cost vector c): Each entry cj, j ∈ N takes values in

[cj, cj + dj], where dj represents the deviation from the nominal cost coefficient,

cj.

Note that we allow the possibility that âij = 0 or dj = 0. Note also that the

only assumption that we place on the distribution of the coefficients aij is that it is

symmetric.

5.1.1 Robust MIP Formulation

For robustness purposes, for every i, we introduce a number Γi, i = 0, 1, . . . , m that

takes values in the interval [0, |Ji|], where Ji = {j| âij > 0}. Γ0 is assumed to be

integer, while Γi, i = 1, . . . , m are not necessarily integers.

The role of the parameter Γi in the constraints is to adjust the robustness of the

proposed method against the level of conservatism of the solution. Consider the ith

constraint of the nominal problem a′
ix ≤ bi. Let Ji be the set of coefficients aij,

j ∈ Ji that are subject to parameter uncertainty, i.e., ãij, j ∈ Ji independently takes

values according to a symmetric distribution with mean equal to the nominal value

aij in the interval [aij − âij, aij + âij]. Speaking intuitively, it is unlikely that all of

the aij, j ∈ Ji will change. Our goal is to be protected against all cases in which up
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to bΓic of these coefficients are allowed to change, and one coefficient ait changes by

at most (Γi − bΓic)âit. In other words, we stipulate that nature will be restricted in

its behavior, in that only a subset of the coefficients will change in order to adversely

affect the solution. We will then guarantee that if nature behaves like this then the

robust solution will be feasible deterministically. We will also show that, essentially

because the distributions we allow are symmetric, even if more than bΓic change,

then the robust solution will be feasible with very high probability. Hence, we call Γi

the protection level for the ith constraint.

The parameter Γ0 controls the level of robustness in the objective. We are inter-

ested in finding an optimal solution that optimizes against all scenarios under which

a number Γ0 of the cost coefficients can vary in such a way as to maximally influence

the objective. Let J0 = {j| dj > 0}. If Γ0 = 0, we completely ignore the influence of

the cost deviations, while if Γ0 = |J0|, we are considering all possible cost deviations,

which is indeed most conservative. In general a higher value of Γ0 increases the level

of robustness at the expense of higher nominal cost.

Specifically, the proposed robust counterpart of Problem (5.1) is as follows:

minimize c′x + max
{S0| S0⊆J0,|S0|≤Γ0}





∑

j∈S0

dj|xj|




subject to
∑

j

aijxj + max
{Si∪{ti}| Si⊆Ji,|Si|≤bΓic,ti∈Ji\Si}




∑

j∈Si

âij|xj|+ (Γi − bΓic)âiti|xti|


 ≤ bi, ∀i

l ≤ x ≤ u

xi ∈ Z, ∀i = 1, . . . , k.

(5.2)

Following Theorem 1 in Chapter 2, we have the following equivalent robust coun-
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terpart:

minimize c′x + z0Γ0 +
∑

j∈J0
p0j

subject to
∑

j

aijxj + ziΓi +
∑

j∈Ji

pij ≤ bi ∀i

z0 + p0j ≥ djyj ∀j ∈ J0

zi + pij ≥ âijyj ∀i 6= 0, j ∈ Ji

pij ≥ 0 ∀i, j ∈ Ji

yj ≥ 0 ∀j
zi ≥ 0 ∀i
−yj ≤ xj ≤ yj ∀j
lj ≤ xj ≤ uj ∀j
xi ∈ Z i = 1, . . . , k.

(5.3)

While the original Problem (5.1) involves n variables and m constraints, its robust

counterpart Problem (5.3) has 2n+m+ l variables, where l =
∑m

i=0 |Ji| is the number

of uncertain coefficients, and 2n + m + l constraints.

As we discussed, if less than bΓic coefficients aij, j ∈ Ji participating in the ith

constraint vary, then the robust solution will be feasible deterministically. Theorem 3

shows that that even if more than bΓic change, then the robust solution will be feasible

with very high probability. We make no theoretical claims regarding suboptimality

given that we made no probabilistic assumptions on the cost coefficients. In Section

5.5.1, we apply these bounds of Theorem 3 in the context of the zero-one knapsack

problem.

5.2 Robust Combinatorial Optimization

Combinatorial optimization is an important class of discrete optimization whose de-

cision variables are binary, that is x ∈ X ⊆ {0, 1}n. In this section, the nominal

combinatorial optimization problem we consider is:

minimize c′x

subject to x ∈ X.
(5.4)
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We are interested in the class of problems where each entry c̃j, j ∈ N = {1, 2, . . . , n}
takes values in [cj, cj + dj], dj ≥ 0, j ∈ N , but the set X is fixed. We would like to

find a solution x ∈ X that minimizes the maximum cost c′x such that at most Γ of

the coefficients c̃j are allowed to change:

Z∗ = minimize c′x + max
{S| S⊆N,|S|≤Γ}

∑

j∈S

djxj

subject to x ∈ X.

(5.5)

Without loss of generality, we assume that the indices are ordered in such that

d1 ≥ d2 ≥ . . . ≥ dn. We also define dn+1 = 0 for notational convenience. Exam-

ples of such problems include the shortest path, the minimum spanning tree, the

minimum assignment, the traveling salesman, the vehicle routing and matroid inter-

section problems. Data uncertainty in the context of the vehicle routing problem for

example, captures the variability of travel times in some of the links of the network.

In the context of scenario based uncertainty, finding an optimally robust solution

involves solving the problem (for the case that only two scenarios for the cost vectors

c1, c2 are known):

minimize max(c′
1x, c′

2x)

subject to x ∈ X.

For many classical combinatorial problems (for example the shortest path problem),

finding such a robust solution is NP -hard, even if minimizing c′
ix subject to x ∈ X

is polynomially solvable (Kouvelis and Yu [20]).

Clearly the robust counterpart of an NP -hard combinatorial optimization problem

is NP -hard. We next show that surprisingly, the robust counterpart of a polynomially

solvable combinatorial optimization problem is also polynomially solvable.
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5.2.1 Algorithm for Robust Combinatorial Optimization

Problems

In this section, we show that we can solve Problem (5.5) by solving at most n + 1

nominal problems min f ′ix, subject to x ∈ X, for i = 1, . . . , n + 1.

Theorem 11 Problem (5.5) can be solved by solving the n + 1 nominal problems:

Z∗ = min
l=1,...,n+1

Gl, (5.6)

where for l = 1, . . . , n + 1:

Gl = Γdl + min
(
c′x +

l∑

j=1

(dj − dl) xj

)

subject to x ∈ X.

(5.7)

Proof : Problem (5.5) can be rewritten as follows:

Z∗ = min
x∈X

(
c′x + max

∑

j∈N

djxjuj

)

subject to 0 ≤ uj ≤ 1, j ∈ N
∑

j∈N

uj ≤ Γ.

Given a fixed x ∈ X, we consider the inner maximization problem and formulate its

dual. Applying strong duality to this problem we obtain:

Z∗ = min
x∈X

c′x + min
(
Γθ +

∑

j∈N

yj

)

subject to yj + θ ≥ djxj, j ∈ N

yj, θ ≥ 0,
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which can be rewritten as:

Z∗ = min c′x + Γθ +
∑

j∈N

yj

subject to yj + θ ≥ djxj, j ∈ N

yj, θ ≥ 0,

x ∈ X.

(5.8)

Clearly an optimal solution (x∗,y∗, θ∗) of Problem (5.8) satisfies:

y∗j = max(djx
∗
j − θ∗, 0),

and therefore,

Z∗ = min
x∈X,θ≥0

(
Γθ + c′x +

∑

j∈N

max(djxj − θ, 0)
)
.

Since X ⊂ {0, 1}n,

max(djxj − θ, 0) = max(dj − θ, 0) xj, (5.9)

Hence, we obtain

Z∗ = min
x∈X,θ≥0

(
Γθ + c′x +

∑

j∈N

max(dj − θ, 0)xj

)
. (5.10)

In order to find the optimal value for θ we decompose <+ into the intervals [0, dn],

[dn, dn−1], . . . , [d2, d1] and [d1,∞). Then, recalling that dn+1 = 0, we obtain

∑

j∈N

max(dj − θ, 0)xj =





l−1∑

j=1

(dj − θ)xj, if θ ∈ [dl, dl−1], l = n + 1, . . . , 2,

0, if θ ∈ [d1,∞).

Therefore, Z∗ = min
l=1,...,n+1

Z l, where for l = 1, . . . , n + 1:

Z l = min
x∈X,θ∈[dl,dl−1]

(
Γθ + c′x +

l−1∑

j=1

(dj − θ)xj

)
,
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where the sum for l = 1 is equal to zero. Since we are optimizing a linear function of

θ over the interval [dl, dl−1], the optimal is obtained for θ = dl or θ = dl−1, and thus

for l = 1, . . . , n + 1:

Z l = min


Γdl + min

x∈X

(
c′x +

l−1∑

j=1

(dj − dl)xj

)
,

Γdl−1 + minx∈X

(
c′x +

∑l−1
j=1(dj − dl−1)xj

))

= min


Γdl + min

x∈X

(
c′x +

l∑

j=1

(dj − dl)xj

)
,

Γdl−1 + minx∈X

(
c′x +

∑l−1
j=1(dj − dl−1)xj

))
.

Thus,

Z∗ = min


Γd1 + min

x∈X
c′x, . . . , Γdl + min

x∈X

(
c′x +

l∑

j=1

(dj − dl)xj

)
,

. . . , min
x∈X

(
c′x +

n∑

j=1

djxj

)
 .

Remark: Note that we critically used the fact that the nominal problem is a 0-1

discrete optimization problem, i.e., X ⊆ {0, 1}n, in Eq. (5.9). For general integer

optimization problems Eq. (5.9) does not apply.

Theorem 11 leads to the following algorithm.

Algorithm A

1. For l = 1, . . . , n + 1 solve the n + 1 nominal problems Eqs. (5.7):

Gl = Γdl + min
x∈X

(
c′x +

l∑

j=1

(dj − dl)xj

)
,

and let xl be an optimal solution of the corresponding problem.

2. Let l∗ = arg min
l=1,...,n+1

Gl .

3. Z∗ = Gl∗ ; x∗ = xl∗ .
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Note that Z l is not in general equal to Gl. If f is the number of distinct values

among d1, . . . , dn, then it is clear that Algorithm A solves f + 1 nominal problems,

since if dl = dl+1, then Gl = Gl+1. In particular, if all dj = d for all j = 1, . . . , n, then

Algorithm A solves only two nominal problems. Thus, if τ is the time to solve one

nominal problem, Algorithm A solves the robust counterpart in (f + 1)τ time, thus

preserving the polynomial solvability of the nominal problem. In particular, Theorem

11 implies that the robust counterpart of many classical 0-1 combinatorial optimiza-

tion problems like the minimum spanning tree, the minimum assignment, minimum

matching, shortest path and matroid intersection, are polynomially solvable.

5.3 Robust Approximation Algorithms

In this section, we show that if the nominal combinatorial optimization problem

(5.4) has an α-approximation polynomial time algorithm, then the robust counterpart

Problem (5.5) with optimal solution value Z∗ is also α-approximable. Specifically, we

assume that there exists a polynomial time Algorithm H for the nominal problem

(5.4), that returns a solution with an objective ZH : Z ≤ ZH ≤ αZ, α ≥ 1.

The proposed algorithm for the robust Problem (5.5) is to utilize Algorithm H

in Algorithm A, instead of solving the nominal instances exactly. The proposed

algorithm is as follows:

Theorem 12 Algorithm B yields a solution xB with an objective value ZB that sat-

isfies:

Z∗ ≤ ZB ≤ αZ∗.

Proof : Since Z∗ is the optimal objective function value of the robust problem,

clearly Z∗ ≤ ZB. Let l the index such that Z∗ = Gl in Theorem 11. Let xl
H be an
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Algorithm B

1. For l = 1, . . . , n + 1 find an α-approximate solution xl
H using Algorithm H for

the nominal problem:

Gl − Γdl = min
x∈X


c′x +

l∑

j=1

(dj − dl)xj


 . (5.11)

2. For l = 1, . . . , n + 1, let

Z l
H = c′xl

H + max
{S| S⊆N,|S|≤Γ}

∑

j∈S

dj(x
l
H)j.

3. Let l∗ = arg min
l=1,...,n+1

Z l
H .

4. ZB = Z l∗
H ; xB = xl∗

H .

α-optimal solution for Problem (5.11). Then, we have

ZB ≤ Z l
H

= c′xl
H + max

{S| S⊆N,|S|≤Γ}

∑

j∈S

dj(x
l
H)j

= min
θ≥0



c′xl

H +
∑

j∈N

max(dj − θ, 0)(xl
H)j + Γθ



 (from Eq. (5.10))

≤ c′xl
H +

l∑

j=1

(dj − dl)(x
l
H)j + Γdl

≤ α(Gl − Γdl) + Γdl (from Eq. (5.11))

≤ αGl (since α ≥ 1)

= αZ∗.

Remark : Note that Algorithm A is a special case of Algorithm B for α = 1. Note

that it is critical to have an α-approximation algorithm for all nominal instances

(5.11). In particular, if the nominal problem is the traveling salesman problem under

triangle inequality, which can be approximated within α = 3/2, Algorithm B is not

an α-approximation algorithm for the robust counterpart, as the instances (5.11) may
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not satisfy the triangle inequality.

5.4 Robust Network Flows

In this section, we apply the methods of Section 5.2 to show that robust minimum

cost flows can also be solved by solving a collection of modified nominal minimum

cost flows. Given a directed graph G = (N ,A), the minimum cost flow is defined as

follows:

minimize
∑

(i,j)∈A
cijxij

subject to
∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji = bi ∀i ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A.

(5.12)

Let X be the set of feasible solutions of Problem (5.12).

We are interested in the class of problems in which each entry c̃ij, (i, j) ∈ A takes

values in [cij, cij + dij], dij, cij ≥ 0, (i, j) ∈ A. From Eq. (5.5) the robust minimum

cost flow problem is:

Z∗ = min c′x + max
{S| S⊆A,|S|≤Γ}

∑

(i,j)∈S

dijxij

subject to x ∈ X.

(5.13)

From Eq. (5.8) we obtain that Problem (5.13) is equivalent to solving the following

problem:

Z∗ = min
θ≥0

Z(θ), (5.14)

where

Z(θ) = Γθ + min c′x +
∑

(i,j)∈A
pij

subject to pij ≥ dijxij − θ ∀(i, j) ∈ A
pij ≥ 0 ∀(i, j) ∈ A
x ∈ X.

(5.15)

We next show that for a fixed θ ≥ 0, we can solve Problem (5.15) as a network flow

problem.
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Theorem 13 For a fixed θ ≥ 0, Problem (5.15) can be solved as a network flow

problem.

Proof :

We eliminate the variables pij from Formulation (5.15) and obtain:

Z(θ) = Γθ + min c′x +
∑

(i,j)∈A
dij max

(
xij − θ

dij

, 0

)

subject to x ∈ X.

(5.16)

For every arc (i, j) ∈ A, we introduce nodes i′ and j′ and replace the arc (i, j) with

arcs (i, i′), (i′, j′), (j′, j) and (i′, j) with the following costs and capacities (see also

Figure 5-1):

cii′ = cij uii′ = uij

cj′j = 0 uj′j = ∞

ci′j = 0 ui′j =
θ

dij

ci′j′ = dij ui′j′ = ∞.

Let G′ = (N ′,A′) be the new direceted graph.

We show that solving a linear minimum cost flow problem with data as above,

leads to the solution of Problem (5.16). Consider an optimal solution of Problem

(5.16). If xij ≤ θ/dij for a given arc (i, j) ∈ A, then the flow xij will be routed along

the arcs (i, i′) and (i′, j) an the total contribution to cost is

cii′xij + ci′jxij = cijxij.

If, however, xij ≥ θ/dij, then the flow xij will be routed along the arcs (i, i′), then

θ/dij will be routed along arc (i′, j), and the excess xij − (θ/dij) is routed through

the arcs (i′, j′) and (j′, j). The total contribution to cost is

cii′xij + ci′j
θ

dij

+ ci′j′

(
xij − θ

dij

)
+ cj′j

(
xij − θ

dij

)
=

121



ji

j’

ji’i

(cij, uij)

(cij, uij) (0, θ/ dij)

(d ij
, !

) (0, !)

(cost, capacity)

Figure 5-1: Conversion of arcs with cost uncertainties.

cijxij + dij

(
xij − θ

dij

)
.

In both cases the contribution to cost matches the objective function value in Eq.

(5.16).

Without loss of generality, we can assume that all the capacities uij, (i, j) ∈ A are

finitely bounded. Then, clearly θ ≤ θ = max{uijdij : (i, j) ∈ A}. Theorem 13 shows

that the robust counterpart of the minimum cost flow problem can be converted to

a minimum cost flow problem in which capacities on the arcs are linear functions

of θ. Srinivasan and Thompsom [27] proposed a simplex based method for solving

such parametric network flow problems for all values of the parameter θ ∈ [0, θ].

Using this method, we can obtain the complete set of robust solutions for Γ ∈ [0, |A|].
However, while the algorithm may be practical, it is not polynomial. We next provide

a polynomial time algorithm. We first establish some properties of the function Z(θ).

Theorem 14 (a) Z(θ) is a convex function.
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(b) For all θ1, θ2 ≥ 0, we have

|Z(θ1)− Z(θ2)| ≤ |A||θ1 − θ2|. (5.17)

Proof :

(a) Let (x1, p1) and (x2, p2) be optimal solutions to Problem (5.15) with θ = θ1

and θ = θ2 respectively. Clearly, since the feasible region is convex, for all λ ∈ [0, 1],

(λx1 +(1−λ)x2, λp1 +(1−λ)p2) is feasible to the problem with θ = λθ1 +(1−λ)θ2.

Therefore,

λZ(θ1) + (1− λ)Z(θ2)

= c′(λx1 + (1− λ)x2) + e′(λp1 + (1− λ)p2)

+Γ(λθ1 + (1− λ)θ2) ≥ Z(λθ1 + (1− λ)θ2),

where e is a vector of ones.

(b) By introducing Lagrange multiplies r to the first set of constraints of Problem

(5.15), we obtain:

Z(θ) = max
r≥0

min
x∈X,p≥0



Γθ + c′x +

∑

(i,j)∈A
pij +

∑

(i,j)∈A
rij(dijxij − pij − θ)





= max
r≥0

min
x∈X,p≥0



(Γ− ∑

(i,j)∈A
rij)θ + c′x +

∑

(i,j)∈A
pij(1− rij) +

∑

(i,j)∈A
rijdijxij





= max
0≤r≤e

min
x∈X



(Γ− ∑

(i,j)∈A
rij)θ + c′x +

∑

(i,j)∈A
rijdijxij



, (5.18)

where Eq. (5.18) follows from the fact that minp≥0

{∑
(i,j)∈A pij(1− rij)

}
is un-

bounded if any rij > 1 and equals to zero for 0 ≤ r ≤ e. Without loss of generality,

let θ1 > θ2 ≥ 0. For 0 ≤ r ≤ e, we have

−|A| ≤ Γ− ∑

(i,j)∈A
rij ≤ |A|.
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Thus,

Z(θ1) = max
0≤r≤e

min
x∈X



(Γ− ∑

(i,j)∈A
rij)θ1 + c′x +

∑

(i,j)∈A
rijdijxij





= max
0≤r≤e

min
x∈X



(Γ− ∑

(i,j)∈A
rij)(θ2 + (θ1 − θ2)) + c′x +

∑

(i,j)∈A
rijdijxij





≤ max
0≤r≤e

min
x∈X



(Γ− ∑

(i,j)∈A
rij)θ2 + |A|(θ1 − θ2) + c′x +

∑

(i,j)∈A
rijdijxij





= Z(θ2) + |A|(θ1 − θ2).

Similarly,

Z(θ1) = max
0≤r≤e

min
x∈X



(Γ− ∑

(i,j)∈A
rij)(θ2 + (θ1 − θ2)) + c′x +

∑

(i,j)∈A
rijdijxij





≥ max
0≤r≤e

min
x∈X



(Γ− ∑

(i,j)∈A
rij)θ2 − |A|(θ1 − θ2) + c′x +

∑

(i,j)∈A
rijdijxij





= Z(θ2)− |A|(θ1 − θ2).

We next show that the robust minimum cost flow problem (5.13) can be solved

by solving a polynomial number of network flow problems.

Theorem 15 For any fixed Γ ≤ |A| and every ε > 0, we can find a solution x̂ ∈ X

with robust objective value

Ẑ = c′x̂ + max
{S| S⊆A,|S|≤Γ}

∑

(i,j)∈S

dijx̂ij

such that

Z∗ ≤ Ẑ ≤ (1 + ε)Z∗

by solving 2dlog2(|A|θ/ε)e+3 network flow problems, where θ = max{uijdij : (i, j) ∈
A}.

Proof : Let θ∗ ≥ 0 be such that Z∗ = Z(θ∗). Since Z(θ) is a convex function
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(Theorem 14(a)), we use binary search to find a θ̂ such that

|θ̂ − θ∗| ≤ θ

2k
,

by solving 2k + 3 minimum cost flow problems of the type described in Theorem

13. We first need to evaluate Z(0), Z(θ/2), Z(θ), and then we need two extra points

Z(θ/4) and Z(3θ/4) in order to decide whether θ∗ belongs in the interval [0, θ/2] or

[θ/2, θ] or [θ/4, 3θ/4]. From then on, we need two extra evaluations in order to halve

the interval θ∗ can belong to.

From Theorem 14(b)

|Z(θ̂)− Z(θ∗)| ≤ |A||θ̂ − θ∗| ≤ |A| θ

2k
≤ ε,

for k = dlog2(|A|θ/ε)e. Note that x̂ is the flow corresponding to the nominal network

flow problem for θ = θ̂.

5.5 Experimental Results

In this section we consider concrete discrete optimization problems and solve the

robust counterparts.

5.5.1 The Robust Knapsack Problem

The zero-one nominal knapsack problem is:

maximize
∑

i∈N

cixi

subject to
∑

i∈N

wixi ≤ b

x ∈ {0, 1}n.

We assume that the weights w̃i are uncertain, independently distributed and follow

symmetric distributions in [wi−δi, wi+δi]. The objective value vector c is not subject
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Γ Violation Probability Optimal Value Reduction
0 1 5592 0%

2.8 4.49× 10−1 5585 0.13%
36.8 5.71× 10−3 5506 1.54%
82.0 5.04× 10−9 5408 3.29%
200 0 5283 5.50%

Table 5.1: Robust Knapsack Solutions.

to data uncertainty. An application of this problem is to maximize the total value of

goods to be loaded on a cargo that has strict weight restrictions. The weight of the

individual item is assumed to be uncertain, independent of other weights and follows

a symmetric distribution. In our robust model, we want to maximize the total value

of the goods but allowing a maximum of 1% chance of constraint violation.

The robust Problem (5.2) is as follows:

maximize
∑

i∈N

cixi

subject to
∑

i∈N

wixi + max
{S∪{t}| S⊆N,|S|=bΓc,t∈N\S}





∑

j∈S

δjxj + (Γ− bΓc)δtxt



 ≤ b

x ∈ {0, 1}n.

For this experiment, we solve Problem (5.3) using CPLEX 7.0 for a random knapsack

problem of size, |N | = 200. We set the capacity limit, b to 4000, the nominal weight,

wi being randomly chosen from the set {20, 21, . . . , 29} and the cost ci randomly

chosen from the set {16, 17, . . . , 77}. We set the weight uncertainty δi to equal 10%

of the nominal weight. The time to solve the robust discrete problems to optimality

using CPLEX 7.0 on a Pentium II 400 PC ranges from 0.05 to 50 seconds.

Under zero protection level, Γ = 0, the optimal value is 5, 592. However, with full

protection, Γ = 200, the optimal value is reduced by 5.5% to 5, 283. In Table 5.1, we

present a sample of the objective function value and the probability bound of con-

straint violation computed from Eq. (2.16). It is interesting to note that the optimal

value is marginally affected when we increase the protection level. For instance, to

have a probability guarantee of at most 0.57% chance of constraint violation, we only
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Figure 5-2: The tradeoff between robustness and optimality in twenty instances of
the 0-1 knapsack problem.

reduce the objective by 1.54%. It appears that in this example we do not heavily

penalize the objective function value in order to protect ourselves against constraint

violation.

We repeated the experiment twenty times and in Figure 5-2 we report the tradeoff

between robustness and optimality for all twenty problems. We observe that by

allowing a profit reduction of 2%, we can make the probability of constraint violation

smaller than 10−3. Moroever, the conclusion did not seem to depend a lot on the

specific instance we generated.
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5.5.2 Robust Sorting

We consider the problem of minimizing the total cost of selecting k items out of a set

of n items that can be expressed as the following integer optimization problem:

minimize
∑

i∈N

cixi

subject to
∑

i∈N

xi = k

x ∈ {0, 1}n.

(5.19)

In this problem, the cost components are subjected to uncertainty. If the model is

deterministic, we can easily solve the problem in O(n log n) by sorting the costs in

ascending order and choosing the first k items. However, under the influence of data

uncertainty, we will illustrate empirically that the deterministic model could lead to

large deviations when the cost components are subject to uncertainty. Under our

proposed Problem (5.5), we solve the following problem,

Z∗(Γ) = minimize c′x + max
{S| S⊆J,|S|≤Γ}

∑

j∈S

djxj

subject to
∑

i∈N

xi = k

x ∈ {0, 1}n.

(5.20)

We experiment with a problem of size |N | = 200 and k = 100. The cost and deviation

components, cj and dj are uniformly distributed in [50, 200] and [20, 200] respectively.

Since only k items will be selected, the robust solution for Γ > k is the same as when

Γ = k. Hence, Γ takes integral values from [0, k]. By varying Γ, we will illustrate

empirically that we can control the deviation of the objective value under the influence

of cost uncertainty.

We solve Problem (5.20) in two ways. First using Algorithm A, and second solving
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Γ Z(Γ) % Change in Z(Γ) σ(Γ) % Change in σ(Γ)
0 8822 0 % 501.0 0.0 %
10 8827 0.056 % 493.1 -1.6 %
20 8923 1.145 % 471.9 -5.8 %
30 9059 2.686 % 454.3 -9.3 %
40 9627 9.125 % 396.3 -20.9 %
50 10049 13.91 % 371.6 -25.8 %
60 10146 15.00 % 365.7 -27.0 %
70 10355 17.38 % 352.9 -29.6 %
80 10619 20.37 % 342.5 -31.6 %
100 10619 20.37 % 340.1 -32.1 %

Table 5.2: Influence of Γ on Z(Γ) and σ(Γ).

Problem (5.3):

minimize c′x + zΓ +
∑

j∈N

pj

subject to z + pj ≥ djxj ∀j ∈ N
∑

i∈N

xi = k

z ≥ 0

pj ≥ 0

x ∈ {0, 1}n.

(5.21)

Algorithm A was able to find the robust solution for all Γ ∈ {0, . . . k} in less than

a second. The typical running time using CPLEX 7.0 to solve Problem (5.21) for

only one of the Γ ranges from 30 to 80 minutes, which underscores the effectiveness

of Algorithm A.

We let x(Γ) be an optimal solution to the robust model, with parameter Γ and

define Z(Γ) = c′x(Γ) as the nominal cost in the absence of any cost deviations. To

analyze the robustness of the solution, we simulate the distribution of the objective by

subjecting the cost components to random perturbations. Under the simulation, each

cost component independently deviates with probability p from the nominal value cj

to cj + dj. In Table 5.2, we report Z(Γ) and the standard deviation σ(Γ) found in

the simulation for p = 0.2 (we generated 20,000 instances to evaluate σ(Γ)).

Table 5.2 suggests that as we increase Γ, the standard deviation of the objective,
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Figure 5-3: The cumulative distribution of cost (for ρ = 0.2) for various values of Γ
for the robust sorting problem.

σ(Γ) decreases, implying that the robustness of the solution increases, and Z(Γ)

increases. Varying Γ we can find the tradeoff between the variability of the objective

and the increase in nominal cost. Note that the robust formulation does not explicitly

consider standard deviation. We chose to represent robustness in the numerical results

with standard deviation of the objective, since standard deviation is the standard

measure of variability and it has intuitive appeal.

In Figure 5-3 we report the cumulative distribution of cost (for ρ = 0.2) for

various values of Γ for the robust sorting problem. We see that Γ = 20 dominates the

nominal case Γ = 0, which in turn dominates Γ = 100 that appears over conservative.

In particular, it is clear that not only the robust solution for Γ = 20 has lower

variability than the nominal solution, it leads to a more favorable distribution of

cost.
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5.5.3 The Robust Shortest Path Problem

Given a directed graph G = (N ∪{s, t},A), with non-negative arc cost cij, (i, j) ∈ A,

the shortest {s, t} path problem seeks to find a path of minimum total arc cost from

the source node s to the terminal node t. The problem can be modeled as a 0 − 1

integer optimization problem:

minimize
∑

(i,j)∈A
cijxij

subject to
∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji =





1, if i = s

-1, if i = t

0, otherwise,

x ∈ {0, 1}|A|,

(5.22)

The shortest path problem surfaces in many important problems and has a wide

range of applications from logistics planning to telecommunications (see for example,

Ahuja et al. [1]. In these applications, the arc costs are estimated and subjected to

uncertainty. The robust counterpart is then:

minimize
∑

(i,j)∈A
cijxij + max

{S| S⊆A,|S|=Γ}

∑

(i,j)∈S

dijxij

subject to
∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji =





1, if i = s

-1, if i = t

0, otherwise,

x ∈ {0, 1}|A|.

(5.23)

Dijkstra’s algorithm [10] solves the shortest path problem in O(|N |2), while Al-

gorithm A runs in O(|A||N |2). In order to test the performance of Algorithm A,

we construct a randomly generated directed graph with |N | = 300 and |A| = 1475

as shown in Figure 5-4. The starting node, s is at the origin (0, 0) and the terminal

node t is placed in coordinate (1, 1). The nominal arc cost, cij equals to the Euclidean

distance between the adjacent nodes {i, j} and the arc cost deviation, dij is set to

γcij, where γ is uniformly distributed in [0, 8]. Hence, some of the arcs have cost
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Figure 5-4: Randomly generated digraph and the set of robust shortest {s, t} paths
for various Γ values.

deviations of at most eight times of their nominal values. Using Algorithm A (calling

Dijkstra’s algorithm |A| + 1 times), we solve for the complete set of robust shortest

paths (for various Γ’s), which are drawn in bold in Figure 5-4.

We simulate the distribution of the path cost by subjecting the arc cost to random

perturbations. In each instance of the simulation, every arc (i, j) has cost that is

independently perturbed, with probability ρ, from its nominal value cij to cij + dij.

Setting ρ = 0.1, we generate 20, 000 random scenarios and plot the distributions of

the path cost for Γ = 0, 3, 6 and 10, which are shown in Figure 5-5. We observe that

as Γ increases, the nominal path cost also increases, while cost variability decreases.

In Figure 5-6 we report the cumulative distribution of cost (for ρ = 0.1) for various
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Figure 5-5: Influence of Γ on the distribution of path cost for ρ = 0.1.
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Figure 5-6: The cumulative distribution of cost (for ρ = 0.1) for various values of Γ
for the robust shortest path problem.

values of Γ for the robust shortest path problem. Comparing the distributions for

Γ = 0 (the nominal problem) and Γ = 3, we can see that none of the two distributions

dominate each other. In other words, even if a decision maker is primarily cost

conscious, he might still select to use a value of Γ that is different than zero, depending

on his risk preference.

5.6 Conclusions

We feel that the proposed approach has the potential of being practically useful

especially for combinatorial optimization and network flow problems that are subject

to cost uncertainty. Unlike all other approaches that create robust solutions for

combinatorial optimization problems, the proposed approach retains the complexity

of the nominal problem or its approximability guarantee and offers the modeler the
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capability to control the tradeoff between cost and robustness by varying a single

parameter Γ. For arbitrary discrete optimization problems, the increase in problem

size is still moderate, and thus the proposed approach has the potential of being

practically useful in this case as well.
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Chapter 6

Robust Discrete Optimization

under an Ellipsoidal Uncertainty

Set

In Chapter 5, we propose an approach in solving robust discrete optimization prob-

lems that has the flexibility of adjusting the level of conservativeness of the solution

while preserving the computational complexity of the nominal problem. This is at-

tractive as it shows that adding robustness does not come at the price of a change in

computational complexity. Ishii et. al. [18] consider solving a stochastic minimum

spanning tree problem with costs that are independently and normally distributed

leading to a similar framework as robust optimization with an ellipsoidal uncertainty

set. However, to the best of our knowledge, there has not been any work or com-

plexity results on extending this approach to solving general discrete optimization

problems.

It is thus natural to ask whether adding robustness in discrete optimization prob-

lems under ellipsoidal sets leads to a change in computational complexity. In addition

to the theoretical investigation, can we develop practically efficient methods to solve

robust discrete optimization problems under ellipsoidal uncertainty sets?

Our objective in this chapter is to address these questions. Specifically our con-

tributions include:
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(a) Under an ellipsoidal uncertainty set, we show that the robust counterpart can be

NP -hard even though the nominal problem is polynomially solvable in contrast

with the uncertainty sets proposed in Chapter 5.

(b) Under an ellipsoidal uncertainty set with uncorrelated data, we show that the

robust problem can be reduced to solving a collection of nominal problems with

different linear objectives. If the distributions are identical, we show that we

only require to solve r + 1 nominal problems, where r is the number of un-

certain cost components, that is in this case the computational complexity is

preserved. Under uncorrelated data, we propose an approximation method that

solves the robust problem within an additive ε. The complexity of the method

is O((ndmax)
1/4ε−1/2), where dmax is the largest number in the data describing

the ellipsoidal set, that is the complexity is not polynomial as it depends on the

data. We also propose a Frank-Wolfe type algorithm for this case, which we

prove converges to a locally optimal solution, and in computational experiments

is remarkably effective. We also link the robust problem with uncorrelated data

to classical problems in parametric discrete optimization.

(c) We propose a generalization of the robust discrete optimization framework in

Chapter 5 that allows the key parameter that controls the tradeoff between

robustness and optimality to depend on the solution that results in increased

flexibility and decreased conservatism, while maintaining the complexity of the

nominal problem.

Structure of the chapter. In Section 6.1, we formulate robust discrete optimiza-

tion problems under ellipsoidal uncertainty sets and show that the problem is NP -

hard even for nominal problems that are polynomially solvable. In Section 6.2, we

present structural results and establish that the robust problem under ball uncer-

tainty (uncorrelated and identically distributed data) has the same complexity as

the nominal problem. In Sections 6.3 and 6.4, we propose approximation methods

for the robust problem under ellipsoidal uncertainty sets with uncorrelated but not

identically distributed data. In Section 6.6, we present some experimental findings re-
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lating to the computation speed and the quality of robust solutions. The final section

contains some concluding remarks.

6.1 Formulation of Robust Discrete Optimization

Problems

A nominal discrete optimization problem is:

minimize c′x

subject to x ∈ X,
(6.1)

with X ⊆ {0, 1}n. We are interested in problems where each entry c̃j, j ∈ N =

{1, 2, . . . , n} is uncertain and described by an uncertainty set C. Under the robust

optimization paradigm, we solve

minimize max
c̃∈C

c̃′x

subject to x ∈ X.
(6.2)

Writing c̃ = c + s̃, where c is the nominal value and the deviation s̃ is restricted to

the set D = C − c, Problem (6.2) becomes:

minimize c′x + ξ(x)

subject to x ∈ X,
(6.3)

where ξ(x) = maxs̃∈D s̃′x. Special cases of Formulation (6.3) include:

(a) D = {s : s̃j ∈ [0, dj]}, leading to ξ(x) = d′x.

(b) D = {s : ‖Σ−1/2s‖2 ≤ Ω} that models ellipsoidal uncertainty sets proposed by

Ben-Tal and Nemirovski [7, 6, 4] and El-Ghaoui et al. [11, 12]. It easily follows

that ξ(x) = Ω
√

x′Σx, where Σ is the covariance matrix of the random cost

coefficients. For the special case that Σ = diag(d1, . . . , dn), i.e., the random cost

coefficients are uncorrelated, we obtain that ξ(x) = Ω
√∑

j∈N djx2
j = Ω

√
d′x.
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(c) D = {s : 0 ≤ sj ≤ dj ∀j ∈ J,
∑

k∈N
sk

dk
≤ Γ} proposed in Chapter 5. It

follows that in this case ξ(x) = max{S:|S|=Γ,S⊆J}
∑

j∈S djxj, where J is the set

of random cost components. We have also shown that Problem (6.3) reduces

to solving at most |J | + 1 nominal problems for different cost vectors. In other

words, the robust counterpart is polynomially solvable if the nominal problem is

polynomially solvable.

Under models (a) and (c), robustness preserves the computational complexity of

the nominal problem. Our objective in this chapter is to investigate the price (in

increased complexity) of robustness under ellipsoidal uncertainty sets (model (b))

and propose effective algorithmic methods to tackle models (b), (c).

Our first result is unfortunately negative. Under ellipsoidal uncertainty sets with

general covariance matrices, the price of robustness is high. The robust counterpart

may become NP -hard even though the nominal problem is polynomially solvable.

Theorem 16 The robust problem (6.3) with ξ(x) = Ω
√

x′Σx (Model (b)) is NP -

hard, for the following classes of polynomially solvable nominal problems: shortest

path, minimum cost assignment, resource scheduling, minimum spanning tree.

Proof : Kouvelis and Yu [20] prove that the problem

minimize max{c′
1x, c′

2x}
subject to x ∈ X,

(6.4)

is NP -hard for the polynomially solvable problems mentioned in the statement of the

theorem. We show a simple transformation of Problem (6.4) to Problem (6.3) with

ξ(x) = Ω
√

x′Σx as follows:

max{c′
1x, c′

2x} = max

{
c′
1x + c′

2x

2
+

c′
1x− c′

2x

2
,
c′
1x + c′

2x

2
− c′

1x− c′
2x

2

}

=
c′
1x + c′

2x

2
+ max

{
c′
1x− c′

2x

2
,−c′

1x− c′
2x

2

}

=
c′
1x + c′

2x

2
+

∣∣∣∣∣
c′
1x− c′

2x

2

∣∣∣∣∣

=
c′
1x + c′

2x

2
+

1

2

√
x′(c1 − c2)(c1 − c2)′x.
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The NP -hard Problem (6.4) is transformed to Problem (6.3) with ξ(x) = Ω
√

x′Σx,

c = (c1 + c2)/2, Ω = 1/2 and Σ = (c1 − c2)(c1 − c2)
′. Thus, Problem (6.3) with

ξ(x) = Ω
√

x′Σx is NP -hard.

We next would like to propose methods for model (b) with Σ = diag(d1, . . . , dn).

We are thus naturally led to consider the problem

G∗ = minimize c′x + f(d′x)

subject to x ∈ X,
(6.5)

with f(·) a concave function. In particular, f(x) = Ω
√

x models ellipsoidal uncer-

tainty sets with uncorrelated random cost coefficients (model (b)).

6.2 Structural Results

We first show that Problem (6.5) reduces to solving a number of nominal problems

(6.1). Let W = {d′x | x ∈ {0, 1}n} and η(w) be a subgradient of the concave

function f(·) evaluated at w, that is, f(u)− f(w) ≤ η(w)(u− w) ∀u ∈ R. If f(w) is

a differentiable function and f ′(0) = ∞, we choose

η(w) =





f ′(w) if w ∈ W\{0}
f(d)−f(0)

d
if w = 0

,

where d = min{j: dj>0} dj.

Theorem 17 Problem (6.5) is reducible to solving |W | problems of the form:

Z(w) = minimize (c + η(w)d)′x + f(w)− wη(w)

subject to x ∈ X.
(6.6)

Moreover, w∗ = arg min{w∈W} Z(w) yields the optimal solution to Problem (6.5) and

G∗ = Z(w∗).
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Proof : We first show that G∗ ≥ minw∈W Z(w). Let x∗ be an optimal solution to

Problem (6.5) and w∗ = d′x∗ ∈ W . We have

G∗ = c′x∗ + f(d′x∗) = c′x∗ + f(w∗) = (c + η(w∗)d)′x∗ + f(w∗)− w∗η(w∗)

≥ min
x∈X

(c + η(w∗)d)′x + f(w∗)− w∗η(w∗) = Z(w∗) ≥ min
w∈W

Z(w).

Conversely, for any w ∈ W , let yw be an optimal solution to Problem (6.6). We have

Z(w) = (c + η(w)d)′yw + f(w)− wη(w)

= c′yw + f(d′yw) + η(w)(d′yw − w)− (f(d′yw)− f(w))

≥ c′yw + f(d′yw) (6.7)

≥ min
x∈X

c′x + f(d′x) = G∗,

where inequality (6.7) for w ∈ W\{0} follows, since η(w) is a subgradient. To see

that inequality (6.7) follows for w = 0 we argue as follows. Since f(v) is concave and

v ≥ d ∀v ∈ W\{0}, we have

f(d) ≥ v − d

v
f(0) +

d

v
f(v), ∀v ∈ W\{0}.

Rearranging, we have

f(v)− f(0)

v
≤ f(d)− f(0)

d
= η(0) ∀v ∈ W\{0},

leading to η(0)(d′yw − 0)− (f(d′yw)− f(0)) ≥ 0. Therefore G∗ = minw∈W Z(w).

Note that when dj = σ2, then W = {0, σ2, . . . , nσ2}, and thus |W | = n+1, In this

case, Problem (6.5) reduces to solving n + 1 nominal problems (6.6), i.e., polynomial

solvability is preserved. Specifically, for the case of an ellipsoidal uncertainty set Σ =

σ2I, leading to ξ(x) = Ω
√∑

j σ2x2
j = Ωσ

√
e′x, we derive explicitly the subproblems

involved.
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Proposition 14 Under an ellipsoidal uncertainty set with ξ(x) = Ωσ
√

e′x,

G∗ = min
w=0,1,...,n

Z(w),

where

Z(w) =





minimizex∈X

(
c +

Ωσ

2
√

w
e

)′
x +

Ωσ
√

w

2
w = 1, . . . , n

minimizex∈X (c + Ωσe)′x w = 0.

(6.8)

Proof : With ξ(x) = Ωσ
√

e′x, we have f(r) = Ωσ
√

r and f ′(r) = Ωσ
2
√

r
. Furthermore,

W = {0, . . . , n}, we choose η(w) = f ′(w), ∀ w ∈ W\{0}. Since f ′(0) = ∞, and d = 1,

we obtain η(0) = (f(d)− f(0))/d = f(1)− f(0) = Ωσ.

Proposition 14 suggests that for uncorrelated and identically distributed data, the

computational complexity of the nominal problem is preserved.

An immediate corollary of Theorem 17 is to consider a parametric approach as

follows:

Corollary 1 An optimal solution to Problem (6.5) coincides with one of the optimal

solutions to the parametric problem:

minimize (c + θd)′x

subject to x ∈ X,
(6.9)

for θ ∈ [η(e′d), η(0)].

This establishes a connection of Problem (6.5) with parametric discrete optimiza-

tion (see Gusfield [16] and Hassin and Tamir [17]). It turns out that if X is a matroid,

the minimal set of optimal solutions to Problem (6.9) as θ varies is polynomial in size,

see Eppstein [13] and Fern andez-Baca et al. [14]. For optimization over a matroid,

the optimal solution depends on the ordering of the cost components. Since, as θ

varies, it is easy to see that there are at most
(

n
2

)
+ 1 different orderings, the corre-

sponding robust problem is also polynomially solvable.
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For the case of shortest paths, Karp and Orlin [19] provide a polynomial time

algorithm using the parametric approach when all dj’s are equal. In contrast, the

polynomial reduction in Proposition 14 applies to all discrete optimization problems.

More generally, |W | ≤ dmaxn with dmax = maxj dj. If dmax ≤ nα, then Problem

(6.5) reduces to solving nα(n + 1) nominal problems (6.6). However, when dmax is

exponential in n, then the reduction does not preserve polynomiallity. For this reason,

as well as deriving more practical algorithms even in the case that |W | is polynomial

in n we develop in the next section new algorithms.

6.3 Approximation via Piecewise Linear Functions

In this section, we develop a method for solving Problem (6.5) that is based on

approximating the function f(·) with a piecewise linear concave function. We first

show that if f(·) is a piecewise linear concave function with a polynomial number

of segments, we can also reduce Problem (6.5) to solving a polynomial number of

subproblems.

Proposition 15 If f(w), w ∈ [0, e′d] is a continuous piecewise linear concave func-

tion of k segments, Problem (6.5) can be reduced to solving k subproblems as follows:

minimize (c + ηjd)′x

subject to x ∈ X,
(6.10)

where ηj is the gradient of the jth linear piece of the function f(·).

Proof : The proof follows directly from Theorem 17 and the observations that if

f(w), w ∈ [0, e′d] is a continuous piecewise linear concave function of k linear pieces,

the set of subgradients of each of the linear pieces constitutes the minimal set of

subgradients for the function f .

We next show that approximating the function f(·) with a piecewise linear concave

function leads to an approximate solution to Problem (6.5).
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Theorem 18 For W = [w, w̄] such that d′x ∈ W ∀x ∈ X, let g(w), w ∈ W

be a piecewise linear concave function approximating the function f(w) such that

−ε1 ≤ f(w)−g(w) ≤ ε2 with ε1, ε2 ≥ 0. Let xH be an optimal solution of the problem:

minimize c′x + g(d′x)

subject to x ∈ X
(6.11)

and let GH = c′xH + f(d′xH). Then,

G∗ ≤ GH ≤ G∗ + ε1 + ε2.

Proof : We have that

G∗ = min
x∈X

{c′x + f(d′x)}
≤ GH = c′xH + f(d′xH)

≤ c′xH + g(d′xH) + ε2 (6.12)

= min
x∈X

{c′x + g(d′x)}+ ε2

≤ min
x∈X

{c′x + f(d′x)}+ ε1 + ε2 (6.13)

= G∗ + ε1 + ε2,

where inequalities (6.12) and (6.13) follow from −ε1 ≤ f(w)− g(w) ≤ ε2.

We next apply the approximation idea to the case of ellipsoidal uncertainty sets.

Specifically, we approximate the function f(w) = Ω
√

w in the domain [w, w̄] with a

piecewise linear concave function g(w) satisfying 0 ≤ f(w)− g(w) ≤ ε using the least

number of linear pieces.

Proposition 16 For ε > 0, w0 given, let φ = ε/Ω and for i = 1, . . . , k define

wi = φ2



2

(
i +

√√
w0

2φ
+

1

4

)2

− 1

2





2

. (6.14)

Let g(w) be a piecewise linear concave function on the domain w ∈ [w0, wk], with
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breakpoints (w, g(w)) ∈ {(w0, Ω
√

w0), . . . , (wk, Ω
√

wk)}. Then, for all w ∈ [w0, wk]

0 ≤ Ω
√

w − g(w) ≤ ε.

Proof : Since at the breakpoints wi, g(wi) = Ω
√

wi, g(w) is a concave function with

g(w) ≤ Ω
√

w, ∀w ∈ [w0, wk]. For w ∈ [wi−1, wi], we have

Ω
√

w − g(w) = Ω
√

w −
{

Ω
√

wi−1 +
Ω
√

wi − Ω
√

wi−1

wi − wi−1

(w − wi−1)

}

= Ω

{√
w −√wi−1 − w − wi−1√

wi +
√

wi−1

}
.

Clearly, the maximum value of Ω
√

w− g(w) is attained at
√

w∗ =
√

wi+
√

wi−1

2
. There-

fore,

Ω
√

w − g(w) ≤ Ω

{√
w∗ −√wi−1 − w∗ − wi−1√

wi +
√

wi−1

}

= Ω





√
wi −√wi−1

2
−

(√
wi+

√
wi−1

2

)2 − wi−1√
wi +

√
wi−1





= Ω





√
wi −√wi−1

2
−

(√
wi+3

√
wi−1

2

) (√
wi−√wi−1

2

)

√
wi +

√
wi−1





=
Ω(
√

wi −√wi−1)
2

4(
√

wi +
√

wi−1)

= Ωφ = ε. (6.15)

The last Equality (6.15) by substituting Eq. (6.14). Since

max
w∈[wi−1,wi]

{
Ω
√

w − g(w)
}

= ε,

the proposition follows.

Propositions 15, 16 and Theorem 18 lead to Algorithm 6.3.

Theorem 19 Algorithm 6.3 is correct.
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Approximation by piecewise linear concave functions.
Input: c,d, w, w̄, Ω, ε, f(x) = Ω

√
x and a routine that optimizes a linear function

over the set X ⊆ {0, 1}n.
Output: A solution xH ∈ X for which G∗ ≤ c′xH + f(d′xH) ≤ G∗ + ε, where
G∗ = minx∈X c′x + f(d′x).
Algorithm.

1. (Initialization) Let φ = ε/Ω; Let w0 = w; Let

k =




√
Ω
√

w̄

2ε
+

1

4
−

√
Ω
√

w

2ε
+

1

4




= O




√
Ω

ε
(ndmax)

1
4




where dmax = maxj dj and for i = 1, . . . , k let

wi = φ2



2

(
i +

√√
w

2φ
+

1

4

)2

− 1

2





2

.

2. For i = 1, . . . , k solve the problem

Zi = minimize

(
c +

Ω√
wi +

√
wi−1

d

)′
x

subject to x ∈ X,

(6.16)

Let xi be an optimal solution to Problem (6.16).

3. Output G∗
H = Zi∗ = mini=1,...,k Zi and xH = xi∗ .
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Proof : Using Proposition 16 we find a piecewise linear concave function g(w) that

approximates within a given tolerance ε > 0 the function Ω
√

w. From Proposition 15

and since the gradient of the ith segment of the function g(w) for w ∈ [wi−1, wi] is

ηi = Ω

√
wi −√wi−1

wi − wi−1

=
Ω√

wi +
√

wi−1

.

we solve the Problems for i = 1, . . . , k

Zi = minimize

(
c +

Ω√
wi +

√
wi−1

d

)′
x

subject to x ∈ X.

Taking G∗
H = mini Zi and using Theorem 18 it follows that Algorithm 6.3 produces a

solution within ε.

Although the number of subproblems solved in Algorithm 6.3 is not polynomial

with respect to the bit size of the input data, the computation involved is reasonable

from a practical point of view. For example, in Table 6.1 we report the number of

subproblems we need to solve for Ω = 4, as a function of ε and d′e =
∑n

j=1 dj.

ε d′e k
0.01 10 25
0.01 100 45
0.01 1000 80
0.01 10000 121
0.001 10 80
0.001 100 141
0.001 1000 251
0.001 10000 447

Table 6.1: Number of subproblems, k as a function of the desired precision ε, size of
the problem d′e and Ω = 4.
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6.4 A Frank-Wolfe Type Algorithm

A natural method to solve Problem (6.5) is to apply a Frank-Wolfe type algorithm,

that is to successively linearize the function f(·).

The Frank-Wolfe type algorithm.
Input: c,d, Ω, θ ∈ [η(d′e), η(0)], f(w), η(w) and a routine that optimizes a linear
function over the set X ⊆ {0, 1}n.
Output: A locally optimal solution to Problem (6.5).
Algorithm.

1. (Initialization) k = 0; x0 := arg miny∈X(c + θd)′y)

2. Until d′xk+1 = d′xk, xk+1 := arg miny∈X(c + η(d′xk)d)′y).

3. Output xk+1.

We next show that Algorithm 6.4 converges to a locally optimal solution.

Theorem 20 Let x, y and zη be optimal solutions to the following problems:

x = arg min
u∈X

(c + θd)′u, (6.17)

y = arg min
u∈X

(c + η(d′x)d)′u (6.18)

zη = arg min
u∈X

(c + ηd)′u, (6.19)

for some η strictly between θ and η(d′x.)

(a) (Improvement) c′y + f(d′y) ≤ c′x + f(d′x).

(b) (Monotonicity) If θ > η(d′x), then η(d′x) ≥ η(d′y). Likewise, if θ < η(d′x),

then η(d′x) ≤ η(d′y). Hence, the sequence θk = η(d′xk) for which

xk = arg min
x∈X

(c + η(d′xk−1)d)′x

is either non-decreasing or non-increasing.

(c) (Local optimality)

c′y + f(d′y) ≤ c′zη + f(d′zη),

for all η strictly between θ and η(d′x). Moreover, if d′y = d′x, then the solution y
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is locally optimal, that is

y = arg min
u∈X

(c + η(d′y)d)′u

and

c′y + f(d′y) ≤ c′zη + f(d′zη),

for all η between θ and η(d′y).

Proof : (a) We have

c′x + f(d′x) = (c + η(d′x)d)′x− η(d′x)d′x + f(d′x)

≥ c′y + η(d′x)d′y − η(d′x)d′x + f(d′x)

= c′y + f(d′y) + {η(d′x)(d′y − d′x)− (f(d′y)− f(d′x)}
≥ c′y + f(d′y),

since η(·) is a subgradient.

(b) From the optimality of x and y, we have

c′y + η(d′x)d′y ≤ c′x + η(d′x)d′x

−(c′y + θd′y) ≤ −(c′x + θd′x).

Adding the two inequalities we obtain

(d′x− d′y)(η(d′x)− θ) ≥ 0.

Therefore, if η(d′x) > θ then d′y ≤ d′x and since f(w) is a concave function, i.e.,

η(w) is non-increasing, η(d′y) ≥ η(d′x). Likewise, if η(d′x) < θ then η(d′y) ≤
η(d′x). Hence, the sequence θk = η(d′xk) is monotone.

(c) We first show that d′zη is in the convex hull of d′x and d′y. From the optimality
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of x, y, and zη we obtain

c′x + θd′x ≤ c′zη + θd′zη

c′x + ηd′x ≥ c′zη + ηd′zη

c′y + η(d′x)d′y ≤ c′zη + η(d′x)d′zη

c′y + ηd′y ≥ c′zη + ηd′zη

From the first two inequalities we obtain

(d′zη − d′x)(θ − η) ≥ 0,

and from the last two we have

(d′zη − d′y)(η(d′x)− η) ≥ 0.

If θ < η < η(d′y), we conclude since η(·) is non-increasing that d′y ≤ d′zη ≤ d′x.

Likewise, if η(d′x) < η < θ, we have d′x ≤ d′zη ≤ d′y. Next, we have

c′y + f(d′y) = (c + η(d′x)d)′y − η(d′x)d′y + f(d′y)

≤ (c + η(d′x)d)′zη − η(d′x)d′y + f(d′y)

= c′zη + f(d′zη) + {f(d′y)− f(d′zη)− η(d′x)(d′y − d′zη)}
= c′zη + f(d′zη) + h(d′zη)

≤ c′zη + f(d′zη), (6.20)

where inequality (6.20) follows from observing that the function h(α) = f(d′y) −
f(α)− η(d′x)(d′y − α) is a convex function with h(d′y) = 0 and h(d′x) ≤ 0. Since

d′zη is in the convex hull of d′x and d′y, by convexity, h(d′zη) ≤ µh(d′y) + (1 −
µ)h(d′x) ≤ 0, for some µ ∈ [0, 1].

Given a feasible solution, x, Theorem 20(a) implies that we may improve the

objective by solving a sequence of problems using Algorithm 6.4. Note that at each

151



iteration, we are optimizing a linear function over X. Theorem 20(b) implies that the

sequence of θk = η(d′xk) is monotone and since it is bounded it converges. Since X is

finite, then the algorithm converges in a finite number of steps. Theorem 20(c) implies

that at termination (recall that the termination condition is d′y = d′x) Algorithm

6.4 finds a locally optimal solution.

Suppose θ = η(e′d) and {x1, . . . , xk} be the sequence of solutions of Algorithm

6.4. From Theorem 20(b), we have

θ = η(e′d) ≤ θ1 = η(d′x1) ≤ . . . ≤ θk = η(d′xk).

When Algorithm 6.4 terminates at the solution xk, then from Theorem 20(c),

c′xk + f(d′xk) ≤ c′zη + f(d′zη), (6.21)

where zη is defined in Eq. (6.19) for all η ∈ [η(e′d), η(d′xk)]. Likewise, if θ̄ = η(0),

and let {y1, . . . , yl} be the sequence of solutions of Algorithm 6.4, we have

θ̄ = η(0) ≥ θ̄1 = η(d′y1) ≥ . . . ≥ θ̄l = η(d′yl),

and

c′yl + f(d′yl) ≤ c′zη + f(d′zη) (6.22)

for all η ∈ [η(d′yl), η(0)]. If η(d′xk) ≥ η(d′yl), we have η(d′xk) ∈ [η(d′yl), η(0)] and

η(d′yk) ∈ [η(e′d), η(d′xl)]. Hence, following from the inequalities (6.21) and (6.22),

we conclude that

c′yl + f(d′yl) = c′xk + f(d′xkη) ≤ c′zη + f(d′z)

for all η ∈ [η(e′d), η(d′xl)] ∪ [η(d′yl), η(0)] = [η(e′d), η(0)]. Therefore, both yl and

xk are globally optimal solutions. However, if η(d′yl) > η(d′xk), we are assured

that the global optimal solution is xk, yl or in {x : x = arg minu∈X(c + ηd)′u,

η ∈ (η(d′xk), η(d′yl))}. We next determine an error bound between the optimal
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objective and the objective of the best local solution, which is either xk or yl.

Theorem 21 (a)Let W = [w, w], η(w) > η(w), X ′ = X ∩ {x : d′x ∈ W}, x1 and

x2 being optimal solutions to the following problems,

x1 = arg min
y∈X′(c + η(w)d)′y, (6.23)

x2 = arg min
y∈X′(c + η(w)d)′y, (6.24)

then

G′∗ ≤ min {c′x1 + f(d′x1), c
′x2 + f(d′x2)} ≤ G′∗ + ε,

where

G′∗ = minimize c′y + f(d′y)

subject to y ∈ X ′,
(6.25)

ε = η(w)(w∗ − w) + f(w)− f(w∗),

and

w∗ =
f(w)− f(w) + η(w)w − η(w)w

η(w)− η(w)

(b) Suppose the feasible solutions x1 and x2 satisfy

x1 = arg min
y∈X

(c + η(d′x1)d)′y, (6.26)

x2 = arg min
y∈X

(c + η(d′x2)d)′y, (6.27)

such that η(w) > η(w̄), with w = d′x1, w̄ = d′x2 and there exists an optimal solution

x∗ = arg miny∈X(c + ηd)′y for some η ∈ (η(w̄), η(w)), then

G∗ ≤ min {c′x1 + f(d′x1), c
′x2 + f(d′x2)} ≤ G∗ + ε, (6.28)

where G∗ = c′x∗ + f(d′x∗).

Proof : (a) Let g(w), w ∈ W be a piecewise concave function comprising of two line

segments through (w, f(w)), (w, f(w)) with respective subgradients η(w) and η(w).
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Figure 6-1: Illustration of the maximum gap between the function f(w) and g(w).

Clearly f(w) ≤ g(w) for w ∈ W , and hence, we have −ε ≤ f(w) − g(w) ≤ 0, where

ε = maxw∈W (g(w) − f(w)) = g(w∗) − f(w∗), noting that the maximum difference

occurs at the intersection (see Figure (6-1)). Therefore,

g(w∗) = η(w)(w∗ − w) + f(w) = η(w)(w∗ − w) + f(w).

Solving, we have

w∗ =
f(w)− f(w) + η(w)w − η(w)w

η(w)− η(w)
.

Applying Proposition 15 with X ′ instead of X and k = 2, we obtain

min
y∈X′ c

′y + g(d′y) = min {c′x1 + g(d′x1), c
′x2 + g(d′x2)} .

Finally, from Theorem 18, we have

G′∗ ≤ min {c′x1 + f(d′x1), c
′x2 + f(d′x2)} ≤ G′∗ + ε.

(b) Under the stated conditions, observe that the optimal solutions of the problems
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(6.26) and (6.27) are respectively the same as the optimal solutions of the problems

(6.23) and (6.24). Let η ∈ (η(d′x2), η(d′x1)) such that x∗ = arg miny∈X(c + ηd)′y.

We establish that

c′x∗ + ηd′x∗ ≤ c′x1 + ηd′x1

c′x∗ + η(d′x1)d
′x∗ ≥ c′x1 + η(d′x1)d

′x1

c′x∗ + ηd′x∗ ≤ c′x2 + ηd′x2

c′x∗ + η(d′x2)d
′x∗ ≥ c′x2 + η(d′x2)d

′x2.

Since η(d′x2) < η < η(d′x1), it follows from the above that d′x∗ ∈ [d′x1, d
′x2] and

hence, G∗ = G′∗ and the bounds of (6.25) follows from part (a).

If η(d′yl) > η(d′xk), Theorem 21(b) provides a guarantee on the quality of the

best solution of the two locally optimal solution xk and yl relative to the global

optimum. Moreover, we can improve the error bound by partitioning the interval

[η(w̄), η(w)], with w = d′yl, w̄ = d′xk into two subintervals, [η(w̄), (η(w̄) + η(w))/2]

and [(η(w̄)+η(w))/2, η(w)] and applying Algorithm 2 in the intervals. Using Theorem

21(a), we can obtain improved bounds. Continuing this way, we can find the globally

optimal solution.

6.5 Generalized Discrete Robust Formulation

In Chapter 5, we propose the following model for robust discrete optimization:

Z∗ = min
x∈X

c′x + max
{S∪{t}| S⊆J,|S|=bΓc,t∈J\S}





∑

j∈S

djxj + (Γ− bΓc)dtxt





= min
x∈X

c′x + max
{z:e′z≤Γ,0≤z≤e}





∑

j∈J

djxjzj





(6.29)

Motivated from Theorem 3, if we select Γ = Λ
√

r, then the probability that the

robust solution exceeds Z∗ is approximately 1 − Φ(Λ). Since in this case feasible

solutions are restricted to binary values, we can achieve a less conservative solution
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by replacing r by
∑

j∈J x∗j = e′
Jx, i.e., the parameter Γ in the robust problem depends

on e′
Jx. We write Γ = f(e′

Jx), where f(·) is a concave function. Thus, we propose

to solve the following problem:

Z∗ = minimize c′x + max
{z:e′z≤f(e′

Jx),0≤z≤e}





∑

j∈J

djxjzj





subject to x ∈ X.

(6.30)

Without loss of generality, we assume that d1 ≥ d2 ≥ . . . ≥ dr. We define dr+1 = 0

and let Sl = {1, . . . , l}. For notational convenience, we also define d0 = 0 and S0 = J .

Theorem 22 Let η(w) be a subgradient of the concave function f(·) evaluated at w.

Problem (6.30) satisfies Z∗ = min
(l,k):l,k∈J∪{0}

Zlk, where

Zlk = minimize c′x +
∑

j∈Sl

(dj − dl)xj + η(k)dle
′
Jx + dl(f(k)− kη(k))

subject to x ∈ X.

(6.31)

Proof : By strong duality of the inner maximization function with respect to z,

Problem (6.30) is equivalent to solving the following problem:

minimize c′x +
∑

j∈J

pj + f(e′
Jx)θ

subject to pj ≥ djxj − θ ∀j ∈ J

pj ≥ 0 ∀j ∈ J

x ∈ X

θ ≥ 0,

(6.32)

We eliminate the variables pj and express Problem (6.32) as follows:

minimize c′x +
∑

j∈J

max{djxj − θ, 0}+ f(e′
Jx)θ

subject to x ∈ X

θ ≥ 0.

(6.33)
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Since x ∈ {0, 1}n, we observe that

max{djxj − θ, 0} =





dj − θ if xj = 1 and dj ≥ θ

0 if xj = 0 or dj < θ.
(6.34)

By restricting the interval of θ can vary we obtain that Z∗ = minθ≥0 minl=0,...,r Zl(θ)

where Zl(θ), l = 1, . . . , r, is defined for θ ∈ [dl, dl+1] is

Zl(θ) = minimize c′x +
∑

j∈Sl

(dj − θ)xj + f(e′
Jx)θ

subject to x ∈ X,

(6.35)

and for θ ∈ [d1,∞):

Z0(θ) = minimize c′x + f(e′
Jx)θ

subject to x ∈ X.
(6.36)

Since each function Zl(θ) is optimized over the interval [dl, dl+1], the optimal solution

is realized in either dl or dl+1. Hence, we can restrict θ from the set {d1, . . . , dr, 0}
and establish that

Z∗ = min
l∈J∪{0}

c′x +
∑

j∈Sl

(dj − dl)xj + f(e′
Jx)dl. (6.37)

Since e′
Jx ∈ {0, 1, . . . , r}, we apply Theorem 17 to obtain the subproblem decompo-

sition of (6.31).

Theorem 22 suggests that the robust problem remains polynomially solvable if the

nominal problem is polynomially solvable, but at the expense of higher computational

complexity. We next explore faster algorithms that are only guarantee local optimal-

ity. In this spirit and analogously to Theorem 20, we provide a necessary condition

for optimality, which can be exploited for local search algorithmic design.

Theorem 23 An optimal solution, x to the Problem (6.30) is also an optimal solu-
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tion to the following problem:

minimize c′y +
∑

j∈Sl∗
(dj − dl∗)yj + η(e′

Jx)dl∗e
′
Jy

subject to y ∈ X,

(6.38)

where l∗ = arg min
l∈J∪{0}

∑

j∈Sl

(dj − dl)xj + f(e′
Jx)dl.

Proof : Suppose x is an optimal solution for Problem (6.30) but not for Problem

(6.38). Let y be the optimal solution to Problem (6.38). Therefore,

c′x + max
{z:e′z≤f(e′

Jx),0≤z≤e}





∑

j∈J

djxjzj





= min
l∈J∪{0}

c′x +
∑

j∈Sl

(dj − dl)xj + f(e′
Jx)dl (6.39)

= c′x +
∑

j∈Sl∗
(dj − dl∗)xj + f(e′

Jx)dl∗

= c′x +
∑

j∈Sl∗
(dj − dl∗)xj + η(e′

Jx)dl∗e
′
Jx− η(e′

Jx)dl∗e
′
Jx + f(e′

Jx)dl∗

> c′y +
∑

j∈Sl∗
(dj − dl∗)yj + η(e′

Jx)dl∗e
′
Jy − η(e′

Jx)dl∗e
′
Jx + f(e′

Jx)dl∗

= c′y +
∑

j∈Sl∗
(dj − dl∗)yj + f(e′

Jy)dl∗ +

(
η(e′

Jx)(e′
Jy − e′

Jx)−
(
f(e′

Jy)− f(e′
Jx)

))
dl∗

≥ c′y +
∑

j∈Sl∗
(dj − dl∗)yj + f(e′

Jy)dl∗

≥ min
l∈J∪{0}

c′y +
∑

j∈Sl

(dj − dl)yj + f(e′
Jy)dl

= c′y + max
{z:e′z≤f(e′

Jy),0≤z≤e}





∑

j∈J

djyjzj



 (6.40)

where the Eqs. (6.39) and (6.40) follows from Eq. (6.37). This contradicts that x is

optimal.
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6.6 Experimental Results

In this section we provide experimental evidence on the effectiveness of Algorithm

6.4. We apply Algorithm 6.4 as follows. We start with two initial solutions x1

and x2. Starting with x1 (x2) Algorithm 6.4 finds a locally optimal solution y1

(y2). If y1 = y2, by Theorem 20, the optimum solution is found. Otherwise, we

report the optimality gap ε derived from Theorem 21. If we want to find the optimal

solution, we partition into smaller search regions using Theorem 19 and repeatedly

apply Algorithm 6.4 until all regions are covered.

We apply the proposed approach to the binary knapsack and the uniform matroid

problems.

6.6.1 The Robust Knapsack Problem

The binary knapsack problem is:

maximize
∑

i∈N

c̃ixi

subject to
∑

i∈N

wixi ≤ b

x ∈ {0, 1}n.

We assume that the costs c̃i are random variables that are independently distributed

with mean ci and variance di = σ2
i . Under the ellipsoidal uncertainty set, the robust

model is:

maximize
∑

i∈N

cixi + Ω
√

d′x

subject to
∑

i∈N

wixi ≤ b

x ∈ {0, 1}n.

The instance of the robust knapsack problem is generated randomly with |N | =

200 and capacity limit, b equals 20, 000. The nominal weight wi is randomly chosen

from the set {100, . . . , 1500}, the cost ci is randomly chosen from the set {10, 000, . . . ,

15, 000}, and the standard deviation σj is dependent on cj such that σj = δjcj, where
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Ω ZH Iterations ε ε
ZH

1.0 1965421.36 4 0 0
2.0 2054638.82 6 0 0
2.5 2097656.46 6 0 0
3.0 2140207.75 6 3.1145 1.45523× 10−6

3.05 2144317.00 5 0 0
3.5 2182235.78 5 0 0
4.0 2224365.19 6 3.4046 1.53059× 10−6

4.5 2266054.21 7 0 0
5.0 2307475.12 8 0 0

Table 6.2: Robust Knapsack Solutions.

δj is uniformly distributed in [0, 1]. We vary the parameter Ω from 1 to 5 and report

in Table 6.2 the best attainable objective, ZH , the number of instance of nominal

problem solved, as well as the optimality gap ε.

It is surprising that in all of the instances, we can obtain the optimal solution of

the robust problem using a small number of iterations. Even for the cases, Ω = 3, 4,

where the Algorithm 6.4 terminates with more than one local minimum solutions,

the resulting optimality gap is very small, which is usually acceptable in practical

settings.

6.6.2 The Robust Minimum Cost over a Uniform Matroid

We consider the problem of minimizing the total cost of selecting k items out of a set

of n items that can be expressed as the following integer optimization problem:

minimize
∑

i∈N

c̃ixi

subject to
∑

i∈N

xi = k

x ∈ {0, 1}n.

(6.41)

In this problem, the cost components are subjected to uncertainty. If the model is

deterministic, we can easily solve the problem in O(n log n) by sorting the costs in

ascending order and choosing the first k items. In the robust framework under the
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ellipsoidal uncertainty set, we solve the following problem:

minimize c′x + Ω
√

d′x

subject to
∑

i∈N

xi = k

x ∈ {0, 1}n.

(6.42)

Since the underlying set is a matroid, it is well known that Problem (6.42) can be

solved in strongly polynomial time using parametric optimization. Instead, we apply

Algorithm 6.4 and observe the number of iterations needed before converging to a local

minimum solution. Setting |k| = |N |/2, cj and σj =
√

dj being uniformly distributed

in [5000, 20000] and [500, 5000] respectively, we study the convergence properties as

we vary |N | from 200 to 20,000 and Ω from 1 to 3. For a given |N | and Ω, we

generate c and d randomly and solve 100 instances of the problem. Aggregating the

results from solving the 100 instances, we report in Table 6.3 the average number of

iterations before finding a local solution, the maximum relative optimality gap, ε/ZH

and the percentage of the local minimum solutions that are global, i.e ε = 0.

The overall performance of Algorithm 6.4 is surprisingly good. It also suggests

scalability, as the number of iterations is marginally affected by an increase in |N |.
In fact, in most of the problems tested, we obtain the optimal solution by solving

less than 10 iterations of the nominal problem. Even in cases when local solutions

are found, the corresponding optimality gap is negligible. In summary, Algorithm 6.4

seems practically promising.

6.7 Conclusions

A message of the present chapter is that the complexity of robust discrete optimization

is affected by the choice of the uncertainty set. For ellipsoidal uncertainty sets,

we have shown an increase in complexity for the robust counterpart of a discrete

optimization problem for general covariance matrices Σ, a preservation of complexity

when Σ = σI (uncorrelated and identically distributed data), while we have left
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Ω |N | Ave. Iter. max ε
ZH

Opt. Sol. %

1 200 5.73 7.89× 10−7 98%
1 500 5.91 3.71× 10−8 99%
1 1000 6.18 5.80× 10−9 99%
1 2000 6.43 0 100%
1 5000 6.72 0 100%
1 10000 6.92 0 100%
1 20000 6.98 0 100%
2 200 6.24 0 100%
2 500 6.50 0 100%
2 1000 6.80 0 100%
2 2000 6.95 0 100%
2 5000 6.98 0 100%
2 10000 7.01 0 100%
2 20000 7.02 0 100%
3 200 6.55 1.62× 10−6 94%
3 500 6.85 7.95× 10−8 97%
3 1000 6.92 0 100%
3 2000 7.01 1.08× 10−9 99%
3 5000 7.06 5.13× 10−10 98%
3 10000 7.07 0 100%
3 20000 7.07 0 100%

Table 6.3: Performance of Algorithm 6.4 the Robust Minimum Cost problem over a
Uniform Matroid.
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open the complexity when the matrix Σ is diagonal (uncorrelated data). In the latter

case, we proposed two algorithms that in computational experiments have excellent

empirical performance.
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Chapter 7

Conclusions

In order for robust optimization to have an impact in theory and practice of opti-

mization, we feel that two criteria are important:

(a) Preserving the computational tractability of the nominal problem both theoret-

ically and most importantly practically.

(b) Being able to find a guarantee on the probability that the robust solution is feasi-

ble, when the uncertain coefficients obey some natural probability distributions.

In this thesis we propose robust methodologies that meet the above requirements

for a broad range of optimization problems. Specifically,

1. Linear and Mixed Integer Optimization: The robust counterpart of a

LP (or MIP) remains a LP (or MIP) (Chapter 2). If each data has bounded,

symmetric and independent distribution, we derive tight probability bound and

show that our approach is far less conservative compared to the classical robust

method of Soyster [26].

2. Quadratic Constrained Quadratic Optimization: The robust counterpart

of a quadratic constraint becomes a collection of second order conic constraints

(Chapter 4). Under normal distributions, the probability bound suggests that

the robust solution remains feasible with high probability without being over-

conservative in the choice of the protection level.
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3. Conic Optimization: The robust SOCP becomes a SOCP and the robust

SDP becomes a SDP (Chapter 4). Under normal distributions, we relate the

probability bound of feasibility with the underlying cone. Likewise, the ro-

bust constraint can remain feasible with high probability without being over-

conservative in the choice of the protection level.

4. Discrete 0 − 1 Optimization: For 0 − 1 discrete optimization problem with

cost uncertainty, the robust counterpart of a polynomially solvable 0−1 discrete

optimization problem remains polynomially solvable and the robust counterpart

of an NP -hard α-approximable 0 − 1 discrete optimization problem, remains

α-approximable (Chapter 5). Under an ellipsoidal uncertainty set, we show

that the robust problem retains the complexity of the nominal problem when

the data is uncorrelated and identically distributed. For uncorrelated, but not

identically distributed data, we propose an approximation method that solves

the robust problem within arbitrary accuracy. We also propose a Frank-Wolfe

type algorithm for this case, which we prove converges to a locally optimal

solution, and in computational experiments is remarkably effective (Chapter

6).

5. Network Flows: We propose an algorithm for solving the robust minimum

cost flow problem in a polynomial number of nominal minimum cost flow prob-

lems in a modified network (Chapter 5).

7.1 Future research

Possible theoretical research in robust optimization include the followings:

• Stochastic Models with Recourse: In some stochastic optimization prob-

lems, there are exogenous parameters that influence subsequent stages of deci-

sion making, but whose value is uncertain, and only become known after the

initial decision has been made. Unfortunately, the robust framework in this

thesis does not lead to natural representations of such stochastic models. Due
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to the practical importance, it is therefore desirable to extend the attractive

features of robust optimization to modeling and solving stochastic models with

recourse.

• Probability Bounds for General Distributions: In Chapter 4, we derive

the probability bounds on feasibility of the robust solution based on the as-

sumption of normal distributions. It is desirable to derive probability bounds

for more general distributions and establish the tightness of the these bounds.

• Correlations in Uncertain Discrete 0−1 Problems: In the robust 0−1 dis-

crete models of Chapter 5 and 6, the nature of cost uncertainty is uncorrelated.

It is worth having robust models that address correlated cost perturbation while

keeping the model tractable.

• Strong Formulations of Robust Discrete 0 − 1 problems: Recently,

Atamtürk [2] provided stronger formulations of the robust discrete 0− 1 frame-

work of Chapter 5 and showed empirically to significantly improve computation

time. Likewise, it is beneficial to identify and study computationally the effect

of strong formulations for ellipsoidal uncertainty set in the robust framework of

Chapter 6.

Apart from the above theoretical research possibilities, it is worthwhile to apply

these methodologies in applications and understand the merits or weaknesses of such

approaches. Ultimately, we feel that the criterion for justifying robust optimization

will be computation studies in real problems.
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