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ABSTRACT
The environment considered in this research is a massive mul-

tiplayer online gaming (MMOG) environment. Each user controls
an avatar (an image that represents and is manipulated by a user) in
a virtual world and interacts with other users. An important aspect
of MMOG is maintaining a fair environment among users (i.e., not
give an unfair advantage to users with faster connections or more
powerful computers). The experience (either positive or negative)
the user has with the MMOG environment is dependent on how
quickly the game world responds to the user’s actions. This study
focuses on scaling the system based on demand, while maintaining
an environment that guarantees fairness. Consider an environment
where there is a main server (MS) that controls the state of the vir-
tual world. If the performance falls below acceptable standards, the
MS can off-load calculations to secondary servers (SSs). An SS is
a user’s computer that is converted into a server. Four heuristics
are proposed for determining the number of SSs, which users are
converted to SSs, and how users are assigned to the SSs and the
MS. The goal of the heuristics is to provide a “fair” environment
for all the users, and to be “robust” against the uncertainty of the
number of new players that may join a given system configuration.
The heuristics are evaluated and compared by simulation.
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1. INTRODUCTION
The environment considered in this research is a massive multi-

player online gaming (MMOG) environment. Each user controls
an avatar (an image that represents and is manipulated by a user) in
a virtual world and interacts with other users. An important aspect
of MMOG is maintaining a fair environment among users (i.e., not
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giving an unfair advantage to users with faster connections or more
powerful computers). The experience (either positive or negative)
the user has with the MMOG environment is dependent on how
quickly the game world responds to the user’s actions.

A problem may occur when considering interaction with other
users. For example, consider a war game where two users are
shooting at each other. One way of determining the winner of this
contest is to determine who shot first. However, determining who
shot first in the game world can be difficult. It is possible for the
game to process these users’ actions in the incorrect order.

In general, most MMOG environments use a client/server archi-
tecture to control the virtual game world. This has some disad-
vantages: the initial procurement of servers is expensive, server
administration is required, customer service is necessary, and the
architecture is hard to scale based on demand. Other factors such as
the popularity of a game, and unexpected technical problems dur-
ing and after the launch, can also affect the final cost and success
of an MMOG environment [26].

The performance of the heterogeneous system used to simulate
the game world must not degrade beyond acceptable parameters
even if the MMOG environment is oversubscribed. In this system,
the number of players that may join a given system configuration
(after the game session has started) is uncertain. The goal of the
heuristics is to provide a “fair” environment for all the users, and to
be “robust” against this uncertainty. A fair environment will ensure
a high quality gaming experience for all connected users.

This study focuses on scaling the system based on demand, while
maintaining an environment that guarantees fairness. Consider an
environment where each of N users produces a data packet that
needs to be processed. There is a main server (MS) that controls
the state of the virtual world. If the performance falls below ac-
ceptable standards, the MS can off-load calculations to secondary
servers (SSs). An SS is a user’s computer that is converted into a
server to avoid performance degradation. These SSs will be em-
ployed if necessary by the MS to guarantee fairness.

The introduction of SSs causes the game-state to be handled dif-
ferently than with a single MS. Each SS handles conflicts among
the players attached to it, and sends conflict-free information to
the MS. However, this information may conflict with information
from another SS. If there is a conflict between SSs then it will be
resolved by the MS.

This study assumes all players are willing to become SSs. Our
approach could easily be adapted to account for having a subset of
players who are not willing to be an SS, i.e., we can have a list of
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Figure 1: (a) Client/Server Architecture versus (b) Secondary Server Architecture

players eligible to become SSs.
A session in the MMOG environment is assumed to last for an

extended period of time, with a small break between sessions [23].
Recall that players may join during a session and it is assumed, for
the study, that players do not leave during a session because they
will be rewarded at the end of the session. The small break, prior
to the beginning of the session, can be used to determine which
users are SSs. These assumptions make a static resource allocation
heuristic viable [1].

In this study, four static resource allocation heuristics are pro-
posed for determining the number of SSs, which users are con-
verted to SSs, and how users are distributed among the SSs and
the MS. The assignment of users to SSs and the MS is related to
the assignment of tasks to machines (e.g., [4, 7, 27, 29]) with the
SSs and the MS as machines and the remaining users as tasks. A
mathematical upper bound is used to evaluate the performance of
the heuristics. The contributions of this paper are: (a) studying and
simulating an MMOG environment where an unpredictable num-
ber of players may want to join an ongoing session, (b) creating
parameters to quantify the robustness of a system against the un-
certainty of the number of players that will try to join an ongoing
session, and (c) deriving resource allocation heuristics that maxi-
mize the number of players that can join an existing game session
while still maintaining a fair system.

This paper is organized as follows. Section 2 provides the prob-
lem statement and describes the performance metrics. In Section 3,
we focus on the four proposed heuristics. We provide the related
work in Section 4. Our results for the four heuristics are shown in
Section 5 and in Section 6 we present our conclusions.

2. PROBLEM STATEMENT
2.1 Environment

In this study, we will consider an MMOG environment where
the performance of a user is sensitive to latency [3]. The purpose
of this research is to maintain “robust” system performance (despite
the MS used to maintain the MMOG environment being oversub-
scribed) without increasing the processing power of the MS. The
robustness is described in detail in Section 2.4.

The goal of the heuristics is to provide an environment where the
differences in latency among all users are bounded by a quality of
service (QoS) constraint. This QoS constraint is based on human
perception (i.e., the difference in response times between players is
imperceptible). If the QoS is met then the environment provides a
high-quality interactive experience. New players are users that join
the game after the initial resource allocation and are connected to
the MS. The latency for some users may increase above the QoS
bound as new players join the game. The heuristics will provide a
resource allocation that maximizes the number of new players that
can be connected to the MS, while still maintaining the QoS for

all users.
The proposed solution is to convert users to SSs that assist the

MS in computation while maintaining performance constraints. In
the client/server solution shown in Figure 1(a), all users connect to
the MS, therefore the MS is the only machine performing compu-
tation. In the SS solution shown in Figure 1(b), the MS and SSs
perform computation and the MS resolves conflicts among users
and SSs connected to it.

The allocation of users as SSs has similar security, trust, and
cheating issues as distributed servers and peer-to-peer based MMOG
systems. There are various publications that study these issues in
MMOGs, e.g., [5]. These issues will not be discussed here because
we consider them to be separate research problems.

The following simplifying assumptions are made about the com-
munication model in this system. The users are assumed to be on
a fully connected network; however, the simulation could easily be
adapted to consider different topologies. The communication time
between different pairs of nodes (user computer, SS, or MS) will
vary. The communication times among the users, SSs, and the MS
do not change during a session. These times are independent of the
number of users connected to an SS or the MS. These simplifying
assumptions are used to reduce the complexity of the simulations.

2.2 Computational Model
To simplify the simulation study, the level of activity of all the

users in the MMOG environment is considered identical (i.e., the
frequency of interaction with the MMOG environment is the same
for all players). Thus, the computational load is based on the num-
ber of users (i.e., they have the same computational needs). To
model the computation times of the MS and SSs, we need to con-
sider how the computation time increases with an increase in the
number of users.

In [17], latency in an MMOG environment shows a “weak ex-
ponential” increase with an increase in players; we approximate
this by using a constant communication time and a quadratic fac-
tor for the computation. Let nα be the number of users connected
to secondary server α (SSα), and µα be a computational constant
for SSα that represents the heterogeneity in the computing power
of the users’ computers (each user has a different constant). The
factor µα can represent the capabilities of a user’s computer, and
what portion of those capabilities the user is willing to devote to
operating as an SS. The computation time for an SSα (Compα)
can be modeled as:

Compα = µα · (nα)2. (1)

Let nsecondary be the total number of users connected to all the
SSs, nnss be the number of SSs, nmain be the number of users
connected to MS, and b and c be computational constants of the
MS. The computation time of the MS (CompMS) is:
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Figure 2: Visual representation of RTx when Ux is con-
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Figure 3: Visual representation of RTx when Ux is con-
nected to the MS through an SSα: 1) Comm(Ux,SSα),
2) Comm(SSα,MS), 3) δ, 4) Comm(MS,SSα), and 5)
Comm(SSα,Ux)

CompMS = c · nsecondary + b · (nmain + nnss)
2. (2)

2.3 Objective Functions RTmax and RTmin

Let RTx represent the Response Time (RT) of a packet (repre-
senting an action in the game world) sent by the computer of user x
(Ux) to the MS (possibly through an SS) and returning to Ux with
the corresponding consequence of that action in the game world.
Let Comm(A, B) be the communication time between node A
and node B, and δ is the time a packet has to wait before being
processed. The equation used to calculate RTx if Ux is connected
directly to the MS is:

RTx = Comm(Ux, MS) + δ

+ CompMS + Comm(MS, Ux). (3)

A graphical representation of this equation is shown in Figure 2. A
computation cycle of the MS starts at time t(i) and finishes at time
t(i+1). This cycle processes all the unprocessed actions received
before time t(i). If a user is connected to an SSα then the equation
is:

RTx = Comm(Ux, SSα) + Compα + δ

+ Comm(SSα, MS) + CompMS

+ Comm(MS, SSα) + Comm(SSα, Ux). (4)

A graphical representation of this equation is shown in Figure 3.
If Ux is SSα then Equation 4 is used with Comm(Ux, SSα) =
Comm(SSα, Ux) = 0.

For this work, we will use the difference between RTmax and
RTmin to quantify the fairness in the MMOG environment. The
RTmin and RTmax features determine the robustness and depend
on the resource allocation. To calculate RTmax we use:

RTmax = max
∀Ux

(RTx), (5)

CompMS CompMS
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Figure 4: Visual representation of RTmax: 1)
Comm(Umax,SSα), 2) Comm(SSα,MS), 3) δ, 4)
Comm(MS,SSα), and 5) Comm(SSα,Umax)
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Figure 5: Visual representation of RTmin: 1)
Comm(Umin,SSα), 2) Comm(SSα,MS), 3) Comm(MS,SSα), and
4) Comm(SSα,Umin)

with δ = CompMS . As shown in Figure 4, this time represents the
maximum time any user will have to wait for a response from the
MS (worst case RT ). Let Umax represent the user with RTmax,
and Umin the user with RTmin. Figures 4 and 5, show examples
where Umax and Umin are connected an SSα. A visual representa-
tion of RTmin is shown in Figure 5 and it is calculated as follows:

RTmin = min
∀Ux

(RTx), (6)

with δ = 0. This time represents the fastest any user can interact
with the MMOG environment.

2.4 Robustness Metric
2.4.1 Overview

Using the FePIA (Performance Features, Perturbation Parame-
ters, Impact, and Analysis) procedure described in [2], we define
the characteristics that make the system robust. The FePIA pro-
cedure should respond to three fundamental questions. First, what
behavior of the system makes it robust? Second, what uncertainties
is the system robust against? Quantitatively, exactly how robust is
the system?

2.4.2 Performance Features
The first step of the FePIA procedure is to describe quantitatively

the QoS requirement that makes the system robust. The require-
ment that makes the system robust is that all the RTs are within a
pre-determined range. The maximum RT time the system can allow
is βmax:

RTmax ≤ βmax. (7)

However, to maintain fairness RTmin also has a constraint. A time
window (∆max) is used to specify the allowable range of RTx for
all users. The constraint that RTmin must meet is:

RTmax −RTmin ≤ ∆max. (8)
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For the system to be robust the constraints shown in Equations 7
and 8 need to be satisfied.

2.4.3 Perturbation Parameters
The second step of the FePIA procedure is to determine the per-

turbation parameters that represent the uncertainties in the system.
For this study, the perturbation parameter is the number of new
players joining the game after the initial resource allocation is done.

2.4.4 Impact of Perturbation Parameters on the QoS
Performance Features

In this study, it is assumed that new players joining a game in
progress connect to the MS. When new players join, the compu-
tation at the MS will increase quadratically. This increase in time
will make the RT of users that are already in the game increase,
and hence RTmax will increase. When new players are added to
the MS, the RTx for all players increases equally. Thus, if the
initial resource allocation satisfies Equation 8, then it will remain
satisfied. Also, Umax will be the first player to violate the robust-
ness constraint shown in Equation 7.

Let RTnew be the RT for a new player. We assume the system
does not allow new players whose response time exceeds RTmax

(i.e., RTnew < RTmax); or violates the fairness criteria (i.e.,
RTmax −RTnew ≤ ∆max).

2.4.5 Analysis
The increase in the number of new players that can be added to

the system before RTmax violates the QoS constraint can be cal-
culated. Using equations 3, 4, and 5, we can calculate how many
new players can be added before the robustness constraint is vio-
lated. We define Γ as the components of the RT equation that do
not depend on the number of players connected to the MS. When
Ux is connected to the MS, Γ is given by:

Γ = Comm(Ux, MS) + Comm(MS, Ux), (9)

and if Ux is connected to SSα then Γ is:

Γ = Comm(Ux, SSα) + Compα + Comm(SSα, MS)

+ Comm(MS, SSα) + Comm(SSα, Ux). (10)

Therefore,

RTmax = Γ + 2 · CompMS . (11)

The system will be at the boundary of robustness when RTmax is
equal to βmax with δ = CompMS , that is

βmax = Γ + CompMS + δ, or (12)
βmax = Γ + 2 · CompMS . (13)

Let y = nmain + nnss and x represent the number of new players
that can be added. This implies that

βmax = Γ + 2 · (c · nsecondary + b · (y + x)2) . (14)

The quadratic term can be expanded so that

βmax = Γ + 2 · (c · nsecondary + b · (y2 + 2 · y · x + x2)). (15)

Using Equation 11, this can be simplified to

βmax = RTmax + 2 · b · (2 · y · x + x2). (16)

This can be re-written in standard quadratic form:

2 · b · x2 + 4 · b · y · x + (RTmax − βmax) = 0. (17)

With the roots given by the following equation, the robustness metric,
the maximum number of new players that can be added, is quanti-
fied as:

x =
−(4 · b · y) ±

√
16 · b2 · y2 − 8 · b · (RTmax − βmax)

4 · b .

(18)
This result requires some interpretation, because it has two roots.

If Equation 18 has two real roots, then the largest value is selected.
If the largest value is positive then this is the number of players
the current resource allocation can add without violating the QoS
constraints. If the largest value is negative then this is the number
of players that need to be removed for the system to become ro-
bust. If the roots generated by Equation 18 are complex then the
robustness cannot be achieved due to excessive communication or
computation at an SS. The value of the robustness metric is based
on RTmax which is determined by the given resource allocation;
hence, better resource allocation will result in larger values for the
robustness metrics.

3. RESOURCE ALLOCATION HEURISTICS
3.1 Overview

Heuristics for determining an allocation of resources are pre-
sented in this section. Recall that resource allocation implies as-
signing a user in one of three ways: (1) attaching it directly to the
MS without making it an SS, (2) attaching it to the MS and mak-
ing it an SS, or (3) attaching it to an existing SS. An unassigned
user is one that has not been assigned yet. Directly connected users
(DCUs) are users that are connected directly to the MS (cases (1)
and (2) above).

For some heuristics, it is necessary to give a “robustness” value
to all solutions. If the solution cannot achieve robustness (i.e.,
Equation 18 has two complex roots), then we approximate the ro-
bustness. In this case, the robustness is calculated as:

x =
−
√

RTmax − βmax√
2 · b

. (19)

This gives a negative bias to all the solutions that cannot reach ro-
bustness.

3.2 Min-Min RT
The Min-Min RT sub-heuristic is based on the concept of the

Min-Min heuristic [16]. The Min-Min heuristic is widely used in
the area of resource allocation (e.g., [8, 12, 13, 16, 19, 20, 22, 29]).
This sub-heuristic requires a set of DCUs to generate a resource
allocation, therefore it is not an independent heuristic. It is used by
other resource allocation algorithms to obtain a full mapping. The
procedure to implement the Min-Min RT is shown in Figure 6.

3.3 Min-Min SS
The Min-Min SS heuristic is similar to the Min-Min RT heuris-

tic. The difference is that the Min-Min SS does not require an initial
set of SSs. The heuristic will determine the set of SSs by allowing
users to connect to the MS in step (2) of Figure 6 (if this assign-
ment has the minimum RT ).

3.4 Discrete Particle Swarm Optimization
Discrete Particle Swarm Optimization (DPSO) is based on the

particle swarm optimization in [21]. The authors in [25] imple-
mented a discrete version of the particle swarm optimization in
[21], upon which we base our implementation. Intuitively, this al-
gorithm samples the search space of possible SS configurations,
and then uses the Min-Min RT algorithm to generate a complete
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(1) Given a predetermined set of DCUs, all users that
are not in the set of DCUs are marked as unas-
signed.

(2) For each unassigned user, the DCU that gives the
minimum RT is determined (first minimum).

(3) The user/server with smallest RT among all the
pairs generated in (2) is selected (second mini-
mum).

(4) The user in the pair selected in (3) is then assigned
to its paired server.

(5) Steps (2) through (4) are repeated until all tasks
are assigned.

Figure 6: Procedure for Min-Min RT

mapping from a set of SSs. The algorithm used to implement
DPSO is shown in Figure 7.

In DPSO, particles represent solutions. Each particle is com-
posed of N entries (each entry represents a user). Let Xij ∈ {0, 1}
represent whether user j is a DCU (Xij = 0), or a non-DCU
(Xij = 1) in particle i. Particles move around through different
possible solutions based on how their velocity is composed. The
direction of the velocity will determine whether user j changes to a
DCU or a non-DCU. Let Vmin represent the minimum, and Vmax

represent the maximum allowed velocity for a particle. A particle
i will have a velocity in each direction j (Vij ∈ [Vmin, Vmax]). A
coefficient (w) is used to slow the current velocity of the particle
over time.

Each particle i will keep a record of its best personal solution
(P i), where each P i has an entry for each user j (P i

j ∈ {0, 1}).
The particle i will be attracted back to P i with a given personal
weighting coefficient (pw). This coefficient will allow the solution
to explore areas of the search space close to P i.

The system as a whole will keep a best global solution (G). This
best global solution has an entry for each user j (Gj ∈ {0, 1}). All
the particles in the system are attracted to the best global solution.
The force of the attraction is determined by a global weighting co-
efficient (gw). The coefficient promotes the exploration around the
best known solution. The values of the coefficients w, gw, and pw

were selected by experimentation to optimize the performance.

3.5 Tabu Search
The Tabu Search heuristic uses a “tabu list” to keep a record of

the visited areas of the search space. These areas were explored
using a local search procedure. The purpose of this tabu list is
to provide a short term memory of explored areas [14]. To make
the size of the tabu list reasonable, only the last sizeTS visited
neighborhoods are saved [15].

Tabu Search combines global search and local search. The global
search is done by generating random solutions. The number of SSs
and which users are SSs is determined randomly, and the assign-
ment of the remaining users to SSs or to the MS is done using the
Min-Min RT algorithm.

Local moves (or short hops) explore the neighborhood of the cur-
rent solution, searching for the local minimum. The short hop pro-
cedure is shown in Figure 8. All the moves that we use in the Tabu
Search are considered greedy in the sense that we accept a neigh-
boring solution if it is more robust (better objective function value);
however, applying greedy moves may cause the Tabu Search to
reach a local minimum that it cannot escape. The global move
(or long hop) is used to escape local minima by producing a ran-
dom solution with a new set of SSs that is not in the tabu list. The

(1) Initialize an array of P particles by N dimensions
randomly with 0 or 1 (a value of 0 indicates a user
is not a DCU and 1 indicates the user is a DCU).

(2) Evaluate the robustness of each particle using the
Min-Min RT algorithm.

(3) Initialize the global and individual best positions.
(4) For (i = 1 to number of particles) do

(a) For (i = 1 to number of dimensions) do
(i) R1 = U(0, 1)

(ii) R2 = U(0, 1)

(iii) R3 = U(0, 1)

(iv) Vij = w ·Vij + pw ·R1 · (P i
j −Xij) +

gw · R2 · (Gj −Xij)

(v) If (Vij < Vmin) then Vij ← Vmin.
(vi) If (Vij > Vmax) then Vij ← Vmax.

(vii) If (R3 < Sigmoid(Vij)) then Xij =
1, else Xij = 0.

(b) Evaluate the robustness (use Min-Min RT al-
gorithm to generate the complete mapping).

(c) Update global and personal best positions.

Figure 7: Procedure for DPSO

procedure for Tabu Search is shown in Figure 9.

3.6 Genitor Robustness
The Genitor Robustness heuristic is based on the Genitor heuris-

tic [28]. The Genitor is a steady state genetic algorithm that only
does one crossover and mutation operation per iteration. The re-
sults of the crossover and mutation are evaluated and inserted in
the population based on their rank. The heuristic uses the ranked
population to keep the best chromosomes in the population.

This heuristic uses a chromosome that represents a full mapping.
A chromosome is a vector of length N . The ith entry indicates
whether user i is connected to the MS or an SS (represented by its
user number). With this representation, the crossover and mutation
operations can cause invalid solutions that need to be fixed.

The first operator is crossover; for the crossover we randomly
select two points (from 0 to N − 1) in the two parent strings and
exchange the entries (between these two points) to generate two
new offspring. If the crossover causes a user to be mapped to an-
other user that is no longer an SS, then the first user is assigned to
the existing SS that minimizes the user’s RTx. The procedure for
the crossover is shown in Figure 10.

The second operator is mutation; this operation is done to the
new offspring. For the mutation, we determine with a fixed prob-
ability (determined empirically) if the assignment of a user is mu-
tated. The mutation is done by selecting if a user should be con-
nected directly to the MS, an SS, or assigned to user i. If as a
result of the mutation the user is connected directly to the MS or
is an SS then no further repairs need to be made to the assignment;
however, if the user is connected to user i then i needs to be con-
verted into an SS (if it was not one already). The procedure for
mutation is shown in Figure 11. The complete procedure for the
Genitor Robustness heuristic is shown in Figure 12.

4. RELATED WORK
Various MMOG architectures are reported in the literature

(e.g. client/server [11], peer-to-peer [6, 17, 23], mirrored server
[10]). Each architecture has its own advantages. For example, the
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(1) Set shorthops to 0 and set MAXSHORT HOPS

to the maximum allowed short hops.
(2) Given the solution found in the long hop, the best

known robustness (robbest) is the robustness of
this solution.

(3) While (shorthops < MAXSHORT HOPS).
(a) Given a full mapping find Umax.
(b) For each server smove1 (DCU or MS), re-

connect Umax to smove1.
∗ If the move increases the robustness

then accept the move, update robbest,
and go to step (c).

(c) Increase shorthops by one.
(d) Find the SS that has the user with RTmax

denoted SSmax.
(e) Select a random user that is connected to the

SSmax denoted Urandom.
(f) For each DCU smove2 , reconnect Urandom

to smove2.
∗ If the move increases the robustness

then accept the move, update robbest,
and go to step (g).

(g) Increase shorthops by one.

Figure 8: Procedure for local search

client/server and mirrored server allow the company that develops
the MMOG environment to maintain tight control of the game state;
however, there is a significant monetary cost associated with main-
taining a large-scale MMOG environment. In a peer-to-peer archi-
tecture, because of the absence of a centralized game state con-
troller, no peer has full control over the game state making it diffi-
cult to guarantee a consistent MMOG environment. The advantage
of using a peer-to-peer architecture is that there is no single point
of failure and the MMOG environment can be maintained without
a significant monetary cost.

Maintaining a seamless interactive experience for the users is an
important factor in MMOG, because an increase in latency within
the system can lead to deterioration in the gaming experience [3,
11]. In [17], the authors show that the latency follows a “weak
exponential increase” as the number of users grows in the system.
Our study focuses on latency as a critical performance parameter
that must be maintained and uses the results in [17] to model the
relationship between latency and the number of users.

This study proposes a hybrid client/server architecture to com-
bine the best elements of both the centralized client/server and peer-
to-peer architectures, and guarantee a robustness criteria that cre-
ates a fair environment.

Our work is similar to [24] where a distributed system uses inter-
mediate servers (analogous to our definition of secondary servers)
to reduce the communication latency to the central server. The main
differences between our studies and [24] is that: (a) in [24] the in-
termediate servers are predefined and do not participate as users in
the MMOG, and (b) we have a robustness criteria created using the
FePIA procedure to guarantee fairness.

Our work is different from [10, 11] because it considers convert-
ing users to secondary servers. This work is also different from
[6, 17, 23] because it has a “non-peer” centralized server, and we
directly address the issue of fairness.

In [9], it was shown that by employing users’ computers to off-

(1) Create the tabu list of size sizetabu.
(2) While (execution time is less than the maximum

allowed execution time)
(a) Generate a random set of DCUs

(randDCUs). If this random set is not
in the tabu list then continue to step (b),
otherwise repeat step (a).

(b) Use the Min-Min RT heuristic with
randDCUs to generate a full mapping. If
this mapping does not meet the robustness
requirements then go to step (a).

(c) Use the local search (short hop procedure).
(d) Update the tabu list by adding the set of

DCUs from step (c) and removing the old-
est set of DCUs.

Figure 9: Procedure for Tabu Search

(1) Select two parents for crossover (parent 1 and
parent 2) using the linear bias function.

(2) Generate two random numbers between 0 and N−
1 (R1 and R2 with R1 < R2).

(3) Copy parent 1 to offspring 1 and parent 2 to off-
spring 2.

(4) The entries between R1 and R2 in offspring 1 are
exchanged with the value the entries have in off-
spring 2.

(5) Determine the set of SSs for offspring 1.
(6) For each entry (i.e., user assignment)

in offspring 1:
(a) Check if the entry i has a valid assignment.
(b) If entry i has an invalid assignment (e.g.,

user i is connected to a user j that is not con-
nected to the MS) then assign it to the server
(MS or an SS) that gives the user the mini-
mum RTx.

(7) Repeat steps (5) and (6) for offspring 2.

Figure 10: Procedure for crossover

load computation the RTmax of the system was decreased by an
order of magnitude. This study is different from the research in
[9] because this study evaluates the performance of the heuristics
based on a robustness metric. Both this study and [9] use a very
similar system model. In [9], the optimization criteria was to mini-
mize RTmax. The goal of this research is to maximize the number
of users allowed to be added during a game session while maintain-
ing fairness. Subsequent to our work in [9], a related concept was
presented in [18]. This work presented a hybrid server similar to
the one we considered. However, because we focus on determin-
ing which SSs can give the best improvement, while [18] does not
focus on this issue.

5. RESULTS
The simulation had 200 users interacting in the MMOG envi-

ronment. The constants for these simulations were b = 0.03 and c
= 0.01 (the values for these constants were set to approximate re-
alistic values for latencies in an MMOG environment). The values
for βmax and ∆max are 200 and 150, respectively. The commu-
nication times between nodes were allowed to vary from 0 to 40
time units with a uniform distribution. The computational constant
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(1) Set k to
(2) Based on a fixed probability, determine if the kth

entry in the chromosome is mutated.
(3) If the entry is mutated, then:

(a) Generate a random assignment (connected to
the MS, SS, or connected to user i).

(b) If the entry being modified was an SS
then reassign the players assigned to this
SS to existing SSs (selected randomly) and
change the value of the entry to the random
assignment.

(c) Otherwise, change the value of the entry to
the random assignment and if this is an as-
signment to a user that is not an SS convert
that user to an SS.

(4) Increase k by 1.
(5) If k ≤ N then go to (2).

Figure 11: Procedure for the mutation

(1) An initial population of 200 chromosomes (deter-
mined empirically) is generated and evaluated.

(2) While (there are less than 1000 iterations without
improvement or 10 minutes have not elapsed).

(a) A pair of parents is selected for crossover
and mutation using roulette wheel selection.

(b) two offspring are generated using two-point
crossover.

(c) For each offspring there is a 2% probability
of mutating each field in the chromosome.

(d) The offspring are evaluated and ranked into
the population replacing the worst chromo-
some.

(3) The output is the best solution.

Figure 12: Procedure for the Genitor

(µα) at each user node was allowed to vary between 0.5 and 1 with
a uniform distribution. For this study, 100 scenarios were created
with varying communication times and µα for each user. For the
purpose of comparing heuristics, they were limited to a maximum
execution time of 10 minutes (Min-Min SS executes in less than 1
second). Because the maximum robustness of the optimal solution
can be intractable to compute, an upper bound was used to compare
the performance of the results.

A parameter sweep was done on Tabu Search, DPSO, Genitor
Robustness and Genitor Robustness seeded with the Min-Min SS
heuristic. Figure 13 shows the best results for each heuristic found
after doing parameter sweeps and the 95% confidence intervals.

The performance of the seeded Genitor Robustness and DPSO
had similar performance (about 20 players could be added). The
unseeded Genitor Robustness did not perform well; this could be
caused by the method used for generating random solutions (solu-
tions with a negative robustness are not screened out of the initial
population).

For the Tabu Search, the average result from a long hop was a
robustness of 9.06 users (a total of 3458 long hops were executed).
The average improvement obtained by the local search was 24.45%
upon the initial solution with an average of 24.5 short hops. This
shows that the short hops are able to improve the solution by ex-
ploring the neighborhood.
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Figure 13: Simulation results; UB (upper bound) based on [9]

The performance of the Genitor Robustness heuristic was im-
proved significantly with the introduction of the Min-Min SS seed.
The performance of the Min-Min SS heuristic was 45% of the UB,
however it was 60% of the best value obtained among the studied
heuristics. The improvement of the Genitor over the Min-Min SS
was on average 7.559 time units (a 61.8% improvement).

The results of the heuristics were (on average) more than 6.44
time units less than the UB (about 76% of the UB). It is possible
that the simplifying assumptions used to calculate the bounds could
be making it very loose.

6. CONCLUSIONS
This study evaluated an oversubscribed MMOG environment that

employs a group of users to do portions of the required game-
state calculations. The main objective of this study was to develop
heuristics to create a fair environment in a secondary server based
MMOG environment. The allocation of users’ computers as SSs
allows a reduction in the RTmax time [9], and increases the num-
ber of users that can join the game after it starts while maintaining
a QoS constraint. This QoS constraint avoids the users from feel-
ing they are at an unfair disadvantage during their interaction with
the MMOG environment. The results from the heuristics show that
with the constraints set for this environment, a large number of
users can be added while maintaining the fairness conditions (ap-
proximately 10% more users).

A possible extension of this study is to improve the model by re-
moving simplifying assumptions (e.g., the constant communication
times). This study also assumed that users are willing to become an
SS. This problem could also be reformulated using game theory
to consider the behavior of selfish and/or cooperative users. This
problem assumes a fully connected network, however, any network
configuration can be user. To model another network configura-
tion, stochastic communication values (represented by a probability
mass function or probability density function) could be used.
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