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ROBUST SOLUTIONS TO LEAST-SQUARES PROBLEMS WITH
UNCERTAIN DATA *

LAURENT EL GHAOUI' AND HERVE LEBRET'

Abstract. We consider least-squares problems where the coefficient matrices A, b are unknown
but bounded. We minimize the worst-case residual error using (convex) second-order cone program-
ming, yielding an algorithm with complexity similar to one singular value decomposition of A. The
method can be interpreted as a Tikhonov regularization procedure, with the advantage that it pro-
vides an exact bound on the robustness of solution and a rigorous way to compute the regularization
parameter. When the perturbation has a known (e.g., Toeplitz) structure, the same problem can be
solved in polynomial-time using semidefinite programming (SDP). We also consider the case when
A, b are rational functions of an unknown-but-bounded perturbation vector. We show how to mini-
mize (via SDP) upper bounds on the optimal worst-case residual. We provide numerical examples,
including one from robust identification and one from robust interpolation.
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Notation. For a matrix X, || X|| denotes the largest singular value and || X||
the Frobenius norm. If x is a vector, max; |x;| is denoted by ||z|leo. For a matrix A,
AT denotes the Moore Penrose pseudoinverse of A. For a square matrix S, S > 0
(resp., S > 0) means S is symmetric and positive semidefinite (resp., definite). For
S >0, S'/2 denotes the symmetric square root of S. For S > 0, and given vector
x, we define ||z||s = ||S™/2x|. The notation I, denotes the p x p identity matrix;
sometimes the subscript is omitted when it can be inferred from context. For given
matrices X, Y, the notation X @& Y refers to the block-diagonal matrix with X, Y as
diagonal blocks.

1. Introduction. Consider the problem of finding a solution x to an overdeter-
mined set of equations Az ~ b, where the data matrices A € R**™, b €¢ R" are
given. The least squares (LS) fit minimizes the residual ||Ab|| subject to Az = b+ Ab,
resulting in a consistent linear model of the form (A,b + Ab) that is closest to the
original one (in the Euclidean norm sense). The total least squares (TLS) solution
described by Golub and Van Loan [17] finds the smallest error ||[AA Ab]||r subject to
the consistency equation (A + AA)x = b+ Ab. The resulting closest consistent linear
model (A + AA, b+ Ab) is even more accurate than the LS one, since modifications
of A are allowed.

Accuracy is the primary aim of LS and TLS, so it is not surprising that both
solutions may exhibit very sensitive behavior to perturbations in the data matrices
(A,b). Detailed sensitivity analyses for the LS and TLS problems may be found
in [12, 18, 2, 44, 22, 14]. Many regularization methods have been proposed to decrease
sensitivity and make LS and TLS applicable. Most regularization schemes for LS,
including Tikhonov regularization [43], amount to solve a weighted LS problem for
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an augmented system. As pointed out in [18], the choice of weights (or regularization
parameter) is usually not obvious and application dependent. Several criteria for
optimizing the regularization parameter(s) have been proposed (see, e.g., [23, 11,
15]). These criteria are chosen according to some additional a priori information, of
deterministic or stochastic nature. The extensive surveys [31, 8, 21] discuss these
problems and some applications.

In contrast with the extensive work on sensitivity and regularization, relatively
little has been done on the subject of deterministic robustness of LS problems in which
the perturbations are deterministic and unknown but bounded (not necessarily small).
Some work has been done on a qualitative analysis of the problem, where entries of
(A, b) are unspecified except for their sign [26, 39]. In many papers mentioning least
squares and robustness, the latter notion is understood in some stochastic sense; see,
e.g., [20, 47, 37]. A notable exception concerns the field of identification, where the
subject has been explored using a framework used in control system analysis [40, 9],
or using regularization ideas combined with additional a priori information [34, 42].

In this paper, we assume that the data matrices are subject to (not necessarily
small) deterministic perturbations. First, we assume that the given model is not a
single pair (A,b) but a family of matrices (A+ AA, b+ Ab), where A = [AA Ab] is an
unknown-but-bounded matrix; precisely, ||A|| < p, where p > 0 is given. For z fixed,
we define the worst-case residual as

A
(1) r(A,b,p,x) = AN I(A+AA)z — (b+ Ab)|.

We say that z is a robust least squares (RLS) solution if 2 minimizes the worst-case
residual (A, b, p, z). The RLS solution trades accuracy for robustness at the expense
of introducing bias. In our paper, we assume that the perturbation bound p is known,
but in section 3.5 we also show that TLS can be used as a preliminary step to obtain
a value of p that is consistent with data matrices A, b.

In many applications, the perturbation matrices AA, Ab have a known structure.
For instance, AA might have a Toeplitz structure inherited from A. In this case, the
worst-case residual (1) might be a very conservative estimate. We are led to consider
the following structured RLS (SRLS) problem. Given Ay,..., 4, € R"*™ by,...,b,
€ R", we define, for every § € R?,

P P
2) A() 2 40+ > 8i4;, b(6) 20+ > sibi.
i=1 i=1

For p > 0 and z € R™, we define the structured worst-case residual as

(3) rs(A,b, p,x) £ max [[A(8)z — b(o)]|

We say that z is an SRLS solution if x minimizes the worst-case residual rs(A, b, p, x).

Our main contribution is to show that we can compute the ezact value of the
optimal worst-case residuals using convex, second-order cone programming (SOCP)
or semidefinite programming (SDP). The consequence is that the RLS and SRLS
problems can be solved in polynomial time and with great practical efficiency using,
e.g., recent interior-point methods [33, 46]. Our exact results are to be contrasted with
those of Doyle et al. [9], who also use SDP to compute upper bounds on the worst-
case residual for identification problems. In the preliminary draft [5] sent to us shortly
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after submission of this paper, the authors provide a solution to an (unstructured)
RLS problem, which is similar to that given in section 3.2.

Another contribution is to show that the RLS solution is continuous in the data
matrices A,b. RLS can thus be interpreted as a (Tikhonov) regularization technique
for ill-conditioned LS problems: the additional a priori information is p (the per-
turbation level), and the regularization parameter is optimal for robustness. Similar
regularity results hold for the SRLS problem.

We also consider a generalization of the SRLS problem, referred to as the linear-
fractional SRLS problem in what follows, in which the matrix functions A(8), b(é)
in (2) depend rationally on the parameter vector §. (We describe a robust interpo-
lation problem that falls in this class in section 7.6.) Using the framework of [9], we
show that the problem is NP-complete in this case, but we may compute and optimize
upper bounds on the worst-case residual using SDP. In parallel with RLS, we interpret
our solution as one of a weighted LS problem for an augmented system, the weights
being computed via SDP.

The paper’s outline is as follows. The next section is devoted to some technical
lemmas. Section 3 is devoted to the RLS problem. In section 4, we consider the SRLS
problem. Section 5 studies the linear-fractional SRLS problem. Regularity results are
given in section 6. Section 7 shows numerical examples.

2. Preliminary results.

2.1. Semidefinite and second-order cone programs. We briefly recall some
important results on semidefinite programs (SDPs) and second-order cone programs
(SOCPs). These results can be found, e.g., in [4, 33, 46].

A linear matrix inequality is a constraint on a vector x € R™ of the form

(4) Flx)=Fo+ Y x:Fi >0,
i=1
where the symmetric matrices F; = FI € RN i =0,...,m, are given. The

minimization problem
(5) minimize ¢!z subject to F(z) > 0,

where ¢ € R™, is called an SDP. SDPs are convex optimization problems and can be
solved in polynomial time with, e.g., primal-dual interior-point methods [33, 45].
The problem dual to problem (5) is

(6) maximize —TrFyZ
subject to Z>0, TrF;Z=c¢;, i=1,...,m,

where Z is a symmetric N x N matrix and ¢; is the ith coordinate of vector c. When
both problems are strictly feasible (that is, when there exists x, Z which satisfy the
constraints strictly), the existence of optimal points is guaranteed [33, Thm. 4.2.1],
and both problems have equal optimal objectives. In this case, the optimal primal-
dual pairs (z, Z) are those pairs (z, £) such that z is feasible for the primal problem,
Z is feasible for the dual one, and F(z)Z = 0.

An SOCP problem is one of the form

minimize Tz

(™) subject to ||Ciz +d;|| < efx+ f;, i=1,...,L,
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where C; € R™*™, d; e R™, ¢; ¢ R™, f; € R, i =1,...,L. The dual problem of
problem (7) is

L
maximize Z d zi + flsl
(8) . =1

subject to z (C’7Tzl + eisi) =c, |z <s,i=1,...,L,
i=1

where 2; € R™, s; € R, i = 1,..., L are the dual variables. Optimality conditions
similar to those for SDPs can be obtained for SOCPs. SOCPs can be expressed as
SDPs; therefore, they can be solved in polynomial time using interior-point methods
for SDPs. However, the SDP formulation is not the most efficient numerically, as
special interior-point methods can be devised for SOCPs [33, 28, 1].

Precise complexity results on interior-point methods for SOCPs and SDPs are
given by Nesterov and Nemirovsky [33, pp. 224, 236]. In practice, it is observed that
the number of iterations is almost constant, independent of problem size [46]. For the
SOCP, each iteration has complexity O((ny + -+ + nr)m? + m3); for the SDP, we
refer the reader to [33].

2.2. S-procedure. The following lemma can be found, e.g., in [4, p. 24]. It is
widely used, e.g., in control theory and in connection with trust region methods in
optimization [41].

LEMMA 2.1 (S-procedure). Let Fy,...,F, be quadratic functions of the variable
CeR™:

Fi(¢) 2 ¢(TTi¢ + 2ul ¢+ vy, i =0,...,p,
where T; = TiT. The following condition on Fy, ..., Fy:
Fo(¢) > 0 for all ¢ such that F;(¢) >0, i=1,...,p,

holds if

. To wuo - T u;
there exist 7 > 0,...,7, > 0 such that { ul } — Zn T 4 > 0.
When p = 1, the converse holds, provided that there is some {y such that Fy((p) > 0
The next lemma is a corollary of the above result in the case p = 1.
LEMMA 2.2. Let Ty = TE, Ty, T3, Ty be real matrices of appropriate size. We
have det(I — TyA) # 0 and

(9) T(A) =Ty + To AT — TyA) T3 + TE (1 — TyA)"TATTT >0

for every A, ||A|| < 1, if and only if |Tu|| < 1 and there exists a scalar T > 0 such
that

T1 — ’TTQTéT T?;T — TT2T4T >0

(10) Ty — Ty Ty (I -TIf) | =
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Proof. If Ty or T5 equal zero, the result is obvious. Now assume 75, T5 # 0. Then,
(10) implies 7 > 0, which in turn implies ||T4]| < 1. Thus, for a given 7, (10) holds if
and only if ||T4|| < 1, and for every (u,p) we have

u' (Tyu+ 214 'p) — (¢ q — p"p) > 0,

where ¢ = T4 u + T§ p. Since Ty # 0, the constraint ¢7q > pTp is qualified, that is,
satisfied strictly for some (ug,po) (choose pg = 0 and ug such that T ug # 0). Using
the S-procedure, we obtain that there exists 7 € R such that (10) holds if and only
if [|Ty]| < 1, and for every (u,p) such that ¢Zq > pT'p we have uT (Tyu + 279 p) > 0.
We end our proof by noting that for every pair (p,q), p = ATq for some A, [|A|| <1
if and only if pTp < ¢7q. O

The following lemma is a “structured” version of the above, which can be traced
back to [13].

LEMMA 2.3. Let Ty = T, Ty, T3, Ty be real matrices of appropriate size. Let D
be a subspace of RN*N and denote by S (resp., G) the set of symmetric (resp., skew-
symmetric) matrices that commute with every element of D. We have det(I —TyA) #
0 and (9) for every A € D, |A|l <1, if there exist S € S, G € G such that

T, — ToSTY T — T,STT + TG

Ty—TuSTS — G S —GTT + TG —Tys1f | =% 520

If D= RNXN, the condition is necessary and sufficient.

Proof. The proof follows the scheme of that of Lemma, 2.2, except that p’p < ¢7q
is replaced with p”'Sp < ¢qTSq, p"Gq = 0, for given S € S, S > 0, G € G. Note that
for G = 0, the above result is a simple application of Lemma 2.2 to the scaled matrices
Ty, ToS—1/2 81275 S1/27,8§-1/2, 0

2.3. Elimination lemma. The last lemma is proven in [4, 24].
LEMMA 2.4 (elimination). Given real matrices W = W7, U,V of appropriate
size, there exists a real matrix X such that

(11) W+ UXVT +vXTUT >0
if and only if
(12) U'WU >0 and VIWV >0,

where U, V are orthogonal complements of U, V. IfU,V are full column rank, and (12)
holds, a solution X to the inequality (11) is

(13) X =oUTQ'U)'UTQ 'V,
where Q) Sw +oVVT, and o is any scalar such that Q > 0 (the existence of which
is guaranteed by (12)).

3. Unstructured RLS. In this section, we consider the RLS problem, which is
to compute

A
14 A,b,p) =min  max A+ AA)x — (b+ Ab)|.
(14) HALp) Smin | max [[(A+ Ad)s— b+ AD)|
For p = 0, we recover the standard LS problem. For every p > 0, ¢(A,b,p) =

pd(A/p,b/p,1), so we take p = 1 in what follows, unless otherwise stated. In the re-
mainder of this paper, ¢(A,b) (resp., r(A, b, z)) denotes ¢(A, b, 1) (resp., r(A, b, 1, x)).
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In the preceding definition, the norm used for the perturbation bound is the Frobenius
norm. As will be seen, the worst-case residual is the same when the norm used is the
largest singular value norm.

3.1. Optimizing the worst-case residual. The following results yield a nu-
merically efficient algorithm for solving the RLS problem in the unstructured case.
THEOREM 3.1. When p =1, the worst-case residual (1) is given by

r(Abyx) = [[ Az = b + /|22 + 1.

The problem of minimizing r(A,b,x) over x € R™ has a unique solution xys, referred
to as the RLS solution. This problem can be formulated as the SOCP

(15) minimize A subject to ||[Ax —b|| < A —T, H [ Lf } H <.

Proof. Fix x € R"™. Using the triangle inequality, we have
(16) r(A,b,z) < Az — b + /2| + 1.
Now choose A = [AA Ab] as

Ax —b

[AA Ab) = ug [ 27 1], whereu=1q ||Az—b| if Az # 5,
\/Hx 2 +1 any unit-norm vector otherwise.
Since A is rank one, we have |A||r = ||A|| = 1. In addition, we have

I(A+ Ad)e — (b+ Ab)]| = Az — b + /lle]]2 + 1,

which implies that A is a worst-case perturbation (for both the Frobenius and max-
imum singular value norms) and that equality always holds in (16). Finally, unicity
of the minimizer x follows from the strict convexity of the worst-case residual. a0

Using an interior-point primal-dual potential reduction method for solving the
unstructured RLS problem (15), the number of iterations is almost constant [46].
Furthermore, each iteration takes O((n + m)m?) operations. A rough summary of
this analysis is that the method has the same order of complexity as one singular
value decomposition (SVD) of A.

3.2. Analysis of the optimal solution. Using duality results for SOCPs, we
have the following theorem.
THEOREM 3.2. When p = 1, the (unique) solution xgys to the RLS problem is
given by
an . { (I + ATA)"1ATH if u2 (A —17)/7 >0,
Afp else,

where (A, T) are the (unique) optimal points for problem (15).
Proof. Using the results of section 2.1, we obtain that the problem dual to (15) is

maximize b? z — v subject to ATz +u =0, |z| <1, H [ Z ] H <1.
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Since both primal and dual problems are strictly feasible, there exist optimal
points for both of them. If A\ = 7 at the optimum, then Az = b, and

A=7=1/|z|2 +1.

In this case, the optimal z is the (unique) minimum-norm solution to Az = b: x = Afb.
Now assume A > 7. Again, both primal and dual problems are strictly feasible;
therefore, the primal- and dual-optimal objectives are equal:

(18) [[Az —b||+||[z" 1]||=A=0b"2—v=—(Az = b)"z — [2" 1] —ATz
" .
Using ||z|| <1, [|[[u v]T|| <1, u=—AT2, we get
Az —b [T 1]
=— d [uTv] =— )
*= e o) M = e

Replace these values in ATz + u = 0 to obtain the expression of the optimal x:

A—1 _ [[Az =]
T Vill?+1°

REMARK 3.1. When A > 71, the RLS solution can be interpreted as the solution
of a weighted LS problem for an augmented system:

v = (ATA+ul) ™" ATb, with p =

A b
Trps = argmin I |z—| 0 ,
0 1

S}

where © = diag((A—7)I,7I,7). The RLS method amounts to computing the weighting
matriz © that is optimal for robustness via the SOCP (15). We shall encounter a
generalization of the above formula for the linear-fractional SRLS problem of section 5.

REMARK 3.2. It is possible to solve the problem when only A is perturbed (Ab =
0). In this case, the worst-case residual is ||Ax — b|| + ||z||, and the optimal x is
determined by (17), where u||x|| = ||Az —b||. (See the example in section 7.2.)

3.3. Reduction to a one-dimensional search. When the SVD of A is avail-
able, we can use it to reduce the problem to a one-dimensional convex differentiable
problem. The following analysis will also be useful in section 6.

Introduce the SVD of A and a related decomposition for b:

_ X0 T 7 | D1
AU[O O}V,Ub{bQ},

where ¥ = diag(oy,...,0,) € R, ¥ >0, and b; € R", r = RankA.
Assume that A > 7 at the optimum of problem (15). From (18), we have

bT'(b — Ax) 1

v = +
[Az —b /=2 +1
1 b%by

=+ + 0T (N =7)T + 75371y,
T A—T

A=bTz—
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Since A = 0 is never feasible, we may define § = 7/\. Multiplying by A, we obtain
that
1 biby

M\ = ot 1 g + 01 (1 — ) + 05%) " 1by.

From A < ||b||+1 and 7 > 1, we deduce § > 0, = 1/(]|b]|+1). Thus, the optimal
worst-case residual is

(19) ¢(A,0)* = inf f(0),

Omin <O<1

where f is the following function:

N ; +07 (1 =0T +0AATY b if 0, <0 <1,
(20) fO) =19 oo if 6 =1, b ¢ Range(A),

1+ [|ATp||? if 9 =1, b € Range(A).

The function f is convex and twice differentiable on [0, 1[. If b ¢ Range(A), f
is infinite at § = 1; otherwise, f is twice differentiable on the closed interval [0, 1].
Therefore, the minimization of f can be done using standard Newton methods for
differentiable optimization.

THEOREM 3.3. When p = 1, the solution of the unstructured RLS can be com-
puted by solving the one-dimensional convex differentiable problem (19) or by comput-
ing the unique real root inside [0, 1] (if any) of the equation

r 2

L

2 (1-0) = (1+6(c7 - 1))2.

The above theorem yields an alternative method for computing the RLS solution.
This method is similar to the one given in [5]. A related approach was used for
quadratically constrained LS problems in [19].

The above solution, which requires one SVD of A, has cost O(nm? +m?). The
SOCP method is only a few times more costly (see the end of section 3.1), with the
advantage that we can include all kinds of additional constraints on x (nonnegativity
and/or quadratic constraints, etc.) in the SOCP (15), with low additional cost. Also,
the SVD solution does not extend to the structured case considered in section 4.

3.4. Robustness of LS solution. It is instructive to know when the RLS and
LS solutions coincide, in which case we can say the LS solution is robust. This happens
if and only if the optimal 6 in problem (19) is equal to 1. The latter implies by = 0
(that is, b € Range(A)). In this case, f is differentiable at # = 1, and its minimum
over [0, 1] is at # = 1 if and only if

daf

d9(1) =bT2 " — (1 +0727%) <0.

We obtain a necessary and sufficient condition for the optimal 8 to be equal to 1. This
condition is

(21) b € Range(A), b7 (AAT)?Th <1 +b7(AAT)™D.
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If (21) holds, then the RLS and LS solutions coincide. Otherwise, the optimal 6 < 1,
and z is given by (17). We may write the latter condition in the case when the norm
bound of the perturbation p is different from 1 as the following: p > P, Where

V1A
(22) (A D) 2 I(AAT D] if b € Range(A), A#0, b#0,
0 otherwise.

Thus, p.., can be interpreted as the perturbation level that the LS solution allows.
We note that when b € Range(A), the LS and TLS solutions also coincide.

COROLLARY 3.4. The LS, TLS, and RLS solutions coincide whenever the norm
bound on the perturbation matriz p satisfies p < P (A, ), where poi(A,b) is defined
in (22). Thus, pmm(A,b) can be seen as a robustness measure of the LS (or TLS)
solution.

When A is full rank, the robustness measure pmin is nonzero and decreases as the
condition number of A increases.

REMARK 3.3. We note that the TLS solution x..s is the most accurate, in the
sense that it minimizes the distance function (see [18])

Ax —b
a(Aba)= 140
V)2 +1
and is the least robust, in the sense of the worst-case residual. The LS solution,

x5 = Atb, is intermediate (in the sense of accuracy and robustness). In fact, it can
be shown that

T(Aa b7 xRLS7p) S T(Aa b7 xLS?ﬂ) S T(Aa b7 xTLS7p)7
a(A, b7l'TLS) < a(A, byst) < a(A, b, zRLS)?
[zres|l < [zes]] < [[Tres-

3.5. RLS and TLS. The RLS framework assumes that the data matrices (A, b)
are the “nominal” values of the model, which are subject to unstructured perturbation,
bounded in norm by p. Now, if we think of (A,b) as “measured” data, the assumption
that (A,b) correspond to a nominal model may not be judicious. Also, in some
applications, the norm bound p on the perturbation may be hard to estimate. The
TLS solution, when it exists, can be used in conjunction with RLS to address this
issue.

Assume that the TLS problem has a solution. Let AA,.s, Abrys, Zrs be mini-
mizers of the TLS problem

minimize ||AA Ab||r subject to (A+ AA)x = b+ Ab,
and let
Prrs = ||AATLS AbTLs”F, ATLS =A + AATLS7 bTLS =A + AbTLs~

TLS finds a consistent, linear system that is closest (in Frobenius norm sense) to the
observed data (A4,b). The underlying assumption is that the observed data (A,b)
is the result of a consistent, linear system which, under the measurement process,
has been subjected to unstructured perturbations, unknown but bounded in norm by
prus- With this assumption, any point of the ball

{(A/7 b/) | ||Al — Ars b — bTLSHF < pTLS}



1044 LAURENT EL GHAOUI AND HERVE LEBRET

can be observed, just as well as (A,b). Thus, TLS computes an “uncertain linear sys-
tem” representation of the observed phenomenon: (Arpg,brrs) is the nominal model,
and pr.g is the perturbation level.

Once this uncertain system representation (Arys, bris, Prus) 1S computed, choo-
sing o s as a “solution” to Ax ~ b amounts to finding the exact solution to the
nominal system. Doing so, we compute a very accurate solution (with zero residual),
which does not take into account the perturbation level prrs. A more robust solution
is given by the solution to the following RLS problem:

(23) min max I(ArLs + AA)x — (brps + AD)|.

T ||AA Abl|r<pTLS
The solution to the above problem coincides with the TLS one (that is, in our case,
with z1rs) when pros < poin(Aris, brrs).  (Since brs € Range(Aris), the latter
quantity is strictly positive, except when A g =0, brps = 0.)

With standard LS, the perturbations that account for measurement errors are
structured (with AA = 0). To be consistent with LS, one should consider the following
RLS problem instead of (23):

(24) min  max ||Asz — (bus + AD)|.
T ||Abl<pLs
It turns out that the above problem yields the same solution as LS itself.

To summarize, RLS can be used in conjunction with TLS for “solving” a linear
system Az =~ b. Solve the TLS problem to build an “uncertain linear system” repre-
sentation (Arps, brus, prus) of the observed data. Then, take the solution zgys to the
RLS problem with the nominal matrices (Arps, brrs), and uncertainty size prps. Note
that computing the TLS solution (precisely, Arps, brrs, and prs) only requires the
computation of the smallest singular value and associated singular subspace [17].

4. Structured Robust Least Squares (SRLS). In this section, we consider
the SRLS problem, which is to compute

(25) $s(A, b, p) 2 min max || A(6)z — b(6)],
z |[8]I<p

where A b are defined in (2). As before, we assume with no loss of generality that
p =1 and denote rg(A,b,1,z) by rg(A,b,z). Throughout the section, we use the
following notation:

(26) M) 2 Aw—by ... Aygz—b,].

4.1. Computing the worst-case residual. We first examine the problem of
computing the worst-case residual rs(A, b, z) for a given z € R™. Define

(27) F 2 M(@)TM(z), g2 M@)T(Agx —bo), h= Aoz — bol|.

With the above notation, we have

(28) WMﬁJVZQ%[éHZ i][;]

Now let A > 0. Using the S-procedure (Lemma 2.1), we have

BRI
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for every 6, 676 < 1 if and only if there exists a scalar 7 > 0 such that

1 A—T7—h —gT 1 ,
[5][ —g TI_F][6]>0forevery5€R,

Using the fact that 7 > 0 is implied by 71 > F', we may rewrite the above condition
as

o T
(29) Foun 2 [ AT

—g TI—F]>0'

The consequence is that the worst-case residual is computed by solving an SDP with
two scalar variables. A bit more analysis shows how to reduce the problem to a
one-dimensional, convex differentiable problem and how to obtain the corresponding
worst-case perturbation.

THEOREM 4.1. For every x fized, the squared worst-case residual (for p = 1)
rs(A, b, )% can be computed by solving the SDP in two variables

minimize A subject to (29),

or, alternatively, by minimizing a one-dimensional convex differentiable function

(30) r(Abaf=he _inf f(r)
where
T4+ g7 (11 — F)7 g if T > Amax(F),
f(r) 2) if T = Amax(F) is (F, g)-controllable,

Amax(F) + gT (11 — F)Tg  if 7 = Amax(F) is not (F, g)-controllable.
(31)
If T is optimal for problem (30), the equations in 6

(I =F)o=g, [l =1

have a solution, any of which is a worst-case perturbation.
Proof. See Appendix A, where we also show how to compute a worst-case per-
turbation. |

4.2. Optimizing the worst-case residual. Using Theorem 4.1, the expression
of F,g,h given in (27), and Schur complements, we obtain the following result.

THEOREM 4.2. When p = 1, the Euclidean-norm SRLS can be solved by comput-
ing an optimal solution (A, T,x) of the SDP

A—T 0 (on — bo)T
(32) minimize A subject to 0 TI M(z)T >0,
AoI — bo M(I) 1

where M (x) is defined in (26).

REMARK 4.1. Straightforward manipulations show that the results are coherent
with the unstructured case.

Although the above SDP is not directly amenable to the more efficient SOCP for-
mulation, we may devise special interior-point methods for solving the problem. These
special-purpose methods will probably have much greater efficiency than general-
purpose SDP solvers. This study is left for the future.

REMARK 4.2. The discussion of section 3.5 extends to the case when the perturba-
tions are structured. TLS problems with (affine) structure constraints on perturbation
matrices are discussed in [7]. While the structured version of the TLS problem becomes
very hard to solve, the SRLS problem retains polynomial-time complexity.
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5. Linear-fractional SRLS. In this section, we examine a generalization of the
SRLS problem. Our framework encompasses the case when the functions A(6), b(6)
are rational. We show that the computation of the worst-case residual is NP-complete
but that upper bounds can be computed (and optimized) using SDP. First, we need
to motivate the problem and develop a formalism for posing it. This formalism was
introduced by Doyle et al. [9] in the context of robust identification.

5.1. Motivations. Insome structured robust least-squares problems such as (3),
it may not be convenient to measure the perturbation size with Euclidean norm. In-
deed, the latter implies a correlated bound on the perturbation. One may instead
consider an SRLS problem in which the bounds are not correlated; that is, the per-
turbation size in (3) is measured by the maximum norm

33 min max |[A(d)z —b(d)].
() in max [ A()z —b@)]|

Also, in some RLS problems, we may assume that some columns of [A b] are

perfectly known. For instance, the error [AA Ab] has the form [AA 0], where AA

is bounded and otherwise unknown. More generally, we may be interested in SRLS
problems, where the perturbed data matrices write

(34) [A(A) BA)]=[A4 b]+LA[ Ra Ry ],

where A,b, L, R4, Ry, are given matrices, and A is a (full) norm-bounded matrix. In
such a problem, the perturbation is not structured, except via the matrices L, R4, Ry.
(Note that a special case of this problem is solved in [5].)

Finally, we may be interested in SRLS problems in which the matrix functions
A(6), b(6) in (3) are rational functions of the parameter vector §. One example is
given in section 7.6.

It turns out that the extensions described in the three preceding paragraphs can
be addressed using the same formalism, which we now detail.

5.2. Problem definition. Let D be a subspace of RV Y, A € R"*™ b e R",
LeR""N RyeRY™ R, ¢ RV, D e RV, For every A € D such that
det(I — DA) # 0, we define the matrix functions

[A(A) bA)|=[A4 b]|+LAI—-DA)'[ Ra Ry ].
For a given € R™, we define the worst-case residual by

A

(35> T’D(Avbupam) - A€D, ||A|<p

max  ||A(A)z —b(A)| if det(I — DA) #0,
00 else.

We say that x is an SRLS solution if & minimizes the worst-case residual above.

As before, we assume p = 1 with no loss of generality and denote rp(A, b, 1,2) by

rp(A,b,x).

The above formulation encompasses the three situations referred to in section 5.1.
First, the maximum-norm SRLS problem (33) is readily transformed into problem (35)
as follows. Let L; € RN R, € RVX(™+1) pe such that [A4; b;] = L;R;, RankL; =
RankR; = r;, where r; = Rank[A; b;]. Set D =0, and let
L=[L ... L,|, R"=[ Rl ... RI'],

P

(36) D={@®! 6, |6 €R, 1<i<p}.
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Problem (33) can be formulated as the minimization of (35), with D defined as above.
Also, we recover the case when the perturbed matrices write as in (34) when we

allow A to be any full matrix (that is, D = RNXN). In particular, we recover the

unstructured RLS problem of section 3 as follows. Assume n > m. We have

[AA Ab]=L[AA Ab x |R

where L = I, RT = [I 0]. (The symbol x refers to dummy elements that are added
to the perturbation matrix in order to make it a square, n X n matrix.) In this case,
the perturbation set D is R™*".

Finally, the case when A(§) and b(é) are rational functions of a vector § (well
defined over the unit ball {6 | ||6||cc < 1}) can be converted (in polynomial time) into
the above framework (see, e.g., [48] for a conversion procedure). We give an example
of such a conversion in section 7.6.

5.3. Complexity analysis. In comparison with the SRLS problem of section 4,
the linear-fractional SRLS problem offers two levels of increased complexity.

First, checking whether the worst-case residual is finite is NP-complete [6]. The
linear-fractional dependence (that is, D # 0) is a first cause of increased complexity.

The SRLS problem above remains hard even when matrices A(6), b(6) depend
affinely on the perturbation elements (D = 0). Consider, for instance, the SRLS
problem with D = 0 and in which D is defined as in (36). In this case, the problem
of computing the worst-case residual can be formulated as

s s L

for appropriate F, g, h. The only difference with the worst-case residual defined in (28)
is the norm used to measure perturbation. Computing the above quantity is NP-
complete (it is equivalent to a MAX CUT problem [36, 38]). The following lemma,
which we provide for the sake of completeness, is a simple corollary of a result by
Nemirovsky [32].

LEMMA 5.1. Consider the problem P(A,b,D,x) defined as follows: given a
positive rational number X, matrices A,b, L, Ra, Ry, D of appropriate size, and an m-
vector x, all with rational entries, and a linear subset D, determine whether rp(A,b, x)
< A. Problem P(A,b,D,x) is NP-complete.

Proof. See Appendix B. O

5.4. An upper bound on the worst-case residual. Although our problem is
NP-complete, we can minimize upper bounds in polynomial time using SDP. Introduce
the following linear subspaces:

Bé{BERNXN | BA = AB for every A € D},

(37 S2{s5eB|5=5T},62{GeB|G=-G"}.

Let A € R. The inequality A > rp(A, b, z) holds if and only if, for every A € D,
[IA]] <1, we have det(I — DA) # 0 and

PEREESNT

(Ax — b)T A O}A(IDA)l[o Raz — Ry |

0

+[ (RAx_Rb)T](I—DA)TAT[ LT 0 ]>o.
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Using Lemma 2.3, we obtain that A > rp(A, b, z) holds if there exist S € S, G € G,
such that

Azx —b
(3%)  F(\S )= © Raz—Ry, | >0,
(ACL' — b)T (RAJJ — Rb)T A
where
(39) o2 M — LSLT —LSDT + LG

| —=DSLT +GTLT S+ DG - GDT — DSDT

Minimizing A subject to the above semidefinite constraint yields an upper bound for
rp(A, b, x). It turns out that the above estimate of the worst-case residual is actually
eract in some “generic” sense.

THEOREM 5.2. When p = 1, an upper bound on the worst-case residual rp(A, b, x)
can be obtained by solving the SDP

(40) inf A subject to S €S, GegG, (38).

Yy Ty

The upper bound is exact when D = RY*N . If © > 0 at the optimum, the upper
bound is also exact.
Proof. See Appendix C. 0

5.5. Optimizing the worst-case residual. Since x appears linearly in the
constraint (38), we may optimize the worst-case residual’s upper bound using SDP.
We may reduce the number of variables appearing in the previous problem, using the
elimination Lemma 2.4. Inequality in (38) can be written as in (11) with

o —b A 0
W = _Rb s U= RA 5 V= 0 )
b —Ry A 0 1

where O is defined in (39).

Denote by N the orthogonal complement of [AT R4]T. Using the elimination
Lemma 2.4, we obtain an equivalent condition for (38) to hold for some z € R™;
namely,

—b
(41) SeS, Geg, ©6>0, NP1" © ~Ry |(NP1)>o0.
b —R, A

For every A, S, G that are strictly feasible for the above constraints, an x that satis-
fies (38) is given, when Ry, is full rank, by

(42) m:([AT Rﬁ]@‘l[ébl[/ﬁ Rﬁ]@—l[gb].

(To prove this, we applied formula (13) and took ¢ — o0.)
THEOREM 5.3. When p = 1, an upper bound on the optimal worst-case residual
can be obtained by solving the SDP

(43) inf X subject to S €S, GegG, (38),

S,G Az



ROBUST LEAST SQUARES 1049
or, alternatively, the SDP

(44) inf X subject to (41).

Yy Ty

The upper bound is always exact when D = RV, If © > 0 at the optimum, the
upper bound is also exact. The optimal x is then unique and given by (42) when Ra
is full rank.

Proof. See Appendix C. 0

REMARK 5.1. In parallel to the unstructured case (see Remark 3.1), the linear-
fractional SRLS can be interpreted as a weighted LS for an augmented system. Pre-
cisely, when © > 0, the linear-fractional SRLS solution can be interpreted as the

solution of a weighted LS problem
A |10
Ra |"7 | Ry

The SRLS method amounts to computing the weighting matrixz © that is optimal for
robustness.

REMARK 5.2. Our results are coherent with the unstructured case: replace L by
I, R by [I 0|7, variable S by 71, and set G = 0. The parameter u of Theorem 3.2 can
be interpreted as the Schur complement of A\I — LSL™ in the matriz ©.

REMARK 5.3. We emphasize that the above results are exact (nonconservative)
when the perturbation structure is full. In particular, we recover (and generalize)
the results of [5] in the case when only some columns of A are affected by otherwise
unstructured perturbations.

REMARK 5.4. When D = 0, it is possible to use the approzimation method
of [16] to obtain solutions (based on the SDP relazations given in Theorem 5.3) that
have expected value within 14% of the true value.

TsrLs € argmin

(C]

6. Link with regularization. The standard LS solution x. g is very sensitive
to errors in A,b when A is ill conditioned. In fact, the LS solution might not be
a continuous function of A,b when A is near deficient. This has motivated many
researchers to look for ways to regularize the LS problem, which is to make the
solution z unique and continuous in the data matrices (A,b). In this section, we
briefly examine the links of our RLS and SRLS solution with regularization methods
for standard LS.

Beforehand, we note that since all our problems are formulated as SDPs, we could
invoke the quite complete sensitivity analysis results obtained by Bonnans, Cominetti,
and Shapiro [3]. The application of these general results to our SDPs is considered
in [35].

6.1. Regularization methods for LS. Most regularization methods for LS
require imposing an additional bound on the solution vector x. One way is to minimize
| Az — b]|>+Q(z), where € is some squared norm (see [23, 43, 8]). Another way is to
use constrained least squares (see [18, pp. 561-571]).

In a classical Tikhonov regularization method, Q(z) = ul|z||?, where p > 0 is
some ‘regularization” parameter. The modified value of z is obtained by solving an
augmented LS problem

(45) minimize || Az — b||* 4 p x|
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and is given by
(46) z(p) = (ul + ATA)"1 AT,

(Note that for every p > 0, the above z is continuous in (4,b).)

The above expression also arises in the Levenberg—Marquardt method for opti-
mization or in the Ridge regression problem [17]. As mentioned in [18], the choice of
an appropriate p is problem dependent and in many cases not obvious.

In more elaborate regularization schemes of the Tikhonov type, the identity ma-
trix in (46) is replaced with a positive semidefinite weighting matrix (see for in-
stance [31, 8]). Again, this can be interpreted as a (weighted) least-squares method
for an augmented system.

6.2. RLS and regularization. Noting the similarity between (17) and (46), we
can interpret the (unstructured) RLS method as that of Tikhonov regularization. The
following theorem yields an estimate of the “smoothing effect” of the RLS method.
Note that improved regularity results are given in [35].

THEOREM 6.1. The (unique) RLS solution xn.s and the optimal worst-case resid-
ual are continuous functions of the data matrices A,b. Furthermore, if K is a compact
set of R™, and dx = max {||b|| | b € K}, then for every uncertainty size p > 0, the
function

R™™ x K — [Ldc+1],
(A, D) — (A, b, p)

is Lipschitzian, with Lipschitz constant 1+ dic/p.

Theorem 6.1 shows that any level of robustness (that is, any norm bound on per-
turbations p > 0) guarantees regularization. We describe in section 7 some numerical
examples that illustrate our results.

REMARK 6.1. In the RLS method, the Tikhonov regularization parameter p is
chosen by solving a second-order cone problem in such a way that p is optimal for
robustness. The cost of the RLS solution is equal to the cost of solving a small number
of least-squares problems of the same size as the classical Tikhonov regularization
problem (45).

REMARK 6.2. The equation that determines p in the RLS method is

_ Iz -l
pv/ ()2 + 1

This choice resembles Miller’s choice [30], where p is determined recursively by the
equations

[[Az(p) — b
pllz(wl

This formula arises in RLS when there is no perturbation in b (see Remark 3.2). Thus,
Miller’s solution corresponds to an RLS problem in which the perturbation affects only
the columns of A. We note that this solution is not necessarily reqular (continuous).

TLS deserves a special mention here. When the TLS problem has a solution,
it is given by zrs = (ATA — 02I)71ATb, where o is the smallest singular value of
[A b]. This corresponds to u = —o? in (46). The negative value of y implies that
the TLS is a “deregularized” LS, a fact noted in [17]. In view of our link between
regularization and robustness, the above is consistent with the fact that RLS trades
off the accuracy of TLS with robustness and regularity, at the expense of introducing
bias in the solution. See also Remark 3.3.
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6.3. SRLS and regularization. Similarly, we may ask whether the solution to
the SRLS problem of section 4 is continuous in the data matrices A;, b;, as was the case
for unstructured RLS problems. We only discuss continuity of the optimal worst-case
residual with respect to (Ag, bo) (in many problems, the coefficient matrices A;, b; for
i=1,...,p are fixed).

In view of Theorem 4.2, continuity holds if the feasible set of the SDP (32) is
bounded. Obviously, the objective A is bounded above by

bo + zp: 0ib;
i—1

Thus the variable 7 is also bounded, as (32) implies 0 < 7 < A\. With A\, 7 bounded
above, we see that (32) implies that = is bounded if

H Aox —by Az —by ... Apz—10, H bounded implies x bounded.

The above property holds if and only if [A7 AT ... AT]" is full rank.
THEOREM 6.2. A sufficient condition for continuity of the optimal worst-case
residual (as a function of (Ag,bo)) is that [A] ... AT]" is full rank.

6.4. Linear-fractional SRLS and regularization. Precise conditions for con-
tinuity of the optimal upper bound on worst-case residual in the linear-fractional case
are not known. We may, however, regularize this quantity using a method described
in [29] for a related problem. For a given € > 0, define the bounded set

max
§T6<1

P
< [lboll + D l1oall
i=1

355{565

1
el <5< I},
€

where S is defined in (37). It is easy to show that restricting the condition number
of variable S also bounds the variable G in the SDP (44). This yields the following
result.
THEOREM 6.3. An upper bound on the optimal worst-case residual can be obtained
by computing the optimal value A(€) of the SDP
(47) min}\)\ subject to S € Se, G € G, (41).
The corresponding upper bound is a continuous function of [A b]. As e — 0, the
corresponding optimal value A(€) has a limit, equal to the optimal value of SDP (44).
As noted in Remark 5.1, the linear-fractional SRLS can be interpreted as a
weighted LS and so can the above regularization method. Thus, the above method
belongs to the class of Tikhonov (or weighted LS) regularization methods referred to
in section 6.1, the weighting matrix being optimal for robustness.

7. Numerical examples. The following numerical examples were obtained us-
ing two different codes: for SDPs, we used the code SP [45], and a MATLAB interface
to SP called LMITOOL [10]. For the (unstructured) RLS problems, we used the
SOCP described in [28].

7.1. Complexity estimates of RLS. We first did “large-scale” experiments for
the RLS problem in section 3. As mentioned in section 2.1, the number of iterations is
almost independent of the size of the problem for SOCPs. We have solved problem (15)
for uniformly generated random matrices A and vectors b with various sizes of n, m.
Figure 1 shows the average number of iterations as well as the minimum and maximum
number of iterations for various values of n, m. The experiments confirm the fact that
the number of iterations is almost independent of problem size for the RLS problem.
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FHiter #iter
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Fic. 1. Average, minimum, and maximum number of iterations for various RLS problems using
the SOCP formulation. In the left figure, we show these numbers for values of n ranging from 100
to 1000. For each value of n, the vertical bar indicates the minimum and mazximum values obtained
with 20 trials of A,b, with m = 100. In the right figure, we show these numbers for values of m
ranging from 11 to 100. For each value of n, the vertical bar indicates the minimum and mazimum
values obtained with 20 trials of A,b, with n = 1000. For both plots, the plain curve is the mean
value.

7.2. LS, TLS, and RLS. We now compare the LS, TLS, and RLS solutions for
A=[1 2 3 4], b=[3 71 3]",

On the left and right plots in Fig. 2, we show the four points (4;,b;) indicated
with “4” signs, and the corresponding linear fits for LS problems (solid line), TLS
problems (dotted line), and RLS problems for p = 1,2 (dashed lines). The left plot
gives the RLS solution with perturbations [A + AA, b+ Ab|, whereas the right plot
considers perturbation in A only, [A+ AA,b]. In both plots, the worst-case points for
the RLS solution are indicated by “o” for p = 1 and “x” for p = 2. As p increases, the
slope of the RLS solution decreases and goes to zero when p — oo. The plot confirms
Remark 3.3: the TLS solution is the most accurate and the least robust, and LS is
intermediate.

In the case when we have perturbations in A only (right plot), we obtain an
instance of a linear-fractional SRLS (with a full perturbation matrix), as mentioned
in section 5.1. (It is also possible to solve this problem directly, as in section 3.) In
this last case, of course, the worst-case perturbation can only move along the A-axis.

7.3. RLS and regularization. As mentioned in section 6, we may use RLS to
regularize an ill-conditioned LS problem. Consider the RLS problem for

3

0
-2

1

A:

=~ O = =
[SENGUR TN

The matrix A is singular when o = 5.

Figure 3 shows the regularizing effect of the RLS solution. The left (resp., right)
figure shows the optimal worst-case residual (resp., norm of RLS solution) as a func-
tion of the parameter o for various values of p. When p = 0, we obtain the LS
solution. The latter is not a continuous function of «, and both the solution norm
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Fi1G. 2. Least-squares (solid), total least-squares (dotted), and robust least-squares (dashed)
solutions. The + signs correspond to the nominal [A b]. The left plot gives the RLS solution with
perturbations [A+ AA, b+ Ab], whereas the right plot considers perturbation in A only, [A+ AA,b].
The worst-case perturbed points for the RLS solution are indicated by “o” for p = 1 and “«” for

p=2.
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F1c. 3. Optimal worst-case residual and norm of RLS solution versus o for various values of
perturbation level p. For p =0 (standard LS), the optimal residual and solution are discontinuous.
The spike is smoothed as more robustness is asked for (that is, when p increases). On the right plot
the curves for p = .001 and .0001 are not visible.

and residual exhibit a spike for « = 5 (when A becomes singular). For p > 0, the RLS
solution is smooth. The spike is more and more flattened as p grows, which illustrates
Theorem 6.1. For p = co, the optimal worst-case residual becomes flat (independent
of @), and equal to ||b|| + 1, with zx.s = 0.

7.4. Robustness of LS solution. The next example illustrates that sometimes
(precisely, if b € Range(A)) the LS solution is robust up to the perturbation level
Pmin defined in (22). This “natural” robustness of the LS solution degradates as the
condition number of A grows. For e4 > 0, consider the RLS problem for

=4 2] =[]

We have considered six values of €4 (which equals the inverse of the condition
number of A) from .05 to .55. Table 1 shows the values of ppin (as defined in (22))
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TABLE 1
Values of pmin for various €4.

curve # 1 2 3 4 5 6

€A .05 .15 .25 .35 .45 .55
Pmin 0.06 034 078 1.12 1.28 1.35

F(e) llAzgrs — ol

95 o055 06 065 07 075 08 08 09 095 1

F1G. 4. The left plot shows function f(0) (as defined in (20)) for the siz values of €4 (for
p = 1). The right plot gives the optimal RLS residuals versus p for the same values of ea. The
labels 1,...,6 correspond to values of €4 given in Table 1.

for the six values of €4. When the condition number of A grows, the robustness of
the LS solution (measured by pmin) decreases.

The right plot of Fig. 4 gives the worst-case residual versus the robustness pa-
rameter p for the six values of €4. The plot illustrates that for p > pmin, the LS
solution (in our case, A~'b) differs from the RLS one. Indeed, for each curve, the
residual remains equal to zero as long as p < pui,. For example, the curve labeled
“1” (corresponding to €4 = 0.05) quits the z-axis for p > pmin = 0.06.

The left plot of Fig. 4 corresponds to the RLS problem with p = 1 for various
values of € 4. This plot shows the various functions f(6) as defined in (20). For each
value of €4, the optimal 6 (hence the RLS solution) is obtained by minimizing the
function f. The three smallest values of €4 induce functions f (as defined in (20))
that are minimal for § < 1. For the three others, the optimal 6 is 1. This means that
Pmin 1S smaller than 1 in the first three cases and larger than 1 in the other cases.
This is confirmed in Table 1.

7.5. Robust identification. Consider the following system identification prob-
lem. We seek to estimate the impulse response h of a discrete-time system from its
input v and output y. Assuming that the system is single input and single output,
linear, and of order m and that u is zero for negative time indices, y, u, and h are
related by the convolution equations Uh = y, where

h(1) y(1) u(1)

and U is a lower-triangular Toeplitz matrix whose first column is u. Assuming y, U are
known exactly leads to a linear equation in h, which can be computed with standard
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LS.

In practice, however, both y and u are subject to errors. We may assume, for
instance, that the actual value of y is y 4 6y and that of u is u + du, where du, éy are
unknown-but-bounded perturbations. For the perturbed matrices U, y write

U) =U+> buli, y(6)=y+ ) byiei,
i=1

i=1

where e;, i = 1,...,m is the ith column of the m X m identity matrix and U, are
lower-triangular Toeplitz matrices with first column equal to e;.

We first assume that the sum of the input and output energies is bounded, that is,
16]] < p, where 6§ = [6u” 6yT)T € R*™, and p > 0 is given. We address the following
SRLS problem:

(48) pin, max 1T(6)h =y ()]

As an example, we consider the following nominal values for y, u:
wu=[12 31" y=[4 5 6]".

In Fig. 5, we have shown the optimal worst-case residual and that corresponding to
the LS solution as given by solving problems (30) and (32), respectively. Since the LS
solution has zero residual (U is invertible), we can prove (and check on the figure) that
the worst-case residual grows linearly with p. In contrast, the RLS optimal worst-case
residual has a finite limit as p — oo.

165 LS
14}
12+
10
sk
sk
al {1 RLS
ot
o 05 1 15 2 25 3
P

Fic. 5. Worst-case residuals of LS and Euclidean-norm SRLS solutions for various values of
perturbation level p. The worst-case residual for LS has been computed by solving problem (30) with
r = xrg fized.

We now assume that the perturbation bounds on y,u are not correlated. For
instance, we consider problem (48), with the bound ||§|| < p replaced with

16yll < o, [[6ullsc < p-

Physically, the above bounds mean that the output energy and peak input are bounded.
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This problem can be formulated as minimizing the worst-case residual (35), with

100 0 001 O0O
L=701 010001 0|,
001 011001

1 0 0 4
[Abl=|2 1 0 5 |, 100101000
3 216 RT_ |0 10010000
001 0O0O0O0O0O0]
000 0O0OT1TO0TPO
and A has the following structure:
oy1 X X
A:diag (S’U,1[3,(5UQIQ,(SU3, 6y2 X X
dys X X

Here, the symbols x denote dummy elements of A that were added in order to work
with a square perturbation matrix. The above structure corresponds to the set D
in (36), with s = [3 2 1].

upper bound (LS solution)

lower bound (LS solution)

upper bound gi.LS solution)
sF lower bound (RLS solution)

Fic. 6. Upper and lower bounds on worst-case residuals for LS and RLS solutions. The upper
bound for LS has been computed by solving the SDP (38) with x = xrg fized. The lower bounds
correspond to the largest residuals | U (8412 z — y(6*121)|| among 100 trial points 62! with x = x1s
and T = TrLs.

In Fig. 6, we show the worst-case residual versus p, the uncertainty size. We
show the curves corresponding to the values predicted by solving the SDP (43), with
x variable (RLS solution), and « fixed to the LS solution z,5. We also show lower
bounds on the worst case, obtained using 100 trial points. This plot shows that, for the
LS solution, our estimate of the worst-case residual is not exact, and the discrepancy
grows linearly with uncertainty size. In contrast, for the RLS solution the estimate
appears to be exact for every value of p.

7.6. Robust interpolation. The following example is a robust interpolation
problem that can be formulated as a linear-fractional SRLS problem. For given inte-
gers n > 1, k, we seek a polynomial of degree n — 1, p(t) = x1 + -+ + 2,t" ! that
interpolates given points (a;,b;), i = 1,..., k; that is,

pla;))=0b;, i=1,...,k.
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If we assume that (a;,b;) are known exactly, we obtain a linear equation in the un-
known z, with a Vandermonde structure

1 a ... a?fl T1 bl

1 ap ... aZ_l Tn by,

which can be solved via standard LS.
Now assume that the interpolation points are not known exactly. For instance,
we may assume that the b;’s are known, while the a;’s are parameter dependent:

ai(é)zai—kéi, i=1,...,k,

where the 6;’s are unknown but bounded, |6;| < p, i =1,...,k, where p > 0 is given.
We seek a robust interpolant, that is, a solution x that minimizes

max |[|A(6)x — b,

l18llcc <p
where
1 a1(6) a(6)"1
A(0)=| : : :
1 oar(6) ... ap(6)" !

The above problem is a linear-fractional SRLS problem. Indeed, it can be shown
that

[A@) b]=[A(0) b]+LAUI—-DA)'[Ra 0],

where
k Ry k k
L=@[1 a ... a@*],Ra=| : |, D=PDi, A=l 1,
i=1 Ry, i=1 i=1
and, for each ¢, 1 =1,...,k,
[0 1 a ... a?_2 i
Ri _ : . c R(nfl)xn’
: o g
| 0 ... 0 1
[0 1 @ a3 ]
D;=|: RN a: e Rn—x(n=1),
: 1
L O 0 -

(Note that det(I — DA) # 0, since D is strictly upper triangular.)
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RLS (p =0.2)
RLS (p = oo)
0 1 J2 3 «; é 6 ¢

Fic. 7. Interpolation polynomials: LS and RLS solutions for p = 0.2. The LS solution interpo-
lates the points exactly, while the RLS one guarantees a worst-case residual error less than 1.1573.
For p = oo, the RLS solution is the zero polynomial.

In Fig. 7, we have shown the result n =3, k =1, and

1 1
a; = 2 5 b1 = —0.5 s, P = 0.2.
4 2

The LS solution is very accurate (zero nominal residual: every point is interpolated
exactly) but has a (predicted) worst-case residual of 1.7977. The RLS solution trades
off this accuracy (only one point interpolated and nominal residual of 0.8233) for
robustness (with a worst-case residual less than 1.1573). As p — oo, the RLS inter-
polation polynomial becomes more and more horizontal. (This is consistent with the
fact that we allow perturbations on vector @ only.) In the limit, the interpolation
polynomial is the solid line p(¢) = 0.

8. Conclusions. This paper shows that several RLS problems with unknown-
but-bounded data matrices are amenable to (convex) SOCP or SDP. The implication
is that these RLS problems can be solved in polynomial time and efficiently in practice.

When the perturbation enters linearly in the data matrices, and its size is mea-
sured by Euclidean norm, or in a linear-fractional problem with full perturbation
matrix A, the method yields the exact value of the optimal worst-case residual. In
the other cases we have examined (such as arbitrary rational dependence of data
matrices on the perturbation parameters), computing the worst-case residual is NP-
complete. We have shown how to compute and optimize, using SDP, an upper bound
on the worst-case residual that takes into account structure information.

In the unstructured case, we have shown that both the worst-case residual and
the (unique) RLS solution are continuous. The unstructured RLS can be interpreted
as a regularization method for ill-conditioned problems. A striking fact is that the
cost of the RLS solution is equal to a small number of least-squares problems arising
in classical Tikhonov regularization approaches. This method provides a rigorous way
to compute the optimal parameter from the data and associated perturbation bounds.
Similar (weighted) least-squares interpretations and continuity results were given for
the structured case.
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In our examples, we have demonstrated the use of an SOCP code [27] and a
general-purpose semidefinite programming code SP [45]. Future work could be de-
voted to writing special code that exploits the structure of these problems in order
to further increase the efficiency of the method. For instance, it seems that in many
problems the perturbation matrices are sparse and/or have special (e.g., Toeplitz)
structure.

The method can be used for several related problems.

o Constrained RLS. We may consider problems where additional (convex) cons-
traints are added on the vector z. (Such constraints arise naturally in, e.g.,
image processing.) For instance, we may consider problem (1) with an ad-
ditional linear (resp., quadratic convex) constraint (Cx); > 0, ¢ = 1,...,q
(resp., 7 Qx < 1), where C (resp., @ > 0) is given. To solve such a prob-
lem, it suffices to add the related constraint to corresponding SOCP or SDP
formulation. (Note that the SVD approach of section 3.3 fails in this case.)

e RLS problems with other norms. We may consider RLS problems in which
the worst-case residual errors measured in other norms such as the maximum
(lso) norm.

e Matriz RLS. We may, of course, derive similar results when the constant term
b is a matrix. The worst-case error can be evaluated in a variety of norms.

e Error-in-variables RLS. We may consider problems where the solution x is
also subject to uncertainty (due to implementation and/or quantization er-
rors). That is, we may consider a worst-case residual of the form

max max A+ AA)(x + Azx) — (b+ Ab)||,
lAzl|<py [|AA Abllp<p2
where p;, i = 1,2, are given. We may compute (and optimize) upper bounds
on the above quantity using SDP. This subject is examined in [25].

Appendix A. Proof of Theorem 4.1. Introduce the eigendecomposition of F’
and a related decomposition for g:

R T — Amax (F) 0 T 5T _ | 5
F=1I-U : TI_Z}U,Ug 't
where 7 > ||Z]|, £ € R™", ¥ > 0, and g2 € R". When 7 > Apax(F), inequality (29)
writes

91T91

. >
(A.49) Azhare ST

+ gg(TI — Z)ilgg.

If 7 = Amax(F) at the optimum, then g; = 0, and there exists a nonzero vector
u such that (71 — F)u = 0. From inequality (29), we conclude that ¢"u = 0. In
other words, Apax(F) is not (F, g)-controllable, and u is an eigenvector that proves
this uncontrollability. Using g1 = 0 in (A.49), we obtain the optimal value of A in this
case:

A= h—i—T—f—gg(TI—E)*lgg‘

Thus, the worst-case residual can be computed as claimed in the theorem.
For every pair (A, 7) that is optimal for problem (29), we can compute a worst-case
perturbation as follows. Define

S0 = (11 — F)iyg.
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We have 7 > Apax(F) at the optimum if and only if Ayax(F) is (F, g)-controllable
(that is, g2 # 0) or if Apax(F') is not (F, g)-controllable and the function f defined
in (31) satisfies

df
dr

In this case, the optimal 7 satisfies

Amax(F)) = 1 — g7 Qmax(F)I — F)?g < 0.

(A.50) 1=g"(rI - F)%g;
that is, ||6g]] = 1. Using this and (A.50), we obtain

BIEIBE

This proves that 8y is a worst-case perturbation.
If 7 = Amax(F) at the optimum, then

df
dr
which implies that ||6]] < 1. Since 7 = Apax(F'), there exists a vector u such that

(11 — F)u = 0, gTu = 0. Without loss of generality, we may assume that the vector
6 = 6o + u satisfies ||6]| = 1. We have

(Amax(F)) =1 — gT(AmaX(F)I - F)zTg >0,

T T
[(15] [S . “ = 7676 — 6T (r1 — F)§ + 2679 + h

=h+7+97 (I — F)tg—2uT (71 — F)ég — uT (11 — F)u = \.

This proves that ¢ defined above is a worst-case perturbation.
In both cases seen above (7 equals Apax(F) or not), a worst-case perturbation is
any vector ¢ such that

(I = F)é =g, [l6]l =1

(We have just shown that the above equations always have a solution § when 7 is
optimal.) This ends our proof. g

Appendix B. Proof of Lemma 5.1. We use the following result, due to Ne-
mirovsky [32].

LEMMA B.1. Let T'(p,a) be a scalar function of positive integer p and p-dimensio-
nal vector a such that, first, T' is well defined and takes rational values from (0, ||a| ~2)
for all positive integers p and all p-dimensional vectors a with ||a|| < 0.1 and, second,
the value of this function at a given pair (p,a) can be computed in time polynomial
in p and the length of the standard representation of the (rational) vector a. Then
the problem Pr(p,a): given an integer p > 0 and a € RP, |la] < 0.1, with rational
positive entries, determine whether
(B.51) p < max 67 (I —T(p,a)aa’)s

T lsllee<
is NP-complete. Besides this, either (B.51) holds, or

F(paa) T T
- > I—
P= oy = iex, o (- aat)s,
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where d(a) is the smallest common denominator of the entries of a.

To prove our result, it suffices to show that for some appropriate function I'
satisfying the conditions of Lemma B.1, for any given p, a, we can reduce the problem
Pr(p, a) to problem P(A,b,D,x) in polynomial time. Set

2aTa +1
r = .
P:0) = (g4 1)

This function satisfies all requirements of Lemma B.1, so problem Pr(p, a) is NP-hard.

Given p, a, ||a]| < 0.1 with rational positive entries, set A, b, D and z as follows.

First, set D to be the set of diagonal matrices of R?*P. Set A =0,b =0, R4 = 0,
Ry=1[1...17, D=0, 2 =0, and

aa”

1+a%a

Finally, set A, b as in (34) and A = p — I'(p,a)/d(a)®>. When p = 1, the worst-case
residual for this problem is

rp(A,b,1,2)?> = max ||L§||> = max 67 (I —I'(p,a)aal)é.
D( ) H«SllooglH | 6] <1 ( (p, a)aa”)

Our proof is now complete.

Appendix C. Proof of Theorem 5.3. In this section, we only prove Theo-
rem 5.3. The proof of Theorem 5.2 follows the same lines. We start from problem (43),
the dual of which is the maximization of 2(b”w + R} u) subject to

Z Y w
(C.52) Z=|YT vV u|>0
wl Wl ot

and the linear constraints

TrZ =1-t,
vSeS, TeS(V - LTZL - DTYTL - LYYD — DTV D) =0,
ATw + REu =0,
VG eG, TrG(YL-LTYT - DTV +VD)=0.
Since both primal and dual problems are strictly feasible, all primal and dual

feasible points are optimal if and only if ZF(A,S,G,z) = 0, where F is defined
in (38) (see [46]). One obtains, in particular,

(C.57) Jw~+ t(Ax — b) — LTu = 0,
(C.58) (Az —b)Tw+tA+ 2" RTu = 0,
(C.59) ~TIT"L"w + Rz + Yu =0,

where z = [T —1]T, J = M[-LSLT, ¥ = S+ DG—-GDT —DSDT  and T = SDT -G.
Using equation (C.58) and (C.55), we obtain

(C.60) th = —(Az — b)Tw — 2" RTu = b"w + Rl u,
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which implies that ¢ = 1/2 from equality of the primal and dual objectives (the trivial
case A = 0 can be easily ruled out).

Assume that the matrix © defined in (39) is positive definite at the optimum.
From equations (C.57)—(C.59), we deduce that the dual variable Z is rank one:

(C.61) Z = 2007 with v = [w u 1/2 ]T.
Using (C.57) and (C.59), we obtain
ol v |- 1 Az —b
U 92 Rax— Ry |~
From (C.55), it is easy to derive the expression (42) for the optimal z in the case
when © > 0 at the optimum and R4 is full rank.

We now show that the upper bound is exact at the optimum in this case. If we
use condition (C.54) and the expression for Z,V deduced from (C.53), we obtain

ul'Su = (L"w + DTu)TS(Lw + D) for every S € S.

This implies that there exists A € D, ATA = I, such that u = AT(LTw + DTu).
Since © > 0, a straightforward application of Lemma 2.3 shows that det(I — DA) # 0,
so we obtain

u! =wTLA(I — DA)™!,

Define M = [A b] and recall z = [zT — 1]T. Since Z = 2ww® (from (C.61)) and
TrZ =1—t=1/2 (from (C.53)), we have ||w| = 1/2. We can now compute

wT (M + LA(I — DA)™'R)z = w” (Az — b) + w' LA(I — DA) 'Rz
=w?(Az —b) +u' Rz

A

2

(from (C.55) and (C.60)).

Therefore,

; = [w" (M + LA(I — DA)'R)z| < ||w| || (M + LA(I — DA) ' R)z||

[w][A (since A €D, [[Al <1)

/2\ (fr0m||w|| = ;) .

We obtain A = ||(M + LA(I — DA)™'R)z||, which proves that the matrix A is a
worst-case perturbation.

IN
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