ROBUST STATISTICS FOR QUANTITATIVE FINANCE

Tutorial R-Finance 2018

R. Douglas Martin* Director of Computational Finance Program University of Washington

doug@.amath.washington.edu

Chicago, June 1

Joint work with "*Robust Statistics: Theory and Methods* (2018)" coauthors Ricardo Maronna, Victor Yohai, Matias Salibian-Barrera, and joint work with Ruben Zamar and Kjell Konis

John Tukey On Good Statistical Practice*

"What are today's obligations of good statistical practice? I suggest they should include these two:

- where one or more analyses robust of efficiency are available, one (or more) of them should be among those applied (in parallel) to the data, and
- 2. its (their) results should be compared with those of the other analyses used"

* Useable Resistant/Robust Techniques of Analysis (1979)

1. Robust Statistics: Theory & Methods

The Book

R. A. Maronna, R. D. Martin, V. J. Yohai and Matias Salibian-Barrera (2018), 2nd Edition, Wiley (MMYS)

The Companion R Package RobStatTM

Developed and maintained by Matias Salibian-Barrera

To install RobStatTM, first install devtools, then use: devtools::install_github("msalibian/RobStatTM")

Book Chapters

- 1. Introduction
- 2. Location and Scale
- 3. Measuring Robustness
- 4. Linear Regression 1
- 5. Linear Regression 2*
- 6. Multivariate Analysis *
- 7. Generalized Linear Models *
- 8. Time Series
- 9. Numerical Algorithms
- 10. Asymptotic Theory of M-Estimators
- 11. Description of Data Sets
- * Chapters with most new material

RobStatTM Main Modeling Functions

Robust Regression

- ImrobM
- ImrobdetMM
- ImrobdetDCML
- Imrobdet.control
- rob.linear.test
- ImrobdetMM.RFPE r
- step.lmrobdetMM s⁻

Multivariate

- MultiRobu
- GSE
- KurtSD
- SMPCA

- M-estimator regression with fixed design
- MM estimator regression
- DCML estimator regression
 - tuning parameters for ImrobdetMM/DCML
 - likelihood ratio test of a linear hypothesis
- FPE robust FPE model selection criterion
- IM stepwise regression with RFPE

multivariate location and scatter/covmat covmat for independent outliers in variables new multivariate location & scatter/covmat PCA based on minimizing residual M-scale

Logistic Regression

WBYlogreg redescending weighted M-estimator

M-estimator

- BYlogreg
- WMLlogreg weighted maximum-likelihood estimator

Time Series

arima.rob
 filtered tau-estimators

Utility Functions

Many . . .

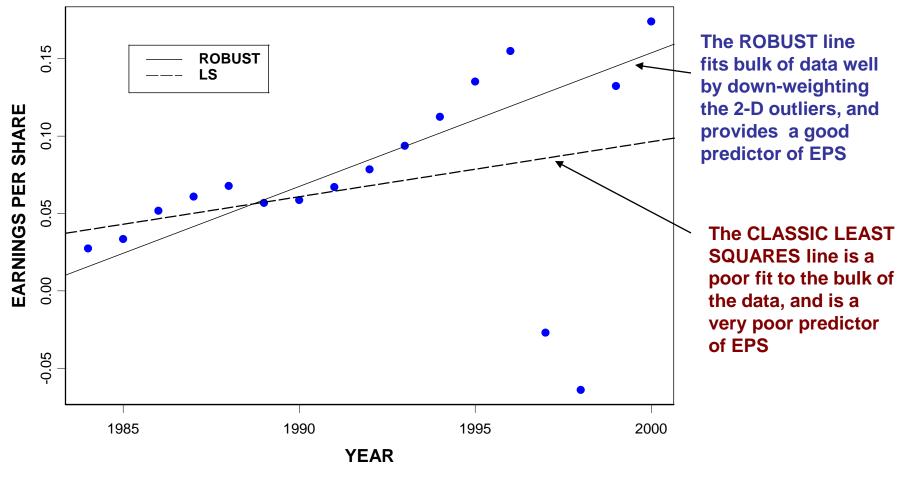
2. Key Robustness Concepts

Data-Oriented Robustness

- Not much influenced by outliers
- Good model fit to bulk of the data
- Reliable returns outlier detection

Robust vs. LS Prediction of EPS

INVENSYS EARNINGS



Example from user in DuPont Corporate Finance

Robustness Models and Methods

Tukey-Huber outliers model

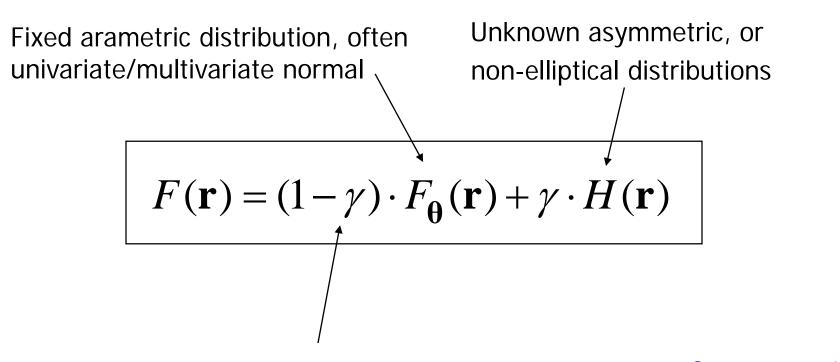
Estimator Evaluation Methods

- Variance and efficiency
- Bias and breakdown point
- Mean-squared error

Leading Estimators

- M-estimators and MM-estimators
- S-estimators

Tukey-Huber Outlier Generating Model



Unknown, often .01 to .05 or .10 but want to do well for $0 \le \gamma < .5$

Estimator Variance and Efficiency

Finite-sample variance
$$V(\hat{\theta}_n, F) \longrightarrow 0 \text{ as } n \to \infty$$

<u>Asymptotic variance</u> $V(\theta, F)$

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) \xrightarrow{d} N(0, V(\theta, F))$$

Variance efficiency:

$$Var(\hat{\theta}_{ROBUST}, F) = \frac{\operatorname{var}(\hat{\theta}_{MLE}, F)}{\operatorname{var}(\hat{\theta}_{ROBUST}, F)}$$

Estimator Bias

Finite Sample Bias

$$\mathbf{B}\left(\hat{\theta}_{n}\right) = \mathbf{E}\left(\hat{\theta}_{n}\right) - \boldsymbol{\theta}$$

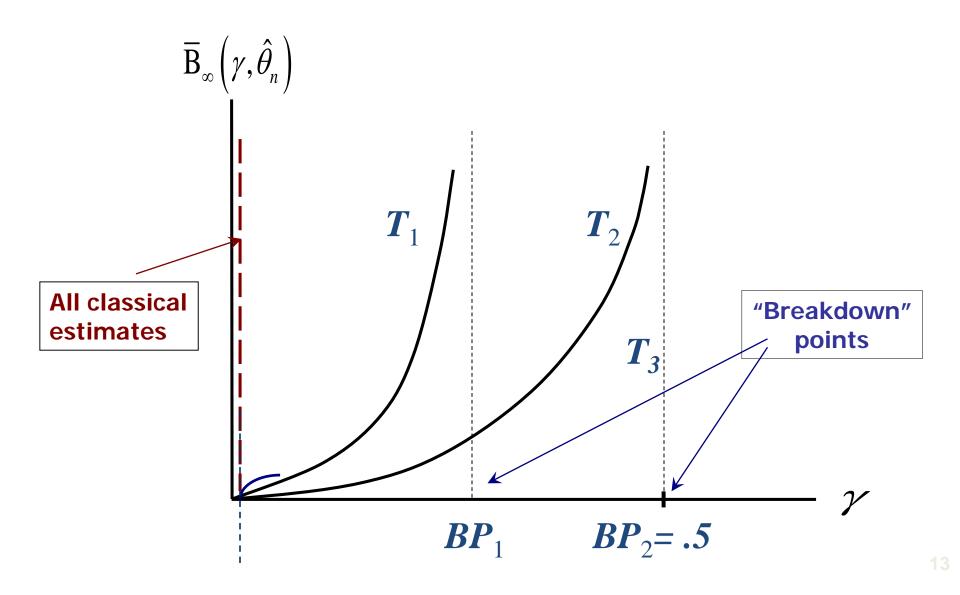
Asymptotic Bias
$$\hat{\theta}_n \to \theta_\infty$$

$$\mathbf{B}_{\infty}\left(\hat{\theta}_{n}\right) = \theta_{\infty} - \theta$$

Both of the above depend upon H and γ' under the Tukey-Huber model.

Asymptotic Maximum Bias Curves

Want to find estimator with "smallest" curve



Asymptotic Regression Theory Results

Asymptotic Theory Based Estimators

- Min-max variance location estimation (Huber, 1964)
- Min-max bias estimation of scale (Martin & Zamar, 1989, 1993)
- Min-max bias regression (Martin, Yohai & Zamar, 1989, 1993)
- Efficiency-constrained min-max bias regression (Yohai & Zamar, 1997, Svarc, Yohai & Zamar, 2002)
- Efficient min-max bias regression
 (Gervini & Yohai, 2002, Maronna & Yohai, 2014)

Finite-Sample Mean-Squared Error (mse)

$$\operatorname{mse}_{F}\left(\hat{\theta}_{n},\gamma\right) = \operatorname{var}_{F}\left(\hat{\theta}_{n},\gamma\right) + \operatorname{bias}_{F}^{2}\left(\hat{\theta}_{n},\gamma\right)$$

The above are used to rank robust estimators, with extensive Monte Carlo simulations, and then make recommendations of which estimator to use.

3. Location M-Estimates

Maximum-Likelihood Type Estimators (Huber, 1964)

$$r_i = \mu + \sigma \cdot \varepsilon_i, \quad i = 1, 2, \cdots, n \qquad \varepsilon_i \text{ i.i.d. } \sim f_0$$
 assumed known for the moment

$$\hat{\mu}_{MLE} = \arg \max_{\mu} L(\mu \mid r_1, r_2, \cdots, r_n)$$
$$= \arg \max_{\mu} \prod_{i=1}^n \frac{1}{\sigma} f_0\left(\frac{r_i - \mu}{\sigma}\right)$$
$$= \arg \min_{\mu} \sum_{i=1}^n \rho\left(\frac{r_i - \mu}{\sigma}\right)$$

where
$$\rho(x) = -\log(f_0)$$

MLE Estimating Equations

With $\psi(x) = \rho'(x)$ the corresponding "estimating" equation is:

$$\sum_{i=1}^{n} \psi\left(\frac{r_i - \hat{\mu}}{\sigma}\right) = 0$$

To implement, one needs to use a scale estimate $\hat{\sigma}$, as described in MMYS:

$$\sum_{i=1}^{n} \psi\left(\frac{r_i - \hat{\mu}}{\hat{\sigma}}\right) = 0$$

Use $\hat{\sigma} = MADM$

(median absolute deviaton about median, normalized to be unbiased for σ under normality)

6/1/2018

Special cases of MLE's

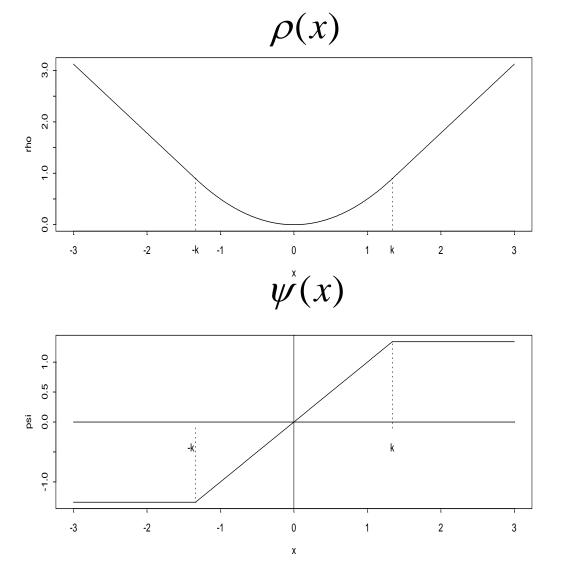
Normal Distributions (Least Squares, Sample Mean)

$$\rho(x) = c + \frac{x^2}{2}, \qquad \psi(x) = x$$

Exponential Distributions (L1/LAD, Sample Median)

$$\rho(x) = c + |x|, \qquad \psi(x) = \text{SGN}(x)$$

Huber Min-Max Variance MLE Solution (1964)



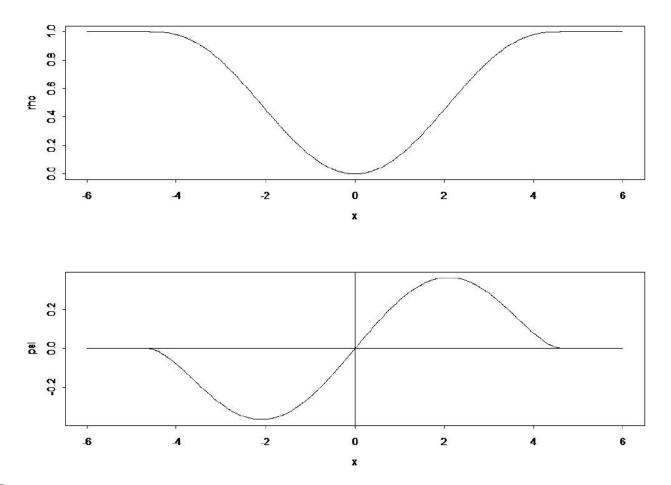
Unbounded, like LS in the middle and like LAD outside. Is an MLE for a distribution that is normal in the middle and exponential in the tails

Better robust M-estimators use bounded loss functions and re-descend to zero.

Tukey Bisquare Rho and Psi Functions

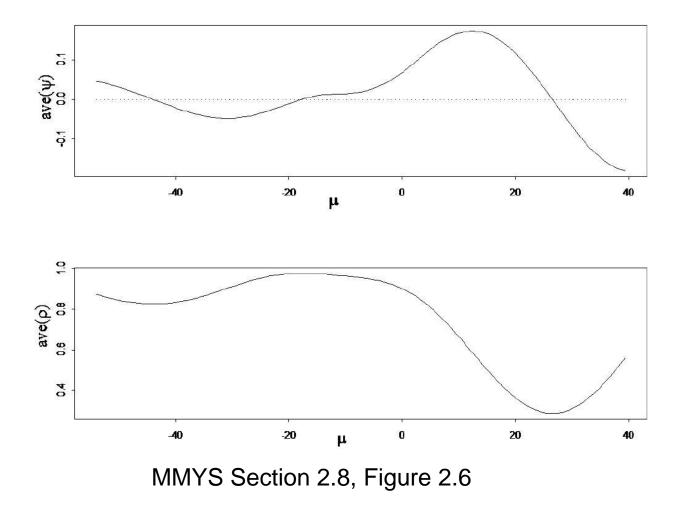
Not an MLE (no pdf yields this rho and psi)

See MMYS for formulas



M-Estimator Solves a Nonlinear Equation

- Essentially unique root for convex rho and monotone psi
- Multiple roots with redescending psi, e.g., Tukey bisquare



Need a Good Numerical Algorithm

Weighted least squares (WLS) version of M-estimator

$$\sum_{i=1}^{n} \psi\left(\frac{r_i - \hat{\mu}}{\text{MADM}}\right) \rightarrow \sum_{i=1}^{n} W\left(\frac{r_i - \hat{\mu}}{\text{MADM}}\right) (r_i - \hat{\mu}) = 0$$

Data-dependent weight defined by:

$$W(t) = \frac{\psi(t)}{t}$$

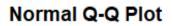
 RobStatTM uses a very reliable iterated weighted least squares (iterated weighted average) algorithm with

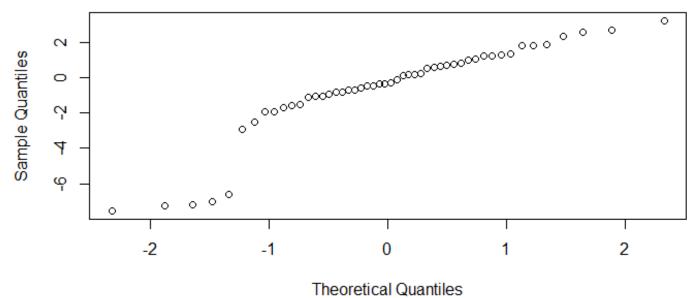
$$\hat{\mu}_0 = median(r_1, r_2, \cdots, r_n)$$

For convergence proof see Section 9.1 of MMYS.

MLocDis.R() Example with Default Bisquare

library(RobStatTM)
set.seed(123)
r1 = rnorm(45, sd = 1.5)
r2 = rnorm(5, mean = -7, sd = .5)
r <- c(r1,r2); gqnorm(r)</pre>





```
> mean(r)
[1] -0.6224736
> sd(r)/sqrt(50)
[1] 0.3641196
> sd(r)
[1] 2.574714
> # robust loc, stderror, scale
> MLocDis(r)
$mu
[1] 0.08544817
$std.mu
[1] 0.2220985
$disper
[1] 1.675064
```

Why the Location M-estimator Details?

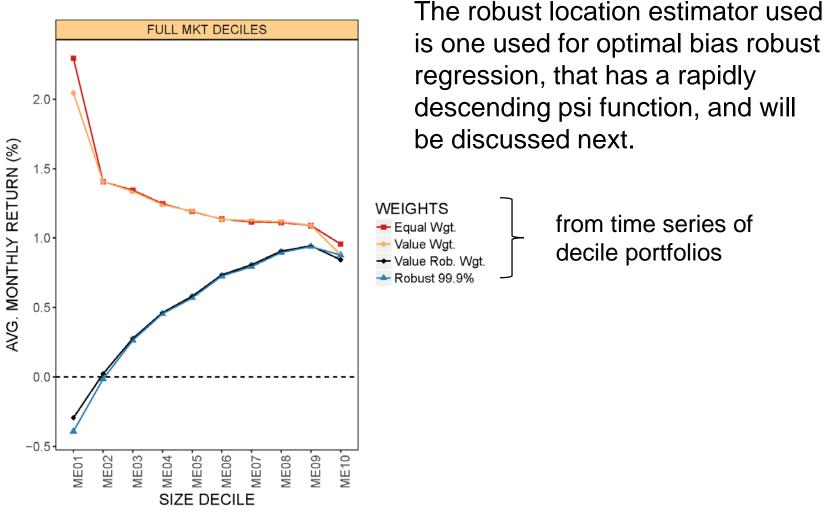
After all, there are very simple α trimmed mean estimators based on ordered returns $r_{(1)} \leq r_{(2)} \leq \cdots \leq r_{(n)}$, for example for $\alpha = .05$ and n = 60:

$$\hat{\mu}_{trim, .05} = \frac{1}{54} \sum_{i=4}^{57} r_{(i)}$$

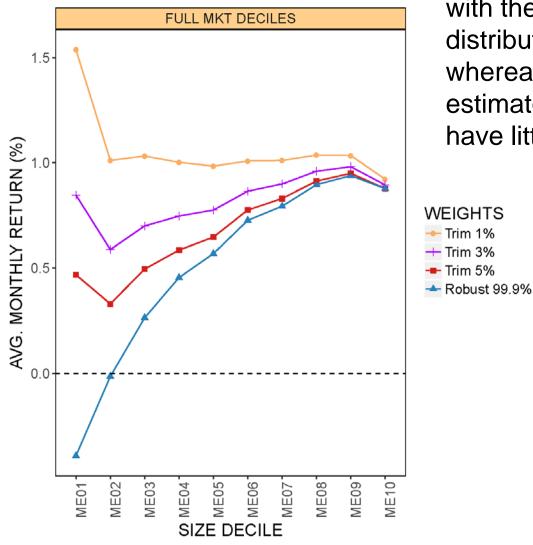
A1: The most important reason is that many of the best robust estimators for regression and multivariate analysis are based on variants of M-estimator methods.

A2: For univariate location estimation M-estimators are better than trimmed (or Winsorized) means, as the next important example shows.

The Common Wisdom that Returns Decrease with Firm Size is Due to Outliers in "Small" Firms



Trimming will Not Suffice



The problem with (symmetric) trimming is that it cannot cope with the positively skewed distributions of small-size firms, whereas robust location estimators with redescending psi have little problem with that.

6/7/2017

Trim 1% Trim 3%

4. Bias Robust High Efficiency Regression

- Two main classes of estimators:
 - <u>MM estimators</u> ImrobdetMM()
 <u>DCML estimators</u> ImrobdetDCML()
- Try to minimize maximum asymptotic bias under Tukey-Huber model but maintain very high normal distribution efficiency
- Evaluate finite-sample MSE via simulation for wide range of sample sizes and numbers of factors

Regression MM-Estimator Optimization

$$y_i = \mathbf{x}'_i \hat{\mathbf{\beta}} + \mathcal{E}_i, \quad i = 1, 2, \cdots, n$$

General Regression Optimization Problem

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} \sum_{i=1}^{n} \rho \left(\frac{y_i - \mathbf{x}'_i \boldsymbol{\beta}_i}{\hat{s}_o} \right)$$

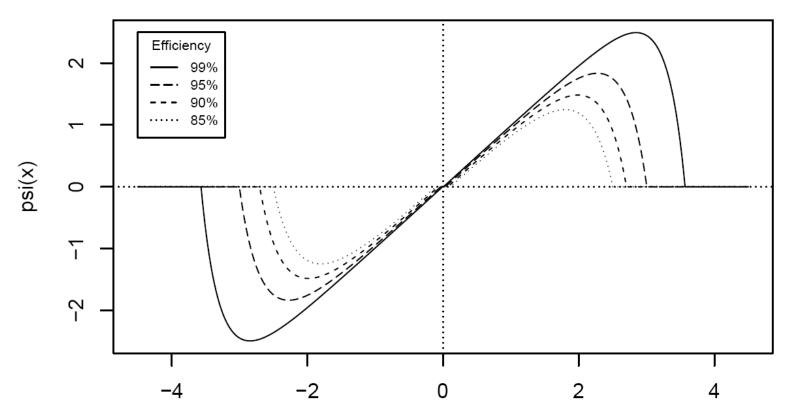
The Estimating Equation

$$\sum_{i=1}^{n} \mathbf{x}_{i} \cdot \boldsymbol{\psi} \left(\frac{y_{i} - \mathbf{x}_{i}' \hat{\boldsymbol{\beta}}}{\hat{s}_{o}} \right) = \mathbf{0}$$

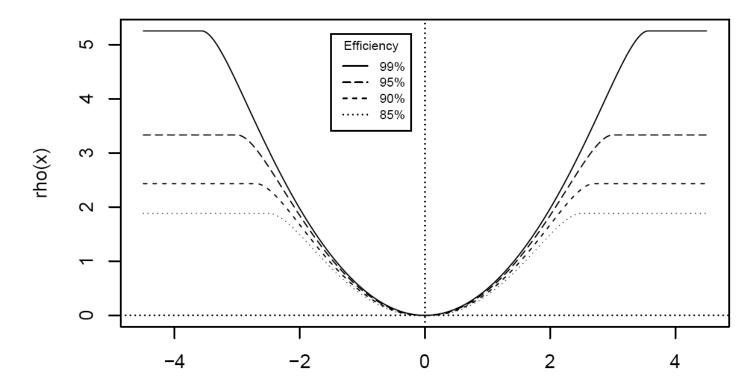
Efficient Min-Max Bias Robust Regression

Yohai and Zamar (1997) and Svarc, Yohai & Zamar (2002) Solution was found in terms of the ψ function (not the rho!)

$$\psi_c(u) = \operatorname{sgn}(u) \left(-\frac{\varphi'(|u|) + c}{\varphi(|u|)} \right)^+$$



The analytic form of the optimal rho function, shown below was not known until this year, and is given in the working paper by Konis, Martin, Yohai and Zamar (2018)



Optimal Rho Functions

The robust and robustbase packages usd a polynomial approximation for ρ and integrated it to get Ψ .

Robust Regression with ImrobdetMM()

- "MM" use a highly robust initial estimator (consisting of a (fast?) first-step initial estimator, followed by secondstep S-estimator with lower efficiency but small maximum bias), and then use a fast IRWLS to find the nearest local minimum to the M-estimator equation.
- "det": Special fast deterministic first-step estimator due to Pena and Yohai (1999). Much better than previous resampling method. See MMYS Section 5.7.4
- Very important: A 99% normal distribution efficiency optimal optimal bias robust regression has very small maximum bias over Tukey-Huber model distributions.

M-Estimator for Scale and S-Estimators

M-scale estimator

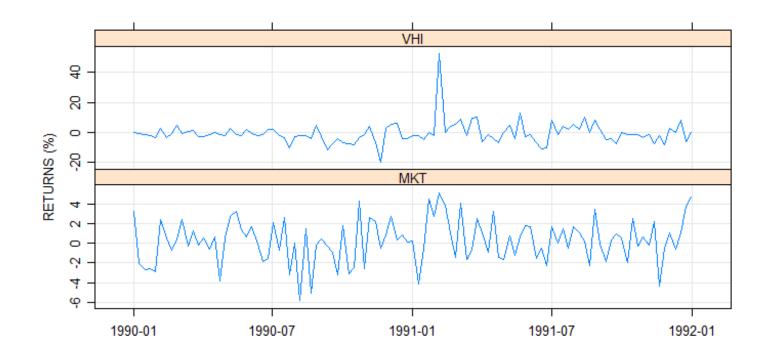
$$\frac{1}{n} \sum_{i=1}^{n} \rho\left(\frac{r_i}{\sigma}\right) = b$$

Regression S-estimators:

$$\frac{1}{n} \sum_{i=1}^{n} \rho\left(\frac{r_i - \mathbf{x}_i \boldsymbol{\beta}}{\sigma}\right) = .5 \quad \rightarrow \quad \hat{\sigma}(\boldsymbol{\beta})$$

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \hat{\boldsymbol{\sigma}}(\boldsymbol{\beta})$$

Simple CAPM Example



> library(mpo)
> (names(retVHI))
[1] "VHI" "MKT" "RF"
> ret12 = retVHI[,1:2]
> tsPlot(ret12,cex = .8)

LS Fit versus Robust Fit with ImrobdetMM()

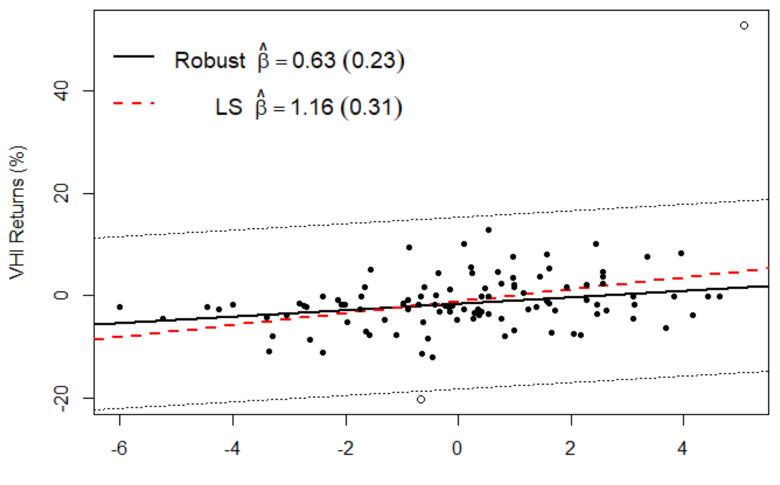
```
> library(RobStatTM)
```

```
> x=(retVHI[,2]-retVHI [,3])*100
```

```
> y=(retVHI[,1]-retVHI [,3])*100
```

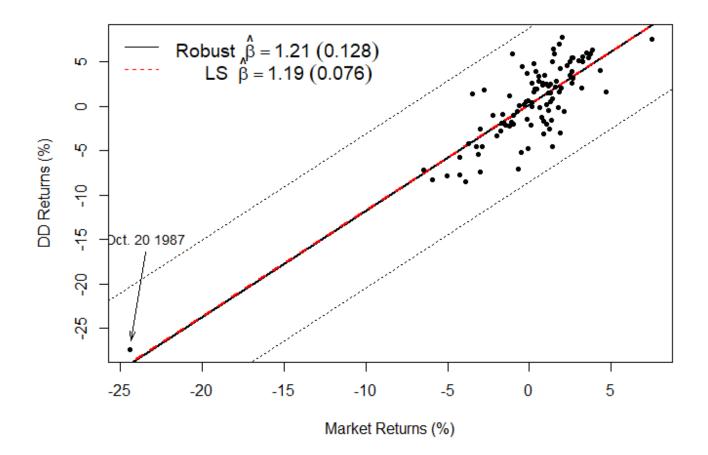
```
> fit.ls = lm(y \sim x)
```

<pre>> coef(fit.ls)</pre>	
(Intercept)	x
-1.098286	1.157390
<pre>> coef(fit.rob)</pre>	
(Intercept)	x
-1.4548205	0.6282898



Market Returns %

An Important Example



N.B. mrobdetMM() does not reject "good" outliers that are consistent with the fit to the bulk of the returns

Robust Regression with ImrobdetDCML()

Distance constrained maximum-likelihood (DCML)

 $\hat{\beta}_0$: a highly robust estimator, typically an MM - estimator

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} L(\boldsymbol{\beta} | r_1, r_2, \cdots, r_n) \text{ subject to } d(\hat{\boldsymbol{\beta}}_0, \boldsymbol{\beta}) \le \delta$$

 For linear regression with normal errors, DCML uses the Kullback-Leibler (KL) distance estimate:

$$\Delta_{\hat{\mathbf{V}}_{\mathbf{X}}} = \hat{d}_{KL,\mathbf{V}_{\mathbf{X}}}(\hat{\boldsymbol{\beta}}_{0},\boldsymbol{\beta}) = \frac{1}{\hat{\sigma}_{0}^{2}} \left(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}_{0}\right)' \hat{\mathbf{V}}_{\mathbf{X}} \left(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}_{0}\right)$$

robust estimate

Thus the DCML optimization is:

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} r_i^2(\boldsymbol{\beta}) \text{ subject to } d_{KL,\hat{\mathbf{V}}_x}(\hat{\boldsymbol{\beta}}_0,\boldsymbol{\beta}) \leq \delta$$

Maronna and Yohai (2014) show that this leads to:

$$\hat{\boldsymbol{\beta}} = t \cdot \hat{\boldsymbol{\beta}}_{LS} + (1-t) \cdot \hat{\boldsymbol{\beta}}_{0}$$
where
$$t = \min\left(1, \frac{\delta}{\Delta_{\hat{V}_{x}}}\right) \qquad \delta = \delta_{p,n} = 0.3 \frac{p}{n}$$

The DCML estimator was shown by Maronna & Yohai (2014) to be asymptotically fully efficient, and best finitesample efficiency and MSE among competing estimators!

VHI data ImrobdetDCML() fit vs. ImrobdetMM()

Modifying the code on slide 33 by making the obvious replacement of some lines with the following gives the results shown:

- > x=(retVHI[,2]-retVHI [,3])*100
- > y=(retVHI[,1]-retVHI [,3])*100
- > ctrl=lmrobdet.control(efficiency=0.99,family="optimal")
- > fit.DCML = lmrobdetDCML(y~x,control = ctrl)
- > fit.MM = lmrobdetMM(y~x,control = ctrl)

```
> round(summary(fit.DCML)[9]$coefficients[2,1:2],3)
Estimate Std. Error
```

0.769 0.211

> round(summary(fit.MM)[9]\$coefficients[2,1:2],3)
Estimate Std. Error

0.628 0.229

Finite-sample MSE efficiency comparisons

p	n	MM-Bi85	G-Y	MM-Op99	DCML-Bi85	DCML-Op99
10	50	0.80	0.85	0.95	0.99	1.00
	100	0.82	0.89	0.97	0.99	1.00
	200	0.84	0.93	0.99	1.00	1.00
20	100	0.79	0.86	0.96	0.99	1.00
	200	0.82	0.92	0.97	0.99	1.00
	400	0.84	0.95	0.99	1.00	1.00
50	250	0.78	0.88	0.95	1.00	1.00
	500	0.82	0.94	0.98	1.00	1.00
	1000	0.84	0.97	0.99	1.00	1.00

Finite-sample maximum MSE comparisons

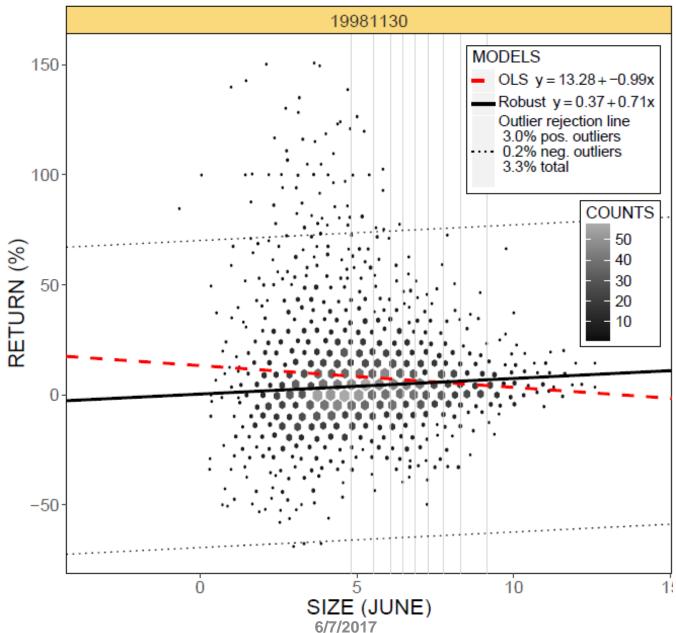
p	n	MM-Bi85	G-Y	MM-Op99	DCML-Bi85	DCML-Op99
10	50	1.10	1.03	0.89	0.92	0.86
	100	0.55	0.48	0.46	0.45	0.44
	200	0.44	0.37	0.37	0.36	0.36
20	100	1.28	1.16	0.98	1.02	0.94
	200	0.58	0.49	0.47	0.47	0.45
	400	0.46	0.38	0.39	0.39	0.38
50	250	1.38	1.18	1.03	1.04	0.96
	500	0.62	0.51	0.49	0.49	0.47
	1000	0.52	0.42	0.41	0.43	0.40

Improving Empirical Asset Pricing Research*

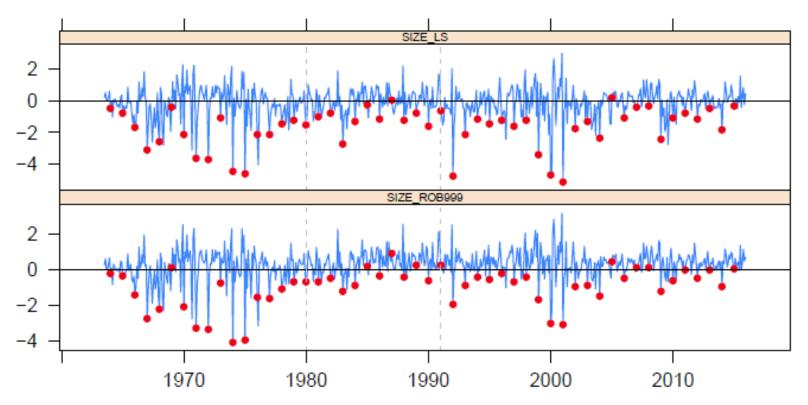
Green and Martin (2017). "Fama-French Redux with Robust Regression", SSRN Abstract ID 2963855

- <u>Bias optimal robust regression with 99.9% normal distribution</u> <u>efficiency (using polynomial approximation for rho and psi)</u>
- <u>Reversed several conclusions of Fama-French 1992</u> (FF92), including the following:
 - 1. Equity returns are positively related to firm size
 - 2. Beta relationship is significant and positive

*Robust regression is also useful for fundamental factor models



Monthly Slopes of Returns Regressed on Size



red dots = Januaries, a well-known January effect

N.B. Presence of outliers and serial correlation, thus use a robust location estimator with HAC: Croux et al. (2003), see slide 18.

Returns vs Size

Factor	Method	1963-1990	Size 1963–2015	1980-2015	
Size	LS (FF92)	-0.15 (-2.58)			
	LS (GM) LTS 5% (CCW04)	$\begin{array}{c c} -0.13 & (-2.33) \\ \hline 0.22 & (5.79) \end{array}$	-0.14 (-3.45)	-0.10 (-2.25)	
	LTS 1% (KR97)	0.14 (2.63)			
	Robust (GM)	0.21 (4.01)	0.28 (8.44)	0.39 (11.48)	

KR97 = Knez & Ready (1997) CCW04 = Chou, Chou & Wang (2004) LTS = least trimmed squares

Stepwise Variable Selection with RFPE

- Backward stepwise method
- Fit full model and get robust scale estimate and weights
- Use weights from full model to fit weighted least squares for each sub-model
- Use resulting sub-model beta's as initial estimate, along with robust scale from full model, to get M-estimate for sub-model
- Compute RFPE at each step, and eliminate a variable only if RFPE goes down
- The RobStatTM function is lmrobdetMM.RFPE().

5. Robust Covariance Matrix Estimators

- Two main classes of estimators
 - <u>MM estimators</u> (recommended for p < 10)
 - <u>Rocke S estimators</u> (recommended for $p \ge 10^{\circ}$)

Computed with MultiRobu(x,type = "auto")

Also: type = "MM" of type = "Rocke"

N.B. The well-known popular minimum covariance determinant (MCD) estimator is not as good in terms of finite-sample MSE efficiency

M-Estimators

$$d_i^2 = \left(\mathbf{x}_i - \hat{\boldsymbol{\mu}}\right)' \hat{\boldsymbol{\Sigma}}^{-1} \left(\mathbf{x}_i - \hat{\boldsymbol{\mu}}\right)$$

$$\sum_{i=1}^{n} W_1(d_i)(\mathbf{x}_i - \widehat{\mu}) = \mathbf{0}$$

$$\frac{1}{n}\sum_{i=1}^{n} W_2(d_i)(\mathbf{x}_i - \widehat{\mu})(\mathbf{x}_i - \widehat{\mu})' = \widehat{\boldsymbol{\Sigma}}$$

MM-Estimators: M-estimator with special initial estimator

S-Estimators

Based on use of a robust scale estimator.

$$\sum_{i=1}^{n} W\left(\frac{d_i}{\widehat{\sigma}}\right) \left(\mathbf{x}_i - \widehat{\mu}\right) = \mathbf{0},\tag{6.31}$$

$$\frac{1}{n}\sum_{i=1}^{n} W\left(\frac{d_i}{\widehat{\sigma}}\right) (\mathbf{x}_i - \widehat{\mu}) (\mathbf{x}_i - \widehat{\mu})' = c\widehat{\boldsymbol{\Sigma}},\tag{6.32}$$

where

$$W = \rho' \text{ and } \widehat{\sigma} = \widehat{\sigma}(d_1, ..., d_n), \tag{6.33}$$

and c is a scalar such that $|\widehat{\Sigma}| = 1$. Note however that if ρ is bounded (as is the usual case), dW(d) cannot be monotone (Problem 6.5); actually for the estimators usually employed W(d) vanishes for large d. Hence the estimator is not a monotone M-estimator, and therefore the estimating equations yield only *local* minima of $\widehat{\sigma}$.

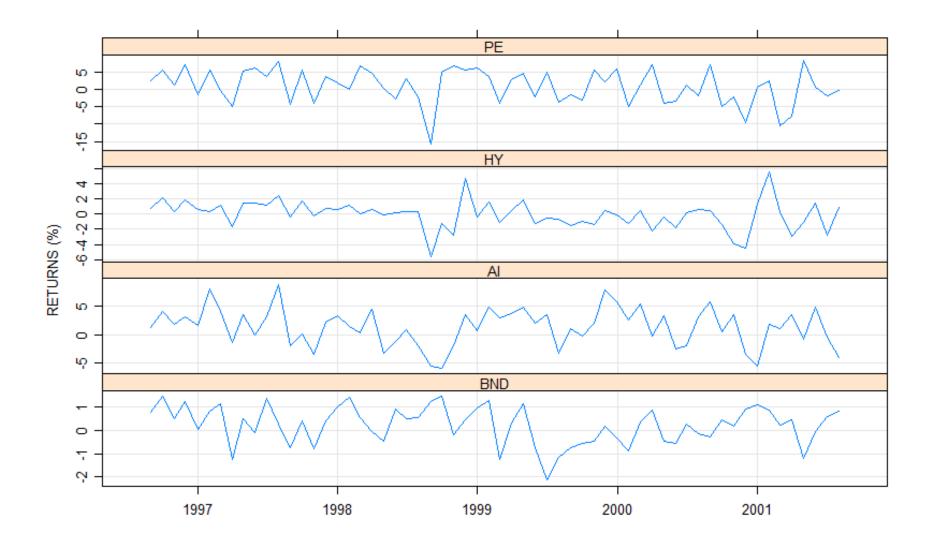
Robust Portfolio Correlations Estimators

- Outliers distort pairwise returns correlations more frequently than one might think
- Need a routine way to compute and compare classical and robust correlation estimates – use MultiRobu() for this purpose
- Get robust correlations from robust covariance matrix estimate in the usual way for classical covariances*
- * Can also get pairwise robust covariances and correlations directly (discuss later)

Hedge Funds Robust Correlations

Also demonstrates use of fit.models()

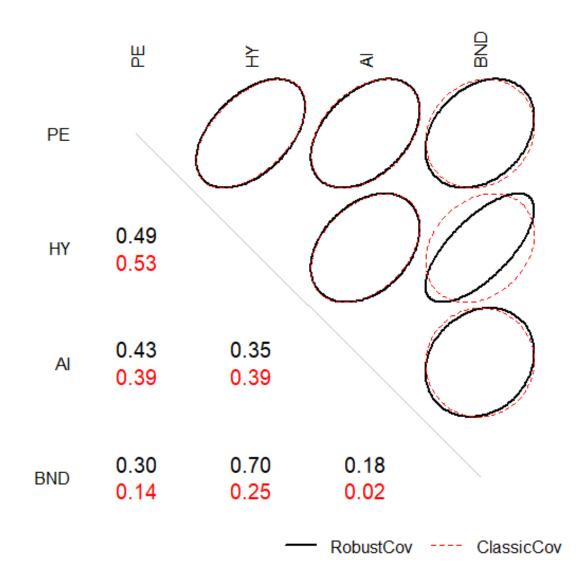
```
library(xts)
library(robust)
library(mpo)
library(RobStatTM)
library(fit.models)
fmclass.add.class("covfm", "MultiRobu")
hfunds4 <- read.csv("hfunds4.ts.csv",header = TRUE)</pre>
hfunds4 <- xts(hfunds4[,-1],
                   order.by=as.Date(hfunds4[,1]))
# hfunds4 has 5 funds, and one is deleted below
# Select time interval and four of the five funds
hfunds4 <- hfunds4[-(1:81),2:5]
names(hfunds4) <- c("PE","HY","AI","BND")</pre>
tsPlot(hfunds4, cex = .8)
```



Hedge Funds Robust Correlations

```
data = data.frame(coredata(hfunds4))
dataMat = as.matrix(data)
cls <- covClassic(data)
rob <- MultiRobu(dataMat)
rob</pre>
```

```
# Make rob look like a covRob object
rob$cov <- rob$V
rob$center <- rob$mu
rob$corr <- FALSE
class(rob) <- "MultiRobu"</pre>
```



Reliable Detection of Portfolio Outliers

Based on Robust Distances

So-called Mahalanobis distance

$$\hat{d}_t^2 = (\mathbf{r}_t - \hat{\boldsymbol{\mu}})' \, \hat{\boldsymbol{\Sigma}}^{-1} (\mathbf{r}_t - \hat{\boldsymbol{\mu}})$$
$$= (\mathbf{r}_t - \hat{\boldsymbol{\mu}})' \, \hat{\boldsymbol{\Sigma}}^{-1/2} \hat{\boldsymbol{\Sigma}}^{-1/2} (\mathbf{r}_t - \hat{\boldsymbol{\mu}})$$
$$= \hat{z}_t' \hat{z}_t$$

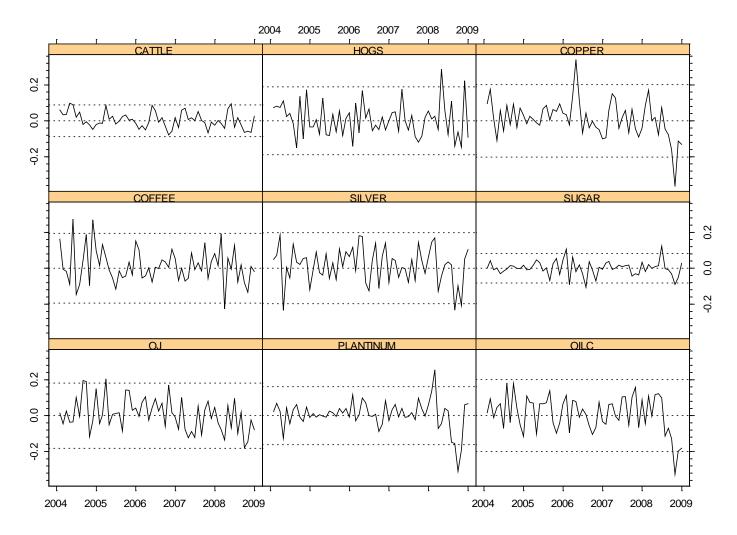
Classical version uses classical sample mean and sample covariance estimates. Replace them with robust covariances computed with MultiRobu()

Portfolio Unusual Movement Alerts

Useful for portfolios with not too many assets, "general" fund-of-funds (FoF), including manager-of-managers portfolios.

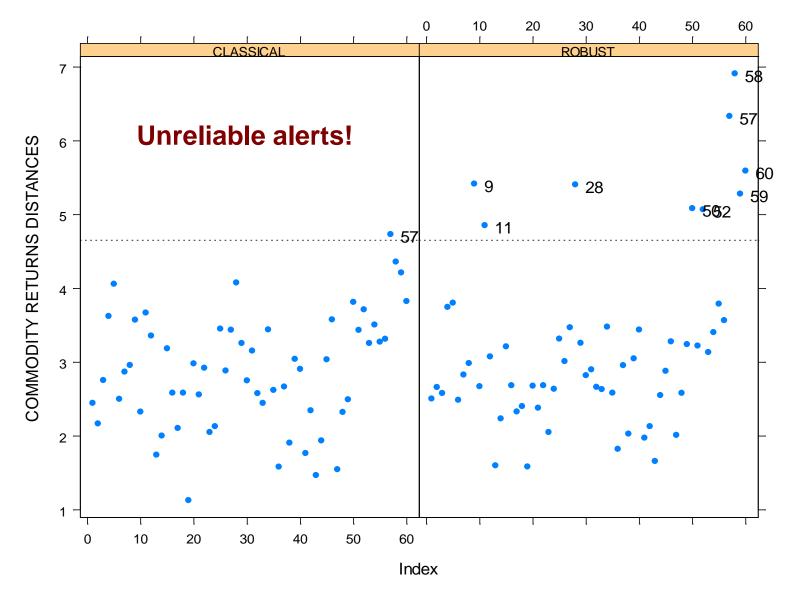
- Retrospective guidance in allocation decisions
- Dynamic unusual movement detection
- Entire fund and style sub-groups

Commodities Example



(In Appendix A of Martin, Clark and Green, 2011)

Classical Alerts Robust Alerts



6. Other Important New Robust Methods

- Fast and reliable starting points for initial estimators:
- Robust regularized regression estimators
- Principal components analysis
- Covariance matrix estimators wit missing data
- Covariance matrices with independent outliers in variables
- Mixed linear models
- Generalized linear models
- Regularized estimators of inverse covariance matrix

7. Documents to Download

Visit the site **github.com/msalibian/RobStatTM** and look at the bottom of the page to find links to the following:

- 1. The MMYS book Preface.
- 2. Scripts that reproduced the examples in MMYS Chapters 4, 5 and 6.
- 3. MMSY Chapter 11 Descriptions of Data Sets

References

- Maronna, R. A., Martin, R.D., Yohai, V. J., and Salibian-Barrera, M. (2018). Robust Statistics : Theory and Methods, 2nd edition, Wiley.
- Martin, R. D., Clark, A and Green, C. G. (2010). "Robust Portfolio Construction", in *Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques*, J. B. Guerard, Jr., ed., Springer.
- Bailer, H., Maravina, T. and Martin, R. D. (2012). "Robust Betas for Asset Managers", in *The Oxford Handbook of Quantitative Asset Management*, Scherer, B. and Winston, K., editors, Oxford University Press.
- Chapter 6 of Scherer, B. and Martin, R. D. (2004). Modern Portfolio Construction, Springer