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SUMMARY

In this paper, robust adaptive control is presented for a class of perturbed strict-feedback nonlinear systems
with both completely unknown control coefficients and parametric uncertainties. The proposed design
method does not require the a priori knowledge of the signs of the unknown control coefficients. For the first
time, the key technical Lemma is proven when the Nussbaum function is chosen by N (�)=�2 cos(�), based
on which the proposed robust adaptive scheme can guarantee the global uniform ultimate boundedness of
the closed-loop system signals. Simulation results show the validity of the proposed scheme. Copyright
q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With the exciting development of adaptive control for parametric uncertain nonlinear systems [1],
much attention has been paid to robust adaptive control for nonlinear systems in the presence
of unknown disturbances, particularly the class of single-input-single-output (SISO) nonlinear
systems that can be transformed in the following strict-feedback form:

ẋi =gi xi+1+�Ti �i (x̄i )+�i (t, x), i=1, . . . ,n−1

ẋn =gnu+�Tn�n(x)+�n(t, x)
(1)

where x=[x1, . . . , xn]T∈Rn , x̄i =[x1, . . . , xi ]T, i=1, . . . ,n−1, are the state vectors; u∈R is the
control; �i ∈Rni , i=1, . . . ,n, are the unknown constant parameter vectors; ni ’s are positive integers;
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�i (x̄i )∈Rni , i=1, . . . ,n, are known nonlinear functions that are continuous and satisfy �i (0)=0;
unknown constants gi , i=1, . . . ,n−1, are referred to as virtual control coefficients [1]; gn is
referred to as the high-frequency gain; and �i ’s are unknown continuous functions. In system (1),
�Ti �i (x̄i ) denotes the parametric uncertainties and �i (t, x) denotes the non-parametric uncertainties.
The unknown nonlinear functions �i (t, x) could be due to many factors [1, 2] such as measurement
noise, modeling errors, external time-varying disturbances, modeling simplifications or changes
due to time variations.

In particular when gi =1, robust adaptive control has been developed for system (1) in [2–4]
and among others. When gi ’s were unknown, several excellent adaptive control algorithms were
developed in the literature for nonlinear systems. In [1] where gi ’s were assumed to be unknown
constants but with known signs, an adaptive control solution was presented for strict-feedback
nonlinear systems without disturbances �i ’s. In [5, 6] where gi ’s were functions of states with
known signs, adaptive control schemes were proposed for uncertain strict-feedback and pure-
feedback nonlinear systems with the aid of neural network parameterization. When gi ’s were
completely unknown, i.e. with unknown signs, the first solution was given in [7] for a class of first-
order linear systems using Nussbaum functions and adaptive control was given in [8] for first-order
nonlinear systems. With the help of backstepping design method [1] that has eased the growth
conditions on uncertainties, the Nussbaum functions could be used in the controller design for
higher-order nonlinear systems in the parameter-strict-feedback form [9–12], or nonlinear systems
in the output-feedback form [13–15]. In [7–11, 13, 15], all the closed-loop signals were bounded
and the asymptotic regulation or tracking has been achieved.

Compared with the works considering the adaptive control for systems with parametric uncer-
tainties, there were fewer work available in the literature regarding to the robust adaptive control
for systems with non-parametric uncertainties, unknown control coefficients and unknown high-
frequency gain, among which were References [10, 12, 14–17]. In [10, 12, 14], the disturbances
or unknown nonlinear functions were assumed to satisfy certain triangular conditions or bounding
conditions, whereas in [15] it was assumed that the disturbances were generated from an external
system. In [16, 17], the exponentially decaying terms have been introduced in the controller design
to handle the disturbances. The nice properties of Nussbaum functions were difficult to be utilized
directly in the stability analysis due to the presence of the exponential terms. In addition, the
stability proof had to be function-dependent by fully exploiting the specific Nussbaum functions
being chosen.

Motivated by the previous works especially [16, 17], we choose the Nussbaum function as
N (�)=�2 cos(�) in this paper and we find that the proof in [16, 17] cannot be straightforwardly
extended and the specific properties of the function need to be investigated fully in the derivation.
This is the first time ever that the key technical lemma is proven when the Nussbaum function
is chosen by N (�)=�2 cos(�). The problem of robust adaptive control for the kind of uncertain
nonlinear systems can be solvable only after the introduction of the newly introduced technical
lemma, and the proposed scheme can be applied to a wide range of systems and problems in
robust control domain. We conjecture that the proof of the key technical lemma should be carried
out case by case by choosing different Nussbaum functions due to the exponential decaying
term.

The main contributions of this paper are as follows: (i) a new technical lemma is introduced,
which plays a fundamental role in solving the proposed problem, (ii) the controller does not require
a priori knowledge of the signs of the unknown control coefficients, and the unknown bounds
of the disturbance terms are estimated on-line for improving performance, and (iii) the proposed
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design method expands the class of nonlinear systems for which robust adaptive control approaches
have been studied through the introduction of exponential decaying terms in stability analysis.

This paper is organized as follows. The problem formulation and preliminaries are given in
Section 2. The design procedures for the robust adaptive control and its main results are presented
in Section 3. A simulation example of a voice-coil-motor (VCM) actuator in hard disk drives is
given in Section 4 followed by Section 5, which concludes the work. The detailed proof of the
key technical lemma is given in Appendix A.

2. PROBLEM FORMULATION AND PRELIMINARIES

The control objective is to construct a robust adaptive nonlinear control law so that the state x1 of
system (1) is driven to a small neighborhood of the origin while keeping all the closed-loop signals
bounded. The following assumption is made for the unknown disturbances �i (t, x), i=1, . . . ,n.

Assumption 1
There exist unknown positive constants p∗

i , 1�i�n, such that ∀(t, x)∈ R+×Rn , |�i (t, x)|�
p∗
i �i (x1, . . . , xi ), where �i is a known non-negative smooth function.

Remark 1
Although the terms �Ti �(x̄i ) can be absorbed into �i (t, x), i=1, . . . ,n, for a reduced-order
controller, the disadvantage is that the residue error will be large as can be seen from the definitions
of �∗, �i , and ci2 later. In addition, for better control performance, knowledge of the system should
be fully exploited.

A function N (�) is called a Nussbaum-type function if it has the following properties [7]:

lim
s→+∞sup

∫ s

s0
N (�)d� = +∞ (2)

lim
s→+∞ inf

∫ s

s0
N (�)d� = −∞ (3)

In comparison with the definition for Nussbaum functions in [9], the definition given by (2) and
(3) gives a much larger set of functions, though the example functions satisfy both definitions.
Commonly used Nussbaum functions include �2 cos(�), �2 sin(�) and exp(�2)cos((�/2)�) [18]. For
the first time, this paper gives the detailed analysis for the even Nussbaum function, N (�)=
�2 cos(�), �∈ R.

Lemma 1
Let V (·) and �(·) be smooth functions defined on [0, t f ) with V (t)�0, ∀t ∈[0, t f ), and N (�)=
�2 cos(�). If the following inequality holds:

0�V (t)�c0+e−c1t
∫ t

0
[g0N (�)+1]�̇ec1	 d	 ∀t ∈[0, t f ) (4)

where constant c1>0, g0 is a non-zero constant, and c0>0 represents some suitable constant, then
V (t), �(t) and

∫ t
0 g0N (�)�̇d	 are bounded on [0, t f ).
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Proof
See Appendix A. �

Remark 2
Here, we would like to make a conjecture that Lemma 1 is true for all the Nussbaum functions.
Because of the presence of ec1	 in (4), the proof is function-dependent. We hope that interested
reader can prove the lemma for general Nussbaum functions. In addition, we would like to point
out that N (·) is not necessarily to be an even function, which is only made for convenience of the
proof. If N (·) is chosen as an odd function, e.g. N (�)=�2 sin(�), the lemma can be easily proven
by following the same procedure.

Although the proof is not trivial even for finite t f , it is the case that t f →∞ is of interest. This
can be easily extended due to Proposition 1. Consider

ẋ(t)∈F(x(t)), x(0)= x0 (5)

where z �→F(z)⊂ RN is upper semicontinuous on Rn with non-empty convex and compact values.
It is well known that the initial-value problem has a solution and that every solution can be
maximally extended.

Proposition 1 (Ryan [19])
If x : [0, t f )→ RN is a bounded maximal solution of (5), then t f =∞.

3. ROBUST ADAPTIVE CONTROL AND MAIN RESULTS

In this section, the robust adaptive control design procedure for nonlinear system (1) is presented.
The design of both the control law and the adaptive law is based on a change of coordinates

z1 = x1

zi = xi −
i−1(x1, . . . , xi−1, �̂a,1, . . . , �̂a,i−1, b̂1, . . . , b̂i−1,�i−1), i=1, . . . ,n−1

zn = xn−
n−1(x1, . . . , xn−1, �̂a,1, . . . , �̂a,n−1, b̂1, . . . , b̂n−1,�n−1)

where the functions 
i , i=1, . . . ,n−1, are referred to as intermediate control functions, which
will be designed using backstepping technique; b̂i is the parameter estimate for b∗

i , which is the

grouped unknown bound for p∗
i ; �̂a,i represents the estimate of unknown parameter �∗

a,i , which is
an augmented parameter and consists of g j , j =1, . . . , i−1, and � j , j =1, . . . , i , as will be clarified
later; and �i is the argument of the Nussbaum function. At each intermediate step i , the intermediate
control function 
i is designed using an appropriate Lyapunov function Vi and the updating laws
˙̂bi , ˙̂�a,i and �̇i are given. At the nth step, the actual control u appears and the design is completed.
Step 1: To start, let us consider the subsystem of (1) when i=1:

ẋ1=g1x2+�T1�1(x1)+�1(t, x) (6)

Based on the change of coordinates and Assumption 1, the time derivative of 1
2 z

2
1 along (6) is

z1 ż1= z1[g1x2+�T1�1(x1)+�1(t, x)]�z1(g1x2+�T1�1)+b∗
1|z1|�̄1 (7)
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where b∗
1 := p∗

1 , �̄1 :=�1. For notation consistence, let �∗
a,1 :=�1 and �a,1 :=�1. Consider the

Lyapunov function candidate

V1(t)= 1
2 z

2
1+ 1

2 �̃
T
a,1�

−1
1 �̃a,1+ 1

2�
−1
1 b̃21

where �1=�T
1>0, �1>0, �̃a,1 := �̂a,1−�∗

a,1 and b̃1 := b̂1−b∗
1 denote the estimation error, with �̂a,1

and b̂1 denoting the parameter estimates of �∗
a,1 and b∗

1, respectively. The time derivative of V1(t)
along (7) is

V̇1�z1(g1x2+�∗T
a,1�a,1)+b∗

1|x1|�̄1+ �̃
T
a,1�

−1
1

˙̂�a,1+�−1
1 b̃1

˙̂b1 (8)

Since x2= z2+
1, consider the following intermediate control and parameter adaptation laws:


1 = N (�1)�1 (9)

�1 = k1z1+ �̂
T
a,1�a,1+ b̂1�̄1 tanh

(
z1�̄1

1

)
(10)

�̇1 = z1�1 (11)

˙̂�a,1 = �1[z1�a,1−��1(�̂a,1−�0a,1)] (12)

˙̂b1 = �1

[
z1�̄1 tanh

(
z1�̄1

1

)
−�b1(b̂1−b01)

]
(13)

where constant k1 :=k10+ 1
4>

1
4 , 1 is a small positive constant and ��1 , �b1 , �0a,1, and b01 are

positive design constants. Substituting (9)–(11) into (8) yields

V̇1�g1z1z2+g1N (�1)�̇1+z1�
∗T
a,1�a,1+b∗

1|x1|�̄1+ �̃
T
a,1�

−1
1

˙̂�a,1+�−1
1 b̃1

˙̂b1 (14)

Adding and subtracting �̇1 on the right-hand side of (14), and using (12) and (13), we have

V̇1 � −k1z
2
1+g1z1z2+g1N (�1)�̇1+ �̇1+b∗

1|x1|�̄1−b∗
1x1�̄1 tanh

(
x1�̄1

1

)

−��1(�̂a,1−�∗
a,1)

T(�̂a,1−�0a,1)−�b1(b̂1−b∗
1)(b̂1−b01) (15)

By completing the squares, i.e.

−��1(�̂a,1−�∗
a,1)

T(�̂a,1−�0a,1) � − 1
2��1‖�̂a,1−�∗

a,1‖2+ 1
2��1‖�∗

a,1−�0a,1‖2 (16)

−�b1(b̂1−b∗
1)(b̂1−b0i ) � − 1

2�b1(b̂1−b∗
1)

2+ 1
2�b1(b

∗
1−b01)

2 (17)

and using the following nice property [2]:
0�|x |−x tanh

( x


)
�0.2785 for >0, x ∈ R (18)
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Equation (15) becomes

V̇1 � −k10z
2
1− 1

2��1‖�̃a,1‖2− 1
2�b1 b̃

2
1+0.2785b∗

11+ 1
2��1‖�∗

a,1−�0a,1‖2+ 1
2�b1(b

∗
1−b01)

2

+g1N (�1)�̇1+ �̇1+g21z
2
2

which further leads to

V̇1�−c11V1+c12+g1N (�1)�̇1+ �̇1+g21z
2
2 (19)

where constants c11,c12>0 are defined as

c11 :=min

{
2k10,

��1

�max(�
−1
1 )

,�b1�1

}
(20)

c12 := 0.2785b∗
11+ 1

2��1‖�∗
a,1−�0a,1‖2+ 1

2�b1(b
∗
1−b01)

2 (21)

Let constant �1 :=c12/c11>0. Multiplying (19) by ec11t leads to

d

dt
(V1e

c11t )�c12e
c11t +g1N (�1)�̇1e

c11t + �̇1e
c11t +g21z

2
2e

c11t (22)

Integrating (22) over [0, t], we have

0�V1(t)��1+V1(0)+e−c11t
∫ t

0
[g1N (�1)+1]�̇1ec11	 d	+

∫ t

0
g21z

2
2e

−c11(t−	) d	 (23)

Remark 3
If there was no uncertain term �1 as in [9, 11], where the uncertainty is from unknown parameters
only, adaptive control can be used to solve the problem elegantly and the asymptotic stability can
be guaranteed. However, it is not the case here due to the presence of the uncertainty terms �1 in
system (1). For illustration, integrating (19) over [0, t] leads to

V1(t)�V1(0)+c12t+
∫ t

0
(g1N (�1)+1)�̇1 d	+

∫ t

0
g21z

2
2 d	

from which no conclusion on the boundedness of V1(t) or �1(t) can be drawn by applying Lemma 1
in [9] due to the extra term c12t . The problem can be successfully solved by multiplying the
exponential term ec11t to both sides of (19) as in this paper. From (23), the stability results can be
drawn by invoking Lemma 1 if

∫ t
0 g

2
1z

2
2e

−c11(t−	) d	 is upper bounded.

In Equation (23), if there is no extra term
∫ t
0 g

2
1z

2
2e

−c11(t−	) d	 within the inequality, we can

conclude that V1(t),�1, z1, and �̂a,1, b̂1 are all bounded on [0, t f ) according to Lemma 1. Thus, from

Proposition 1, t f =∞, and we claim that z1, �̂a,1, b̂1 are globally uniformly ultimately bounded.
Owing to the presence of term

∫ t
0 g

2
1z

2
2e

−c11(t−	) d	 in (23), Lemma 1 cannot be applied directly.
By noting that

e−c11t
∫ t

0
g21z

2
2e

c11	 d	�e−c11t g21 sup
	∈[0,t]

z22

∫ t

0
ec11	 d	�

g21 sup	∈[0,t] z22
c11
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we know that if z2 can be regulated as bounded, the boundedness of
∫ t
0 g

2
1z

2
2e

−c11(t−	) d	 is
obvious. Then, according to Lemma 1, the boundedness of z1(t) can be guaranteed. The effect of∫ t
0 g

2
1z

2
2e

−c11(t−	) d	 will be dealt with in the following steps.
Step i (2�i�n−1): The similar as in Step 1 procedure is employed recursively for steps from

2 to n−1.
The time derivative of 1

2 z
2
i is

zi żi = zi

[
gi xi+1+�Ti �i +�i −

i−1∑
j=1

�
i−1

�x j
(g j x j+1+�Tj� j +� j )

−
i−1∑
j=1

�
i−1

��̂a, j

˙̂�a, j −
i−1∑
j=1

�
i−1

�b̂ j

˙̂b j − �
i−1

��i−1
�̇i−1

]
(24)

Based on Assumption 1, we have

zi

(
�i −

i−1∑
j=1

�
i−1

�x j
� j

)
�|zi |

(
p∗
i �i +

i−1∑
j=1

∣∣∣∣�
i−1

�x j

∣∣∣∣ p∗
j� j

)
�b∗

i |zi |�̄i (x̄i )

where b∗
i :=max{p∗

1, . . . , p
∗
i }>0 is an unknown constant, and �̄i (x̄i )��i +

∑i−1
j=1 |�
i−1/�x j |� j>0

is a known smooth function. A simple example is �̄i =�i +
∑i−1

j=1(
1
4 (�
i−1/�x j )2+1)� j .

Therefore, (24) becomes

zi żi�zi (gi xi+1+�∗T
a,i�a,i )+b∗

i |zi |�̄i (25)

where

�∗
a,i = [1,g1, . . . ,gi−1,�

T
i ,�T1 , . . . ,�Ti−1]T

�a,i =
[
�i ,−

�
i−1

�x1
x2, . . . ,−�
i−1

�xi−1
xi ,�

T
i ,−�
i−1

�x1
�T
1 , . . . ,−�
i−1

�xi−1
�T
i−1

]T

�i = −
i−1∑
j=1

�
i−1

��̂a, j

˙̂�a, j −
i−1∑
j=1

�
i−1

�b̂ j

˙̂b j − �
i−1

��i−1
�̇i−1

Consider the Lyapunov function candidate

Vi = 1
2 z

2
i + 1

2 �̃
T
a,i�

−1
i �̃a,i + 1

2�
−1
i b̃2i

where �i =�T
i >0, �i>0, ˜(·) := ˆ(·)−(·) denotes the estimation error.

Consider the following adaptive control laws:


i = N (�i )�i (26)

�i = ki zi + �̂
T
a,i�a,i + b̂i �̄i tanh

(
zi �̄i

i

)
(27)

�̇i = zi�i (28)
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˙̂�a,i = �i [zi�a,i −��i (�̂a,i −�0a,i )] (29)

˙̂bi = �i

[
zi �̄i tanh

(
zi �̄i

i

)
−�bi (b̂i −b0i )

]
(30)

where constant ki :=ki0+ 1
4>

1
4 , i is a small positive constant and ��i , �bi , �

0
a,i , and b

0
i are positive

design constants.
Using (25), the time derivative of Vi (t) along (26)–(30) is

V̇i � −ki0z
2
i − 1

2��i ‖�̃a,i‖2− 1
2�bi b̃

2
i +0.2785b∗

i i + 1
2��i ‖�∗

a,i −�0a,i‖2+ 1
2�bi (b

∗
i −b0i )

2

+gi N (�i )�̇i + �̇i +g2i z
2
i+1

� −ci1Vi +ci2+gi N (�i )�̇i + �̇i +g2i z
2
i+1 (31)

where constants ci1,ci2>0 are defined as

ci1 :=min

{
2ki0,

��i

�max(�
−1
i )

,�bi �i

}
(32)

ci2 := 0.2785b∗
i i + 1

2��i ‖�∗
a,i −�0a,i‖2+ 1

2�bi (b
∗
i −b0i )

2 (33)

By defining �i :=ci2/ci1>0, we can similarly obtain

0�Vi (t)��i +Vi (0)+e−ci1t
∫ t

0
[gi N (�i )+1]�̇ieci1	 d	+

∫ t

0
g2i z

2
i+1e

−ci1(t−	) d	

Remark 4
Similarly, if zi+1 can be regulated as bounded, and

∫ t
0 g

2
i z

2
i+1e

−ci1(t−	) d	 is therefore bounded at
the following steps, then according to Lemma 1, the boundedness of zi (t) can be guaranteed.

Step n: In the final step, the actual control u appears. Similarly, the time derivative of 1
2 z

2
n is

zn żn � zn

[
gnu+�Tn�n−

n−1∑
j=1

�
n−1

x j
(g j x j+1+�Tj� j )−

n−1∑
j=1

�
n−1

��̂a, j

˙̂�a, j −
n−1∑
j=1

�
n−1

�b̂ j

˙̂b j

]

+b∗
n|zn|�̄n

= zn

[
gnu+�Tn�n−

n−1∑
j=1

�
n−1

�x j
(g j x j+1+�Tj� j )+�n

]
+b∗

n|zn|�̄n

= zn[gnu+�∗T
a,n�a,n]+b∗

n|zn|�̄n (34)
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where

b∗
n =max{p∗

1, . . . , p
∗
n}

�̄n(x̄n) = �n+
n−1∑
j=1

∣∣∣∣�
n−1

�x j

∣∣∣∣� j

�n = −
n−1∑
j=1

�
n−1

��̂a, j

˙̂�a, j −
n−1∑
j=1

�
n−1

�b̂ j

˙̂b j

�∗
a,n = [1,g1, . . . ,gn−1,�

T
n ,�T1 , . . . ,�Tn−1]T

�a,n =
[
�n,−

�
n−1

�x1
x2, . . . ,−�
n−1

�xn−1
xn,�

T
n ,−�
n−1

�x1
�T
1 , . . . ,−�
n−1

�xn−1
�T
n−1

]T

As this is the last step, the final adaptive control laws are given explicitly as follows:

u = N (�n)�n (35)

�n = knzn+ �̂
T
a,n�a,n+ b̂n�̄n tanh

(
zn�̄n

n

)
(36)

�̇n = zn�n (37)

˙̂�a,n = �n[zn�a,n−��n (�̂a,n−�0a,n)] (38)

˙̂bn = �n

[
zn�̄n tanh

(
zn�̄n

n

)
−�bn (b̂n−b0n)

]
(39)

where constant kn>0 (different from ki>
1
4 in the intermediate steps) and n is a small positive

constant, �n =�T
n>0, �n , ��n , �bn , �0a,n and b0n are positive design constants.

Consider the Lyapunov function candidate

Vn(t)= 1
2 z

2
n+ 1

2 �̃
T
a,n�

−1
n �̃a,n+ 1

2�
−1
n b̃2n

The time derivative of Vn satisfies

V̇n(t) � −knz
2
n− 1

2��n‖�̃a,n‖2− 1
2�bn b̃

2
n+0.2785b∗

nn+ 1
2��a,n |�∗

a,n−�0a,n|2

+ 1
2�bn (b

∗
n−b0n)

2+gnN (�n)�̇n+ �̇n (40)

which yields

0�Vn(t)��n+Vn(0)+e−cn1t
∫ t

0
[gnN (�n)+1]�̇necn1	 d	
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where constant �n :=cn2/cn1>0, constants cn1,cn2>0 are defined as

cn1 :=min

{
2kn,

��n

�max(�−1
n )

,�bn�n

}
(41)

cn2 := 0.2785b∗
nn+ 1

2��n‖�∗
a,n−�0a,n‖2+ 1

2�bn (b
∗
n−b0n)

2 (42)

Using Lemma 1, we can conclude that �n(t) and Vn(t), and hence zn(t), �̂a,n(t), b̂a,n(t),
are bounded on [0, t f ). From the boundedness of zn(t), the boundedness of the extra term∫ t
0 g

2
n−1z

2
ne

−cn−1,1(t−	) d	 at Step (n−1) is readily obtained. Applying Lemma 1 backward (n−1)

times, it can be seen from the above design procedures that Vi (t), zi (t), �̂a,i (t), b̂a,i (t), and hence
xi (t), are bounded on [0, t f ).

The stability and performance of the closed-loop system under the above adaptive scheme is
summarized in Theorem 1.

Theorem 1
Consider the controller (35)–(37) with the parameter updating laws (38) and (39) for the uncer-
tain strict-feedback nonlinear system (1) with completely unknown control coefficients gi under
Assumption 1. The resulting closed-loop system satisfies the following properties under bounded
initial conditions:

(i) all the signals are globally uniformly ultimately bounded;

(ii) given any �>�∗ =
√∑n

i=1 2(�i +ci ), there exists T such that, for all t�T , ‖z(t)‖��,

where z(t) :=[z1, . . . , zn]T∈Rn , �i :=ci2/ci1, i=1, . . . ,n, and ci is the upper bound
of
∫ t
0 [gi N (�i )�̇i + �̇i +g2i z

2
i+1]e−ci1(t−	) d	, i=1, . . . ,n−1, and cn is the upper bound

of
∫ t
0 [gnN (�n)�̇n+ �̇n]e−cn1(t−	) d	, and the compact set �z ={z∈Rn|‖z(t)‖��} can be

adjusted by appropriately choosing the design parameters;
(iii) the state x1(t) satisfies

|x1(t)|�
√
2V1(0)e−c11t +2(�1+c1) ∀t�0 (43)

Proof
(i) Following the design procedures from Step 1 to Step n, it can be obtained that Vi (t), zi (t), �i (t),
�̂a,i (t), b̂a,i (t), and xi (t) are bounded on [0, t f ) by invoking Lemma 1. According to Proposition 1,
if the solution of the closed-loop system is bounded, then t f =∞. Therefore, all the signals in the
closed-loop system are globally uniformly ultimately bounded.

(ii) From (40) at Step n, we have

V̇n(t)�−cn1Vn(t)+cn2+gnN (�n)�̇n+ �̇n (44)

which yields

0�Vn(t)�[Vn(0)−�n]e−cn1(t)+�n+
∫ t

0
[gnN (�n)�̇n+ �̇n]e−cn1(t−	) d	 (45)

with constants cn1,cn2>0 defined in (41) and (42), and constant �n�cn2/cn1>0.
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Invoking Lemma 1, �n(t), zn(t) Vn(t),
∫ t
0 gnN (�n)�̇n d	 are bounded. Therefore,

∫ t
0 [gnN (�n)�̇n+

�̇n]e−cn1(t−	) d	 is bounded. Then we can define cn�sup	∈[0,t] |
∫ t
0 [gnN (�n)�̇n+ �̇n]e−cn1(t−	) d	|>0

such that (45) becomes

0�Vn(t)�[Vn(0)−�n]e−cn1t +�n+cn

Since 1
2 z

2
n(t)�Vn(t), we have

z2n(t)�2[Vn(0)−�n]e−cn1t +2(�n+cn) (46)

As zn(t) is proved to be bounded, invoking Lemma 1 at Step (n−1), the boundedness of
�n−1(t), zn−1(t) Vn−1(t),

∫ t
0 gn−1N (�n−1)�̇n−1 d	 can be guaranteed. Therefore, the integral∫ t

0 [gn−1N (�n−1)�̇n−1+ �̇n−1+g2n−1z
2
n]e−c(n−1)1(t−	) d	 is bounded as well with its upper bounded

defined as cn−1>0. Applying Lemma 1 backward until Step 1, similarly it can be obtained that

z2i (t)�2[Vi (0)−�i ]e−ci1t +2(�i +ci ), i=n−1, . . . ,1 (47)

Combining (46) and (47) leads to

‖z(t)‖�
√

n∑
i=1

{2[Vi (0)−�i ]e−ci1t +2(�i +ci )} (48)

Let �∗ =
√∑n

i=1 2(�i +ci ). From (48), we can conclude that given any �>�∗, there exists T , such
that for any t>T , ‖z(t)‖�� holds. Specifically, for �>�∗ defined by

�=
√

n∑
i=1

{2[Vi (0)−�i ]e−ci1T +2(�i +ci )} (49)

the corresponding T is given by

T =T (�,V (0))=− ln

(
�2−∑n

i=1 2(�i +ci )∑n
i=1 2[Vi (0)−�i ]

)/
n∑

i=1
ci1 (50)

(iii) As x1(t)= z1(t), (43) can be readily obtained from (47) for i=1.
In addition, by appropriately choosing the design parameters, we can adjust the regulation

accuracy of the state x1(t) while keeping the boundedness of all the signals in the close-loop
system. However, trade-off should be made between the transient performance such as overshoot
or settling time and the steady-state regulation/tracking accuracy. �

Remark 5
Decreasing i , ��i and �bi will help to reduce the size of �z . However, if i , ��i and �bi are
too small, it may not be enough to prevent the parameter estimates from drifting to very large
values in the presence of disturbance, where the large �̂i might result in a variation of a high-gain
control. Therefore, in practical applications, the design parameters should be adjusted carefully
for achieving suitable transient performance and control action.

Under additional assumptions, regulation of the system state x=[x1, . . . , xn]T to the origin can
be achieved as shown in the following corollary.
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Corollary 1
Under the conditions of Theorem 1, if functions �i in system (1) and �i in Assumption 1 vanish
at the origin, then we can find an adaptive controller of the form of (35)–(39) with ��i =�bi =
0, i=1, . . . ,n such that all the solutions of the closed-loop system satisfy limt→∞ ‖x(t)‖=0.

Proof
Following the same design procedure, in the present case, we have

V̇i � −ki0z
2
i +gi N (�i )�̇i + �̇i +g2i z

2
i+1, i=1, . . . ,n−1 (51)

V̇n � −knz
2
n+gnN (�n)�̇n+ �̇n (52)

From (52) and using Lemma 1, it follows that �n(t) and Vn(t), hence zn(t), �̂a,n(t), b̂n(t), are
globally uniformly ultimately bounded. Moreover, zn(t) is square integrable. Noting (51) and
applying Lemma 1 backward (n−1) times, it can be obtained that Vi (t), zi (t), �̂a,i (t), b̂i (t), and
hence xi (t), are globally uniformly ultimately bounded. In addition, since ẋi , 1�i�n, are bounded,
functions xi (t) are uniformly continuous. Hence, a direct application of Barbalat’s lemma gives
that limt→∞ ‖x(t)‖=0. �

4. SIMULATION STUDIES

Consider the dynamics of a VCM actuator in the following form:

1

k
ÿ(t)=u(t)−� (53)

where y is the head position of the actuator, u is the control signal, and � represents the torque
disturbances including pivot friction, windage and bias, or any unmodeled dynamics, which satisfies
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Figure 1. Position error signal.
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Figure 3. Nussbaum function.

�=�∗
0�(t) with �∗

0 being the unknown constant and �(t) being the known function that is assumed
here to be �(t)=sin(2�10t). The high-frequency gain k is completely unknown, i.e. either positive
or negative constant with unknown sign. In the simulation study, the unknown disturbance � is
assumed to be mainly from the pivot nonlinearity, which was elegantly modeled in [20].

Let yd(t), ẏd(t), ÿd(t) be the desired position, velocity and acceleration, respectively. Define
the tracking error as e(t)= yd(t)− y(t) and the dynamic tracking error [21] as r(t)= ė(t)+�e(t)
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Figure 4. Control signal.
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Figure 5. Position error signal without parameter adaptation.

with constant �>0. The reference velocity and acceleration are defined, respectively, as ẏr (t)=
ẏd(t)+�e(t) and ÿr (t)= ÿd(t)+�ė(t).
Accordingly, the dynamic equation of system (53) can be represented in the following state-space

form:

ṙ =gu+�∗+ ÿr (54)

where g�−k and �∗�k�=k�∗
0�=�∗�.
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Consider the following adaptive control:

u(t) = N (�)

[
kI

∫ t

0
r(	)d	+kPr(t)+ �̂�+ ÿr

]

�̇ = r(t)

[
kI

∫ t

0
r(	)d	+kPr(t)+ �̂�+ ÿr

]
˙̂� = ��[r(t)�−���̂]

(55)

The R/W (Read/Write) head is driven by the VCM actuator to track a sinusoidal reference signal
yd(t)=0.1sin(2�20t). The control parameters are chosen as kI =0.004, kP =12e−6, �=800,
�� =2, �� =0.01.

The control algorithms are tested by changing the sign of the high-frequency gain k. The
simulation results are given in Figures 1–4, which has shown that all the closed-loop signals are
bounded for both cases (i.e. k>0 and k<0). To check the robustness of the scheme, the parameter
adaptation has been removed and the system actually blows up at t=8.06125, as can be seen from
Figure 5, which in turns verifies the proposed robust adaptive scheme.

5. CONCLUSION

In this paper, robust adaptive control has been presented for a class of perturbed uncertain strict-
feedback nonlinear systems with unknown control coefficients. The design method does not require
the a priori knowledge of the signs of the unknown control coefficients due to the incorporation
of Nussbaum gain in the controller design. It has been proved that the proposed robust adaptive
scheme can guarantee the global uniform ultimate boundedness of the closed-loop system signals.

APPENDIX A

In order to prove Lemma 1, the following two lemmas are useful and introduced first.

Lemma A.1
If the continuous function �(t), t ∈R+, is strictly monotonic in [t
, t�]⊂R+, t
<t�, then after
applying integration by parts for a few times, the function

Ng(t,�(t
),�(t�))=
∫ �(t�)

�(t
)
g0N (�(	))e−c1(t−	) d�(	) (A1)

with N (�)=�2 cos(�) can be calculated by

Ng(t,�(t
),�(t�)) = g0�
2 sin(�)e−c1[t−�−1(�)]|�(t�)

�(t
)
+2g0�cos(�)e

−c1[t−�−1(�)]|�(t�)

�(t
)

−2g0 sin(�)e
−c1[t−�−1(�)]|�(t�)

�(t
)
+
∫ t�

t

2c1g0 sin(�)e

−c1(t−	) d	

−
∫ t�

t

2c1g0�cos(�)e

−c1(t−	) d	−
∫ t�

t

c1g0�

2 sin(�)e−c1(t−	) d	 (A2)
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Proof
Since �(t) is strictly monotonic in [t
, t�], there exists an inverse function �−1(·) that is also strictly
monotonic and �−1(�(t))≡ t . Noting N (�)=�2 cos(�), (A1) can be re-written as

Ng(t,�(t
),�(t�))=
∫ �(t�)

�(t
)
g0�

2 cos(�)e−c1[t−�−1(�)] d�

Integrating by parts yields

Ng(t,�(t
),�(t�)) =
∫ �(t�)

�(t
)
g0�

2e−c1[t−�−1(�)] d[sin(�)]

= g0�
2 sin(�)e−c1[t−�−1(�)]|�(t�)

�(t
)
−
∫ �(t�)

�(t
)
g0 sin(�)d{�2e−c1[t−�−1(�)]} (A3)

Noting that d�−1(�)=d	 and d{�2e−c1[t−�−1(�)]}=2�e−c1[t−�−1(�)] d�+c1�
2e−c1(t−	) d	, Equation

(A3) becomes

Ng(t,�(t
),�(t�)) = g0�
2 sin(�)e−c1[t−�−1(�)]|�(t�)

�(t
)
−
∫ �(t�)

�(t
)
2g0�sin(�)e

−c1[t−�−1(�)] d�

−
∫ t�

t

c1g0�

2 sin(�)e−c1(t−	) d	 (A4)

Integrating by parts for the term
∫ �(t�)

�(t
)
2g0�sin(�)e−c1[t−�−1(�)] d� in (A4), we have∫ �(t�)

�(t
)
2g0�sin(�)e

−c1[t−�−1(�)] d� = −2g0�cos(�)e
−c1[t−�−1(�)]|�(t�)

�(t
)

+
∫ �(t�)

�(t
)
2g0 cos(�)d{�e−c1[t−�−1(�)]} (A5)

Noting that d{�e−c1[t−�−1(�)]}=e−c1[t−�−1(�)] d�+c1�e−c1[t−�−1(�)] d	, Equation (A5) becomes∫ �(t�)

�(t
)
2g0�sin(�)e

−c1[t−�−1(�)] d�=−2g0�cos(�)e
−c1[t−�−1(�)]|�(t�)

�(t
)

+
∫ �(t�)

�(t
)
2g0 cos(�)e

−c1[t−�−1(�)] d�+
∫ t�

t

2c1g0�cos(�)e

−c1(t−	) d	 (A6)

Substituting (A6) into (A4) yields

Ng(t,�(t
),�(t�)) = g0�
2 sin(�)e−c1[t−�−1(�)]|�(t�)

�(t
)
+2g0�cos(�)e

−c1[t−�−1(�)]|�(t�)

�(t
)

−
∫ �(t�)

�(t
)
2g0 cos(�)e

−c1[t−�−1(�)] d�−
∫ t�

t

2c1g0�cos(�)e

−c1(t−	) d	

−
∫ t�

t

c1g0�

2 sin(�)e−c1(t−	) d	 (A7)
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Similarly, integrating by parts for the term
∫ �(t�)

�(t
)
2g0 cos(�)e−c1[t−�−1(�)] d� in (A7) by noting that

d{e−c1[t−�−1(�)]}=c1e−c1[t−�−1(�)] d	, we have

∫ �(t�)

�(t
)
2g0 cos(�)e

−c1[t−�−1(�)] d�

=2g0 sin(�)e
−c1[t−�−1(�)]|�(t�)

�(t
)
−
∫ t�

t

2c1g0 sin(�)e

−c1(t−	) d	 (A8)

Substituting (A8) into (A7), we have

Ng(t,�(t
),�(t�)) = g0�
2 sin(�)e−c1[t−�−1(�)]|�(t�)

�(t
)
+2g0�cos(�)e

−c1[t−�−1(�)]|�(t�)

�(t
)

−2g0 sin(�)e
−c1[t−�−1(�)]|�(t�)

�(t
)
+
∫ t�

t

2c1g0 sin(�)e

−c1(t−	) d	

−
∫ t�

t

2c1g0�cos(�)e

−c1(t−	) d	−
∫ t�

t

c1g0�

2 sin(�)e−c1(t−	) d	

so that (A2) is proven. �

Lemma A.2
If the continuous function �(t), t ∈R+, is strictly monotonic in [t
, t�]⊂R+, t
<t�, the following
inequalities hold:

(i) |∫ t�
t
 2c1g0 sin(�)e−c1(t−	) d	|�(t�− t
)2c1g0,

(ii) |∫ t�
t
 2c1g0�cos(�)e−c1(t−	) d	|�(t�− t
)2c1g0�m ,

(iii) |e−c1t
∫ t�
t
 c1g0�

2 sin(�)ec1	 d	|�g0�
2
m[e−c1(t−t�)−e−c1(t−t
)], where �m=max{|�(t
)|, |�(t�)|}.

Proof
Properties (i), (ii) and (iii) can be easily proved by applying integral inequality and the proof is
omitted. �

Lemma 1 is re-produced here for clarity.

Lemma 1
Let V (·) and �(·) be smooth functions defined on [0, t f ) with V (t)�0, ∀t ∈[0, t f ), and N (�)=
�2 cos(�). If the following inequality holds:

0�V (t)�c0+e−c1t
∫ t

0
[g0N (�)+1]�̇ec1	 d	 ∀t ∈[0, t f ) (A9)

where constant c1>0, g0 is a non-zero constant, and c0>0 represents some suitable constant, then
V (t), �(t) and

∫ t
0 g0N (�)�̇d	 are bounded on [0, t f ).
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Proof
We first show that �(t) is bounded on [0, t f ) by seeking a contradiction. Suppose that �(t) is
unbounded and two cases should be considered: (i) �(t) has no upper bound and (ii) �(t) has no
lower bound.

Case (i): �(t) has no upper bound on [0, t f ). In this case, there must exist a monotonically
increasing sequence {ti }, i=1,2, . . ., such that the sequence {�(ti )} is monotonically increasing
with �(t1)>|�(0)|�0, limi→+∞ ti = t f , and limi→+∞ �(ti )=+∞.

According to the local Inverse Function Theorem [22, p. 211], if the continuously differentiable
function �(·) is strictly monotonic on an interval [
,�], i.e. ∀a∈[
,�], �′(a) �=0, then there exists
an inverse function �−1(·) that is also strictly monotonic and continuously differentiable.

Let us first assume a special case that �(t) is strictly monotonically increasing on [0, ti ) such that
there exists an inverse function �−1(·) that is also strictly monotonic increasing and �−1(�(	))≡	.
Invoking Lemma A.1 by noting that N (�)=�2 cos(�), we have

Ng(ti ,�(0),�(ti )) =
∫ �(ti )

�(0)
g0N (�(	))e−c1(ti−	) d�(	)

= g0�
2 sin(�)e−c1[ti−�−1(�)]|�(ti )�(0) +2g0�cos(�)e

−c1[ti−�−1(�)]|�(ti )�(0)

−2g0 sin(�)e
−c1[ti−�−1(�)]|�(ti )�(0) +

∫ ti

0
2c1g0 sin(�)e

−c1(ti−	) d	

−
∫ ti

0
2c1g0�cos(�)e

−c1(ti−	) d	−
∫ ti

0
c1g0�

2 sin(�)e−c1(ti−	) d	

Noting that �−1(�(0))=0 and �−1(�(ti ))= ti , Ng(ti ,�(0),�(ti )) can be calculated by

Ng(ti ,�(0),�(ti )) = g0�
2(ti )sin(�(ti ))−g0�

2(0)sin(�(0))e−c1ti

+2g0�(ti )cos(�(ti ))−2g0�(0)cos(�(0))e
−c1ti

−2g0 sin(�(ti ))+2g0 sin(�(0))e
−c1ti +

∫ ti

0
2c1g0 sin(�)e

−c1(ti−	) d	

−
∫ ti

0
2c1g0�cos(�)e

−c1(ti−	) d	−
∫ ti

0
c1g0�

2 sin(�)e−c1(ti−	) d	 (A10)

Using the inequalities (i), (ii) and (iii) in Lemma A.2 and noting that �(ti )>|�(0)|�0 since �(t) is
strictly monotonically increasing, ∀t ∈[0, ti ), we have∣∣∣∣

∫ ti

0
2c1g0 sin(�)e

−c1(ti−	) d	

∣∣∣∣� 2ti c1g0 (A11)

∣∣∣∣
∫ ti

0
2c1g0�cos(�)e

−c1(ti−	) d	

∣∣∣∣� 2ti c1g0�(ti ) (A12)

∣∣∣∣e−c1ti

∫ ti

0
c1g0�

2 sin(�)ec1	 d	

∣∣∣∣� g0�
2(ti )[1−e−c1ti ] (A13)
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From (A10) and (A11)–(A13), the following inequalities hold:

Ng(ti ,�(0),�(ti ))�g0�
2(ti )[sin(�(ti ))+1−e−c1ti ]+ f1(�(0),�(ti )) (A14)

where

f1(�(0),�(ti )) = 2g0�(ti )cos(�(ti ))−2g0 sin(�(ti ))+2ti c1g0�(ti )+2ti c1g0

−g0�
2(0)sin(�(0))e−c1ti −2g0�(0)cos(�(0))e

−c1ti +2g0 sin(�(0))e
−c1ti

Noting (A9) and (A14), we have

0� V (ti )�c0+
∫ �(ti )

�(0)
g0N (�(	))e−c1(ti−	) d�(	)+

∫ �(ti )

�(0)
e−c1(ti−	) d�(	)

� c0+Ng(ti ,�(0),�(ti ))+(�(ti )−�(0)) sup
	∈[0,ti ]

e−c1(ti−	)

� c0+g0�
2(ti )[sin(�(ti ))+1−e−c1ti ]+ f1(�(0),�(ti ))+�(ti )−�(0)

= �2(ti )

{
g0[sin(�(ti ))+1−e−c1ti ]+ 1

�2(ti )
[c0+ f1(�(0),�(ti ))+�(ti )−�(0)]

}

Taking the limit as i→+∞, hence ti → t f , �(ti )→+∞, f1(�(0),�(ti ))/�
2(ti )→0, we have

0� lim
i→+∞V (ti )� lim

i→+∞g0�
2(ti )[sin(�(ti ))+1−e−c1ti ]

which, if g0>0, draws a contradiction when [sin(�(ti ))+1−e−c1ti ]<0, and, if g0<0, draws a
contradictions when [sin(�(ti ))+1−e−c1ti ]>0. Therefore, �(t) is upper bounded on [0, t f ).

Now, let us come back to the general case when �(t) is continuous but not strictly monotonically
increasing on [0, ti ). As such, assume that �(t) has n critical points {tc1, tc2, . . . , tcn}⊂[0, ti ), i.e.
d/dt�(tcj )=0, j =1, . . . ,n. Although �(t) is not strictly monotonic on [0, ti ), it is monotonic on the
intervals [0, tc1], [tc1, tc2], . . . , [tc,n−1, tcn], and [tcn, ti ], respectively, such that the inverse function
�−1(·) exists on these intervals. Invoking Lemma A.1 by noting that N (�)=�2 cos(�), we have

Ng(ti ,�(0),�(ti )) =
∫ �(ti )

�(0)
g0N (�(	))e−c1(ti−	) d�(	)

=
(∫ �(tc1)

�(0)
+
∫ �(tc2)

�(tc1)
+·· ·+

∫ �(tcn)

�(tc,n−1)

+
∫ �(ti )

�(tcn)

)
g0N (�(	))e−c1(ti−	) d�(	)

= g0�
2 sin(�)e−c1[ti−�−1(�)](|�(tc1)�(0) +|�(tc2)�(tc1)

+·· ·+|�(tcn)�(tc,n−1)
+|�(ti )�(tcn)

)

+2g0�cos(�)e
−c1[ti−�−1(�)](|�(tc1)�(0) +|�(tc2)�(tc1)

+·· ·+|�(tcn)�(tc,n−1)
+|�(ti )�(tcn)

)

−2g0 sin(�)e
−c1[ti−�−1(�)](|�(tc1)�(0) +|�(tc2)�(tc1)

+·· ·+|�(tcn)�(tc,n−1)
+|�(ti )�(tcn)

)

+
∫ ti

0
2c1g0 sin(�)e

−c1(ti−	) d	−
∫ ti

0
2c1g0�cos(�)e

−c1(ti−	) d	

−
∫ ti

0
c1g0�

2 sin(�)e−c1(ti−	) d	 (A15)
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The first term on the right-hand side of (A15) can be calculated by

g0�
2 sin(�)e−c1[ti−�−1(�)](|�(tc1)�(0) +|�(tc2)�(tc1)

+·· ·+|�(tcn)�(tc,n−1)
+|�(ti )�(tcn)

)

=g0�
2(tc1)sin(�(tc1))e

−c1(ti−tc1)−g0�
2(0)sin(�(0))e−c1ti

+g0�
2(tc2)sin(�(tc2))e

−c1(ti−tc2)−g0�
2(tc1)sin(�(tc1))e

−c1(ti−tc1)

+·· ·+g0�
2(tcn)sin(�(tcn))e

−c1(ti−tcn)−g0�
2(tc,n−1)sin(�(tc,n−1))e

−c1(ti−tc,n−1)

+g0�
2(ti )sin(�(ti ))−g0�

2(tcn)sin(�(tcn))e
−c1(ti−tcn)

=g0�
2(ti )sin(�(ti ))−g0�

2(0)sin(�(0))e−c1ti

Similarly, the second and the third terms can be calculated by

2g0�cos(�)e
−c1[ti−�−1(�)](|�(tc1)�(0) +|�(tc2)�(tc1)

+·· ·+|�(tcn)�(tc,n−1)
+|�(ti )�(tcn)

)

=2g0�(ti )cos(�(ti ))−2g0�(0)cos(�(0))e
−c1ti

−2g0 sin(�)e
−c1[ti−�−1(�)](|�(tc1)�(0) +|�(tc2)�(tc1)

+·· ·+|�(tcn)�(tc,n−1)
+|�(ti )�(tcn)

)

=−2g0 sin(�(ti ))+2g0 sin(�(0))e
−c1ti

Now we are ready to have

Ng(ti ,�(0),�(ti )) = g0�
2(ti )sin(�(ti ))−g0�

2(0)sin(�(0))e−c1ti

+2g0�(ti )cos(�(ti ))−2g0�(0)cos(�(0))e
−c1ti

−2g0 sin(�(ti ))+2g0 sin(�(0))e
−c1ti +

∫ ti

0
2c1g0 sin(�)e

−c1(ti−	) d	

−
∫ ti

0
2c1g0�cos(�)e

−c1(ti−	) d	−
∫ ti

0
c1g0�

2 sin(�)e−c1(ti−	) d	

which is the same as (A10).
Therefore, the rest of the analysis is the same as the case when �(t) is strictly monotonically

increasing and the same conclusion can be drawn, i.e. �(t) is upper bounded on [0, t f ].
Case (ii): �(t) has no lower bound on [0, t f ). There must exist a monotonically increasing

sequence {t i }, i=1,2, . . ., such that the sequence {−�(t i )} is monotonically increasing with
−�(t1)>|�(0)|�0, limi→+∞ t i = t f , and limi→+∞[−�(t i )]=+∞.

Letting �(t)=−�(t), from (A9)

0�V (t i )�c0−
∫ �(t i )

�(0)
g0N (−�(	))e−c1(t i−	) d�(	)−

∫ �(t i )

�(0)
e−c1(t i−	) d�(	) (A16)

Noting that N (·) is an even function, i.e. N (�)=N (−�), (A16) becomes

0�V (t i )�c0−
∫ �(t i )

�(0)
g0N (�(	))e−c1(t i−	) d�(	)−

∫ �(t i )

�(0)
e−c1(t i−	) d�(	)
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where

−
∫ �(t i )

�(0)
g0N (�(	))e−c1(t i−	) d�(	) = −Ng(t i ,�(0),�(t i ))

� g0�
2(t i )[−sin(�(t i ))+1−e−c1t i ]

+ f2(�(0),�(t i )) (A17)

with

f2(�(0),�(t i )) = −2g0�(t i )cos(�(t i ))+2g0 sin(�(t i ))+2t i c1g0�(t i )+2t i c1g0

+g0�
2(0)sin(�(0))e−c1t i +2g0�(0)cos(�(0))e−c1t i −2g0 sin(�(0))e−c1t i

Therefore, it follows

0� V (t i )�c0−Ng(t i ,�(0),�(t i ))−[�(t i )−�(0)] inf
	∈[0,t i ]

e−c1(t i−	)

� c0+g0�
2(t i )[−sin(�(t i ))+1−e−c1t i ]+ f2(�(0),�(t i ))−[�(t i )−�(0)]e−c1t i

= �2(t i )

{
g0[−sin(�(t i ))+1−e−c1t i ]+ 1

�2(t i )
[c0+ f2(�(0),�(t i ))−(�(t i )−�(0))e−c1t i ]

}

Taking the limit as i→+∞, hence t i → t f , �(t i )→+∞, f2(�(0),�(t i ))/�
2(t i )→0, we have

0� lim
i→+∞V (t i )� lim

i→+∞�2(t i )g0[−sin(�(t i ))+1−e−c1t i ] (A18)

which, if g0>0, draws a contradiction when [−sin(�(t i ))+1−e−c1t i ]<0, and, if g0<0, draws a
contradictions when [−sin(�(t i ))+1−e−c1t i ]>0. Therefore, �(t) is lower bounded on [0, t f ).

Therefore, �(t) must be bounded on [0, t f ). In addition, V (t) and
∫ t
0 g0N (�)�̇d	 are bounded

on [0, t f ). �
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